This paper considers alternative option pricing models and their estimation. The stock price dynamics is modeled by taking into account both stochastic volatility and jumps. Jumps are captured by the tempered stable process and stochastic volatility is introduced via time changing the stochastic processes. We propose a characteristic function based iterative estimation method, which overcomes the problem of non-tractable probability density functions of the models and facilitates computation. Estimation results and option pricing performance indicate that the infinite activity stochastic volatility model dominates the finite activity model. We also provide an extension to investigate the double-jump model by introducing jumps in the variance rate process.

A spectral estimation of tempered stable stochastic volatility models and option pricing

Favero, Carlo;Ortu, Fulvio
2012

Abstract

This paper considers alternative option pricing models and their estimation. The stock price dynamics is modeled by taking into account both stochastic volatility and jumps. Jumps are captured by the tempered stable process and stochastic volatility is introduced via time changing the stochastic processes. We propose a characteristic function based iterative estimation method, which overcomes the problem of non-tractable probability density functions of the models and facilitates computation. Estimation results and option pricing performance indicate that the infinite activity stochastic volatility model dominates the finite activity model. We also provide an extension to investigate the double-jump model by introducing jumps in the variance rate process.
2012
Li, Junye; Favero, Carlo; Ortu, Fulvio
File in questo prodotto:
File Dimensione Formato  
acceptance.pdf

non disponibili

Tipologia: Allegato per valutazione Bocconi (Attachment for Bocconi evaluation)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 11.37 kB
Formato Adobe PDF
11.37 kB Adobe PDF   Visualizza/Apri
1-s2.0-S016794731000441X-main.pdf

non disponibili

Descrizione: Articolo
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 304.06 kB
Formato Adobe PDF
304.06 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3719127
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact