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Abstract

Over recent years, there has been a remarkable increase in the complexity of models and
data structures. On the one side, as models become increasingly complex, there is a grow-
ing need to understand and explain the decision-making process of black boxes: this is
important to enhance the trust of the users as well as to comply with legal requirements.
On the other side, complex data structures, such as complex networks, require flexible
models to effectively extract relevant information. The leitmotif of this thesis is the search
for hidden structures in models and data. The first part is devoted to the topic of explain-
ability. Namely, we introduce the Xi method, a comprehensive statistical framework to
define post hoc explanations that possess theoretical guarantees. The rationale is to pro-
pose and evaluate a class of probabilistic sensitivity measures that quantifies the degree of
association between covariates and generic model predictions. These explanations are de-
signed to be applicable across different models and data types, regardless of their specific
characteristics. The second part of this thesis focuses on Bayesian nonparametric models
for community detection in complex networks. First, we define a stochastic block model
for multiplex networks. Such a model identifies clusters specific to each layer, as well as a
latent partition common to all the layers. A non-trivial computational scheme to perform
posterior inference is also introduced. This framework has wide ranging applicability to
a plethora of problems, including the analysis of latent structures in brain networks of
different subjects. Secondly, we propose a stochastic block model specifically tailored for
weighted networks with continuous and multidimensional node attributes. This model
has the potential to effectively capture and utilize the information contained in these node
features, while also being able to learn the optimal amount of information to incorporate
from them. A real, motivating application is showcased, addressing the need to identify a
meaningful latent partition within a transportation network.
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Chapter 1

Introduction

Over the past decades, there has been a significant increase in the complexity of both data
structures and models. This rise can be attributed to various factors, including advance-
ments in technology, the widespread adoption of digital systems, and the availability of
vast amounts of data. Machine learning and statistical models have evolved from simple
linear regression and basic decision trees to more sophisticated structures such as deep neu-
ral networks or ensemble methods, just to cite two. These complex models possess a larger
number of parameters, intricate architectures and learning mechanisms, enabling them to
capture non-trivial patterns and relationships within the data. However, the trade-off for
their enhanced predictive capabilities is often decreased interpretability [Murdoch et al.,
2019].

In parallel, there has been a notable shift from simple, structured datasets to more in-
tricate and heterogeneous ones. Traditional tabular datasets have expanded to encompass
diverse formats, such as unstructured text and images. Alongside this expansion, com-
plex data structures like graphs and networks have emerged. Analyzing and extracting
insights from these systems within a rigorous mathematical framework requires sophisti-
cated techniques capable of handling their inherent complexities. Bayesian nonparametrics
is particularly suitable for this endeavor, since it offers endless potential flexibility in defin-
ing models for complex data.

The augmentation of complexity in both models and data structures has created chal-
lenges in obtaining, interpreting, and trusting the results produced by these systems. Com-
prehending the inner workings of complex models, spotting the factors driving their pre-
dictions, and quantifying the uncertainty associated with their outputs pose significant
hurdles. Similarly, modeling complex data structures requires techniques that can han-
dle high-dimensional, heterogeneous, dependent and interlinked data. The two prob-
lems outlined above can be reduced to the study of suitable hidden structures, either in
already-trained models or in complex network systems. This present thesis explores these
two parallel research directions.

The first part of the thesis is entirely devoted to explainability of black box models. Ex-
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CHAPTER 1. INTRODUCTION

plainability (or interpretability) refers to the ability to explain the decision-making process
and outputs of a machine learning model in a human-understandable manner [Murdoch
et al., 2019, Rudin, 2019]. It encompasses the transparency, comprehensibility, and clarity
of how a model arrives at its predictions or decisions. Interpretability is arguably essen-
tial in the modern era, where machine learning models are employed in every aspect of
our daily lives. In fact, explainability helps building trust among users, by promoting
accountability and ensuring that the model’s behavior aligns with ethical and legal stan-
dards, which is fundamental especially in sensitive and critical areas, such as health or
financial applications [Rudin, 2019]. It also helps to address ethical concerns related to
bias, discrimination, and fairness in machine learning models [Miller, 2019]. By under-
standing how a model makes decisions, biases and discriminatory factors can be identi-
fied and mitigated, ensuring fair treatment and reducing potential harm to individuals or
communities. Currently, there is an abundance of techniques available to comprehend the
internal decision-making processes of models. Various taxonomies have been proposed to
categorize these methods, but we can broadly distinguish between two approaches: trans-
parent (white box) models and post hoc explanations of black boxes [Guidotti et al., 2018].
Transparent models, also known as white box models, are designed to be interpretable
and understandable. These models have explicit rules or structures that allow us to di-
rectly interpret the decision-making process. Examples of white boxes include standard
statistical models such as linear regression, decision trees, and rule-based systems [Hastie
et al., 2009]. Recent works have also designed inherently black box models in a transparent
way [Chen et al., 2019, 2020], in an effort to bridge the gap between the high predictive
power of black boxes and the need for interpretability and understanding. On the other
hand, post hoc explanations aim to shed light on any model by providing insights into
how it arrives at its predictions. In fact, while black boxes may achieve high predictive
performances, understanding their decision-making process is challenging due to their in-
tricate internal mechanisms. Post hoc explanations analyze the model’s behavior using
techniques such as feature importance [Barber and Candés, 2015, Binder et al., 2016, Fisher
et al., 2019], saliency maps [Springenberg et al., 2015, Lundberg and Lee, 2017, Petsiuk
et al., 2019, Selvaraju et al., 2020], or surrogate models [Ribeiro et al., 2016], among others.

Chapter 2 contains an overview of the state-of-the-art techniques in the explainability
literature, and introduces the Xi method. To the best of our knowledge, the Xi method is the
first explainable technique that embeds the explanations in a statistically coherent frame-
work. This allows the derivation of asymptotically consistent estimators for the explana-
tions, as well as uncertainty quantification through standard statistical tools. In general,
explanations of a model can be seen as the extraction of hidden knowledge in a post hoc
manner: in the case of the Xi method, the explanations are veiled importance measures of
the inputs with respect to the prediction task, obtained by using estimated distances be-
tween suitable probability distributions. The Xi method is also model agnostic and data
agnostic, meaning that it can be used to interpret results of any model and on any data
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type (e.g. tabular, text or image).

The second part of the thesis centers around Bayesian nonparametric models for com-
munity detection in complex networks. Complex networks, often referred to as graphs,
are a mathematical representation consisting of a set of nodes or vertices, and edges that
describe the relationships or connections between those nodes. These networks are preva-
lent in various fields, including social networks, biological networks, transportation net-
works, and communication networks. The objective of this part of the thesis is to tackle
the distinct challenges presented by this type of data and develop Bayesian nonparamet-
ric models specifically tailored to community detection. Community detection refers to
the task of identifying groups or communities within a network [Fortunato and New-
man, 2022]. These communities often represent subsets of nodes that exhibit stronger
connections amongst themselves compared to nodes outside the community, or, alterna-
tively, that experience similar connectivity patterns. By uncovering these latent partitions
of the nodes, we can gain insights into the underlying structure and organization of the
network. The starting point is the Stochastic Block Model (SBM) [Nowicki and Snijders,
2001, Schmidt and Morup, 2013] endowed with Bayesian nonparametric priors on the par-
titions [Legramanti et al., 2022]. This is a classical model-based technique used to find the
best latent partition a posteriori. Using the standard version of the SBM, or most of its
generalizations in the literature, it is possible to sample from the posterior distribution of
the partitions employing a standard Gibbs sampler. This thesis extends the SBM in two,
non-trivial directions.

Chapter 3 introduces a Bayesian hierarchical version of the SBM defined for multiplex
networks (also known as edge-colored networks). A multiplex network is a multi-layer
structure, with each layer representing a different type of relationship among the same
entities [Kivelä et al., 2014]. A classical example for networks of this type are social net-
works, where a layer could represent friendships between individuals, another layer could
represent professional collaborations, and yet another layer could represent family rela-
tionships. The model introduced in Chapter 3 is the multiplex Extended Stochastic Block
Model (mESBM): the goal of the mESBM is to find two types of partitions within a mul-
tiplex network. On the one side, a set of layer-specific clusters within each layer of the
edge-colored network, where each one groups nodes within the same layer; on the other
side a general (or common) partition of the entities in the edge-colored graph. In the
mESBM, the layer-specific partitions are not independent, since the model allows borrow-
ing of information across the clusters in different layers through the dependence induced
by the common grouping. Such dependence across layers is desirable, since the nodes
represent the same entities, and we believe that it is important to acknowledge and exploit
such information for the inference of all the partitions. It is worth noticing that even though
the mESBM is a generalization of the extendend stochastic block model [Legramanti et al.,
2022], its inference is not trivial: to sample from the posterior distribution of the clusters a
combination of nested Monte Carlo algorithms needs to be employed. The model is sub-
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CHAPTER 1. INTRODUCTION

sequently applied to a multiplex network derived from human brain scans obtained from
a group of patients, where each layer of the edge-colored network contains a functional
brain map of a single subject: in this case, the partitions provided by the mESBM have a
two-fold meaning. The layer-specific clusters refer to the groupings of brain areas that are
specific to each individual patient: we argue that these subject-specific groups are related
to possible mental illnesses and diagnosis. On the other hand, the common clustering
provides an anatomical division of the human brain, shared by all the subjects involved
in the study. The identification of this common partition provides valuable insights into
the fundamental organization of the human brain, and suggests the presence of a shared
functional structure.

Chapter 4 introduces the Poisson extended stochastic block model (pESBM), which
generalizes the extended stochastic block model [Legramanti et al., 2022] to weighted net-
works with continuous and multidimensional node attributes. The specific objective of
this generalization is to explore the latent structure of a transportation network provided
by a local public company, which is embedded within a geographical space. The primary
aim is to obtain spatially coherent clusters that reflect the inherent organization of the net-
work. From an applicative viewpoint, understanding the geographical structure of the
transportation network and obtaining spatially coherent clusters can have practical impli-
cations for transportation planning and optimization. It can inform decisions related to
route planning, resource allocation, and infrastructure development, ultimately enhancing
the efficiency and effectiveness of the transportation system in serving the needs of the
different municipalities. In this transportation network, each node represents a munici-
pality, and these municipalities are interconnected by public transport lines. To achieve
spatially coherent clusters, the analysis takes into consideration the geographic informa-
tion associated with each town. This information typically includes longitude and latitude
coordinates that represent the geographic location of each node. The desired outcome is to
encourage the model to generate radial clusters, which are commonly observed in trans-
portation networks and useful for different practical scopes. Radial clusters refer to group-
ings of nodes centered around a hub, with nodes radiating outwards from that central
point. In transportation networks, radial clusters can often be observed due to the orga-
nization of routes and transportation means. To achieve the objective of identifying such
clusters in the transportation network, the analysis adopts a two-step approach. First, a
suitable node attribute is selected, and then its supervision is incorporated into the estima-
tion of the partition using a product partition model structure [Muller et al., 2011, Page and
Quintana, 2015, 2018]. The selection of a suitable node attribute is an essential step in the
analysis: we decided to use the distance from the main hub of the transportation network
as a covariate. By incorporating such a covariate, we aim to induce the formation of radial
clusters in the partitioning process: in fact, by utilizing the distance as node attribute, we
encourage the partitioning algorithm to assign nodes at similar distances from the main
hub into the same group, promoting the formation of radial clusters. Once the attribute is
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chosen, it can be used to guide the estimation of the partition. A product-partition-model
structure is employed, which is a probabilistic model used to supervise the partitioning of
the network with node attributes. This model allows for the incorporation of supervision
through a so-called similarity function, which measures the cohesion of each cluster with
respect to node attributes and encourages clusters with high similarity. The choice of the
similarity function is crucial for the successful application of the model, since it directly
affects the assessment of cohesion within clusters and plays a significant role in determin-
ing the quality of the partitioning results. Besides the similarity function, the pESBM also
includes a smoothing parameter, which in the case of interest tunes the amount of spatial
smoothing in the partitions provided by the geographical positions of the nodes, or, alter-
natively stated, the amount of information provided by the node attributes for the estima-
tion of the partitions. Such a parameter can either be user-defined, or it can be inferred a
posteriori in a mathematically coherent way. As for the latter case, inference of parameters
in product partition models can be challenging due to the unavailability of their normaliz-
ing constant. However, a workaround to address this issue is to define an ad hoc joint prior
distribution for both the smoothing parameter and the partitions, enabling the sampling
from their posterior distributions.

Finally, I would like to acknowledge the different people I have worked with in every
chapter of this thesis:

• Chapter 2 is a joint work with Emanuele Borgonovo and Elmar Plischke. It resulted
in the following publication:

– E. Borgonovo, V. Ghidini1, R. Hahn, E. Plischke (2023) Explaining classifiers with
measures of statistical association. Computational Statistics and Data Analysis,
(182)107701.

• Chapter 3 is a joint work with Daniele Durante and Omiros Papaspiliopoulos.

• Chapter 4 is a joint work with Sirio Legramanti and Raffaele Argiento. Some works
related to this chapter are available in the following two papers:

– V. Ghidini, S. Legramanti and R. Argiento (2023) Extended stochastic block model
with spatial covariates for weighted brain networks. BAYSM2022 (to appear);

– V. Ghidini, S. Legramanti and R. Argiento (2023) Binomial extended stochastic
block model for brain networks. Book of short paper SIS 2023 (to appear).

1Authors in alphabetical order
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Part I

Explainability
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Chapter 2

Explaining black boxes with measures
of statistical association

2.1 Introduction

We have access to increasingly advanced and precise statistical models. However, they
often come with a limitation: the difficulty of interpreting their parameters or predictions.
Until a few decades ago, statistical models had simple structures and thus there was no
urge to explain them: Machine Learning (ML) itself mostly relied on classical statistical
models such as linear regression, generalized linear models, generalized additive mod-
els, which all come with a precise interpretation of the relationship between the input and
the output. But the explosive growth and availability of data and the remarkable advance-
ments in hardware technologies allowed the deployment of new, complex models, dramat-
ically improving model accuracy and performances. The main and most innovative idea
is to use multi-layer learning models (such as neural networks) [Goodfellow et al., 2016]
to explore complex relationships among the data. This has lead to incredible applications
in a huge amount of fields: speech and audio recognition, natural language processing or
computer vision, just to cite some.

However, the opaque nature of ML models raises some ethical considerations: in spite
of their high performance in many domains, it often proves extremely difficult to explain
their decisions in a humanly understandable way. This is known as the black box prob-
lem [Molnar, 2018, Rudin, 2019], where researchers are unable to fully comprehend the
factors contributing to the output of certain models. Alternatively stated, it is possible to
observe the realizations of the input-output mapping of the model, but its internal opera-
tions do not make any sense from a human perspective. One of the main reasons causing
this issue is the fact that most ML models are indeed sub-symbolic systems [Huang, 2010],
trained with a data-driven approach, meaning that all the system’s learning process is com-
pletely automatic, without any additional human-based knowledge. The only input for the
training process is raw data. In this way, the model can construct its own representation
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of the entities and perform its own feature engineering, which often does not follow any
logic from a human viewpoint. The growing discrepancy between human cogitation and
sub-symbolic representations makes it more and more difficult to interpret the decisions of
a ML model, since in principle the latter can extrapolate and exploit irrelevant information
from a human perspective and ignore other fundamental features, making the decision
process chaotic and unreadable from a standard point of view.

There are also other reasons at the root of the need for explanation of models’ deci-
sions: first of all, the variety of tasks that systems are required to attend in sensitive fields
like healthcare or credit scoring demands an explanation for any decisions they are tak-
ing. This can also be linked to the trustfulness of the domain expert: a person is more
likely to trust (or correct and improve) the decisions taken by an algorithm if the decision
process can be explained, especially if the predictions are in contrast with his or her be-
lief. Secondly, from a legal viewpoint [Goodman and Flaxman, 2017, Wachter et al., 2018],
ML systems in Europe are required by law to comply with the General Data Protection
Regulation (GDPR) since May 2018, which regulates algorithmic decision making. The
most pertinent contribution of GDPR motivating explainability is the statement that the
decisions "which produces legal effects concerning him or her or of similar importance shall not be
based on the data revealing racial or ethnic origins, political opinions, philosophical beliefs, health
situations, gender or sexual orientation". Since it is usually impossible to maintain the same
level of accuracy (and usefulness) of statistical models excluding completely these sensi-
tive information from the training process, the need of explanations for a decision of an
automated model arises, in order to exclude that the output is influenced by the personal
details mentioned above. Giving an explanation is also potentially useful to spot some
bias in the training data collection [Molnar, 2018]: for example, the model can have differ-
ent levels of confidence for its predictions about different groups of people, due to one or
some of the groups being underrepresented in the data, or it can take the right decision for
the wrong reasons exploiting spurious correlations in the dataset.

The combination of these factors gave rise to the development of eXplainable Artifi-
cial Intelligence (XAI), also known as Interpretability or Explainability. This burgeoning
field of research is dedicated to discovering novel techniques for explaining the underly-
ing logic behind a model’s output. While XAI originated in computer science, much of the
literature has yet to analyze the explanations provided by various algorithms from a sta-
tistical perspective. In this chapter, we try to overcome this limitation by defining post hoc
explanations computed using statistically consistent estimators.

2.1.1 Terminology

A formal and unique definition of interpretability does not exist in literature (at the time of
writing). Quoting Murdoch et al. [2019], "interpretability is a broad, poorly defined concept".
However, Murdoch et al. [2019] introduce a definition of interpretable machine learning as
"the extraction of relevant knowledge from a model concerning relationships either contained in data
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or learned by the model". Miller [2019] writes extensively about all the semantics behind the
terminology concerning explanations. In particular, he addresses the distinction between
interpretability, explainability, justification, and explanation, which are recurrent terms in this
literature. We report a mini-glossary below, to clarify the terms used in the reminder of this
chapter.

• Interpretability: the degree to which an observer can understand the causes of a
decision in a model from the model itself.

• Explainability: the degree to which an observer can understand the causes of a deci-
sion, possibly in a post hoc fashion and with the application of an additional tool.

• Explanation: a tool to obtain understanding of a prediction process, through the
explanation of the decision of a model after it has been designed (and sometimes
trained).

• Justification: it explains why a decision is good, but it does not necessarily aim to
give an explanation of the actual decision-making process.

In ML, interpreting a model means giving an explanation to the decisions of a certain
architecture, which must be at the same time an accurate proxy of its decision making
process and understandable to humans. Notice that interpretability and explainability are
used interchangeably in most of the literature, even though it can be argued that they have
different meanings: interpretability concerns transparent ML models (that is, we are di-
rectly interpreting the model), while explainability may also regard post hoc explanations
(that is, post hoc interpretations of black boxes). Basically, interpretability can be seen as
a specific instance of explainability, which can be used only when we are dealing with an
interpretable model. However, in the remainder, the two terms will be often used inter-
changeably in accordance with the literature.

2.2 Explainability methods

In this section, we present the main features characterizing explainability techniques.

2.2.1 Features of explainability methods

The explanations discussed in Section 2.1.1 are usually obtained through the application of
explainability methods [Robnik-Šikonja and Bohanec, 2018]. To begin, we outline the main
distinguishing features of each technique [Guidotti et al., 2018, Molnar, 2018]:

• Expressive power: it refers to the degree to which the form or structure of the explana-
tion generated by the method contributes to its ease of understanding. For instance,
an explanation may take the form of IF-THEN rules, natural language sentences, an
interpretable model, or other formats, each with varying degrees of expressive power.
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• Translucency: it refers to the extent to which an explanation method reveals the inner
workings of the model. For instance, the explanation of a linear regression model
is highly translucent since the coefficients have direct meaning. On the other hand,
model-agnostic methods do not rely on the model’s parameters and are therefore less
translucent.

• Portability: it describes the range of models which the explanation method can be
applied to.

2.2.2 Taxonomy of explainability methods

The literature provides different criterions to classify explainability methods. Before delv-
ing into our original work in Section 2.3, it is important to clarify some terminology that
we have introduced to aid the understanding.

The first distinction [Guidotti et al., 2018] is between model-agnostic versus model-aware
techniques: the former can be used with any kind of model, and usually rely on perturbing
the input and studying how the output varies. The latter exploit some intrinsic feature of
the model to provide the explanations (e.g. gradients in neural networks as in Binder et al.
[2016], Selvaraju et al. [2020]). Another discrimination is given by data-agnostic versus data-
aware algorithms. Data-agnostic algorithms can be applied to any kind of data structure,
such as images, texts, or other formats. In contrast, data-aware techniques are designed
to be applied to a specific data type. For example, RISE [Petsiuk et al., 2019] is an algo-
rithm that can only be applied to images, while Partial Dependence Plots [Apley and Zhu,
2020] are designed for use with tabular data. Another important distinction is given by the
following [Murdoch et al., 2019]:

• White-box interpretability: this set of techniques involves specifying an interpretable
model a priori, without sacrificing accuracy. In general, this requires a huge effort
in statistical modeling and feature engineering, and the result is a completely inter-
pretable model, which does not need any additional approximation to provide an
explanation.

• Black-box explainability: this set of algorithms is used to explain a black box model in a
post hoc manner. It usually involves the interpretation of a simpler approximation of
the model of interest [Ribeiro et al., 2016] or a perturbation of the input and a measure
of how the output changes in function of that [Breiman, 2001, Petsiuk et al., 2019]. In
this case, we then have two levels of approximations (which can be sources of errors):
first, we estimate the true data generating process through a black box. Then, we use
a proxy of the model as explanation. The advantage, however, is that this type of
explanations can be obtained for any kind of model, without any additional field
knowledge or feature selection.
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Let us also distinguish two further types of explanatory techniques [Guidotti et al., 2018,
Murdoch et al., 2019]:

• Instance or Local methods measure the impact of input features in a given model for a
single data instance;

• Model or Global methods provide an interpretation of the behavior of the features of
interest for the entire dataset, for the analyzed model. They can be the result of an
aggregation of instance explanations over many training data points.

The two mentioned characteristics are not mutually exclusive: often, a global technique
yields information at an instance level. Finally, we would like to add a novel distinction
among XAI outputs:

• Model-dependent explanations provide a measure of the impact of input features in a
given, specific model (e.g. Ribeiro et al. [2016], Petsiuk et al. [2019] and many others).

• Model-independent explanations provide a measure of feature importance for the pre-
diction task, independently of a single model. Some examples may be found in Fisher
et al. [2019], Dong and Rudin [2020], where this problem is addressed considering
the influence on the Rashomon set of models. The pre hoc explanations introduced
in Section 2.3 also belong to such a class.

We devote the next subsection to model-agnostic techniques, a class of methods that includes
the Xi method proposed in Section 2.3.

Model-agnostic techniques

An explainable technique is defined as model-agnostic if it can be applied to any model, as it
does not exploit any feature of its structure to obtain explanations. This category includes
some families of variable importance indices, such as the ones obtained using sensitivity
measures and perturbation-based techniques. We introduce such concepts in the next two
paragraphs.

Sensitivity measures & feature importance Sensitivity Analysis (SA) [Saltelli, 2008] in-
volves the quantification of how the uncertainty in a target variable, whether observed or
predicted by a model, can be attributed to different sources in a given set of input vari-
ables. Although SA and XAI developed independently, there is a significant overlap in
their goals and techniques. A class of indices proposed in SA are measures of statistical
dependence [Borgonovo et al., 2016], which quantify the strength of dependence between
the output Y and an input of interest X . We will generalize (and recall) such measures in
Section 2.3.

11
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There also exist other procedures estimating indices of feature importance using SA:
some examples of this type of indices are knockoffs [Barber and Candés, 2015] and model-X
knockoffs [Candès et al., 2018]. In both techniques, the aim is to construct knockoff ver-
sions of the original features which allow to find the smallest subset S of variables {X j}

p
j=1

such that the response Y is independent of all the other variables conditionally on {X j∈S }.
This is a feature selection procedure, and the most recent version allows its application to
high-dimensional settings (with p ≥ n). An alternative technique is the Sure Independence
Screening (SIS) [Fan and Lv, 2008]: SIS is also a feature selection procedure which picks out
a subset of covariates according to the coefficients w = X TY (componentwise regression).
A peculiar approach is provided by Fisher et al. [2019] and Dong and Rudin [2020]: the
authors try to combine the concept of having a model-independent measure of feature im-
portance with the goal of providing explanations for the general prediction task of a spe-
cific variable. They avoid the bias of model-dependent explanations by defining feature
importance measures over a set of optimal models (i.e. the Rashomon set), emphasizing
the consistency of the explanations across such set.

Perturbation-based techniques Perturbation-based techniques employ the corruption of
(one or more) covariates of interest, and the study of the consequent effect on the predic-
tions of the model. A perturbation is defined as noise introduced in the data (e.g. through
permutation, random modification of the design matrix, noise addition). The most famous
index of this type is the Permutation Variable Importance introduced by Breiman [2001] for
Random Forests.

Definition 2.2.1. The Permutation Variable Importance Measure for a covariate in a Random
Forest is the average difference in the performance obtained after the permutation of the feature of
interest, evaluated on the Out-Of-Bag observations (i.e. the ones excluded by the training of the
single tree).

Even if it was originally specified for Random Forests, this measure can be generalized
to any model [Pavlov, 2019].

In Section 2.3, we focus on data-agnostic, black-box explainability, i.e. techniques able
to provide a post hoc explanation for predictions by any model or on any kind of data. We
propose the Xi method, a data-agnostic and model-agnostic technique, which is also global
and can be model-independent or model-dependent according to each user’s needs.

2.3 Explaining black-box classifiers with measures of statistical
association

Understanding statistical dependence is a challenging task, especially when target vari-
ables live on a support without an intrinsic order. In this section (which comprises the
original part of this chapter), we propose a new class of probabilistic sensitivity measures
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that quantifies the degree of association between covariates and generic targets used in
classification. We show that the class possesses the zero-independence property and we
introduce corresponding estimators, prove asymptotic consistency and use bootstrap to
quantify uncertainty in the estimates. We illustrate the use of the new dependence mea-
sures in a ML context, providing post hoc explanations. The resulting approach, called Xi
method, is demonstrated through applications involving different data formats: tabular,
visual and textual.

2.3.1 Framework and motivation

The growing size and complexity of data structures and the simultaneous need of accurate
predictions force analysts to employ black-box rather than transparent ML models in an
increasing number of applications. While the success of such models extends the range
of ML applications, it also increases the need of methods that aid explainability [Dunson,
2018, Rudin, 2019, Murdoch et al., 2019]. Determining feature importance is essential for
model simplification, dimensionality reduction, and for understanding whether predic-
tions are at risk of unfair discrimination [Fisher et al., 2019]. As underlined in Murdoch
et al. [2019], there is a variety of techniques for calculating feature importance. Methods
such as the Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016],
the Layerwise Relevance Propagation (LRP) [Binder et al., 2016], and the SHapley Additive
exPlanations (SHAP) [Lundberg and Lee, 2017] yield feature importance measures at the
individual prediction level. Techniques such as permutation or removal [Breiman, 2001],
Shapley values [Lundberg and Lee, 2017, Lundberg et al., 2019], knockoffs [Barber and
Candés, 2015, Candès et al., 2018] and Sure Independence Screening [Fan and Song, 2010]
provide an indication of importance at the dataset level.

Measures of statistical association are an alternative way for assessing feature impor-
tance: they provide dataset scores and are model-agnostic [Murdoch et al., 2019]. While
they have been widely studied beginning with works such as Pearson [1905], Hotelling
[1936] and Renyi [1959], the size and complexity of modern datasets have generated new
interest in their construction, as the recent works of Pan et al. [2020] and Chatterjee [2021]
highlight. We note that several measures of statistical association rely on the assumption
that the target is a real number (or vector). However, in several ML applications, targets
and/or features may be images or objects, for which a mathematical order relation may
not be appropriate. To illustrate, consider an image recognition task in which the target
consists of three different types of pictures representing, say, cats, tigers and rabbits. Then
the alphabetical ordering “cat”, “rabbit”, “tiger” is a possible ordering, but it is as valid as
the ordering “cat”, “tiger”, “rabbit” that is based on the number of the characters in each
word, and none of them qualifies as a natural ranking. The issue is underlined in recent
works (e.g. Da Veiga [2015]) and the definition of probabilistic sensitivity measures for
non-ordered outputs is a topical research subject.

To bridge this gap we propose a family of measures of statistical association that is
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well-defined also for non-ordered data. Our intuition is to rely on separation measure-
ments between probability mass functions. Here, by separation measurement we mean
any distance or divergence between probability mass functions that is positive, and that
is null if and only if the probability mass functions coincide. Then, we show that the
new class of sensitivity indices complies with Renyi’s postulate D of measures of statis-
tical dependence [Renyi, 1959]. This postulate, called zero-independence property in the
following, requires that a measure of association is null if and only if the two random
variables are statistically independent. We address the estimation of this new class of in-
dicators for generic samples, and discuss their asymptotic convergence. We then use these
probabilistic sensitivity measures in the context of explainability. A relevant aspect related
to measures of statistical association is that they can be computed directly on the original
dataset without the need of actually fitting a machine learning model. Thus, not only are
they model-agnostic in explaining the behaviour of a black box, but they can also provide
both model-dependent and model-independent explanations. Our aim is then to compare
explanations provided by measures of statistical association first calculated on the origi-
nal data (pre hoc explanations) and then on the forecasts of the ML model fitted to the
data (post hoc explanations). This comparison provides an indication on whether the ML
model predictions capture the statistical dependence originally present in the data. We call
the resulting approach Xi method.

We proceed as follows: first, we discuss the methodological framework, with a focus
on the choice of the separation measurement. Then, we address estimation, with a focus on
a partition-based approach that allows us to obtain the explanations from a given dataset.
We perform experiments to investigate the asymptotic convergence of the estimates and
highlight limitations of the approach with particular reference to the curse of dimensional-
ity. We then test the approach by performing experiments on datasets of alternative types,
comprising tabular, image and textual data. For the first set of experiments, in which the
ML model is a random forest, we compare the pre hoc and post hoc explanations provided
by measures of statistical dependence with the post hoc explanations delivered by variable
importance measures based on split and count [Breiman, 1984] and permutation [Breiman,
2001]. The rationale of this comparison is to test the agreement between results provided by
measures of statistical association with one representative of variable importance measures
that are post hoc and model-dependent (split and count) and one representative of mea-
sures that are post hoc but model-agnostic (permutation feature importance). Measures
of statistical dependence produce additional and complementary insights with respect to
alternatives currently in use, with the advantage of being model-agnostic and computa-
tionally convenient.

The remainder of the Section is organized as follows. Subsection 2.3.2 sets up the rel-
evant framework and reviews the literature. Subsection 2.3.3 introduces the new depen-
dence measures for classification. Subsection 2.3.4 presents the Xi method. Subsection 2.4
illustrates results for alternative datasets. Subsection 2.5 offers conclusions.
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2.3.2 Feature importance and measures of association

Let
(
Ω,B(Ω),P

)
be a reference probability space

(
where Ω is called sample space, B(Ω)

is a Borel σ-algebra, and P : B(Ω) → [0,1] is the reference probability measure
)

and let X =
(X1, X2, . . . , XnX) and L be random variables on this reference space with supports X and L ,
respectively. Let X have the meaning of vector of features and let L represent target labels.
For example, in image classification, we might be dealing with a set of images of a given
resolution, say npixels. Frequently, pixels themselves are selected as features, yielding X =
(X1, X2, . . . , Xnpixels). The set of labels is then the list of objects depicted in the corresponding
images. The support of each pixel (Xi, i = 1, . . . ,npixels) is its range of values (for instance
Xi = [0,1] in case of grayscale images), and the overall support X is the Cartesian product
of the ranges of all pixels. The support of the target L is the list of all the possible labels
associated to each image in the dataset, that is the set of objects represented in the data
collection (e.g., cats, rabbits, tigers as we were mentioning in the previous section). We
are interested in associating realizations of X to realizations of L through the input-output
mapping g : X ×Θ→L [Hastie et al., 2009, Zhao and Hastie, 2019]

Λ= g(X,θ), (2.1)

where Λ denotes a model forecast and θ ∈ Θ is a vector of parameters (or rules). In su-
pervised learning, a dataset (x(n),L(n)), n = 1,2, ..., N, of realizations of X and L is usually
available (henceforth, N denotes the sample size). Splitting the sample into training and
testing subsamples of sizes NTr and NTe respectively (on the meaning and rationale for
training and testing in supervised learning see classical references such as Hastie et al.
[2009]), the parameters of the input-output mapping are determined via the solution of an
optimization problem of the form

θ∗ = argmin
θ

{
1

NTr

NTr∑
n=1

C
(
L(n); g(x(n),θ)

)}
, (2.2)

where C : L ×L → R is a suitably defined objective (loss) function. In the remainder, we
shall use the shorter ĝ(X) for g(X,θ∗). Then, let Xπ(i) denote the design matrix in which
we have randomly permuted the realizations of the ith feature X i. Let also C (X;θ∗) =

1
NTr

∑NTr

n=1 C (L(n); g(x(n),θ∗)) denote the value of the optimized loss function and C (Xπ(i);θ∗)=
1

NTr

∑NTr

n=1 C (L(n), g(x(n)
π(i),θ

∗)) the expected loss registered when feature i is permuted, both
computed on the training dataset. Then, the permutation importance of feature X i is given
by

PIi =C (Xπ(i);θ∗)/C (X;θ∗). (2.3)

This indicator measures the deterioration in the ML model performance caused by disrupt-
ing the dependence between Y and X i.

Measures of statistical dependence instead quantify importance from a different per-
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spective, evaluating the degree of association between the target and one or more features.
The problem of measuring statistical association roots back to works such as Pearson [1895,
1905] and Hotelling [1936] and in the statistical literature we find several measures of as-
sociation and tests for independence. Recently, renewed interest has been generated by
the type and size of modern datasets (see Chatterjee [2021] for a review). In particular,
among measures of statistical dependence recently studied, we find the Hilbert–Schmidt
independence criterion [Da Veiga, 2015], distance correlation [Székely et al., 2007, Székely
and Rizzo, 2009, Chaudhuri and Hu, 2019] as well as a new correlation coefficient [Chat-
terjee, 2021]. To provide the background needed for the remainder of our investigation, we
recall the following definition.

Definition 2.3.1 (Separation Measurement [Glick, 1975]). Let P be the set of all probabil-
ity measures on

(
Ω,B(Ω)

)
. A separation measurement between P,Q ∈ P is given by a function

ζ : P ×P →R such that a) ζ(P,Q)≥ 0, and b) ζ(P,Q)= 0 if and only if P=Q.

Let now Y and X ⊆ X (i.e. X is a subset of one or more covariates of interest contained
in the original design matrix X) be random variables on (Ω,B(Ω),P), and denote by PY

and PX their marginal laws, and by PY |X the conditional law of Y given X . Without loss of
generality, we will assume X to be a univariate random variable (if not specified otherwise).

Definition 2.3.2 (Probabilistic Sensitivity Measure). We define

ξX = EX [ζ(PY ,PY |X )] (2.4)

as the probabilistic sensitivity measure of X with respect to Y based on the separation measure-
ment ζ(·, ·).

In Equation (2.4), the expectation is taken with respect to the law of X , that is,

ξX =
∫
X
ζ(PY ,PY |X=x)dFX (x), (2.5)

where FX (x) is the cumulative distribution function of X and the integral is interpreted in
a Riemann-Stieltjes sense. To illustrate, if X is continuous with density fX (x) then Equa-
tion (2.5) becomes

ξX =
∫
X
ζ(PY ,PY |X=x) fX (x)dx. (2.6)

If X is discrete with realizations x1, x2, . . . , xn, then Equation (2.5) becomes

ξX =
n∑

i=1
ζ(PY ,PY |X=xi )p(X = xi). (2.7)

Also notice that if Y and X are independent, then PY =PY |X , implying ζ(PY ,PY |X )= 0 and
consequently ξX = 0. This means that the index ξX complies with the zero-independence
property [Renyi, 1959].
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The choice of the separation measurement in Equation (2.4) determines the properties of
the dependence measure ξX . For instance, if ζ(·, ·) is invariant for monotonic transforma-
tion of Y then ξX is also monotonic transformation invariant [Borgonovo et al., 2014]. If Y
is absolutely continuous then selecting the Kullback-Leibler divergence as separation mea-
surement has a corresponding probabilistic sensitivity measure equal to the mutual infor-
mation between X and Y [Soofi, 1994]. Recently, Taverniers et al. [2021] have proposed this
importance measure in the context of neural network interpretability. They have devel-
oped a deep neural network to emulate the behavior of a complex system in a forecasting
task, and then the mutual information is used to quantify feature importance with respect
to the neural network predictions. Alternatively, if one selects the separation measurement
as the Cramér-von Mises distance as in Gamboa et al. [2018], one obtains

ξCvM
X = EX

[∫
R

(
FY (y)−FY |X (y)

)2 dFY (y)
]

. (2.8)

Notice that ξCvM
X is the limiting value of Chatterjee’s new correlation coefficient [Chatter-

jee, 2021]. Both the mutual information and ξCvM
X are then transformation invariant and

possess the zero-independence property.
The estimation of probabilistic sensitivity measures has been extensively studied, with

computational breakthroughs obtained in works such as Chan et al. [2000], Saltelli [2002],
Strong et al. [2012], and Gamboa et al. [2016], among others. Relevant to our work is a
given-data estimation approach that enables direct estimation from a dataset. The key intu-
ition dates back to Pearson [1905], and is extensively studied in works such as Strong et al.
[2012], Strong and Oakley [2013] for the calculation of variance-based sensitivity measures,
and Plischke and Borgonovo [2014] for distribution-based sensitivity measures. Recently,
Gamboa et al. [2022] have shown that the newly introduced Chatterjee’s rank-based cor-
relation coefficient [Chatterjee, 2021] can be used as a given-data estimator for ξCvM

X . The
connection leads to an elegant and advantageous approach for the calculation of a global
sensitivity measure in the form of Equation (2.4) from a given dataset. However, the advan-
tage is lost in a classification setting, because the targets are not necessarily elements of an
ordered space and cannot be ranked univocally. This then opens the question of defining
probabilistic sensitivity measures for classification tasks. We address this issue next.

2.3.3 Probabilistic sensitivity measures for supervised classification

Let L = {ℓ1,ℓ2, . . . ,ℓnL } denote the support of L, i.e. the set of labels in the target variable
of interest. Without loss of generality, we assume that for all ℓ ∈ L , P({L = ℓ}) > 0. The
support L represents in general a list of objects and consequently the realizations of L
may not be ordeable. Let pL be the probability mass function (pmf) of L and pL|X the
conditional pmf given a feature (or a feature group) X . Without loss of generality, in the
remainder we will consider X to be a single feature, if not explicited otherwise. We re-
call that pL = {P({L = ℓ1}), . . . ,P({L = ℓnL })} = {p1, p2, . . . , pnL } is a probability mass function
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if pl ≥ 0 for all l = 1, . . . ,nL and
∑nL

l=1 pl = 1. Let P mf denote the set of all probability mass
functions on (L ,P (L )) and let ζ(·, ·) denote a separation measurement between probabil-
ity mass functions, ζ : P mf ×P mf → R. By Definition 2.3.1, ζ is such that given p,q ∈P mf it
holds ζ(p,q)≥ 0 and the equality holds if and only if p=q. Then, we propose the following
definition.

Definition 2.3.3. We call
ξL

X = EX
[
ζ(pL,pL|X )

]
(2.9)

the probabilistic sensitivity measure of X with respect to L based on ζ(·, ·).
Formally, ξL

X in Equation (2.9) is a particular case of ξX in Equation (2.4). However,
Equation (2.9) explicitly considers the marginal and conditional probability mass func-
tions of the labels. The rationale is that probability mass functions are defined without
ambiguity also when labels are non-ordered data. In fact, the corresponding cumulative
distribution function would require an additional convention, that is, we need to order
the labels and then stick to such lexicographic order. If an alternative order is used, we
get an alternative cumulative distribution function. Relying on probability mass func-
tions avoids the additional step of introducing an order relation. In Table 2.1, we re-

Table 2.1: Three possible separation measurements based on the 1-norm, 2-norm and
Kuiper distance between probability mass functions.

1-norm 2-norm Kuiper distance

ζ1(p,q)=∑nL
l=1 |pl − ql | ζ2(p,q)=∑nL

l=1(pl − ql)2 ζKU(p,q)= range(p−q)

port three potential choices for the separation measurement between two probability mass
functions p = {p1, . . . , pnL } and q = {q1, . . . , qnL } defined on the same sample space. Specif-
ically, ζ1(p,q) is a separation measurement based on the 1-norm (absolute value of the
differences), ζ2(p,q) is a separation based on the 2-norm (square value of the differences)
and ζKU(p,q) is based on an extension to the discrete case of the Kuiper distance [Kuiper,
1960] (which is, in turn, an extension of the Kolmogorov-Smirnov distance). In ζKU(p,q),
we have range(p−q)=maxnL

l=1(pl − ql)−minnL
l=1(pl − ql).

Example 2.3.4. To illustrate the separation measurements in Table 2.1, let L be a categorical vari-
able with support L = {A,B,C} and consider the probability mass functions given by p = [1

3 , 1
3 , 1

3 ]
and q= [1

4 , 1
2 , 1

4 ]. Then, we have:

ζ1(p,q)=
∣∣∣∣1
3
− 1

4

∣∣∣∣+ ∣∣∣∣1
3
− 1

2

∣∣∣∣+ ∣∣∣∣1
3
− 1

4

∣∣∣∣= 1
3

,

ζ2(p,q)=
(

1
3
− 1

4

)2
+

(
1
3
− 1

2

)2
+

(
1
3
− 1

4

)2
= 1

24
,

ζKU(p,q)= range
(

1
3
− 1

4
,

1
3
− 1

2
,

1
3
− 1

4

)
= 1

12
−

(
−1

6

)
= 1

4
.
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Analysts can select separation measurements between probability mass functions that
go beyond the ones listed in Table 2.1, such as the Kullback-Leibler divergence, or the
Hellinger distance, or any other particular choice that best suites her/his needs for the
application at hand. The next results state that as long as the separation measurement
follows the requirements in Definition 2.3.1, members of the ξL

X family in Equation (2.9)
possess the zero-independence property. Indeed, recall that for all the measurements ζ(·, ·)
complying with Definition 2.3.1, ζ(pL,pL|X ) = 0 when pL = pL|X , that includes the case
when L is independent of X.

Proposition 2.3.5. Given the above setup, if ζ(·, ·) is a separation measurement between probability
mass functions then ξL

X ≥ 0, and ξL
X = 0 if and only if L is independent of X .

Let us now turn to the estimation of the probabilistic sensitivity measures of X i ∈ X
with respect to L, for i ∈ {1, . . . ,nX }. Let Xi denote the support of X i. Let also K i =
{X 1

i ,X 2
i , . . . ,X K

i } denote a partition of Xi, i.e., a finite or countable collection of K sub-
sets of Xi such that Xi = ⋃K

k=1 X k
i and X m

i ∩X l
i =;, for all m ̸= l. A given-data estimator

of ξL
i := ξL

X i
in (2.9) is given by:

ξi(K i)=
K∑

k=1
p
(
X i ∈X k

i
)
ζ
(
pL,pL|X i∈X k

i

)
, (2.10)

where pL|X i∈X k
i
= {

pL
r (X k

i )= p(L = ℓr|X i ∈X k
i ); r = 1,2, . . . ,nL

}
denotes the conditional dis-

tribution of L, for X k
i ∈ K i. Now, consider a fixed partition K i = {X 1

i ,X 2
i , . . . ,X K

i } with
cardinality K and a dataset of features and target realizations. Let N be the sample size,
and, for r = 1, . . . ,nL, let Nr the number of the observations labeled with ℓr. For X k

i ∈ K i,
let N(X k

i ) denote the number of input observations in X k
i , and NL

r (X k
i ) the corresponding

number of target observations with label ℓr. Then, using the plug-in principle, we obtain
an estimate of ξi(K i) in (2.10) from

ξ̂i(K , N)=
K∑

k=1
p̂
(
X k

i
)
ζ
(
p̂L, p̂L|X i∈X k

i

)
, (2.11)

where p̂(X k
i ), p̂L and p̂L|X i∈X k

i
are plug-in estimates of, respectively, p(X i ∈ X k

i ), pL and

pL|X i∈X k
i

. Observing that, for i = 1,2, . . . ,nX and r = 1,2, . . . ,nL, p̂(X i ∈ X k
i ) = N(X k

i )/N,

p̂(L = ℓr) = Nr/N and p̂L = {p̂(L = ℓ1), . . . , p̂(L = ℓnL )}, as well as p̂L
r (X k

i ) = NL
r (X k

i )/N(X k
i )

and p̂L|X i∈X k
i
= {p̂L

1 (X k
i ), . . . , p̂L

nL
(X k

i )}, we can rewrite (2.11) as

ξ̂i(K , N)=
K∑

k=1

N(X k
i )

N
ζ
(
p̂L, p̂L|X i∈X k

i

)
. (2.12)
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Proposition 2.3.6. Let ζ(·, ·) be a separation measure between probability mass functions, and let
ζ(·, ·) be continuous and bounded almost everywhere as X i varies in Xi. Let ξ̂i(K , N) be defined by
(2.12). Then, if X i is discrete,

lim
N→∞

ξ̂i(K , N)= ξL
i .

If X i is continuous,
lim

K→∞
lim

N→∞
ξ̂i(K , N)= ξL

i . (2.13)

Proposition 2.3.6 reassures us of the consistency of the estimator of ξL
i . From an imple-

mentation viewpoint, we need to distinguish the case in which X i is discrete or categorical
from the case in which it is continuous. If X i is discrete then the partition K i is fixed and
immediately given by the support of X i. If X i is continuous then the two limits with re-
spect to the sample size and the partition cardinality are nested. Theoretically, first one lets
the sample size N tend to infinity and then one refines the partitions sending K to infin-
ity — as evidenced already in Pearson [1905]. In practice, care must be taken in selecting
the partition size at any finite sample N. Proposition 2.3.6 also implies that for bounded
metrics ζ(·, ·), the variance of ζ(p̂L, p̂L|X i∈X k

i
) is finite for every k = 1,2, . . . ,K . As an imme-

diate consequence, the following holds for the separation measurements in Table 2.1 the
following holds.

Corollary 2.3.7. The estimators of ζ1(pL,pL|X i∈X k
i
), ζ2(pL,pL|X i∈X k

i
), and ζKU(pL,pL|X i∈X k

i
) are

asymptotically consistent.

Consistency of the estimators has an immediate advantage also with regard to uncer-
tainty quantification. In particular, a natural way of quantifying uncertainty in a context
as the one we are dealing with is to make use of the bootstrap method. We consider the
bootstrap bias-reducing estimator in the version of Efron and Gong [1983], ̂̂ξi(K , N). More
precisely, consider a sample of size N and a partition K i of K elements. Then, we have

̂̂ξi(K , N)= 2ξ̄i(K , N)− ξ̂i(K , N), (2.14)

where ξ̄i(K , N) is the estimate of ξi(K , N) produced by taking the mean over the bootstrap
replicates with fixed partition K i and ξ̂i(K , N) is the corresponding point estimate. By the
theory of the bootstrap method, the asymptotic consistency of ξ̂i(K , N) implies the asymp-
totic consistency of ̂̂ξi(K , N). In our case, the consistency of ξ̂i(K , N) is ensured by Proposi-
tion 2.3.6.

The selection of the partition cardinality K is a crucial step in implementing given-data
estimators. The partition cardinality is, indeed, the sole hyperparameter of the design. It is
well-known that this choice is associated with a bias-variance trade-off. On the one hand,
the higher the value of K , the fewer the available realizations in each partition. We then
have higher bias and lower variance for p̂L and p̂L|X i∈X k

i
for k = 1, . . . ,K . On the other

hand, the smaller K is, the lower the bias but the higher the variance of the estimators.
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The choice of K in relationship to the sample size has been studied in depth in Strong and
Oakley [2013]. The analysis in Strong and Oakley [2013] evidences a plateau effect: for large
enough samples, the choice of K in a certain range does not impact the value of ξ̂i(K , N).
To illustrate, consider Figure 1 in Strong and Oakley [2013, p. 759], that shows results of
experiments at alternative values of K : fixing a sample of size N = 10′000, choosing K in a
range between K = 10 and K = 1′000 yields similar values of ξ̂i(K , N). For larger (smaller)
values of K (at the same sample of size N = 10′000), Strong and Oakley [2013] showcase an
upward (downward) bias. The plateau effect can then be used to obtain guidance on the
choice of K : Strong and Oakley [2013] recommend a value of K in the range that causes
the plateau as a natural choice. To illustrate this aspect in our case, we report results of
numerical experiments involving an analytical test case.

Example 2.3.8. Consider the following fictitious binary classification problem, with a target ran-
dom variable L with a binary support, i.e. L = {0,1}. We simulate L using the following data
generating process:

L =
0 if 0≤Y < 1,

1 if 1≤Y ≤ 2,

where Y = X1 + X2, and X1, X2 are two independent and uniformly distributed random variables
in [0,1], i.e. X1, X2 ∼ Unif(0,1), here playing the role of covariates. Computing explicitly the true
probability mass function for L on its support L = {0,1}, we obtain p(L = 1) = 1− p(L = 0) = 1

2 .
Applying the definition in Equation (2.9), the analytical values of the probabilistic sensitivity mea-
sures based on the 1−norm, 2−norm and the Kuiper distance are respectively obtained computing
the integrals ξ1

i =
∫ 1

0 |1−2xi|dxi = 1
2 , ξ2

i =
∫ 1

0 (2x2
i −2xi + 1

2 )dxi = 1
6 , and ξKU

i = ∫ 1
0 |1−2xi|dxi = 1

2 ,
for i = 1,2. In Figure 2.1a, we report results at increasing sample sizes. Using a Sobol’ quasi-
random sequence generator we produce a sequence of datasets with realizations of (X1, X2) and L,
for the sample size ranging from N = 100 to N = 100′000. Using such a sequence allows easy repro-
ducibility of this experiment. The shadows represent bootstrap confidence intervals. The estimates
converge towards the analytical values as N increases, and the width of the bootstrap confidence
intervals shrinks, thus confirming the asymptotic consistency of the estimates. Figure 2.1b presents
results for a fixed sample size (N = 10′000) but selecting alternative partitions of increasing cardi-
nality. In particular, we vary K from K = 1 to K = 10′000. Figure 2.1b shows that we register a
plateau in the values of the estimates ξ̂i(K , N) for K ∈ [20,900]. For values of K smaller than 20,
we have a downward bias. Conversely, for values of K exceeding 900, we register an upward bias.

The results in Figure 2.1b are in agreement with the findings in Strong and Oakley
[2013]. Moreover, as discussed also in Borgonovo et al. [2016], the downward bias is em-
pirically explained by the fact that as K gets smaller the conditional and unconditional
distributions tend to coincide. In fact, in the limiting case K = 1 the conditional and uncon-
ditional distributions are the same and the value of any measures of statistical association
is null. Conversely, choosing K = N, we obtain exactly one point per partition. Then, the
numerical calculation is between the marginal distribution of Y and a Dirac-δ mass cen-

21



CHAPTER 2. EXPLAINING BLACK BOXES WITH MEASURES OF STATISTICAL
ASSOCIATION

(a) Bootstrap results as the sample size increases
from N = 102 to N = 105.

(b) Bootstrap results as the partition size increases
from K = 1 to K = N.

Figure 2.1: Bootstrap results varying N and K for ξ̂KU
1 (K , N), ξ̂1

1(K , N) and ξ̂2
1(K , N). The

shaded areas represent 95%−bootstrap confidence intervals. In both Figures 2.1a and 2.1b,
the y-axis represents the boostrap mean values of ξ̂L

1 (K , N) based on the 1-norm (red), 2-
norm (blue) and Kuiper norm (blue). In Figure 2.1a the x-axis reports the values of the
sample size N, in Figure 2.1b the x-axis reports the values of the partition cardinality K on
a logarithmic scale.

tered at the sole realization in the partition. Such distance is maximal or infinite for several
metrics and therefore we register an upward bias.

Finally, any given-data estimator in Equation (2.11) is exposed to the curse of dimen-
sionality when X i ∈X is multidimensional, that is, we are determining the joint importance
of two or more features. In general, then, X i = (X1, X2 . . . , Xs), s ≤ nX requires us to con-
dition on s features. We are then dealing with s-dimensional partition sets (to fix ideas,
in one dimension we are dealing with intervals, in two dimension with rectangles, in s
dimension with hyper-rectangles). These partition sets contain a number of realizations
(data) that decreases exponentially with s. To illustrate, start with s = 1 and consider that
we have available N realizations and a partition with cardinality K . Then, we can count
on J = N/K realizations per partition set (assuming equipopulated partition sets). For in-
stance if N = 10,000 and K = 25, we have 400 data points per partition set. If we consider
bi-dimensional partitions to find the joint importance of, say, features X i and X j (i ̸= j),
then we could count on J = N/(K iK j), where K i and K j are, respectively, the cardinalities
of the partitions of the supports of X i and X j. At N = 10,000 selecting K i = K j = 25, we
would have 16 data points per partition set. Compared to the previously available 400
points per partition set, this number of realizations is drastically lower and may prohibit
an accurate estimation of the requested statistical quantities. However, this sparsity effect
becomes noticeable when we increase the number of features (s) in the group, and is not
related to the overall number of features nX .
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2.3.4 Getting explanations: the Xi method

In this section, we introduce a framework for obtaining pre hoc and post hoc explana-
tions for ML models through measures of statistical dependence. The idea is to under-
stand how close the values of explanations computed from the data are to those com-
puted from the forecasts. Performing this analysis at the overall dataset level as well as
at the level of each individual class leads to several indications about the features that
are statistically important in the problem at hand. Starting with the data collection TL ={
(x(n),L(n)); n = 1,2, . . . , N

}
, dataset explanations are defined as the collection of probabilistic

sensitivity measures estimates:

ξ̂L
X =

{
ξ̂L

i , i = 1,2, . . . ,nX

}
, (2.15)

estimated from TL by applying (2.11) (the superscript L denotes that the estimates are
obtained using the data, i.e., ξ̂L

i is an estimate of ξL
i = EX [ζ(pL,pL|X i )]). Consider now the

dataset TΛ = {(x(n),Λ(n)); n = 1,2, . . . , N}, with Λ(n) = ĝ(x(n)), obtained from TL by replacing
the true labels with the corresponding ML model predictions. Prediction explanations are
defined as the collection of probabilistic sensitivity measures

ξ̂ΛX = {
ξ̂Λi , i = 1,2, . . . ,nX

}
, (2.16)

with ξ̂Λi defined in Equation (2.9) and estimated by applying Equation (2.11) to TΛ. Since
they look at all the target classes simultaneously, ξ̂L

X and ξ̂ΛX yield an understanding of
the most important covariates for the overall dataset or prediction task. However, we can
make the analysis more granular by analyzing what are the statistically most important
features to predict a given label. To do this, we resort to the so-called one-hot encod-
ing technique for the response variable [Hastie et al., 2009]. In particular, for nL different
labels ℓ1, . . . ,ℓnL , we codify the data by L1 = 1{L=ℓ1}, . . . ,LnL = 1{L=ℓnL }. Then, we call the

ℓr-dataset explanations the quantities ξ̂Lr
X =

{
ξ̂

Lr
i , i = 1,2, . . . ,nX

}
, where ξ̂

Lr
i is the estimator

of ξLr
i = E[

ζ(pLr ,pLr |X i )
]
, r = 1, . . . ,nL. Similarly, to answer the question of what are the statis-

tically important features for the ML model when predicting label ℓr, we define the ℓr-prediction
explanations as ξ̂Λr

X =
{
ξ̂
Λr
i , i = 1,2, . . . ,nX

}
with ξ

Λr
i = E

[
ζ(pΛr ,pΛr |X i )

]
estimated by ξ̂

Λr
i , and

Λr defined in a similar fashion as Lr.

The next step is to compare ξ̂ΛX and ξ̂L
X (or their prediction counterparts ξ̂Lr

i , ξ̂Λr
i ). This

comparison can be done by a simple graphical visualization of the values of ξ̂ΛX and ξ̂L
X or

of the ranking they induce. For this task, one can use any discrepancy measure between
vectors of real numbers. A possible choice is the Minkowski distance:

Dp
(
ξ̂ΛX , ξ̂L

X

)
=

∥∥∥ξ̂ΛX − ξ̂L
X

∥∥∥
p
= p

√
1

nX

nX∑
i=1

∣∣ξ̂Λi − ξ̂L
i

∣∣p. (2.17)
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For p = 1, Dp(ξ̂ΛX , ξ̂L
X ) is the Mean Absolute Deviation (MAD), while for p = 2 it is the

Mean Squared Error (MSE). Information delivered by Dp (
ξ̂ΛX , ξ̂L

X
)

can be used in alterna-
tive ways. For instance, the analyst may consider two sets of explanations ξ̂ΛX and ξ̂L

X far
apart if Dp (

ξ̂ΛX , ξ̂L
X

)> δ, for some threshold δ> 0. If that is the case, and the model is fitting
well, then the model is making good predictions but it is not picking up the same statisti-
cal relationships present in the data. Conversely, if Dp (

ξ̂ΛX , ξ̂L
X

)< δ, the model is predicting
accurately and its forecasts recreate well the statistical dependence of the original dataset.
In this respect, it is interesting to conduct the comparison for the training as well as the test
datasets, to see if differences emerge between the two subsamples. Regarding the value
of the threshold δ, the choice depends on the application of interest and on the separation
measure ζ(·, ·); we therefore refrain from providing a general rule. Also, often the interest
is on the ordinal ranking induced by ξ̂ΛX and ξ̂L

X . In this case, a quantitative comparison
is carried out using well-known statistical techniques such as the Spearman rank corre-
lation coefficient (ρSpear, henceforth) [Spearman, 1904]. This very same procedure can be
employed in a very similar fashion at the individual class level, i.e. when the sensitivity
measures are calculated for each target class.

2.4 Test cases: tabular, visual and textual data

In this section, we illustrate the method and apply it to well-known datasets in different
formats: in Subsection 2.4.1 we analyze a tabular dataset, in Subsection 2.4.2 an image
dataset and in Subsection 2.4.3 a text dataset. In all the experiments, we train a ML model
on a subset of the available data (the training set), and then we compute the explanations
ξΛX , ξL

X on the test set, using the estimators defined in Equation (2.10) and fixing the number
of partitions at K = 10. To fit the models, we employ the well-known scikit-learn

package in Python, using the default loss functions. We report the ML model test accuracy
as the percentage of correctly classified instances.

2.4.1 Tabular data: the wine dataset

In our first application, we use the well-known Wine dataset publicly available at https:
//archive.ics.uci.edu/ml. This dataset has been widely used in association with the
task of predicting a wine quality based on its chemical properties [Dua and Graff, 2017].
The dataset collects quantitative data on eleven features (ranging from alcohol content to
the pH of the wine), and the output is the corresponding wine quality measured on a scale
from 1 to 10. The sample size is N = 4898, split into 60% for training and 40% for testing.
The only preprocessing has been to replace the 39 missing entries in the design matrix X
with either the mean or the median of the corresponding variable (we also performed our
analysis omitting these entries, with unchanged results). The classes in the final dataset are
unevenly populated, with 1457, 2198 and 880 entries, respectively, for Qualities 5, 6 and 7,
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with 163 and 175 entries for Qualities 4 and 8, with only 20 entries for Quality 3, and zero
entries for Quality 1 and 2. We trained alternative ML models and registered a very simi-
lar accuracy for all. In the remainder, we shall focus on results obtained using a Random
Forest (RF), which registers a test accuracy of 66% (1-off accuracy ∼ 90%). Using the test set
and the trained model, for all the variables i = 1, . . . ,nX , we estimate the feature importance
measures provided by Permutation Importance (PIi) and Split and Count (SCi), as well as
the probabilistic sensitivity measures ξ̂L

i , ξ̂Λi based on the 1-norm separation (for the sake
of space we shall focus only on this norm in the reminder). Results are displayed in Fig-
ure 2.2. Panels (a) and (b) in Figure 2.2 compare the values of the dataset versus prediction
explanations (both computed on the test set). A visual inspection suggests that the ranking
induced by ξ̂L

X and ξ̂ΛX are similar: alcohol stands out as the most important variable, the
group volatile acidity, density and chlorides follows, and is followed in turn by a group
comprising citric acid, total sulfur dioxide, free sulfur dioxide and sulphates , while the
group pH, fixed acidity and residual sugar contains the three least relevant features. Ta-

Figure 2.2: Panel 2.2a: dataset explanations ξ̂L
i based on the 1-norm separation. Panel 2.2b:

prediction explanations ξ̂Λi based on the 1-norm separation. Panel 2.2c: Split and Count
measure ŜCi, Panel 2.2d: Permutation Importance measure P̂Ii, for i = 1, . . . ,nX — tabular
data.

ble 2.2 reports results of the quantitative comparisons between ξ̂L
X , ξ̂ΛX with MAD and MSE

in the second and third columns, respectively, and ρSpear in the last column. The small
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values of MAD and MSE and the simultaneously high value of ρSpear confirm the visual
impression of Figure 2.2 concerning the overall agreement. Thus, the ML model forecasts
actually reproduce well the original statistical dependence in the data and the covariates
that are statistically important for the true data generating process are also important for
the ML model predictions. Panels (c) and (d) in Figure 2.2 compare these results with in-
dications provided by the Split and Count measure (SC) and the Permutation Importance
measure (PI). The values of ρSpear between the ranking induced by the alternative impor-
tance measures amount at around 0.7, indicating a lower ranking agreement than in the
previous case (Table 2.3). Indeed, while all importance measures agree on alcohol as the
most important feature, the values of SC indicate a rather homogeneous influence of the re-
maining features (the values of SC are similar), while ξ̂ΛX and ξ̂L

X display greater variability
in their values, with alcohol, density and volatile acidity being statistically more important
than pH, fixed acidity and residual sugar. One also notes that the ranking of the three most
important variables is consistent for ξ̂L

X , ξ̂ΛX and SC, while PI assigns density a much lower
importance. All importance measures suggest alcohol as the most important variable, so
that this feature is not only the feature on which the target depends most strongly, but also
the one that drives the ML model performance the most. Let us now examine results at

Table 2.2: Quantitative similarity between dataset explanations ξ̂L
X and prediction explana-

tions ξ̂ΛX based on the 1-norm separation — tabular data.

MAD MSE ρSpear

1-norm 0.034 0.048 0.955
2-norm 0.010 0.017 0.986
Kuiper 0.040 0.055 0.936

Table 2.3: Spearman correlation coefficient comparing the ranking of dataset explanations
ξ̂L

X , prediction explanations ξ̂ΛX (both based on the 1-norm separation), Split and Count (SC)
measure, and Permutation Importance (PI) — tabular data.

Spearman Correlation ρSpear(SC, ξ̂L
X ) ρSpear(SC, ξ̂ΛX ) ρSpear(PI, ξ̂L

X ) ρSpear(PI, ξ̂ΛX )

1-norm 0.809 0.709 0.791 0.709
2-norm 0.745 0.736 0.718 0.736
Kuiper 0.745 0.709 0.727 0.709

the individual class level. We apply one-hot encoding to the model forecasts for the test
set, with NTe = 2573. Estimates of ξΛr

i for i = 1, . . . ,nX and r = 1, . . . ,nL based on ζ1(·, ·) are
reported in Figure 2.3. Each group of bars displays estimates of ξΛr

i for a given class, from
Quality 4 to Quality 8, as the model never predicts Quality 3 or Quality 9 and thus the
bars would be all null. Similarly, we register extremely low values of ξΛr

i for Quality 4 and
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Quality 8. This is a consequence of the few predictions of the corresponding labels, with
Quality 4 and 8 predicted, respectively, only 12 and 82 times on over 2500 entries. As a
result, the one-hot encoding vectors are, effectively, vector of zeros independently of the
values of the features. This effect is then captured by the values of the probabilistic sensitiv-
ity measures that are close to zero. The remaining bars indicate that alcohol is, statistically,

Figure 2.3: ℓr-prediction explanations ξ̂
Λr
X based on the 1-norm separation, r = 4, . . .8 —

tabular data.

the most important feature for the model when making a prediction on classes Quality 5,
Quality 6 and Quality 7, followed by sulphates; fixed acidity raises in importance when the
target is Quality 5 or Quality 6, while total sulfur dioxide becomes the third most important
variable for predicting Quality 7.

In the previous discussion, we have referred to point estimates. However, we also
performed corresponding uncertainty quantification to understand whether such obser-
vations are robust to variability in the estimates. We report a first set of results obtained
by 2’500 bootstrap replicates of the test data and predictions, and for each sample we re-
compute ξ̂L

X as well as ξ̂ΛX . Figure 2.4 reports the corresponding bootstrap distributions as
boxplots. The bootstrap confidence intervals in Figure 2.2a and 2.2b are narrow enough
around the point estimates to let us state that the results obtained with point estimates are
actually reliable, with a few (and negligible) outliers in the boxplot. Thus, in this case,
uncertainty quantification does not alter the previous considerations.

2.4.2 Image data: fashion MNIST

In this section, we report results of experiments conducted on the well-known Fashion
MNIST dataset [Xiao et al., 2017], a database by Zalando research containing images of
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Figure 2.4: Panel 2a: bootstrap distributions of dataset explanations ξ̂L
X . Panel 2b: boot-

strap distributions of prediction explanations ξ̂ΛX (both based on the 1-norm separation) —
tabular data.

clothing articles, with N=70’000, of which 60’000 images are used for training and 10’000
for testing. The images are made of 28×28 grayscale pixels; each instance is associated with
a label from ten classes: T-shirt/Top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, Ankle boot. The ML model in this application is a pre-trained convolutional neural
network with the LeNet architecture [LeCun et al., 1998]. LeNet is a 7-layer neural network
consisting of the input layer, 2 convolutional layers each followed by a pooling layer and
another convolutional layer followed by the output layer. The overall accuracy is 94%.

In this experiment, we focus on the explanations provided by the Xi method using the
1-norm separation measure. Figure 2.5 reports results of the investigation at the all-classes
level. The first heatmap displays values of ξ̂L

X , with lighter pixels being more important: to
estimate the explanations, we use the entire dataset of 70’000 images. The second heatmap
refers to dataset explanations ξ̂L

X on the test set, and the third one displays prediction ex-
planations ξ̂ΛX computed on the test set. A visual inspection shows a great similarity be-
tween the regions that are statistically important for the LeNet model and for the true data
generating process. Interestingly, the exact center of the image does not contain the most
important pixels, which are the ones surrounding the object (images are centred). Table 2.4
reports results for the quantitative comparison between ξ̂L

X and ξ̂ΛX : MAD and MSE are
close to 0, and ρSpear is almost 1, indicating a high agreement between ξ̂L

X and ξ̂ΛX . Thus,
the statistical dependence in the true data generating process is maintained in the forecasts.

Consider now the analysis at the individual class level. Figure 2.6 reports the heatmaps
generated by ξ̂Λr

X for each of the image classes r = 1, . . . ,nL using the test data (the heatmaps
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Figure 2.5: From left to right: dataset explanations ξ̂L
X (computed respectively using the

whole dataset and the test set) and prediction explanations ξ̂ΛX , both based on the 1-norm
separation separation — image data.

Table 2.4: Quantitative similarity between the dataset explanations ξ̂L
X and the prediction

explanations ξ̂ΛX based on the 1-norm separation — image data.

MAD MSE ρSpear

1-norm 0.024 0.030 0.997
2-norm 0.004 0.005 0.994
Kuiper 0.009 0.011 0.993
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of ξ̂Lr
X are similar and thus not displayed). The explanations at the individual-class level

for the LeNet model show interesting insights: for example, the most important pixels
for predicting the class T-shirt/Top highlight the lack of sleeve in such items; the most
important ones for predicting trousers are the pixels that signal the empty space between
the legs; for classes Dress or Shirt the focus is on the overall clothing piece (light blue
pixels), with specific parts that are more important than others (yellow pixels). Also for
this case study we performed an uncertainty quantification via the bootstrap. Results show
stability in the estimates (details are not reported).

Figure 2.6: ℓr-prediction explanations ξ̂Λr
X based on the 1-norm separation, r = 1, . . . ,nL —

image data.

2.4.3 Textual data: asian religious texts

The last application concerns the textual database available at https://archive.ics.
uci.edu/ml/datasets/A+study+of++Asian+Religious+and+Biblical+Texts.
In this case, the task is to predict the book of origin of an excerpt among eight sacred
texts [Sah and Fokoué, 2019]: Book Of Ecclesiasticus, Book Of Ecclesiastes, Book Of Proverb,
Book Of Wisdom (Christians’ sacred books), Buddhism, Tao Te Ching (sacred text for Tao-
ism), Upanishad and Yoga Sutra (sacred books for Hinduism), related to different religions
in Asia (Hinduism, Buddhism, Taoism, Christianity). Features are the individual words
in the Document Term Matrix (DTM) used to train the model, describing the frequency
of terms that occur in the collection of documents. The classifier is a simple Naive Bayes,
trained on 70% of the observations. The ML model test accuracy is 65%. As in the previous
experiments, we estimate the probabilistic sensitivity measures based on the 1-norm us-
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ing the test dataset. Figure 2.7 reports the ten most important words according to dataset
explanations ξ̂L

X and prediction explanations ξ̂ΛX . It shows that while there is some differ-
ence in the actual values of the explanations, the rankings provided by both ξ̂L

X and ξ̂ΛX are
similar.

(a) (b)

Figure 2.7: Panel 2.7a: dataset explanations ξ̂L
X based on the 1-norm separation, Panel 2.7b:

prediction explanations ξ̂ΛX based on the 1-norm separation (ten most important features
displayed) — text data.

Table 2.5: Quantitative similarity between the dataset explanations ξ̂L
X and the prediction

explanations ξ̂ΛX based on the 1-norm separation — text data.

MAD MSE ρSpear

1-norm 0.030 0.049 0.923
2-norm 0.006 0.010 0.908
Kuiper 0.009 0.017 0.886

The quantitative comparison in Table 2.5 shows a value of ρSpear at about 90%; thus, we
register a high overall ranking agreement, although the induced ranking are not perfectly
coincident; at the same time values of the MAD and MSE between ξ̂L

X , ξ̂ΛX are close to 0.
This last result shows that the values of the probabilistic sensitivity measures calculated
on the data and on the forecasts are close on average; thus, small differences may result in
different ranking, in spite of the features having a similar influence. At the individual class
level, results are presented in Table 2.6. The columns in Table 2.6 list the ten most important
words for each target class according to ξ̂Λr

X , r = 1, . . . ,nL. We note that the words that matter
for the classification into a Hinduism sacred text (Upanishad, YogaSutra) mostly pertain to
spiritualism and knowledge (spiritual, wise, knows, teaching) as well as with some specific
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Table 2.6: Ten most important words provided by the ℓr-prediction explanations ξΛr
i based

on the 1-norm separation, r = 1, . . . ,nL — text data.

Book Book Book Book Tao
Of Of Of Of Buddhism Te Upanishad

Yoga

Ecclestasticus Ecclesiastes Proverbs Wisdom Ching
Sutra

shall mortal shall therefore hath tao brahman spiritual
s maketh hath consciousness thy young called great
lord souls like form right never whole wise
heart flesh life psychic qualities together last aged
god treasure without though therefore person devas forgotten
great silver loveth life bring appeared knows declareth
thee spirit soul perception made looked enters approved
thou born glory vision come perhaps definite wherewith
truth know poor another make knows teaching number
knowledge tongue keepeth know nature root things rites

terms of Hindu philosophy (Brahman, devas). On the other hand, terms more related to
nature appear in Buddhism. The most impactful word to predict the Tao Te Ching sacred
text is, unsurprisingly, Tao. Finally, the predictions regarding the Christian sacred texts are
more influenced by terms dealing with the contraposition of mortal (flesh,mortal, born) and
eternal (souls, spirit, form) life as well as hints to god and lord. We performed an uncertainty
quantification via bootstrap. Estimates remain stable (results not shown). For this test case,
we also computed Breiman’s Permutation Variable Importance (PI), however obtaining a
null value for all the features. We believe that this result can be explained by two main
reasons: first, the high dimensionality of the DTM, which contains roughly 8′300 columns.
Permuting one feature out of so many does not result in a significant change in the loss
function. Second, the DTM is highly sparse, with feature entries consisting mostly of zeros.
Then, the permutation leads to a basically identical vector of realizations, and does not
yield any particular change in the loss functions.

2.5 Discussion and future research directions

This work has introduced probabilistic sensitivity measures that are well-posed on un-
ordered data and has applied them to ML classification tasks. The proposed measures
of association are based on the separation between probability mass functions and can be
estimated from a given dataset, without the need of fitting a ML model. They possess
the zero-independence property. Also, we have proven that, provided that the indices are
based on a bounded and continuous separation measurement between probability mass
functions, the corresponding estimators are asymptotically consistent.
We have then proposed a framework to explain relationships of statistical dependence in a
classification context. A key part of the method is the comparison of measures of statistical
association calculated first on the original data and then on the ML model forecasts. The
first set of estimates uncovers the target-features dependence of the data generating pro-
cess, the second the target-feature dependence that emerges when the ML model forecasts
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replace the original targets. The framework, here called Xi method, offers several advan-
tages: the importance measures are not computationally expensive, the explanations can
be obtained for any kind of data (images, texts, tabular) and they come with theoretical
guarantees. Also, when images are concerned, the sensitivity measures avoid data ma-
nipulations such as obscuring or removing pixels. This is a major advantage because it
is well-known that results may change according to, e.g., the color used to mask portions
of the image. Moreover, even if this work has focused on classification, the Xi method
is applicable in a regression framework as well. In this case, measures of statistical as-
sociation such as the one in Equation (2.8) (i.e., the Chatterjee correlation coefficient) and
several others are available to be selected as statistical indicators (the measures introduced
in this work are aimed at classification problems). A further advantage of the approach is
that it allows a straightforward and computationally cheap uncertainty quantification, in
line with the recommendation of, among others, Dunson [2018]. As for any method based
on measures of statistical association, a first limitation is that if two features X i and X j

are highly correlated, measures of pairwise dependence between target and features will
assign similar importance to X i and X j, even if Y is a function of X i only. In principle,
this issue can be overcome by conditioning on one or more of the correlated features and
estimating conditional measures of pairwise dependence. The estimation procedure may
also suffer from the curse of dimensionality or of lack of data in the case of small sample
sizes. Investigations aimed at studying these probabilistic sensitivity measures in a condi-
tional setting as well as the extension of the method to multivariate forecasting problems
are future research avenues.

Appendix

Proofs

Proof of Proposition 2.3.6. 1) Discrete input case. Consider X i a discrete variable with sup-
port Xi =

{
x1

i , x2
i , . . . , xK

i
}
. In this case, the natural partition choice is K i =

{
X 1

i ,X 2
i , . . . ,X K

i
}
,

with X k
i = {X i : X i = xk

i }, for k = 1,2, . . . ,K . Note that ξL
i = ξi(Xi)= ξi(K i) becomes

ξL
i = ξi(K i)=

K∑
k=1

p(X i = xk
i )ζ(pL,pL|X i=xk

i
). (18)

Then, a given-data estimator for ξi(K i) in Equation (18) can be written as

ξ̂i(K , N)=
K∑

k=1
p̂
(
X i = xk

i
)
ζ
(
p̂L, p̂L|X i=xk

i

)
. (19)
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Then, consider a dataset (X,L). Let Nk
i denote the number of realizations of X i such that

X i ∈X k
i — i.e. X i = xk

i , for k = 1,2, . . . ,K . Then, p̂(X i = xk
i )= N−1Nk is a consistent estimator

of p(X i = xk
i ), by the law of large numbers. Similarly, letting NL

r be the number of labels
in category ℓr, r = 1,2, . . . ,nL, p̂(L = ℓr) = N−1NL

r is a consistent estimator of p(L = ℓr).
Analogously, let p̂(L = ℓr|X i = xk

i ) = (Nk
i )−1NL

r (X k
i ), where NL

r (X k
i ) counts the realizations

of L equal to ℓr, when X i ∈ X k
i . Then, this estimator is also consistent by the law of large

numbers. Therefore p̂L → pL and p̂L|X i=xk
i
→ pL|X i=xk

i
as N → ∞. Now ζ(p̂L, p̂L|X i=xk

i
) is

continuous, and, therefore, we have

ζ
(
p̂L, p̂L|X i=xk

i

) −→
N→∞

ζ(pL,pL|X i=xk
i
),

so that
K∑

k=1
p̂
(
X i = xk

i
)
ζ
(
p̂L, p̂L|X i=xk

i

) −→
N→∞

K∑
k=1

p
(
X i = xk

i
)
ζ(pL,pL|X i=xk

i
), (20)

which implies ξ̂i(K , N)→ ξL
i as N →∞.

2) Absolutely continuous input case. If X i is absolutely continuous, let fX i (xi) be the
density of X i. Consider now ξL

i = ξi(Xi) written as

ξi(Xi)=
∫
Xi

ζ
(
pL,pL|X i=xi

)
fX i (xi)dxi.

First, we note that the integral above is the limit, if it exists, of the following Riemann-Stieltjes
sum:

ξi(Xi)= lim
δ→0

ξi(K δ
i )= lim

δ→0

K(δ)∑
k=1

ζ
(
pL,pL|X i∈X k

i (δ)
)
p
(
X i ∈X k

i (δ)
)
,

where the set X k
i is a member of a partition K δ

i of Xi, and where K and δ denote the
cardinality and norm of the partition, respectively. Consider now a dataset (X,L). Fixing a
partition K i(K)= {X 1

i , . . . ,X K
i }, the given data estimator ξ̂i(K , N) is written as

ξ̂i(K , N)=
K∑

k=1
ζ
(
p̂L, p̂L|X i∈X k

i

)
p̂
(
X i ∈X k

i
)
.

Now, let N →∞. If ζ(·, ·) is continuous, then

lim
N→∞

ξ̂i(K , N)= lim
N→∞

K∑
k=1

ζ
(
p̂L, p̂L|X i∈X k

i

)
p̂
(
X i ∈X k

i
)

=
K∑

k=1
ζ
(
pL,pL|X i∈X k

i

)
p
(
X i ∈X k

i
)=: ξi(K)

by the same argument holding for the consistency of the discrete case. Then, we consider
a sequence of refining partitions of Xi such that K i(K + 1) is finer than K i(K) and such
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that limK→∞K i(K) = Xi (that is equivalent to limδ→0 K δ
i = Xi with the notation above).

Then, by Rohlin’s disintegration theorem, we have that p̂L|X i∈X k
i
→ p̂L|X i=xk

i
for almost

every xk
i ∈ Xi. Then, by the continuity and boundedness of ζ(·, ·) and the definition of

Riemann-Stieltjes integral, we have that

lim
K→∞

ξi(K)= ξL
i .

Proof of Corollary 2.3.7. To prove the assertion, we first need to show that the three metrics
are bounded. We start with the Kuiper metric. We have that

ζKU(
pL,pL|X i∈X k

i

)= sup
r=1,2,...,nL

{
p
(
L = ℓr

)− p
(
L = ℓr|X i ∈X k

i
)}

+ sup
r=1,2,...,nL

{
p
(
L = ℓr|X i ∈X k

i
)− p

(
L = ℓr

)}
.

Noting that the maximum value that
∣∣p(L = ℓr)− p(L = ℓr|X i ∈ X k

i )
∣∣ can assume is 1, we

have ζKU(pL,pL|X i∈X k
i
)≤ 2. Similarly, for the 1-norm, we have

ζ1(
pL,pL|X i∈X k

i

)= nL∑
r=1

∣∣p(
L = ℓr

)− p
(
L = ℓr|X i ∈X k

i
)∣∣

≤
nL∑
r=1

p
(
L = ℓr

)+ nL∑
r=1

p
(
L = ℓr|X i ∈X k

i
)= 2.

For the 2-norm, we have

ζ2(
pL,pL|X i∈X k

i

)= nL∑
r=1

[
p
(
L = ℓr

)−p
(
L = ℓr|X i ∈X k

i
)]2

=
nL∑
r=1

p
(
L = ℓr

)2 −2
nL∑
r=1

p
(
L = ℓr

)
p
(
L = ℓr|X i ∈X k

i
)+ nL∑

r=1
p
(
L = ℓr|X i ∈X k

i
)2.

Hence, because p
(
L = ℓr

)2 ≤ p
(
L = ℓr

)
and p

(
L = ℓr|X i ∈ X k

i
)2 ≤ p

(
L = ℓr|X i ∈ X k

i
)
, then∑nL

r=1 p
(
L = ℓr

)2 ≤ ∑nL
r=1 p(L = ℓr) ≤ 1, and similarly

∑nL
r=1 p

(
L = ℓr|X i ∈ X k

i
)2 ≤ 1. This then

leads to

ζ2(
pL,pL|X i∈X k

i

)≤ 2−2
nL∑
r=1

p
(
L = ℓr

)
p
(
L = ℓr|X i ∈X k

i
)
.

Because
∑nL

s=1 p
(
L = ℓr

)
p
(
L = ℓs|X i = xi

)
is positive, we have ζ2(pL,pL|X i∈X k

i

) ≤ 2. Consis-
tency of the estimators then follows from Proposition 2.3.6.
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Chapter 3

Bayesian nonparametric hierarchical
models for multiplex networks

3.1 Introduction

Network data has become ubiquitous in modern applications, leading to renewed interest
in finding block structures that may be hidden in graphs [Fortunato and Hric, 2016, Fortu-
nato and Newman, 2022]. The objective of this work is to investigate various types of block
structures within a multiplex network, which is a layer-organized graph representing dif-
ferent types of relationships among the same instances. Specifically, we focus on studying
networks that exhibit connectivity patterns among brain areas detected for different sub-
jects. In this setting, it is of considerable interest to infer both subject-specific clusters of
cerebral regions, which are groupings based on personal brain interconnections, as well
as a common clustering, which is a partition of brain areas common to all the patients in-
volved in the study. We expect to find some physical similarities displayed by all the brain
maps, as well as individual differences due to possible illnesses. One common method
for obtaining brain network data involves constructing a functional connectivity network
using the inverse covariance matrix of fMRI scans. In this approach, low values of the pre-
cision matrix indicate that pairs of brain areas are conditionally independent (e.g. Smith
et al. [2011], Simpson et al. [2013]), meaning that the activity in one area is not strongly
influenced by the activity in the other area. This allows researchers to construct a network
that captures the patterns of functional connectivity among different regions of the brain.
By analyzing the resulting network, researchers can gain insight into the relationships be-
tween functional brain regions and how they contribute to various cognitive processes or
behaviors. While functional connectivity networks remain of fundamental interest, recent
advances in Diffusion Tensor Imaging (DTI) technologies [Craddock et al., 2013] have led to
an increased focus on structural brain network data that measures anatomical connections
made by axonal pathways. As discussed by Sporns [2013], there are notable differences
between functional and structural connectivity networks, and the latter is particularly use-
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ful in understanding the underlying anatomical basis of brain functions. In this work, we
specifically focus on structural anatomical graphs that are provided by DTI scans. These
graphs allow us to study the structural connections between different regions of the brain
and understand how these connections contribute to various cognitive processes or behav-
iors. By analyzing the structural network, we can gain insights into the physical basis of the
brain function and how it is altered in presence of diseases or conditions. Network science
has emerged as the most effective tool for analyzing brain connectivity patterns and un-
derstanding how different regions of the brain are functionally and structurally connected.
Through the use of network analysis techniques, researchers can identify subnetworks of
brain regions that exhibit similar connectivity patterns, providing insights into the organi-
zation of the brain and the neural circuits that underlie different cognitive processes. Addi-
tionally, network science allows for the exploration of how alterations in brain connectivity
patterns are associated with various neurological or psychiatric disorders. The contribu-
tions to the literature on brain networks span a wide range of analyses, from classical de-
scriptive approaches [Bassett and Bullmore, 2007, Bullmore and Sporns, 2009, Rubinov and
Sporns, 2010, van den Heuvel and Sporns, 2013, Bassett and Bullmore, 2017] to more com-
plex inferential frameworks [Bullmore and Sporns, 2012, Baggio et al., 2018, Demir et al.,
2020]. An in-depth survey of brain graphs can be found in Sporns [2010]. In addition to
studying the properties of individual brain regions, some works have also investigated the
presence of complex group structures involving multiple brain areas [Tononi et al., 1998,
Eickhoff et al., 2018]. For instance, Zemanová et al. [2006] and Crofts et al. [2016] have iden-
tified functional group structures, suggesting the presence of subnetworks within the brain
that may be involved in specialized processes. These findings provide further evidence for
the modular organization of the brain and the importance of studying clusters in addition
to individual brain regions. While the contributions to the literature on brain networks
have provided valuable insights into the functioning of the human brain, most of these
studies have focused on simpler data structures, such as standard graphs, and have used
classical community detection algorithms [Newman, 2004, Blondel et al., 2008, Karrer and
Newman, 2011, Barabási, 2013] to detect meaningful patterns among the nodes [Bassett
and Bullmore, 2007, 2017, Faskowitz et al., 2018]. However, these techniques do not easily
extend to multiplex networks without loss of information, as thoroughly discussed in Sec-
tion 3.5. For example, in a multiplex network where each layer represents a brain map of a
different patient, adaptations of standard techniques do not allow for information sharing
across subjects who are part of the same study and undergoing the same scans. However,
since the brain anatomy is largely similar across most humans, we would expect that the
connections displayed by a single subject should contain information that is relevant to the
inference of latent structures in the brain maps of all the other patients. Therefore, it is
important to develop techniques that can effectively analyze multiplex brain networks and
take into account both subject-specific connectivity patterns and shared structural proper-
ties. Thus, we believe that the search for partition patterns of brain regions of different
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patients (encoded in a multiplex network) should be two-fold: on the one side, we would
like to infer patient-specific groupings of brain areas, which may be influenced by possible
personal diagnoses. On the other hand, an anatomical clustering should be provided, high-
lighting common patterns to all the patients, estimated using all the available information
in the multiplex network.

3.1.1 Relevant literature

The importance of learning block structures in network data has motivated a collective ef-
fort by various disciplines towards the development of methods for detecting node groups,
ranging from algorithmic strategies [Newman, 2004, Von Luxburg, 2007, Blondel et al.,
2008, Karrer and Newman, 2011] to model-based solutions, among which we focus on the
Stochastic Block Model — SBM henceforth — [Nowicki and Snijders, 2001, Schmidt and
Morup, 2013] and its generalizations, such as the mixed-membership SBM [Airoldi et al.,
2008], the degree-corrected SBM [Karrer and Newman, 2011, Côme et al., 2021], the bipar-
tite SBM [Larremore et al., 2014] and the Extended SBM (ESBM) [Legramanti et al., 2022].
The SBM is a popular generative model for binary network data that assumes the network
is partitioned into clusters or blocks. In the SBM, the probability of an edge between two
nodes only depends on their cluster memberships, rather than on the individual nodes
themselves. This property of the SBM makes it particularly useful for inferring the under-
lying block structure of a network, as the probability of observing a given network can be
written as a function of the block assignments and the block probabilities. Bayesian infer-
ence for SBMs involves estimating both the posterior partition of nodes into blocks and
the posterior block probabilities, given the observed network data. Overall, it is a useful
framework for studying block structures in networks, as it provides a flexible and efficient
way to model and infer their latent composition. See Fortunato and Hric [2016] and For-
tunato and Newman [2022] for an overview. Another notable class of clustering models
for networks are latent space models, which have also been adapted to multiplex graphs
by Gollini and Murphy [2016]. However, comparing the results of stochastic block mod-
els and latent space models poses a significant challenge, which arises because stochastic
block models yield latent partitions, while latent space models provide not only partitions
but also spatial embeddings for nodes. In other words, although both models yield clus-
ters, latent space models go a step further by offering additional information through the
embedding of nodes into a continuous space. Therefore, comparing these two approaches
is difficult due to the distinct types of information they provide. For this reason, such a
comparison is out of scope of this thesis and deferred to future work.

Additionally, some effort has been put into generalizing existing frameworks to deal
with multiplex networks: among others, it is the case of spectral clustering [DeFord and
Pauls, 2019], topological clustering [Yuvaraj et al., 2021] and also SBM [Barbillon et al.,
2015, Vallè s-Català et al., 2016]. However, few of the approaches currently presented in
the literature fully exploit the potential of the multiplex structure: usually, they either do
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not consider the division of the nodes in layers (allowing inter-layer clustering, often un-
interpretable, or providing one common partition for the entire edge-colored network) or
they do not acknowledge the identity of the nodes, which is the same across layers. An-
other common technique is the application of standard community-detection algorithms to
a collapsed version of a multiplex network [Vallè s-Català et al., 2016]: this usually requires
a previous transformation of the data. For example, a naive approach could be to fit a SBM
on the supra-adjacency matrix of the multiplex network [Kivelä et al., 2014]: this requires
collapsing the multiplex network a priori, with a non-quantifiable loss of information. On
the other hand, it is possible to fit a standard SBM on each layer of the multiplex network,
independently: this procedure ignores the shared identity of the nodes across the layers,
treating them as independent (see Section 3.5 for additional details). To mitigate such a loss
of information, we propose a hierarchical version of the SBM for multiplex networks, the
multiplex ESBM (mESBM). We use a Bayesian nonparametric approach to define a flexible
model: indeed, in nonparametric modeling, the structure of the model is not fixed and thus
the model flexibility can adapt as needed according to the complexity of the data. Among
other numerous advantages [Nowicki and Snijders, 2001], some Bayesian nonparametric
priors on the partition do not require to set the number of final clusters a priori, which is
an evident limit of standard parametric approaches. The mESBM generalizes the ESBM
by Legramanti et al. [2022] by defining a hierarchical Bayesian nonparametric structure on
the latent partitions. The mESBM estimates two types of partitions of the nodes: layer-
specific clusters, i.e. clusters within each layer depending on the corresponding edges, and
a common grouping that partitions the nodes according to the information provided by
the entire multiplex network. In this way, the mESBM is able to exploit the information
provided by the division in layers, i.e. how the nodes differently interact within each layer,
as well as the common identity of the nodes through layers. The mESBM induces a bor-
rowing of information mechanism across layers through the use of informed Gibbs-type
priors [Gnedin and Pitman, 2004, De Blasi et al., 2015], and also provides a hyperparam-
eter to tune the amount of information shared. Moreover, the mESBM is a partially ex-
changeable model [De Finetti, 1980, Diaconis, 1988]: the multiplex network is such that
the data (i.e. edges/nodes) are exchangeable within each layer. Even though the mESBM
was initially conceived as a generalization of the ESBM by Legramanti et al. [2022], this
extension requires a completely different computational approach for the estimation of the
latent partitions. In fact, due to the complex nature of the posterior distributions in the
problem at hand, a standard Gibbs sampler, as described in Legramanti et al. [2022], can-
not be directly applied to sample from these distributions. As a result, more advanced and
non-trivial combinations of Monte Carlo algorithms are required to obtain approximate
posterior samples.

The rest of the Chapter is organized as follows: Section 3.2 introduces the multiplex
network data structure in detail, while Section 3.3 defines the mESBM. Section 3.4 provides
the computational framework to estimate all the posterior partitions in the mESBM, while
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Sections 3.6, 3.5 and 3.7 show the application of the mESBM and two competitors to a
simulated multiplex network and to cerebral maps generated by DTI scans.

3.2 Multiplex networks

Network theory [Kivelä et al., 2014] is a fundamental part of data science, which describes
and analyzes complex systems. Originally, this field dealt with simple (but not trivial)
graph structures, namely unweighted and undirected networks [Barabási, 2013]. However,
due to the ever growing complexity and availability of data, researchers have soon moved
to more sophisticated frameworks. As complex systems evolved, models and data struc-
tures needed to adapt: directed and weighted networks became more popular, as well as
networks displaying multiple type of connections. In order to recall the concepts this work
builds on, a graph (or network) can be defined as follows [Kivelä et al., 2014]:

Definition 3.2.1. A graph is a tuple G = (W ,E) where W is a set of V = |W | nodes and E ⊆W×W
is the set of edges, connecting the nodes.

Definition 3.2.1 includes weighted, unweighted, directed, and undirected networks,
but other possible generalizations exist. Among them, Kivelä et al. [2014] formalize the
idea of multilayer network, which includes as specific cases most of the types of graphs cur-
rently used in the literature (such as multiplex networks, i.e. the data structures object of
this chapter). The authors establish the concepts of aspects a = 1, . . . ,d (e.g. time or space)
and layers L = {La}d

a=1: this allows the multilayer network to have multiple layers for dif-
ferent aspects (e.g. to represent different types of relationships among the nodes, possibly
evolving over time).

Definition 3.2.2. A multilayer network [Kivelä et al., 2014] is a tuple M = (GM ,W ,L) where GM =
(WM ,EM) is a graph for each combination M of layer-aspect, W is the entire set of nodes and L as
above.

In this chapter, we consider multilayer networks with binary, undirected edges in each
layer. Thus, if not specified otherwise, the edges will be considered undirected henceforth,
and taking values in {0,1}. Moreover, this chapter deals with a specific type of multilayer
network, the so-called multiplex or edge-colored network.

Definition 3.2.3. A multiplex (or edge-colored) network [Kivelä et al., 2014] can be defined
as a sequence of graphs Gmultiplex = {W ,E,C}, where E ⊆ W ×W ×C is the edge set, W is the set
of V = |W | nodes and C is the color set (i.e. labels of layers).

Basically, edge-colored networks are multilayer networks with one aspect (d = 1), whose
layer set L is defined by the color set C (the terms layer and color will be used interchange-
ably from now on); all the layers c ∈ C contain the same set of nodes W , but they differ by
the edge set Ec ⊆ W ×W , c ∈ C. Multiplex networks typically represent sets of interactions
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among the same individuals: in some instances they may present inter-layer edges linking
nodes standing for the same entity in different layers. However, in this chapter we consider
edge-colored networks with intra-layer edges only, i.e. where the links are between nodes
in the same layer. Moreover, since the goal is clustering, self-loops are not considered, as
customary in the literature.

Notation

In the remainder, let Y = [Y1, . . . ,YK ] be an edge-colored network with V nodes and K col-
ors/layers, with Y1, . . . ,YK denoting the V×V binary adjacency matrices defining the graph
in each layer. Thus, each element Yk,uv ∈ {0,1} of the adjacency matrix Yk denotes the pres-
ence or absence of a link between node u and node v in the kth layer (with u,v = 1, . . . ,V
and k = 1, . . . ,K). Let zk = (zk1, . . . , zkV ) ∈ {1, . . . ,Hk}V for k = 0, . . . ,K be the node member-
ship vector associated to a generic node partition into Hk groups, so that zkv = h if and
only if v belongs to cluster h in partition zk, for v = 1, . . . ,V and h = 1, . . . ,Hk. Moreover,
let z = [z1, . . . ,zK ]′ denote a V × K matrix with, as columns, the layer-specific partitions,
i.e. clusters of the V nodes within each layer of the multiplex network; let the additional
partition z0 be a general clustering of the V nodes, which does not refer to any specific layer.
Let then nhk denote the size of cluster hk in partition zk, for k = 0, . . . ,K and hk = 1, . . . ,Hk.
Henceforth, the apex −v denotes a quantity computed excluding node v, for v = 1, . . . ,V .

3.3 Multiplex extended stochastic block models (mESBM)

The goal of this work is to define a hierarchical Bayesian nonparametric model to clus-
ter the nodes of a multiplex network in two different ways. Recalling the notation in-
troduced in Section 3.2, the aim is to find two types of partitions: a) the layer-specific
clusters z = [z1, . . . ,zK ]′ for each layer of the multiplex network Y , and b) the general (or
common) partition z0. The partitions z1, . . . ,zK group nodes within the same layer of the
network (inter-layer clusters are not admitted), but the model allows borrowing of infor-
mation across the partitions in different layers through the dependence induced by a com-
mon grouping z0. Such dependence across layers is desirable, since the nodes represent the
same entities, and we believe that their identity is an important information to exploit for
the inference of the layer-specific partitions. To pursue the goal, we define the multiplex
Extended Stochastic Block Model (mESBM) for a binary, edge-colored network:

42



3.3. MULTIPLEX EXTENDED STOCHASTIC BLOCK MODELS (MESBM)

Yk,uv|zku = h, zkv = l ind.∼ Bernoulli(Φk,hl) for 1≤ u < v ≤V ; k = 1, . . . ,K ,

Φk,hl
i.i.d.∼ Beta(a,b) for 1≤ h ≤ k ≤ Hk,

z1, . . . ,zK |z0
i.i.d.∼ informed Gibbs-type distribution(γ; z0,α), (3.1)

z0 ∼Gibbs-type distribution(β).

In this setting, the probability of observing a link between node u and node v in the kth layer
(i.e. Yk,uv = 1) just depends on the layer-specific labels of such nodes zku, zkv. Moreover, the
block probabilities follow a conjugate Beta distribution. The first three levels of the hier-
archical model in (3.1) define an Extended Stochastic Block Model (ESBM) Legramanti et al.
[2022]. The novel part is the addition of a mechanism to borrow information across z1, . . . ,zK

through z0. It is worth noticing that z0,z1, . . . ,zK identify labeled clusters: hence, techni-
cally, a vector zk and z′k, k = 0, . . . ,K , may contain different labels (and thus be mismatched
objects), even though they identify the same partition. Henceforth, we use the following
convention to identify a unique labeling for each given partition, setting z∗k1 → zk1 = 1 and
sequentially relabeling each membership value in z∗k = (z∗k1, . . . , z∗kV ) as

z∗ki → zki =
max{zk1, . . . , zki−1}+1 if z∗ki ∉ (z∗k1, . . . , z∗ki−1),

zk j for j : z∗k j = z∗ki,
(3.2)

for i = 2, . . . ,V and k = 0, . . . ,K . This operation effectively defines an equivalence class, so
that all the labelled vectors attaining the same partition will be reduced to the same object.
This procedure is equivalent to the canonical projection in Peng and Carvalho [2013]. In
the next two sections we present and analyze the Gibbs-type distributions used as priors
for the partitions included in the mESBM.

First however, since the mESBM described in Section 3.3 encompasses a family of mod-
els, we specify the multiplex Dirichlet Process Dirichlet Process (mDPDP) model in Equa-
tion (3.3) and we use it in the applied parts of this chapter (namely, Section 3.7).

Yk,uv|zku = h, zkv = l ind.∼ Bernoulli(Φk,hl) for 1≤ u < v ≤V and k = 1, . . . ,K , (3.3)

Φk,hl |zk
i.i.d.∼ Beta(a,b) for 1≤ h ≤ l ≤ Hk, (3.4)

z1, ...,zK |z0
i.i.d.∼ informed Dirichlet process(γ;z0,α), (3.5)

z0 ∼Dirichlet process(β). (3.6)

Notice that the model in Equation (3.3) is part of the family defined by the mESBM,
where the prior on z0 is a Dirichlet Process (DP), and the distribution of zk|z0 for k = 1, . . . ,K
is an informed DP. In the remainder, we fix the following hyperparameters: β = γ = 1,a =
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1,b = 1.

3.3.1 Gibbs-type distributions

Several partition models have been considered in the literature, and arguably the most no-
table class of such distributions are Gibbs-type distributions [Gnedin and Pitman, 2004,
De Blasi et al., 2015]. Gibbs-type priors are defined on the space of partitions of V obser-
vations. More specifically, we define a probability mass function p(z) (where, with a slight
abuse of notation, z is any partition of the V nodes into H clusters) as Gibbs-type if and
only if it has the form

p(z)=WV ,H

H∏
h=1

(1−σ)nh−1, (3.7)

where nh is the cardinality of cluster h = 1, . . . ,H, σ< 1 is the discount parameter and {WV ,H :
1≤ H ≤V } is a collection of non-negative weights such that WV ,H = (V−Hσ)WV+1,H+WV+1,H+1

and W1,1 = 1. A convenient feature of Gibbs-type distributions is the availability of closed-
form predictive urn schemes [De Blasi et al., 2015]:

p(zV+1 = l|z)∝
{

WV+1,H(nl −σ) for l = 1, . . . ,H,

WV+1,H+1 for l = H+1.
(3.8)

The urn scheme in (3.8) allows the derivation of simple algorithms to obtain samples from
Gibbs-type distributions. In fact, the urn scheme in Equation (3.8) is coherent across sample
sizes, that is:

H+1∑
h=1

p(zV+1 = h,z)= p(z).

This property ensures that Equation 3.8 can be used to sequentially generate observations
from a Gibbs-type distribution.

3.3.2 Informed Gibbs-type distributions

In this chapter, we call informed Gibbs-type distributions the family referred to as supervised
Gibbs-type in Legramanti et al. [2022]. The intuition is that in the mESBM there are no co-
variates supervising the partition process, but instead the mESBM introduces a mechanism
for sharing information across the layer-specific partitions z1, . . . ,zK inducing a dependency
structure through a common clustering z0 (both to be learnt). More in general, informed
Gibbs-type distributions are part of the family of Product Partition Models (PPMs) [Muller
et al., 2011, Page and Quintana, 2015, 2018]. Let us then define an informed Gibbs-type
distribution for a generic partition z, given z0, as:

p(z|z0)= q(z|z0)
c(z0)

= 1
c(z0)

WV ,H

H∏
h=1

g(z0h)(1−σ)nh−1, (3.9)
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where z0h = {z0i : zi = h}, while z, the discount parameter σ < 1 and the non-negative
weights WV ,H are as in Section 3.3.1. The normalising constant c(z0) involves a sum over
the set of all the possible partitions Z , whose cardinality is equal to the Bell number of the
second kind, which grows exponentially with V :

c(z0)= ∑
z∈Z

q(z|z0).

In general (heuristically, for V > 4), the computation of c(z0) is unfeasible. The quan-
tity g(z0h) is the similarity function, measuring the similarity of nodes included in cluster h
in z with respect to their cluster assignment in z0, for h = 1, . . . ,H. Since z0 is a categorical
variable, we follow the recommended practice in the literature [Muller et al., 2011], relying
on a fictitious model for z0, obtaining as similarity a Dirichlet-multinomial distribution:

g(z0h)= Γ(H0α)∏H0
h0=1Γ(α)

1
Γ(nh +H0α)

H0∏
h0=1

Γ(nhh0 +α). (3.10)

Here, α is an important hyperparameter to be set a priori, and nhh0 is the cardinality of
the intersection between cluster h in z and cluster h0 in z0. In general, the higher the
overlap between z0 and z, the higher the similarity function. Finally, notice that we include
the normalising constant Γ(H0α)/

∏H0
h0=1Γ(α) of the Dirichlet-multinomial distribution in the

definition of the similarity function (differently from Legramanti et al. [2022]): this choice
is well-motivated below. The informed Gibbs-type distribution also yields closed-form full
conditionals:

p(zv = h|z0,z−v)∝


n−v

hzv
0
+α

n−v
h +H0α

WV ,H−v (n−v
h −σ) for h = 1, . . . ,H−v,

1
H0

WV ,H−v+1 for h = H−v +1.

(3.11)

Differently from the standard Gibbs-type family in Section 3.3.1, the urn scheme in Equa-
tion 3.11 is not coherent across sample sizes according to the standard definition, i.e.

H+1∑
h=1

p(zV+1 = h,z|z0V+1,z0) ̸= p(z|z0).

This implies that at each sample size v = 1, . . . ,V the underlying informed model p(z1:v|z01:v)
is effectively changing for different values of v, making it impossible to simulate observa-
tions from an informed Gibbs-type distribution sequentially. However, Muller et al. [2011]
introduce a definition of coherency for Product Partition Models (which include the gen-
eral class of informed Gibbs-type distributions):
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pV (z|z0)=
H+1∑
h=1

H0∑
h0=1

pV+1(z, zV+1 = h|z0, z0V+1 = h0)p(z0V+1 = h0|z0).

Intuitively, this means that an informed Gibbs-type distribution is coherent across sample
sizes only integrating out z0V+1, i.e. when z0V+1 does not provide any information for the
clustering of the V +1 observation in z. This is opposed to the scope of the mESBM, that
is to inform the layer-specific partitions z with a common clustering z0. Moreover, this
definition of coherency does not entail a proper scheme for sequential simulation from the
informed Gibbs-type family.

Borrowing of information: the role of the hyperparameter α

In the previous section, we highlighted the presence of the normalizing constant Γ(H0α)/
∏H0

h0=1Γ(α)
in the similarity function of the informed Gibbs-type distribution (reported below for con-
venience):

g(z0h)= Γ(H0α)∏H0
h0=1Γ(α)

1
Γ(nh +H0α)

H0∏
h0=1

Γ(nhh0 +α).

In the following, we argue that including such a normalising constant in the similarity
function is important to provide a meaningful interpretation to α > 0 as the parameter
tuning the borrowing of information mechanism. Specifically, the lower α is, the higher
the amount of borrowed information across z,z0, which results in layer-specific partitions
z more adherent to the common clustering z0. This mechanism becomes clear analyzing
the limits of p(z|z0) with respect to the extreme values of α (for detailed computations, see
the Appendix).
For α→ 0,

lim
α→0

g(z0h)= 1
Γ(nh)

H0∏
h0=1

Γ(nhh0),

yielding the maximum borrowing of information between z and z0. Thus, for low values
of α, the influence of z0 on z through p(z|z0) only depends on the size of the intersections
between clusters in z and clusters in z0, normalised, encouraging an overlap of z1, . . . ,zK

to z0.
On the other hand, for α→∞,

lim
α→∞ g(z0h)= c,

with c ̸= 0 constant, and as a consequence limα→∞ p(z|z0) = p(z) (where p(z) is a standard
Gibbs-type distribution of Section 3.3.1). Thus, for α→∞, the informed model converges to
a standard (not informed) Gibbs-type distribution, removing completely the influence of z0

on z, basically modelling z0,z1, . . . ,zK as independent draws from the same law. Hence,
high values of α make the borrowing of information disappear.
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3.4 Posterior computation and inference

In Section 3.3.1, we have highlighted two major features of informed Gibbs-type distribu-
tions, namely the unfeasibility of computing their normalising constant c(z0) and their lack
of projectivity, which hinders the sequential sampling from such a law. These features are
not in general a problem, since the sampling of z|z0 ∼ p(z|z0) from an informed Gibbs-type
distribution can be performed with a standard Gibbs sampler. However, they prevent the
straightforward posterior sampling of z0|z ∼ p(z0|z), as throughly explained next. Indeed,
while the mESBM is defined in a straightforward way, the posterior estimation of the latent
variables z,z0 is not as simple. A first, naive approach is to use a standard Monte Carlo
algorithm to provide (approximate) samples from the posterior distribution p(z,z0|Y ), up-
dating the partitions z0,z1, . . . ,zK one node at a time (for a comprehensive review of Monte
Carlo methods, please refer to Chopin and Papaspiliopoulos [2020]). Such an algorithm
would entail two steps:

1. Sample z|z0,Y ∼ p(z|z0,Y ).
For k = 1, . . . ,K , sample zk|z0,Yk ∼ p(zk|z0)p(Yk|zk) using the likelihood and the in-
formed urn scheme in Equation (3.1) to update the label of one node v = 1, . . . ,V at a
time, according to the probabilites

p(zkv = hk|z0,z−v
k )∝


n−v

hk zv
0
+α

n−v
hk

+H0α
WV ,H−v

k
(n−v

hk
−σ) for hk = 1, . . . ,H−v

k ,

1
H0

WV ,H−v
k +1 for hk = H−v

k +1.

2. Sample z0|z∼ p(z0|z)∝∏K
k=1 p(zk|z0)p(z0).

The conditional distribution of z0|z is independent of the data Y , due to the hierar-
chical structure of the mESBM. However, p(zk|z0) = q(zk|z0)

c(z0) and c(z0) =∑
zk∈Z q(zk|z0)

is a normalising constant that a) can not be discarded (since it depends on z0) and
b) is unavailable in closed form and uncomputable for non-trivial cases. As a conse-
quence, to sample from p(z0|z), it would be necessary to compute the full conditional
probabilities

p(z0v = h0|z1, . . . ,zK ,z−v
0 )∝ p(z1, . . . ,zK |z0v = h0,z−v

0 )p(z0v = h0,z−v
0 )

=
K∏

k=1
p(zk|z0v = h0,z−v

0 )p(z0v = h0,z−v
0 )

=
K∏

k=1

q(zk|z0v = h0,z−v
0 )

c(z0v = h0,z−v
0 )

p(z0v = h0,z−v
0 ),

where c(z0) is impossible to obtain.

While a Gibbs sampler to sample from p(z|z0,Y ) remains a valid choice, the same can not
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be said to sample from p(z0|z) due to the unavailability of the normalising constant of
the informed Gibbs-type distribution. Thus, it is not possible to carry out Step 2 of the
previous algorithm to perform posterior inference of the common partition parameter z0.
A first, alternative option could be to learn z0|z by replacing Step 2 of the Gibbs sampler
with a Metropolis-Hastings iteration, that is:

2a. Propose z∗0 ∼ h(z∗0 |z0)

2b. Accept z∗0 with probability

a =min
{

1,
p(z∗0 )h(z0|z∗0 )p(z|z∗0 )
p(z0)h(z∗0 |z0)p(z|z0)

}
=min

{
1,

p(z∗0 )h(z0|z∗0 )q(z|z∗0 )
p(z0)h(z∗0 |z0)q(z|z0)

c(z0)
c(z∗0 )

}
.

Once again, the acceptance probability a is not computable due to the presence of c(z∗0 ), c(z0).
In conclusion, the first major concern is that a standard Monte Carlo approach is not fea-
sible because of the unavailability of the normalising constant of the informed Gibbs-type
distribution p(z|z0).

Another major computational issue which prevents a straightforward posterior sam-
pling of the partitions provided by the mESBM is the non-coherency of the informed full
conditional probabilities in Equation (3.11). As already noted in Section 3.3.2, this prevents
the sequential simulation from an informed Gibbs-type distribution. Being able to simulate
from p(z|z0) is essential for the implementation of some Monte Carlo algorithms based on
augmentation, among which a notable example is the Exchange algorithm [Murray et al.,
2006, Caimo and Friel, 2011]. More specifically, consider the sequential generation of a
sample from an informed Gibbs-type distribution z = (z1, . . . , zV )|z0 = (z01, . . . , z0V ): to this
end, we would like to generate first z1|z01, then z2|z1, z01, z02 and so forth. To this aim, we
would need the urn scheme to be coherent across sample sizes in the following manner:

pn(z1:n|z0,1:n)=
Hn+1∑
h=1

pn+1(z1:n, zn+1 = h|z0,1:n+1) ∀n = 1, . . . ,V ,

where pn(·) is the distribution of z1, . . . , zn given z01, . . . , z0n for n = 1, . . . ,V and Hn the num-
ber of clusters in z1, . . . , zn. As explained in Section 3.3.2, this condition is not satisfied by
informed Gibbs-type distributions (and, in general, by product partition models), and con-
sequently it is not possible to sequentially generate samples from such a law using the urn
scheme in Equation (3.11). In the next two sections, we explore solutions to the two issues
underlined above.

3.4.1 Exchange algorithm

The exchange algorithm [Murray et al., 2006, Caimo and Friel, 2011] is used in the litera-
ture with the goal of sampling from the posterior distribution of Exponential random graph
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models, among other things. Exponential random graphs have a computational issue sim-
ilar to the mESBM: in particular, their likelihood can not be easily obtained because of an
uncomputable normalising constant, yielded by a sum over all the possible graph config-
urations given by V nodes. The framework is then quite similar to the mESBM estimation,
impossible to carry out using standard Monte Carlo methods. Adapting the algorithm
in Caimo and Friel [2011] to sample from the posterior of the mESBM, we obtain a Monte
Carlo algorithm which can replace Step 2 in the Gibbs sampler of the previous section,
whose invariant distribution is the posterior law p(z0|z):

2a. Propose z∗0 ∼ h(z∗0 |z0);

2b. Sample the auxiliary variables z̃∼ p(z|z∗0 )= q(z|z∗0 )/c(z∗0 );

2c. Accept z∗0 with probability

a =min
{

1,
p(z∗0 )h(z0|z∗0 )q(z|z∗0 )q(z̃|z0)
p(z0)h(z∗0 |z0)q(z|z0)q(z̃|z∗0 )

}
.

As a first step, the exchange algorithm requires to propose a new value z∗0 ∼ h(z∗0 |z0). To this
aim, we present two different proposal distributions: first, the global proposal distribution
propose the entire V−dimensional vector z∗0 from the prior distribution, using the prior
urn scheme in Equation (3.8), i.e. z∗0 ∼ p(z0), with h(z∗0 |z0)= p(z0). Second, the local proposal
distribution chooses uniformly a random node, and updates its assignment according to the
urn scheme in Equation (3.8). In this case, the resulting proposal distribution is

h(z∗0 |z0)= 1
V

V∑
i=1

p(z∗0i|z−i
0 )1{v=i}.

In the remainder, we use the local proposal distribution for the Exchange algorithm. A
statistical interpretation is available for the quantity q(z̃|z0)/q(z̃|z∗0 ) in the acceptance prob-
ability. In fact, the exchange algorithm estimates the uncomputable ratio of normalising
constants c(z0)/c(z∗0 ) with a one-sample, unbiased, importance estimator:

c(z0)
c(z∗0 )

≈ q(z̃|z0)
q(z̃|z∗0 )

.

Looking at the steps above, it is clear that the exchange algorithm is suitable to simulate
from a posterior distribution in the fashion of p(z0|z) ∝ p(z|z0)p(z0), where p(z|z0) has an
uncomputable (but unavoidable) normalising constant. The only requirement is being able
to simulate the auxiliary variables z̃ ∼ p(z|z0) from the uncomputable distribution. This con-
dition is easily satisfied by distributions coherent across sample sizes, since it is possible to
sequentially simulate samples. Unfortunately, this is not the case for informed Gibbs-type
distributions as thoroughly explained in Section 3.4. Caimo and Friel [2011] actually incur
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in the same issue, as it is not possible to sample exactly from exponential random graph
laws: the authors use a Gibbs sampler within the Exchange algorithm to obtain approx-
imate samples from such a distribution. Nevertheless, this necessity opens the question:
how can we simulate from the informed Gibbs-type distribution p(z|z0), in order to gen-
erate the auxiliary variables z̃ necessary to use the exchange algorithm, with the lightest
possible computational burden? The next section will provide the answer.

3.4.2 Simulating from informed Gibbs-type distributions

In this subsection, we explore two ways of simulating the auxiliary variables from an in-
formed Gibbs-type distribution z̃|z0 ∼ p(z|z0). Notice that, by definition of the mESBM
in (3.1), p(z|z0) = ∏K

k=1 p(zk|z0): thus, we need to generate K independent and identically
distributed auxiliary partitions z̃k ∼ p(·|z0), k = 1, . . . ,K , each from a univariate informed
Gibbs-type law, one for each layer of the multiplex network Y . This procedure ensures
z̃= z in distribution as required by the Exchange algorithm.

Gibbs Sampler

A straightforward approach to simulate samples from an informed Gibbs-type distribution
is to exploit the standard inferential framework (e.g. see Legramanti et al. [2022]), that is
to employ a Gibbs sampler to simulate z̃|z0 ∼ p(z|z0). In this case, we sweep through each
V -dimensional vector z̃1, . . . , z̃K various times, updating one node at a time (in a random
order) using Equation (3.11). This procedure is not impacted by the non-coherency of such
an urn scheme, since we are updating vectors z̃k, k = 1, . . . ,K , of fixed dimension V . Hence,
at each step of the exchange algorithm we can generate the auxiliary variable z̃= [z̃1, . . . , z̃K ]′

as follows:

2a. Initialize z̃ = [z̃1, . . . , z̃K ]′ (in the Exchange algorithm, one can retain the values of the
auxiliary variables of the previous iteration);

For each network k = 1, . . . ,K , and for a certain number of iterations do:

2b. Select a random order of update of the nodes;

2c. For each node v, update z̃kv|z̃−v
k ,z0 ∼ p(z̃kv|z̃−v

k ,z0) using Equation (3.11) and the order
chosen in 2b.

Caimo and Friel [2011] follow an equivalent procedure to generate the auxiliary random
variables identically distributed to exponential random graphs within each iteration of the
Exchange algorithm. However, there is an obvious computational disadvantage, with re-
spect to both the number of nodes (V ) and the number of layers of the multiplex network
(K). In fact, K , V -dimensional independent Markov Chains are estimated at each iteration
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through Gibbs sampling. To mitigate the computational complexity with respect to K , we
propose the Sampling Importance Resampling in the next section.

Sampling Importance Resampling (SIR)

A second approach is to sample the auxiliary variables from the informed Gibbs-type dis-
tribution using the Sampling Importance Resampling (SIR) algorithm [Chopin and Pa-
paspiliopoulos, 2020]. The main underlying idea is to propose N ≫ K independent val-
ues using as proposal the non-coherent urn scheme in Equation (3.11), and then to sample
the actual K ≤ N independent, informed Gibbs-type auxiliary variables among those using
importance weights. The steps are formalized below.

2a. Sample N ≫ K partitions of the V nodes using the non-coherent urn scheme in Equa-
tion (3.11), i.e. sample z̄i = (z̄i1, . . . , z̄iV ) for i = 1, . . . , N as follows:

z̄i1|z01 = 1,

z̄i2|z̄i1, z01, z02 ∼ p2(z̄i2|z̄i1, z01, z02) according to Equation (3.11),
...

z̄iV |z̄i1, . . . , z̄iV−1,z0 ∼ pV (z̄iV |z̄i1, . . . , z̄iV−1,z0) according to Equation (3.11).

Each final partition will have a joint distribution given by:

z̄i ∼ f (z̄i|z0)= p1(z̄i1|z01)p2(z̄i2|z̄i1, z01, z02) . . . pV (z̄iV |z̄i1, . . . , z̄iV−1,z0)

with pv(·), v = 1, . . . ,V , as in Equation (3.11).

2b. To each partition z̄i for i = 1, . . . , N assign a weight defined by:

wi = q(z̄i|z0)
f (z̄i|z0)

, (3.12)

where q(z̄i|z0) is the (unnormalised) informed Gibbs-type distribution.

2c. Normalize the N weights obtained above:

ŵi = wi∑N
n=1 wn

.

2d. Finally, sample the K independent dimensions of z̃ = [z̃1, . . . , z̃K ]′. For k = 1, . . . ,K ,
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sample z̃k as:

z̃k =


z̄1 with probability ŵ1,
...

z̄N with probability ŵN .

Observe that we need to perform one SIR for each iteration of the Exchange algorithm,
regardless of the number of layers in the multiplex network. However, we still need to
choose the number of SIR samples N, which needs to increase with V and/or K . Gelman
et al. [2004] suggests to carry out Step 2d sampling z̃ from:

z̃k =


z̄1 with probability ŵ1,
...

z̄N with probability ŵN ,

without replacement. In our case, sampling z̃ with or without replacement does not seem
to have a tangible impact on the final result, at least empirically, and we decided to stick
with the standard SIR algorithm.

3.4.3 Posterior computation

Finally, we can define the algorithm to sample observations from the joint posterior dis-
tribution p(z,z0|Y ). We combine the Gibbs sampler at the beginning of Section 3.4, with a
step performed by SIR within the Exchange algorithm of Section 3.4.1. The final scheme is
reported in Algorithm 1, which outputs a multidimensional Markov Chain with invariant
distribution p(z,z0|Y ).

3.4.4 Point estimation

While algorithmic techniques return a single estimated partition, the mESBM provides the
empirical posterior distribution over the space of node partitions. Specifically, Algorithm 1
provides samples from p(z,z0|Y ). To perform inference on the space of partitions, we adopt
the approach of Wade and Ghahramani [2018]. In particular, we provide a posterior point
estimate leveraging the Variation of Information (VI) metric [Meilă, 2007], that quantifies
distances between two clusterings and ranges from 0 to log2 V . Intuitively, the lower the VI
metric, the higher the overlap between two partitions; see Wade and Ghahramani [2018]
for a detailed discussion. Under this scheme, a formal Bayesian point estimate for z,z0 are
the partitions minimizing the VI distance in the posterior sample, i.e.

ẑ, ẑ0 = argmin
z∗,z∗

0

Ez,z0[VI(z,z0;z∗,z∗0 )] (3.13)
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Algorithm 1: Posterior sampling of latent partitions z0,z1, . . . ,zK

Input: V ×V adjacency matrices Y = [Y1, . . . ,YK ], number of auxiliary partitions N,
initialization of z0,z1, . . . ,zK , hyperparameters.

Output: Posterior samples from p(z0,z|Y ).
1 for each iteration do
2 Sample z|z0,Y using a Gibbs sampler.
3 for k = 1, . . . ,K do
4 for v = 1, . . . ,V do
5 Update zkv ∼ p(zkv|z−v

k ,z0,Yk)∝ p(zkv|z−v
k ,z0)p(Yk|zkv,z−v

k ) using
Equations (3.9) and (3.11);

6 end
7 end
8 Sample z0|z1, . . . ,zK using SIR within Exchange algorithm.
9 (1) Exchange algorithm: propose a new value z∗0.

10 Sample z∗0 ∼ h(z∗0 |z0);
11 (2) Exchange algorithm: sample the auxiliary variables

using SIR, conditionally on z∗0.
12 (2a) SIR: sample the proposed partitions.
13 for n = 1, . . . , N do
14 Sample z̄n|z∗0 using the non-coherent urn scheme in Equation (3.11);
15 end
16 (2b) SIR: compute and normalize the weights.
17 for n = 1, . . . , N do
18 Compute the weights wn in Equation (3.12);
19 end
20 Normalize the weights ŵn = wn∑N

j=1 w j
for n = 1, . . . , N;

21 (2c) SIR: sample the auxiliary partitions z̃= [z̃1, . . . , z̃K ]′.
22 for k = 1, . . . ,K do
23 Sample i ∼Multinomial(ŵ1, . . . , ŵN );
24 Set the auxiliary partition z̃k = z̄i;
25 end
26 (3) Exchange algorithm: sample z0.

27 Update z0 = z∗0 with probability a =min
{
1, p(z∗

0 )h(z0|z∗
0 )q(z̃|z0)q(z|z∗

0 )
p(z0)h(z∗

0 |z0)q(z̃|z∗
0 )q(z|z0)

}
.

28 end
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where the expectation is taken with respect to the posterior distribution of z,z0, i.e. p(z,z0|Y ).
The optimization in Equation (3.13) is typically carried out through Monte Carlo estima-
tion or, alternatively, a greedy algorithm. From an practical viewpoint, we employ the
R package mcclust.ext [Wade and Ghahramani, 2018].

3.5 Competitor models

To the best of our knowledge, a model to obtain both layer-specific and common partitions
of the nodes of an edge-colored network has not been proposed in the literature yet. For
this reason, we assess the two-fold output of the mESBM versus the partitions provided
by two standard models adapted to the multiplex network framework. Such models are
illustrated in the next subsections.

