We consider sufficient conditions for Bayesian consistency of the transition density of time homogeneous Markov processes. To date, this remains somewhat of an open problem, due to the lack of suitable metrics with which to work. Standard metrics seem inadequate, even for simple autoregressive models. Current results derive from generalizations of the i.i.d. case and additionally require some non-trivial model assumptions. We propose suitable neighborhoods with which to work and derive sufficient conditions for posterior consistency which can be applied in general settings. We illustrate the applicability of our result with some examples; in particular, we apply our result to a general family of nonparametric time series models.

Bayesian Consistency for Markov Models

Antoniano-Villalobos, Isadora;
2015

Abstract

We consider sufficient conditions for Bayesian consistency of the transition density of time homogeneous Markov processes. To date, this remains somewhat of an open problem, due to the lack of suitable metrics with which to work. Standard metrics seem inadequate, even for simple autoregressive models. Current results derive from generalizations of the i.i.d. case and additionally require some non-trivial model assumptions. We propose suitable neighborhoods with which to work and derive sufficient conditions for posterior consistency which can be applied in general settings. We illustrate the applicability of our result with some examples; in particular, we apply our result to a general family of nonparametric time series models.
2014
Antoniano-Villalobos, Isadora; Walker, Stephen G.
File in questo prodotto:
File Dimensione Formato  
san.pdf

non disponibili

Tipologia: Documento in Post-print (Post-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 477.08 kB
Formato Adobe PDF
477.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Antoniano-Walker(2015)Bayesian Consistency for Markov models.pdf

non disponibili

Descrizione: Articolo
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 495.32 kB
Formato Adobe PDF
495.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11565/3929319
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact