This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for models including the mixture of Dirichlet process model and the random Bernstein polynomial model.
On rates of convergence for posterior distributions in infinite-dimensional models
LIJOI, ANTONIO;PRUENSTER, IGOR
2007
Abstract
This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for models including the mixture of Dirichlet process model and the random Bernstein polynomial model.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
rates_published.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
127.05 kB
Formato
Adobe PDF
|
127.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.