A widely applicable analysis of numerical data shows that, while the distribution of avalanche areas obeys finite size scaling, that of toppling numbers is universally characterized by a full, nonlinear multifractal spectrum. Boundary effects determine an unusual dependence on system size of the moment scaling exponents of the conditional toppling distribution at a given area. This distribution is also multifractal in the bulk regime. The resulting picture brings to light unsuspected physics of this long-studied prototype model. © 1999 The American Physical Society.

Multifractal scaling in the Bak-Tang-Wiesenfeld sandpile and edge events

TEBALDI, CLAUDIO;
1999

Abstract

A widely applicable analysis of numerical data shows that, while the distribution of avalanche areas obeys finite size scaling, that of toppling numbers is universally characterized by a full, nonlinear multifractal spectrum. Boundary effects determine an unusual dependence on system size of the moment scaling exponents of the conditional toppling distribution at a given area. This distribution is also multifractal in the bulk regime. The resulting picture brings to light unsuspected physics of this long-studied prototype model. © 1999 The American Physical Society.
1999
Tebaldi, Claudio; M., De Menech; A. L., Stella
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3717192
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 164
  • ???jsp.display-item.citation.isi??? 153
social impact