This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for models including the mixture of Dirichlet process model and the random Bernstein polynomial model.

On rates of convergence for posterior distributions in infinite-dimensional models

LIJOI, ANTONIO;PRUENSTER, IGOR
2007

Abstract

This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for models including the mixture of Dirichlet process model and the random Bernstein polynomial model.
2007
2007
Walker, Stephen G.; Lijoi, Antonio; Pruenster, Igor
File in questo prodotto:
File Dimensione Formato  
rates_published.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 127.05 kB
Formato Adobe PDF
127.05 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3991410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact