The size distribution of the domains of US-patented technological knowledge obeys an exponential law, revealing a disproportionable concentration of progress among larger domains. Our analyses suggest that this phenomenon is explained by a combination of two factors. First, domains’ trajectories of growth have inherently different potentials. Second, differences in domains’ potentials are magnified by a mechanism—domains’ self-hybridization—endogenous to the process of knowledge growth. Our results show that in addition to being stable, the observed distribution of technological progress is likely to arise under very general conditions
The distribution of technological progress
CARNABUCI, GIANLUCA
2013
Abstract
The size distribution of the domains of US-patented technological knowledge obeys an exponential law, revealing a disproportionable concentration of progress among larger domains. Our analyses suggest that this phenomenon is explained by a combination of two factors. First, domains’ trajectories of growth have inherently different potentials. Second, differences in domains’ potentials are magnified by a mechanism—domains’ self-hybridization—endogenous to the process of knowledge growth. Our results show that in addition to being stable, the observed distribution of technological progress is likely to arise under very general conditionsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.