We develop envelope theorems for optimization problems in which the value function takes values in a general Banach lattice. We consider both the special case of a convex choice set and a concave objective function and the more general case case of an arbitrary choice set and a general objective function. We apply our results to discuss the existence of a well-defined notion of marginal utility of wealth in optimal discrete-time, finite-horizon consumption-portfolio problems with an unrestricted information structure and preferences allowed to display habit formation and state dependency.

Envelope theorems in Banach lattices and asset pricing

BATTAUZ, ANNA;ORTU, FULVIO
2015

Abstract

We develop envelope theorems for optimization problems in which the value function takes values in a general Banach lattice. We consider both the special case of a convex choice set and a concave objective function and the more general case case of an arbitrary choice set and a general objective function. We apply our results to discuss the existence of a well-defined notion of marginal utility of wealth in optimal discrete-time, finite-horizon consumption-portfolio problems with an unrestricted information structure and preferences allowed to display habit formation and state dependency.
2015
2015
Battauz, Anna; De Donno, Marzia; Ortu, Fulvio
File in questo prodotto:
File Dimensione Formato  
published-math-fin-econ-2015-9_303-323.pdf

non disponibili

Descrizione: Published paper
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 377.94 kB
Formato Adobe PDF
377.94 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3978321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact