Completely random measures (CRM) represent the key building block of a wide variety of popular stochastic models and play a pivotal role in modern Bayesian Nonparametrics. A popular representation of CRMs as a random series with decreasing jumps is due to Ferguson and Klass (1972). This can immediately be turned into an algorithm for sampling realizations of CRMs or more elaborate models involving transformed CRMs. However, concrete implementation requires to truncate the random series at some threshold resulting in an approximation error. The goal of this paper is to quantify the quality of the approximation by a moment-matching criterion, which consists in evaluating a measure of discrepancy between actual mo-ments and moments based on the simulation output. Seen as a function of the truncation level, the methodology can be used to determine the truncation level needed to reach a certain level of precision. The resulting moment-matching Ferguson & Klass algorithm is then implemented and illustrated on several popular Bayesian nonparametric models.

A moment-matching Ferguson & Klass algortihm

ARBEL, JULYAN;PRUENSTER, IGOR
2017

Abstract

Completely random measures (CRM) represent the key building block of a wide variety of popular stochastic models and play a pivotal role in modern Bayesian Nonparametrics. A popular representation of CRMs as a random series with decreasing jumps is due to Ferguson and Klass (1972). This can immediately be turned into an algorithm for sampling realizations of CRMs or more elaborate models involving transformed CRMs. However, concrete implementation requires to truncate the random series at some threshold resulting in an approximation error. The goal of this paper is to quantify the quality of the approximation by a moment-matching criterion, which consists in evaluating a measure of discrepancy between actual mo-ments and moments based on the simulation output. Seen as a function of the truncation level, the methodology can be used to determine the truncation level needed to reach a certain level of precision. The resulting moment-matching Ferguson & Klass algorithm is then implemented and illustrated on several popular Bayesian nonparametric models.
2017
2016
Arbel, Julyan; Pruenster, Igor
File in questo prodotto:
File Dimensione Formato  
FK_published_print.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 762.43 kB
Formato Adobe PDF
762.43 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3990078
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact