A random distribution function on the positive real line which belongs to the class of neutral to the right priors is defined. It corresponds to the superposition of independent beta processes at the cumulative hazard level. The definition is constructive and starts with a discrete time process with random probability masses obtained from suitably defined products of independent beta random variables. The continuous time version is derived as the corresponding infinitesimal weak limit and is described in terms of completely random measures. It takes the interpretation of the survival distribution resulting from independent competing failure times. We discuss prior specification and illustrate posterior inference on a real data example. © 2009 Elsevier B.V. All rights reserved.
A class of neutral to the right priors induced by superposition of beta processes
MULIERE, PIETRO
2010
Abstract
A random distribution function on the positive real line which belongs to the class of neutral to the right priors is defined. It corresponds to the superposition of independent beta processes at the cumulative hazard level. The definition is constructive and starts with a discrete time process with random probability masses obtained from suitably defined products of independent beta random variables. The continuous time version is derived as the corresponding infinitesimal weak limit and is described in terms of completely random measures. It takes the interpretation of the survival distribution resulting from independent competing failure times. We discuss prior specification and illustrate posterior inference on a real data example. © 2009 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.