The aim in this article is to provide a means to undertake Bayesian inference for mixture models when the likelihood function is raised to a power between 0 and 1. The main purpose for doing this is to guarantee a strongly consistent model and hence, make it possible to compare the consistent posterior with the correct posterior, looking for signs of discrepancy. This will be explained in detail in the article. Another purpose would be for simulated annealing algorithms. In particular, for the widely used mixture of Dirichlet process model, it is far from obvious how to undertake inference via Markov chain Monte Carlo methods when the likelihood is raised to a power other than 1. In this article, we demonstrate how posterior sampling can be carried out when using a power likelihood. Matlab code to implement the algorithm is available as supplementary material.

Bayesian Nonparametric Inference for the Power Likelihood

ANTONIANO VILLALOBOS, ISADORA;
2013

Abstract

The aim in this article is to provide a means to undertake Bayesian inference for mixture models when the likelihood function is raised to a power between 0 and 1. The main purpose for doing this is to guarantee a strongly consistent model and hence, make it possible to compare the consistent posterior with the correct posterior, looking for signs of discrepancy. This will be explained in detail in the article. Another purpose would be for simulated annealing algorithms. In particular, for the widely used mixture of Dirichlet process model, it is far from obvious how to undertake inference via Markov chain Monte Carlo methods when the likelihood is raised to a power other than 1. In this article, we demonstrate how posterior sampling can be carried out when using a power likelihood. Matlab code to implement the algorithm is available as supplementary material.
2013
ANTONIANO VILLALOBOS, Isadora; Stephen G., Walker
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3931518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact