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This study considers a multiproduct economic order quantity problem where delay in
payment is permissible and the retailer can benefit cash discounts. The amount of
discount and the length of the grace period depend on the order quantity and all the
costs increase by an inflation rate. Moreover, the shortage is backlogged and the lim-
ited warehouse space leads to a constraint for storage. We first formulate the problem
into a non-linear integer-programming model and then we propose a hybrid genetic
algorithm and simulated annealing (GA+SA) to solve it. Since there is no benchmark
available in the literature, a GA is developed as well to validate the results obtained.
The parameters of both algorithms are tuned using the Taguchi method. Finally,
numerical examples are solved to evaluate the performances and to compare the effi-
ciency of the two solution procedures.

Keywords: multiproduct EOQ; inflation; discount; permissible delay in payments;
shortage; limited warehouse space; genetic algorithm; simulated annealing

1. Introduction and literature review

The economic order quantity (EOQ) and the economic production quantity are the most
applicable models in inventory control environments, where many researchers have
studied them under different conditions using various assumptions. Two of the assump-
tions that are important in attracting new customers while maintaining the old ones are
the permissible delay in payments and the cash discounts. Most of the times the suppli-
ers use these politics to encourage the retailers to buy more merchandises. However, the
retailers always cannot buy as much as they want because of their limited resources
such as budget and warehouse capacity.

In many businesses, the credit has a great role in financing. As the customer does
not pay any interest during the permissible delay in payment time, the permissible delay
policy can be viewed as a type of price discount. Moreover, it provides an economic
chance for the retailer to delay the payment up to the last day of the permissible delay
period. However, suppliers usually consider a delay cost for the retailers who pay after
the permissible delay time to prevent payments after the grace period.

Goyal (1985) developed mathematical models to obtain EOQ of an item for which
the supplier permits a fixed delay in setting the amount owned to him. Roy and
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Samanta (2011) extended Goyal’s (1985) model to include unequal unit selling and pur-
chasing prices. Abad and Jaggi (2003) considered an inventory model under credit per-
iod in which the end demand was price-sensitive. Moreover, both the credit period and
the price were considered seller’s decision variables. They assumed short-time capital
cost and gain rates for the buyer, where there was no cash discount for settling the
account early. Huang (2007) studied an EOQ model under permissible delay in pay-
ment. The main difference of his research with the previously published research works
was to consider a partial delay in payments when the order quantity is less than the
amount of quantity that leads to fully delayed payments. In this case, as the order is
filled in, the retailer must make a partial payment to the supplier. The remaining pur-
chasing cost must be paid off at the end of the trade credit period. In the case of a full
delay in payment, all the payment occurs at the end of the credit period. Sana and
Chaudhuri (2008) considered an inventory model under permissible delay time and
discount to maximize the profit, where the amount of discount depended on the length
of the grace time. Ouyang, Teng, Goyal, and Yang (2009) presented an EOQ model
under deterioration rate and partial permissible delay time. In their research, when the
order quantity is less than a predetermined quantity for a fully delayed payment, the
retailer must pay the partial payment by taking a loan with an interest charged per dollar
per year. The constant sale revenue would pay off the loan.

The all-units and the incremental discount policies are the two general types of dis-
count that are used for cost reductions. On the one hand, if the discount is given on all
units of a product that is purchased in quantity more than a predetermined breakpoint, it
is called the all-units discount policy. On the other hand, if the discount is applied only
for the units that are purchased beyond a given breakpoint at which the discount is
applied, it is called the incremental discount policy. Shinn, Hwang, and Park (1996)
studied an EOQ model in which the ordering cost included a fixed ordering and a
freight costs. By assuming the freight cost having a quantity discount, they solved the
problem under permissible delay in payments. Matsuyama (2001) considered an EOQ
model in which both the purchasing and the setup cost depended on the order quantity.
While the discount price was assumed a decreasing function of the ordering quantity, an
increasing function was used for the setup cost. The goal was to find the ordering cycle
and the ordering quantity to maximize the one-day’s average profit. Bhaba and AL-Kind
(2006) considered an EOQ model with a sale period in which there were two kinds of
regular and special order quantities during the period. They compared different discount
scenarios to sense the effect of different parameters on the ordering policies. Mendoza
and Ventura (2008) presented exact algorithms to solve an EOQ model that includes
truckload and less than truckload transportation costs under both all-units and incremen-
tal discounts. Toptal (2009) used all-units discount for replenishment decisions consider-
ing stepwise freight cost. Munson and Hu (2010) used both all-units and incremental
discount policies to find the optimal ordering quantities that would minimize the total
cost. The developed model of their problem was solved under different centralization
scenarios.

Leopoldo, Neale, and Goyal (2010) developed an EOQ model in which the shortage
was backlogged with two types of backordering costs. Further, three different scenarios
for one-time discount were considered. In the first scenario, the discount was offered at
a reorder point that applies to all units. In the second one, the discount was offered at a
reorder point and applied only to the units to be purchased. Finally, in the third
scenario, the discount was offered between reorder points and applied only to the
additional units.
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An inflation rate can be assumed in EOQ to have a more realistic model. Hariga
(1995) developed a model that includes both inflationary trends and time discounting,
and compared it with the standard EOQ model. Liao, Tsai, and Su (2000) studied the
effects of the inflation and deterioration rates in an EOQ model with permissible delay
in payment where an initial-stock-dependent consumption rate was considered. They
solved the model based on the relation between the credit period and the cycle time.
More relevant inventory works can be seen in Bather (1966), Chao (1992), Brander,
Levén, and Segerstedt (2005), and Borgonovo (2010).

In this paper, a multiproduct EOQ problem with a permissible delay in payment and
discount (all-units and incremental), both depending on the order quantity, is considered.
While the shortage is backlogged and the warehouse has a limited capacity, there is a
penalty cost per time on the payments that occur after the permissible delay time.

The organization of the rest of the paper is as follows. In the next section, the prob-
lem is defined. The mathematical formulation of the problem is given in Section 3. In
Section 4, both a genetic algorithm (GA) and a hybrid GA and simulated annealing
(SA) algorithm (GA+SA) are proposed to solve the model. In Section 5, the Taguchi
approach is used to tune the parameters of the algorithms. In order to demonstrate the
applications of the proposed modeling and to validate and compare their performances,
some numerical examples are solved in Section 6. Finally, the conclusion and recom-
mendations for future researches come in Section 7.

2. Problem definition

Consider a company (retailer) that works with a supplier. The company stores several
products replenished by the supplier to satisfy its customers’ needs. Based on the con-
tract between the supplier and the company, the retailer is provided permissible delay in
payments and discount, both depending on the order quantity. If the payment is not
made during the grace period, not only the company has to pay all the purchase cost
without any discount, but also it has to pay an additional penalty cost for the lateness.
The penalty depends on the length of the lateness. This agreement encourages the com-
pany to pay during the grace period with a benefit of flexible payments. The other spec-
ifications of the problem are defined as follows.

� The constant demand rates of the products are known.
� The lead time is neglected.
� Replenishments are instantaneous.
� The inflation rate is constant.
� When an order is received, defective items are rejected after a 100% inspection

process.
� The company (retailer) pays the purchasing cost to the supplier when the entire

product in his warehouse is sold out and places a new order at this time. In other
words, for a certain received product the payment cannot occur before its inven-
tory level reaches zero. Although this assumption restricts the application of the
proposed modeling, it is made to simplify the derivations.

� Shortages are allowed and unsatisfied demands are fully backlogged.
� All the costs increase by an inflation rate that is fixed during the replenishment

period. In other words, the costs are determined at the beginning of each period
based on its corresponding periodical inflation rate.

Production & Manufacturing Research: An Open Access Journal 643
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� Some of the products benefit from the all-units discount policy and the others
from the incremental discount policy.

� The capacity of the warehouse is limited.

A graph of the inventory position of the ith product is illustrated in Figure 1, where
the notations are given in Section 3.1. The objective is to determine the order quantity
and the shortage of each product such that the total inventory cost is minimized while
the warehouse constraint is satisfied.

3. Problem modeling

To formulate the problem, the parameters are first defined in Section 3.1. Different
inventory costs are then derived in Section 3.2. Finally, the mathematical model of the
problem is developed in Section 3.3.

3.1. Notation

For i = 1, 2, …, n, the parameters and the decision variables of the model are defined as
follows.

Parameters

H Length of planning horizon (in this paper, it is considered one year; H = 1)
n Number of products
Di Demand rate of product i (number of units per period)
r Constant inflation rate
l Holding cost rate
Ai(t) Ordering cost at time t for product i. That is AiðtÞ ¼ Aiert, where Ai is the

ordering cost at time zero
πi(t) Backordering cost per unit at time t for product i. That is piðtÞ ¼ piert , where pi

is the backordering cost per unit at time zero

Figure 1. A graph of the inventory position of product i.
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-iðtÞ Backordering cost per unit per unit of time at time t for product i. That is
-iðtÞ ¼ -iert, where -iis the backordering cost per unit per unit of time at time
zero

ciðtÞ Delay cost per unit of time at time t for product i. That is ciðtÞ ¼ cie
rt, where ci

is the delay cost per unit of time at time zero
Ti Cycle time of product i
Ni Number of cycle times of product i Ni ¼ H

Ti

� �
T 0
i Part of the cycle time in which there is an inventory for product i

K Number of products that benefit all-units discount
Mi Permissible delay period for paying to the supplier the purchasing cost of

product i (a function of Qi )
Ci(t) Purchasing price per unit of product i at time t (a function of Qi). That is

CiðtÞ ¼ Ciert, where Ciis the purchasing cost per unit at time zero
Ci,j Purchasing price per unit of product i at the jth discount point j = 1, 2, …,

m + 1
Mi,j Permissible delay time for product i at the jth discount point
fi Space that is needed to store one unit of product i
F Total available warehouse space
F 0 The warehouse space that is needed to store all the products’ order quantities
pi Average fraction of an order quantity of product i, that is not defective
TSi Total annual ordering cost of product i
TBi Total annual shortage cost product i
THi Total annual holding cost of product i
TMi Total annual delay cost of product i
TP Total TP0

idiscounted purchasing cost of product i
TP00

i Total purchasing cost of product i without discount
TPi Total annual purchasing cost of product i
TC Total annual cost of all products

Decision variables

Qi Order quantity of product i
bi Maximum shortage (backorder) level of product i
xi,j Binary variables used to calculate Ci,j in Table 1
yi,j Binary variables used to obtain Mi,j in Table 1
hi(t) Holding cost per unit per unit of time at time t for product i. That is

hiðtÞ ¼ hiert, where hi is the holding cost per unit per unit of time at time zero
and depends on variables Qi and si defined as

Table 1. Grace period and purchasing price as a function of the order size (qi;0 ¼ 0).

Grace period calculation Price calculation

Qi Mi piQi Ci

0\Qi � qi;1 Mi;1 0\piQi � qi;1 Ci;1

qi;1\Qi � qi;2 Mi;2 qi;1\piQi � qi;2 Ci;2

… … … …
qi;m�1\Qi � qi;m Mi;m qi;m�1\piQi � qi;m Ci;m

qi;m\Qi\u Mi;mþ1 qi;m\piQi � u Ci;mþ1

Production & Manufacturing Research: An Open Access Journal 645
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si ¼ 1 ; If product i receives discount ðTMi ¼ 0Þ
0 ; Otherwise ðTMi [ 0Þ

�

Assuming the supplier offers a longer permissible delay time for larger order sizes and
gains a larger discount to purchase more products, Table 1 shows the relationships
among the ordering quantity, the permissible delay time, and the unit-selling cost, where
u represents a big number. In this table, if qi;0 ¼ 0\Qi � qi;1 for an example, then the
permissible delay time equals to Mi;1 with a unit selling price of Ci;1.

3.2. Costs derivation

The annual system cost involves ordering, holding, shortage, delay, and purchasing costs
derived as follows.

3.2.1. Annual ordering cost (TSi)

The total annual ordering cost of product i depends on the inflation rate and the number
of ordering cycles and is obtained by:

TSi ¼ Aið0Þ þ AiðTiÞ þ ::::þ Ai ðNi � 1ÞTið Þ ¼
XNi�1

t¼0

Aie
rtTi ¼ Ai

erH � 1

erTi � 1

� �
(1)

3.2.2. Annual holding cost (THi)

As the holding cost per unit per unit of time (hiðtÞ) depends on the inflation rate, the
number of cycles per year, and the area under the inventory graph of Figure 1, the
annual holding cost can be derived using:

THi ¼
XNi�1

t¼0

T 0
i
piQi � bið Þ

2
hiðtTiÞ ¼

XNi�1

t¼0

T 0
i
piQi � bið Þ

2
hie

rtTi (2)

Now, based on Figure 1 we have,

T 0
i ¼

PiQi � bi
Di

(3)

Inserting Equation (3) in (2) leads to:

THi ¼ ðpiQi � biÞ2
2Di

hi
erH � 1

erTi � 1

� �
(4)

3.2.3. Annual shortage cost (TBi)

Shortages are backlogged, where their cost is considered time-dependent and time-inde-
pendent components. On the one hand, the time-independent annual shortage hinges on
the shortage in each cycle, the number of cycles, and the inflation rate. On the other
hand, the time-dependent shortage cost depends entirely on the area of the shortage
graph, the number of cycles per year, and the inflation rate. As a result, the first term of
Equation (5) denotes the time-independent and the second one refers to the time-depen-
dent shortage cost.

646 S.H.R. Pasandideh et al.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
Se

ye
d 

T
ag

hi
 A

kh
av

an
 N

ia
ki

] 
at

 1
0:

57
 0

8 
Se

pt
em

be
r 

20
14

 



TBi ¼
XNi�1

t¼0

bipie
rtTi þ

XNi�1

t¼0

ðTi � T 0
i Þ
bi
2
-ie

rtTi ¼ bipi þ ðTi � T 0
iÞ bi2 -i

� �
erH � 1

erTi � 1

� �

(5)

However, referring to Figure 1, we have:

Ti � T 0
i ¼

bi
Di

(6)

Then, replacing Equation (6) in (5) results in:

TBi ¼ bipi þ bi
2

2Di
-i

� �
erH � 1

erTi � 1

� �
(7)

3.2.4. Annual delay cost (TMi)

Since it is assumed the company is not able to pay to the supplier before selling all
units of the product, if the inventory level reaches zero after the grace period, there will
be a penalty cost. Hence, the total annual delay cost is derived under two different cir-
cumstances in the following two subsections.

3.2.4.1. Mi � T 0
i . In this case, the inventory level reaches zero before the end of the

grace period. Thus, the total delay cost equals to zero. In other words:

TMi ¼ 0 (8)

3.2.4.2. Mi\T 0
i . In this case, the inventory level reaches zero after the grace period.

As a result, the delay cost hinges on the length of the interval between Mi and T 0
i , num-

ber of cycles per year, and the inflation rate. In other words, we have

TMi ¼
XNi�1

t¼0

ðT 0
i �MiÞciðtTiÞ ¼ ðT 0

i �MiÞci
erH � 1

erTi � 1

� �
(9)

Replacing Equation (3) in (9) results in:

TMi ¼ PiQi � bi
Di

�Mi

� �
ci

erH � 1

erTi � 1

� �
(10)

Then, based on what was derived in subsection 3.2.3.1 and 3.2.3.2, the annual total
delay cost is obtained as:

TMi ¼ max 0;
piQi � bi

Di
�Mi

� �
ci

� �
erH � 1

erTi � 1

� �
(11)

where Mi is found in Table 1.
Using the binary variables yi;j, Mi can be replaced by

Pmþ1

j¼1
yi;jMi;j consideringPmþ1

j¼1
yi;j ¼ 1. Hence, the total annual delay cost is:

TMi ¼ max 0;
piQi � bi

Di
�
Xmþ1

j¼1

yi;jMi;j

 !
ci

( )
erH � 1

erTi � 1

� �
¼ Zi

erH � 1

erTi � 1

� �
(12)
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3.2.5. Annual purchasing cost (TPi)

Based on what we assumed in section two, some of the products receive all-units dis-
count and the others benefit from incremental discount policy. Further, if the payment is
not made during the grace period, the company has to pay all the purchasing cost with-
out any discount. Without loss of generality, to derive the total annual purchasing cost,
assume the first K products receive all-units and the rest get incremental discount.

Since the unit purchase cost of Ci;j is found in Table 1, using binary variables xi;j,

Ci can be replaced by
Pmþ1

j¼1
xi;jCi;j under the condition

Pmþ1

j¼1
xi;j ¼ 1. Furthermore, since

the annual total purchasing cost depends on the order quantity, the number of cycles per
year, the inflation rate, and the purchase cost per unit, and knowing that when Mi � T 0

i

the company benefits discount, the purchasing cost can be obtained as follows.
For the first K products that receive all-units discount, i.e. i = 1, 2, …, K, we have:

TP0
i ¼

XNi�1

t¼1

piQiCiðtTiÞ ¼ PiQiCi
erH � 1

erTi � 1

� �
¼ erH � 1

erTi � 1

� �Xmþ1

j¼1

PiQixi;jCi;j (13)

For the rest of the n� K items, i.e. i = K + 1, …, n, the incremental discount is
employed. Thus,

TP0
i ¼

XNi�1

t¼0

Pmþ1

j¼2
ðpiQi � qi;j�1ÞCi;jertTi þ

Pj�1

f¼1
ðqi;j�f � qi;j�f�1ÞCi;j�f ertTi

 !
xi;jþ

piQiCi;1ertTixi;1

0
B@

1
CA

¼
XNi�1

t¼0

ertTi
Xmþ1

j¼2

(piQi � qi;j�1ÞCi;j þ
Pj�1

f¼1
ðqi;j�f � qi;j�f�1ÞCi;j�f

 !
xi;jþ

piQiCi;1xi;1

0
B@

1
CA

¼ erH � 1

erTi � 1

� � Xmþ1

j¼2

(piQi � qi;j�1ÞCi;j þ
Xj�1

f¼1

ðqi;j�f � qi;j�f�1ÞCi;j�f

 !
xi;j

 

þpiQiCi;1xi;1

�
ð14Þ

However, in the case where Mi\T 0
i , the company does not receive discount and the

annual total purchasing cost is obtained as follows.

TP00
i ¼

XNi�1

t¼0

piQiCi;1e
rtTi ¼ piQiCi;1

erH � 1

erTi � 1

� �
; i ¼ 1; 2; . . .; n (15)

Finally, the annual total purchasing cost can be obtained using the following equation.

TPi ¼ TP0
isi þ TP00

i ð1� siÞ; i ¼ 1; 2; . . .; n (16)

3.3. Annual total cost (TC)

Based on Equations (1), (4), (7), (12), and (16) the annual total cost of all products is
obtained using Equation (17).
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TC ¼
Xn
i¼1

ðTSi þ THi þ TBi þ TMi þ TPiÞ

¼
Xn
i¼1

erH � 1

erTi � 1

� �
Ai þ ðpiQi � biÞ2

2Di
hi þ bipi þ bi

2

2Di
-i þ Zi

 ! 

þTPi
0si þ TPi

00ð1� siÞ
�

ð17Þ

3.4. The mathematical model

Based on what we derived in the previous subsections and knowing the objective is to
minimize the total system cost, the mathematical model of the problem at hand
becomes:

TC ¼
Xn
i¼1

erH � 1

erTi � 1

� �
ðAi þ ðpiQi � biÞ2

2Di
hi þ bipi þ bi

2

2Di
-i þ ZiÞ

 

þTP00
isi þ TP0

ið1� siÞ
� (18)

s.t.:

TP0
i ¼

erH � 1

erTi � 1

� �Xmþ1

j¼1

PiQixi;jCi;j ; i ¼ 1; 2; . . .; k (19)

TP0
i ¼ erH � 1

erTi � 1

� � Xmþ1

j¼2

ðpiQi � qi;j�1ÞCi;j þ
Xj�1

f¼1

ðqi;j�f � qi;j�f�1ÞCi;j�f

 !
xi;j

 

þpiQiCi;1xi;1
�
; for i ¼ k þ 1; . . .; n

(20)

TP00
i ¼

XNi�1

t¼0

piQiCi;1e
rtTi ¼ piQiCi;1

erH � 1

erTi � 1

� �
; i ¼ 1; 2; . . .; n (21)

hi ¼ l � TP0
i

piQi
� erTi � 1

erH � 1

� �� �
si þ l � Ci;1 � ð1� siÞ

	 �
; i ¼ 1; 2; . . .; n (22)

Xm
j¼0

qi;jyi;jþ1 �Qi �
Xm
j¼1

qi;jyi;j þ uyi;mþ1 ; i ¼ 1; 2; . . .; n (23)

Xm
j¼0

qi;jxi;jþ1 � piQi �
Xm
j¼1

qi;jxi;j þ uxi;mþ1; i ¼ 1; 2; . . .; n (24)

Xmþ1

j¼1

yi;j ¼ 1 ; i ¼ 1; 2; . . .; n (25)
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Xmþ1

j¼1

xi;j ¼ 1; i ¼ 1; 2; . . .; n (26)

Xn
i¼1

fi piQi � bið Þ�F (27)

Zi � piQi � bi
Di

�
Xmþ1

j¼1

yijMij

 !
ci; i ¼ 1; 2; . . .; n (28)

Zi � si ¼ 0; i ¼ 1; 2; . . .; n (29)

Zi þ si [ 0; i ¼ 1; 2; . . .; n (30)

xi;j ¼ 0; 1; yij ¼ 0; 1; si ¼ 0; 1; Zi � 0; Qi � 0; bi � 0; i ¼ 1; 2; . . .; n;
j ¼ 1; 2; . . .;mþ 1

(31)

Some brief notes on the constraints of the model follows.

� As the holding cost hinges on the purchasing cost, constraint (22) calculates the
holding cost per unit per unit time at time zero (t = 0).

� Constraints (23) and (24) along with constraints (25) and (26) find the amounts of
the binary variables that are used to define the Mi and Ci in Table 1.

� Constraint (27) shows that we have a limited warehouse space for storage.

� Zi ¼ Max 0; piQi�bi
Di

� Pmþ1

j¼1
yijMij

 !
ci

( )
is replaced with the two constraints

Zi � piQi�bi
Di

� Pmþ1

j¼1
yijMij

 !
ci and Zi � 0.

� si can be redefined as

si ¼ 1; If product i benefits discount ðZi ¼ 0Þ
0; Otherwise ðZi [ 0Þ

�

where it is replaced by the constraints Zi � si ¼ 0 and Zi þ si [ 0.

4. Solution algorithms

Since the model of the problem is a constrained nonlinear-programming and hard to be
solved by an exact method, a hybrid meta-heuristic algorithm of GA and SA is developed
to find a near optimum solution. Besides, a GA is also used to validate the results obtained.

4.1. A genetic algorithm

Besides initial setting of the GA parameters that are population size (N), the elitism
percentage (Pe), the crossover percentage (Pc), and the mutation percentage (Pm), this
algorithms starts with initialization that involves generating feasible solutions (chromo-
somes) considering bi < Qi in each column of a chromosome. Then it goes to crossover
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and mutation of the chromosomes to generate better ones in different iterations. The
iterations go on until a predetermined number of generations is reached. Meanwhile, to
avoid losing the best chromosomes, in each generation the best chromosomes are saved
for the next generation (elitism).

Initial population contains chromosomes that are generated randomly. The GA chro-
mosome of this research is a two by n matrix that shows a solution to the developed
inventory model. The first row defines the order quantities and the second indicates the
backorder amounts of the products. Figure 2 shows a typical chromosome of the
proposed GA.

The chromosomes that are randomly generated may not be feasible under the
following two conditions:

(1) Condition 1: If there is at least a product, whose backorder level is more than
its ordered quantity, the corresponding chromosome is infeasible and hence it is
replaced with another chromosome.

(2) Condition 2: A chromosome is also infeasible if the capacity constraint is not
satisfied. In this case, the penalty-guided genetic search of David and Smith
(1996) is employed. In this case, the total annual cost is defined as:

Total cost ¼ TC; F 0 �F
TC � F

F 0�F

	 �
; Otherwise

�
(32)

Note that as a better chromosome is the one with a better objective function value, the
objective function value used in the proposed algorithms should be 1/TC. In this case, a
chromosome with a higher fitness is the better one.

In the crossover operation, the roulette wheel selection strategy is first employed to
choose the parents and then a matrix of the random crossover mask (Gen & Cheng,
1997) containing zeros and ones is generated. In this paper, instead of a 2� n matrix, a
1� n matrix is considered as the random crossover mask. Otherwise, we may face sib-
lings containing columns that the amount of bi is more than Qi. Then the crossover
operation is performed on the genes of each chromosome column for which their corre-
sponding elements in the random crossover mask matrix is zero. Accordingly, the son
and daughter chromosomes are generated from the father and mother chromosomes.
Figure 3 depicts an example of this operation.

For the mutation operation, a chromosome from the population is first selected.
Then, a linear matrix of size n whose elements are a sample of size n from a uniform
distribution in (0,1) is generated randomly. Finally, the mutation operation is performed
on the genes of each column of the selected chromosome matrix if their corresponding
elements in the random matrix is less than Pm. In this case, the corresponding genes of
the selected chromosome are reproduced regarding bi [Qi randomly to gain one of its
neighbor chromosome. Figure 4 shows an example of the mutation operation.

Figure 2. Chromosome presentation.
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The algorithm is stopped when a predetermined number of generations are
produced.

4.2. The hybrid GA+SA algorithm

The name and the inspiration of the SA algorithm come from the annealing process
(a technique involving heating and controlled cooling of a material to increase the size
of its crystals to reduce defects) in metallurgy. SA is a process that attempts to move
from the current solution to one of its neighbors. It starts from an initial solution and
generates a new solution in the neighborhood of the current solution. Then, the change
in the objective function value is calculated. If the objective function of the new solu-
tion is better then, the new solution is accepted. Otherwise, the transition to the new
solution is accepted with a specified probability. The algorithm starts with an initial tem-
perature and in each temperature a special amount of transition occurs. The temperature
reduces using a reducing rate until it reaches to the final temperature. Interested readers
are referred to Kirkpatrick, Gelatt, and Vecchi (1983) for more details.

The major advantage of SA is its ability to avoid being trapped in local minima.
Further, while SA is based on an individual evolution, GA is formed on a population of
individuals. Therefore, the combination of these two algorithms may result in better
solutions. In this paper, the GA+SA algorithm of Ponnambalam and Reddy (2003) is
employed to solve the inventory model at hand.

In the hybrid method, the initial population is first generated by the genetic algo-
rithm. Then, using the GA operators (crossover, mutation, and elitism) the new solutions
are produced. Next, each new solution is improved by the SA. After all the solutions of
the GA in one generation are exhausted, the best solutions of the population obtained
by SA are the solutions of the GA for the next generation. This process continues until
a fixed number of generations are generated.

Figure 3. An example of the crossover operation.

Figure 4. An example of mutation (Pm = 0.05).
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In addition to the parameters of the GA algorithm, the other parameters that are used
in the hybrid GA+SA algorithm are the initial temperature (T0), the final temperature
(Tf ), and the reducing rate of the temperature (a).

The above two algorithms are coded in Matlab 7.6.0.324 software. Furthermore, an
Intel(R) core2 duo CPU 2.00 GHz personal computer with 4 GB RAM is used to solve
the numerical problems described later.

5. Tuning the parameters

To validate the results and evaluate the performances of the two proposed algorithms, in
this research thirty different examples (in terms of number of products) of random prob-
lems are considered in which the number of the products are between 2 and 15. More-
over, in order to tune the parameters of the algorithms, the Taguchi orthogonal arrays
are used. The levels of the parameters are shown in Table 2. Using Minitab 15, the
results of the Taguchi method are given in Table 3. These tuned parameters have less
sensitivity to the number of the products.

Using the calibrated parameters given in Table 3, 30� 4 ¼ 120 randomly generated
numerical examples are solved by each algorithm where the results are summarized in
Tables 4 and 5. In these tables, each row corresponds to a randomly generated problem
and the columns show the four best values in 15 runs along with their estimated stan-
dard deviations and their best computer run times. The standard deviation is a good cri-
terion to validate the results obtained by the algorithms in a sense that a smaller
standard deviation is an indication of better solution validity.

6. Comparing the algorithms

In this section, the performances of the two proposed algorithms in terms of the mean-
fitness and mean-CPU-time are compared using paired t-tests run by Minitab 15. The
hypotheses are lGA ¼ lGAþSA versus lGA#lGAþSAfor the two performance measures,
resulting in two statistical comparisons. Tables 6 and 7 show the results of the tests
using a 95% confidence level.

Table 2. The levels of the parameters in Taguchi method.

Parameters Levels

Pc 0.45 0.55 0.65 0.75 0.85
Pm 0.005 0.0162 0.0275 0.0387 0.05
N 75 93.75 112.5 131.25 150
T0 8 11 14 17 20
Tf 0 1.25 2.5 3.75 5
α 0.7 0.75 0.8 0.85 0.9

Table 3. Tuned parameters of the proposed algorithms.

Algorithm Pc Pm N T0 Tf α

GA 0.75 0.05 150 – – –
GA+SA 0.45 0.0162 75 8 2.5 0.9
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Based on the results in Tables 6 and 7, the proposed GA+SA algorithm leads to bet-
ter solutions in terms of the mean fitness values. However, in terms of the average CPU
time, GA+SA takes more time to solve the problems. Moreover, the above tests have
been performed using different problems with various sizes (small, medium, and large)
separately. The solutions of all problems (not shown here to save spaces) indicate that
in small-sized problems, GA+SA results in better quality solutions with a better-solving
time. In medium-sized examples, GA takes less time to solve the problems with statisti-
cally equal quality. For large-sized problems, while the means of the solving time do
not statistically differ from each other, GA+SA results in better quality solutions than
GA on average.

Table 4. The fitness values for different examples solved by GA.

GA
Example
number

Fitness (×104)
The best
answer

Fitness
deviation

Best run
time (s)Run 1 Run 2 Run 3 Run 4

Number of
products: 2–5

1 6.7169 6.7083 6.7245 6.7225 6.7083 0.01 2.818156

2 9.3604 9.386 9.3952 9.3615 9.3604 0.02 2.878447
3 8.6452 8.624 8.6714 8.5885 8.5885 0.04 2.798168
4 16.064 16.073 16.034 16.101 16.034 0.03 3.254634
5 18.993 18.866 18.929 18.909 18.866 0.05 3.13979
6 8.7238 8.7221 8.6963 8.6708 8.6708 0.03 3.395474
7 15.133 14.971 15.196 15.119 14.971 0.10 3.485488
8 17.781 17.689 17.568 17.664 17.568 0.09 3.419981
9 16.96 17.107 17.039 16.999 16.96 0.06 3.639452
10 18.131 18.059 17.926 17.886 17.886 0.11 3.656244

Number of
products: 6–10

11 13.607 13.615 13.687 13.625 13.607 0.04 4.946175

12 15.39 15.38 15.333 15.36 15.333 0.03 5.325483
13 13.723 13.806 13.852 13.802 13.723 0.05 4.945532
14 28.815 28.706 28.923 28.769 28.706 0.09 5.646025
15 41.105 41.225 41.261 41.143 41.105 0.07 5.834177
16 28.36 28.378 28.684 28.662 28.36 0.18 5.966434
17 22.42 22.183 22.153 22.309 22.153 0.12 5.980521
18 29.98 29.611 30.049 29.491 29.491 0.27 6.11245
19 33.953 34.431 34.202 34.181 33.953 0.20 6.507385
20 37.513 37.598 37.538 37.445 37.445 0.06 6.263783

Number of
products: 11–15

21 43.569 43.77 43.883 43.784 43.569 0.13 3.268233

22 39.998 40.079 40.25 40.01 39.998 0.12 3.395825
23 31.152 31.368 31.139 31.518 31.139 0.18 3.510922
24 36.79 37.301 37.133 37.247 36.79 0.23 3.767299
25 35.295 35.249 35.291 35.298 35.249 0.02 3.497581
26 29.132 29.395 29.425 29.476 29.132 0.15 3.653236
27 44.461 44.896 44.83 45.124 44.461 0.28 3.760996
28 28.506 28.628 28.863 28.698 28.506 0.15 3.727078
29 47.802 47.904 48.076 48.176 47.802 0.17 4.110455
30 43.439 43.677 43.827 43.673 43.439 0.16 4.139601
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Table 5. The fitness values for different examples solved by GA+SA.

GA+SA
Example
number

Fitness (×104)
The best
answer Deviation

Best run
time (s)Run 1 Run 2 Run 3 Run 4

Number of
products: 2–5

1 6.3371 6.3107 6.3752 6.3754 6.3107 0.03 2.056448

2 8.6756 8.6879 8.725 8.7384 8.6756 0.03 2.028795
3 8.1343 8.7784 8.2266 8.1093 8.1093 0.31 2.063166
4 14.871 15.159 14.698 15.136 14.698 0.22 2.323212
5 18.015 18.287 18.307 18.341 18.015 0.15 2.300851
6 8.2842 8.1318 8.1451 8.1791 8.1318 0.07 2.289679
7 14.372 14.345 14.165 14.185 14.165 0.11 2.332317
8 16.758 16.999 16.728 16.965 16.728 0.14 2.33141
9 16.222 15.969 15.793 16.314 15.793 0.24 2.580449
10 17.412 16.844 17.279 17.007 16.844 0.26 2.561804

Number of
products: 6–10

11 13.633 13.439 13.274 13.582 13.274 0.16 6.255437

12 15.054 15.095 15.231 15.261 15.054 0.10 6.253179
13 13.991 13.575 13.83 13.926 13.575 0.18 6.267034
14 28.925 29.04 29.024 28.288 28.288 0.36 6.760987
15 40.777 40.573 40.682 40.066 40.066 0.32 6.86249
16 27.904 29.337 27.717 28.846 27.717 0.77 7.338948
17 22.796 21.623 21.936 21.545 21.545 0.57 7.21879
18 29.32 29.906 30.29 30.246 29.32 0.45 7.282566
19 34.517 33.444 34.627 34.02 33.444 0.54 7.674959
20 37.545 36.655 38.254 36.56 36.56 0.80 7.631704

Number of
products: 11–15

21 41.645 41.636 41.797 40.916 40.916 0.40 4.345813

22 37.67 37.344 38.077 38.011 37.344 0.34 4.318904
23 30.274 29.634 29.588 29.899 29.588 0.31 4.399321
24 35.102 34.549 34.551 34.824 34.549 0.26 4.558068
25 33.375 33.997 33.801 33.356 33.356 0.32 4.586358
26 27.798 27.465 27.211 27.922 27.211 0.32 4.5606
27 42.109 42.644 41.456 43.635 41.456 0.92 4.761357
28 27.319 26.716 26.808 27.171 26.716 0.29 4.824383
29 45.985 45.375 49.954 45.02 45.02 2.28 5.072332
30 41.135 41.576 40.302 40.54 40.302 0.58 4.573389

Table 6. Fitness paired t-test.

Paired T for GA – GASA

N Mean SD SE mean

GA 30 25.99 12.45 2.27
GASA 30 24.76 11.78 2.15
Difference 30 1.227 0.914 0.167

Notes: 95% CI for mean difference: (0.885, 1.568).
T-test of mean difference = 0 (vs. not = 0): T-value = 7.35, p-value = 0.000.
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7. Conclusion and recommendation for future research

In this paper, a multiproduct EOQ problem under permissible delay in payments and
discount was studied, in which all the costs increased by an inflation rate at the begin-
ning of the ordering cycles and remained fixed during the cycle. The length of the grace
period and the amount of discount depended entirely on the order quantities. The mathe-
matical formulation of the problem was developed and showed hard to solve by an
exact method. Accordingly, the model was solved employing two GA and GA+SA
meta-heuristic algorithms. The comparison study showed while GA+SA leads to better
answers, GA takes less time to solve.

The outline of some recommendations for future research follows.

(a) Some of the model’s parameters such as demand may be considered fuzzy or
random.

(b) Besides the limited warehouse capacity, budget can be another constraint.
(c) Lot-size deterioration may be added to the problem.
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