Agricultural sectors play a key role in the economics of climate change. Land as an input to agricultural production is one of the most important links between economy and the biosphere, representing a direct projection of human action on the natural environment. Agricultural management practices and cropping patterns exert an enormous effect on biogeochemical cycles, freshwater availability and soil quality. Agriculture also plays an important role in emitting and storing greenhouse gases. To consistently investigate climate policy and future pathways for the economic and natural environment, a realistic representation of agricultural land use is essential. Top—down Computable General Equilibrium (CGE) models have increasingly been used for this purpose. CGE models simulate the simultaneous equilibrium in a set of interdependent markets, and are especially suited to analyze agricultural markets from a global perspective. However, modeling agricultural sectors in CGE models is not a trivial task, mainly because of differences in temporal and geographic aggregation scales. This study surveys some proposed modeling strategies and highlights different tradeoffs involved in the various approaches.

Climate Change and Agriculture in Computable General Equilibrium Models: Alternative Modeling Strategies and Data Needs

ROSON, ROBERTO
2012

Abstract

Agricultural sectors play a key role in the economics of climate change. Land as an input to agricultural production is one of the most important links between economy and the biosphere, representing a direct projection of human action on the natural environment. Agricultural management practices and cropping patterns exert an enormous effect on biogeochemical cycles, freshwater availability and soil quality. Agriculture also plays an important role in emitting and storing greenhouse gases. To consistently investigate climate policy and future pathways for the economic and natural environment, a realistic representation of agricultural land use is essential. Top—down Computable General Equilibrium (CGE) models have increasingly been used for this purpose. CGE models simulate the simultaneous equilibrium in a set of interdependent markets, and are especially suited to analyze agricultural markets from a global perspective. However, modeling agricultural sectors in CGE models is not a trivial task, mainly because of differences in temporal and geographic aggregation scales. This study surveys some proposed modeling strategies and highlights different tradeoffs involved in the various approaches.
2012
Palatnik, R.; Roson, Roberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3861729
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 20
social impact