3.5.1 Binomial extended stochastic block model (bESBM)

The binomial ESBM (bESBM) [Ghidini et al., 2023b] is an extended stochastic block model [Legra-
manti et al., 2022] defined for weighted, bounded, integer-valued edges. The bESBM intro-
duce a binomial likelihood to fully exploit the information in a weighted network, instead
of dichotomizing its integer edge weights to apply the standard ESBM, as it is customary in
the literature. However, the bESBM is still defined for single-layered, weighted networks
and can not be applied directly on a multiplex graph. Thus, in this application, we ex-
ploit the so-called supra-adjacency matrix [Kivelä et al., 2014] of the undirected, binary,
edge-colored graph of interest, defined as:

Y ∗ =
K∑

k=1
Yk,

where the Yk for k = 1, . . . ,K are the binary, adjacency matrices of each layer in the original
multiplex network. In the remainder, we will call Y ∗ the collapsed adjacency matrix of the
collapsed network. In this way, we are intuitively summarising the information of K dif-
ferent undirected, binary networks into a single adjacency matrix, defining an undirected
weighted graph where each edge counts the number of links between the two nodes in the
original multiplex network. Given such a collapsed matrix obtained from a K-layer edge-
colored network, it is immediate to see that Y ∗

uv ∈ {0,1, . . . ,K} for u,v = 1, . . . ,V . Thus, we can
define the bESBM as follows:

Y ∗
uv|zu = h, zv = k,Φhk

i.i.d.∼ Binomial(K ,Φhk) for 1≤ u < v ≤V , (3.14)

Φhk|z ind.∼ Beta(a,b) for 1≤ h ≤ k ≤ H, (3.15)

z ∼Gibbs-type(β). (3.16)
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The likelihood and the full-conditional distributions of the bESBM are available, and it
is possible to set up a standard Gibbs sampler to learn the posterior distribution p(z|Y ∗).
First of all, the cluster-specific probabilities Φhk, which are not of direct interest here, are
marginalized out from Equation (3.14), yielding

p(Y ∗|z)=
H∏

h=1

h−1∏
k=1

{ ∏
u,v:zu=h; zv=k

(
K
yuv

)}B(mhk +a,Knhnk −mhk +b)
B(a,b)

·

·
{ ∏

u<v: zu=zv=h

(
K
yuv

)}B(mhh +a, (K /2)(nh −1)nh −mhh +b)
B(a,b)

, (3.17)

where B(·, ·) is the Beta function, mhk is the sum of the weights of the edges connecting
nodes in cluster h and nodes in cluster k, while mhh is the sum of edge weights within clus-
ter h. Using Equation (3.17), we derive a collapsed Gibbs sampler that, at every iteration,
updates the cluster membership of each node according to its full-conditional distribution

p(zv = h|z−v, X ,Y ∗)∝ p(zv = h|z−v, X )
p(Y ∗|z−v, zv = h)

p(Y ∗,−v|z−v)
, (3.18)

where, as usual, the superscript −v denotes quantities computed excluding node v. The
final ratio in Formula (3.18) is computed using (3.17), yielding

p(Y ∗|zv = l,z−v)
p(Y ∗,−v|z−v)

=

= ∏
j ̸=v

(
K
yv j

)
H−v∏
k=1
k ̸=l

B
(
m−v

kl +
∑

i<v,i:zi=k y∗v j +a,K(n−v
l +1)n−v

k −m−v
kh −

∑
i<v,i:zi=k y∗v j +b

)
B

(
m−v

kl +a,K(n−v
l )n−v

k −m−v
kh +b

) ·

·
B

(
m−v

ll +∑
i ̸=v,i:zi=l y∗v j +a,K

n−v
l (n−v

l +1)
2 −m−v

ll −∑
i ̸=v,i:zi=l y∗v j +b

)
B

(
m−v

ll +a,K
n−v

l (n−v
l −1)

2 −m−v
ll +b

) .

Moreover, recall that the urn scheme associated to a Gibbs-type distribution is:

p(zv = h|z−v, X )∝
WV ,H−v (n−v

h −σ) for h = 1, . . . ,H−v,

WV ,H−v+1 for h = H−v +1,

where WV ,H and σ are determined by the Gibbs-type prior of choice; see, e.g., Legramanti
et al. [2022]. Once again, given the posterior samples of the partition z, the point posterior
estimate is found through the minimization of the Variation of Information measure (see
Section 3.4.4):

ẑ∗0 = argmin
z∗

Ez[VI(z,z∗)].
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Then, the partition ẑ∗0 estimated using the bESBM is compared to the common partition ẑ0

output by the mESBM. The rationale is the comparison between two partitions that are
obtained by exploiting information across all layers Y1, . . . ,YK of the multiplex network in
two completely different ways: for the bESBM, we combine the layer-specific data through
the collapsed graph, yielding an unquantifiable loss of information a priori, before the
estimation of the model. On the contrary, the mESBM is able to borrow information across
layers to estimate the common clustering of the nodes, thanks to the dependency induced
by its hierarchical definition, maintaining the original data structure.

3.5.2 Layer-wise extended stochastic block models (ESBMs)

To assess the layer-wise specific clustering, we compare the posterior estimates of z1, . . . ,zK

to the clusters obtained by separately fitting a standard, independent ESBM for each layer.
We follow the approach in Legramanti et al. [2022], estimating K independent partitions
as:

Yk,uv|zku = h, zkv = l i.i.d.∼ Bernoulli(Φk,hl),

Φk,hl |zk
i.i.d.∼ Beta(a,b),

zk ∼Gibbs-type distribution(β),

for 1≤ h ≤ l ≤ Hk and k = 1, . . . ,K , where Φk is a Hk×Hk matrix containing the block proba-
bilities. For the posterior estimation, we run the Gibbs sampler in Legramanti et al. [2022],
and to find the point posterior partition we use the same approach of Section 3.4.4:

ẑ∗k = argmin
z∗

k

Ezk

[
VI(zk,z∗k)

]
, k = 1, . . . ,K .

As already mentioned, we compare the partitions estimated by independent ESBMs with
the layer-specific clusters of the mESBM: the rationale is to see what is the impact of bor-
rowing of information across layers for the estimation of the corresponding clustering,
since we expect that exploiting the identity of the nodes in a multiplex network through an
induced dependency on the partitions should provide more meaningful groups.

3.6 Simulation studies

To assess the performance of the mESBM with respect to the competitors described in Sec-
tion 3.5, we consider simulated multiplex networks with V = 60 nodes and K = 10 layers.
We perform two simulation studies: first, we consider the fully-informed case (Scenario 1),
where all the layer partitions are actually centered on the same z0. Second, we introduce
some noise in a half-informed case (Scenario 2), considering K /2 networks centered on z0,
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and the rest showing random edges. The rationale behind the data generation process
is to produce adjacency matrices resembling the data of interest as much as possible (see
Section 3.7), with two different levels of noise.

Data generation process The data considered in this simulation study are generated ac-
cording to the scheme below:

1. Fix a (true) value for the common partition z0 of the V nodes. In this simulation, z0

splits the V nodes into four clusters of equal size. Figure 3.1 represents the true sim-
ulated coclustering structure.

2. Generate the layer-specific partitions z1, . . . ,zK as follows: for k = 1, . . . ,K , first set zk =
z0 and then change independently the label of M = 10 randomly chosen nodes. The
initial, coclustering structure of the simulated partitions z = [z1, . . . ,zK ]′ is displayed
in Figure 3.3. Each layer-specific partition contains Hk = 4 different clusters, for k =
1, . . . ,K .

3. Use a SBM [Nowicki and Snijders, 2001] to generate the layer-specific adjacency ma-
trices Y = [Y1, . . . ,YK ] or Y = [Y1, . . . ,YK /2], respectively for Scenario 1 and Scenario 2.
First, fix the matrix Φ4×4, containing the block probabilities — see Figure 3.2:

Φ=


0.8 0.7 0.4 0.1
0.7 0.8 0.1 0.4
0.4 0.1 0.8 0.7
0.1 0.4 0.7 0.8

 .

Then, for Scenario 1, generate the V ×V adjacency matrices Y1, . . . ,YK using a SBM:

Yk,uv|zk ∼Bernoulli(Φzku,zkv ) for k = 1, . . . ,K ; u,v = 1, . . . ,V .

For Scenario 2, generate the first K /2 networks Y1, . . . ,YK /2 as above, and then simulate
the remaining networks YK /2+1, . . . ,YK using a random Bernoulli distribution, with
parameter 1/2:

Yk,uv|zk ∼Bernoulli(1/2) for k = K /2+1, . . . ,K ; u,v = 1, . . . ,V .

The simulated multiplex networks for Scenario 1 and Scenario 2 are shown in Fig-
ures 3.4 and 3.5, respectively. It is clear that Scenario 1 is a fully-informed multiplex
network: all the layers are centered on the same partition. Scenario 2 is noisier: half of
the layers actually provide information on z0, while the other half is totally random.
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True common partition z0

Figure 3.1: True coclustering structure of z0.
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Figure 3.2: Block probabilities Φ.

True layer−specific partition z1 True layer−specific partition z2 True layer−specific partition z3 True layer−specific partition z4 True layer−specific partition z5

True layer−specific partition z6 True layer−specific partition z7 True layer−specific partition z8 True layer−specific partition z9 True layer−specific partition z10

Figure 3.3: True layer-specific coclustering structures of z1, . . . ,z10.
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Figure 3.4: Simulated multiplex network Y = [Y1, . . . ,Y10] under the first fully-informed
scenario described in Section 3.6 — Scenario 1.

Figure 3.5: Simulated multiplex network Y = [Y1, . . . ,Y10] under the second half-informed
scenario described in Section 3.6 — Scenario 2.
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Posterior estimation The mDPDP model in Equation (3.3) is estimated on the artificial
multiplex networks using Algorithm 1. We run the algorithm for 10′000 iterations, with 1′000
iterations as burn-in, and with N = 500. Figures 3.6 and 3.7 show the posterior cocluster-
ing matrix of the approximate samples from p(z0|z) in the two cases. The posterior samples
clearly distinguish the four different clusters underlying the data generation process in Fig-
ure 3.1, with a higher, but still acceptable, level of uncertainty in the noisier case. Hence, in
both Scenarios 1 and 2, the true underlying common partition is fully recovered.

Point posterior estimation − common partition z0

Figure 3.6: Posterior coclustering matrix
of z0 under the multiplex extended stochas-
tic block model — Scenario 1.

Figure 3.7: Posterior coclustering matrix
of z0 under the multiplex extended stochas-
tic block model — Scenario 2.

Figures 3.8 and 3.9 display the empirical coclustering matrices of the (approximate)
posterior samples from p(zk|Y ,z0), for k = 1, . . . ,K in the two scenarios of interest. Starting
with Scenario 1, and comparing the posterior results to the true value of z in Figure 3.3, one
can see that they are mostly similar, minus some noise (indicating exploration of the parti-
tion space during the estimation procedure). For example, in layers 5 and 7, we have some
uncertainty in the off-diagonal blocks, probably due to the corresponding edge structure in
the adjacency matrices. Nevertheless, the posterior estimation of z,z0 well reproduces all
the true partitions underlying the data generating process. The same holds for Scenario 2:
the true clustering structures are well recovered for the first K /2 networks, the ones where
the edges are informed by the layer-specific partitions. On the other hand, the last K /2
partitions are non-existent, since the edges are random and not influenced by any specific
clustering of the nodes. Therefore, the mDPDP model successfully captures all the existing
layer-specific latent partitions, whether in scenarios with or without noise.
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Point posterior estimation 
layer−specific partition z1

Point posterior estimation 
layer−specific partition z2

Point posterior estimation 
layer−specific partition z3

Point posterior estimation 
layer−specific partition z4

Point posterior estimation 
layer−specific partition z5

Point posterior estimation 
layer−specific partition z6

Point posterior estimation 
layer−specific partition z7

Point posterior estimation 
layer−specific partition z8

Point posterior estimation 
layer−specific partition z9

Point posterior estimation 
layer−specific partition z10

Figure 3.8: Posterior coclustering matrices of z1, . . . ,zK under the multiplex extended
stochastic block model — Scenario 1.

Figure 3.9: Posterior coclustering matrices of z1, . . . ,zK under the multiplex extended
stochastic block model — Scenario 2.
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Competitors As already mentioned in the previous sections, we also compare the ac-
curacy of the mESBM in two simulated scenarios to the performances of the two com-
petitors mentioned in Section 3.5. In particular, recall that the posterior estimation of z0

is compared with the partition provided by the bESBM on the collapsed network (Fig-
ures 3.10, 3.11), and the posterior layer-specific partitions z1, . . . ,zK are matched to the clus-
tering estimated by independent ESBMs on each layer of the simulated multiplex network
(Figures 3.14, 3.15). Both the competitor models are endowed with a Dirichlet process prior
on the partitions, with a concentration parameter equal to 1. The corresponding posterior
distributions are estimated using 10’000 iterations of the suitable Gibbs samplers, with
1′000 iterations as burn-in. The posterior partitions estimated by competitor models are
displayed in Figures 3.12, 3.13 and 3.14, 3.15 respectively.

Collapsed network

Figure 3.10: Collapsed adjacency matrix of
the simulated network — Scenario 1.

Figure 3.11: Collapsed adjacency matrix of
the simulated network — Scenario 2.

Starting from Scenario 1, the posterior coclustering matrix of z∗0 provided by the bESBM
in Figure 3.12 is overconfident: this could be a sign of a limited exploration of the parti-
tion space. On the contrary, in Figure 3.14, it is clear that the posterior estimations of the
layer-specific partitions are way more variable (and less accurate) than the ones provided
by the mESBM. Thus, introducing dependence among the layers of the multiplex network
through z0 seems to both ameliorate the posterior estimations of the layer-specific parti-
tions, making them more robust, and improve the exploration of the support during the
Monte Carlo estimation of the common clustering. As for Scenario 2, Figure 3.13 shows that
the bESBM is not able to recover the underlying common partition z0: hence, in presence
of moderate noise, the bESBM can not retrieve the correct clustering. Moreover, Figure 3.15
shows that also the layer-specific partitions are not perfectly retrieved. In particular, they
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Point posterior estimation − common partition z0

Figure 3.12: Posterior coclustering matrix
of z∗0 under the binomial extended stochas-
tic block model — Scenario 1.

Figure 3.13: Posterior coclustering matrix
of z∗0 under the binomial extended stochas-
tic block model — Scenario 2.

Point posterior estimation 
layer−specific partition z1

Point posterior estimation 
layer−specific partition z2

Point posterior estimation 
layer−specific partition z3

Point posterior estimation 
layer−specific partition z4

Point posterior estimation 
layer−specific partition z5

Point posterior estimation 
layer−specific partition z6

Point posterior estimation 
layer−specific partition z7

Point posterior estimation 
layer−specific partition z8

Point posterior estimation 
layer−specific partition z9

Point posterior estimation 
layer−specific partition z10

Figure 3.14: Posterior coclustering matrices of z∗1 , . . . ,z∗K under independent, layer-wise ex-
tended stochastic block models — Scenario 1.
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Figure 3.15: Posterior coclustering matrices of z∗1 , . . . ,z∗K under independent, layer-wise ex-
tended stochastic block models — Scenario 2.

show much more uncertainty and a lower accuracy with respect to the one obtained using
the mESBM.

3.7 Application: human brain networks

In this section, we apply the mDPDP model described in Section 3.3 to a multiplex network
representing the brain structural connections of different patients, collected using Diffusion
Tensor Imaging.

3.7.1 Diffusion Tensor Imaging data

The data comes from a pilot study of the Enhanced Nathan Kline Institute-Rockland Sam-
ple project, whose description can be found at http://fcon_1000.projects.nitrc.
org/indi/enhanced/. Specifically, we are interested in the pilot NKI1 study, which
comprises multimodal imaging data and subject-specific covariates for 24 subjects. De-
tailed information about the study can be found at http://fcon_1000.projects.
nitrc.org/indi/CoRR/html/nki_1.html. The goal of this work is to study the struc-
tural networks of the brain of 24 different subjects, making use of measures of anatomi-
cal interconnection provided by white matter fibers among 68 cerebral regions of interest.
In this dataset, the parcellation of the human brain follows the Desikan atlas nomencla-
ture [Thomas Yeo et al., 2008]. By applying the model proposed in Section 3.3, the goal
is to estimate a) the layer-specific partitions z to cluster areas of the brain for each subject
and b) a common clustering z0 of the human brain, common to all the patients involved
in the study. We conjecture the existence of a common partition z0 providing a physical
division of the brain shared by all humans, as well as of different patient-specific partitions
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of the cerebral regions z1, . . . ,zK , influenced by the personal diagnoses of each subject. The
data are collected using Diffusion Tensor Imaging (DTI) scans, with the aim of studying
underlying structural connectivity patterns within the brain of each subject. DTI maps the
diffusion of water molecules across the biological brain tissues, thereby allowing recon-
struction of the white matter fibers which act as highways for the directional diffusion of
water within the brain. The dataset of interest provides two different scans per patient,
but we consider just the first one. Along the DTI results, the data contain some additional
information, such as the lobe membership and 3D coordinates of each brain area or some
subject-specific features. There are two regions (for the left and for the right hemisphere)
marked as unknown, which are not taken into consideration in the subsequent analyses.
Also, the DTI scans for four subjects are completely missing, and thus discarded from the
beginning. The final multiplex network Y = [Y1, . . . ,Y20] consists of K = 20 layers (one per
each subject with non-missing information), each one encompassing a graph with 68 nodes
(i.e. the brain areas of interest) and a variable number of edges representing the white mat-
ter fiber interconnections shown by the corresponding patient. Each graph is represented
by its adjacency matrix Y1, . . . ,YK . Originally, each element Yk,uv of Yk denotes the number
of white matter fibers connecting the corresponding pair of brain regions in subject k, for
k = 1, . . . ,20 and u,v = 1, . . . ,68. Thus, each Yk is technically a weighted adjacency matrix;
however, we observe that the structural networks are sparse, with a lot of fiber counts being
zero, and the others having a wide range of variability (we can have from 1 up to ∼ 30′000
fibers connecting two regions). We then focus on a binary structural network, which sim-
ply detects the presence or absence of white fiber matters linking two brain areas. The final
binary multiplex network is displayed in Figure 3.16.

3.7.2 Posterior estimation and inference

To analyze the data presented in Section 3.7.1, we use the mDPDP model in Equation (3.3).
The following hyperparameters are fixed: a = 1,b = 1. The resulting setting is an uniform
prior distribution on the block connections, which allows for the search of various clus-
ter connectivity patterns and for easier generalization. In fact, in most applications, it is
not clear a priori what type of clusters one should look for. In particular, notice that the
mESBM is not finding communities as standardly defined in graphs, i.e. clusters of nodes
densely connected within but not between. The mESBM aims at finding clusters with sim-
ilar connectivity patterns, a general framework that encompasses both assortative and dis-
assortative community structures, among others. Moreover, the concentration parameters
of the DPs are set to γ = β = 1: different experiments have been performed varying such
values, but the resulting partitions are pretty robust, possibly due to the fact that network
data contain a lot of information, resulting in the likelihood value overwhelming the prior
in the posterior computation.

As for the parameter α of the similarity function, which is regulating the borrowing
of information mechanism (see Section 3.3.2), we experimented with different values: we
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Figure 3.16: Multiplex network from Diffusion Tensor Imaging data represented through
layer-specific adjacency matrices Yk for each subject k = 1, . . . ,20.
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used α= 1, α= 3 , α= 5 and the extreme case α= 30. For sensible values of α (i.e. α= 1,3,5)
the results are coherent and reliable, both in terms of the likelihood p(Y |z) and of posterior
coclustering matrices. Hence we discuss the results for α= 1 in the remainder. To estimate
the mDPDP model, we run Algorithm 1 for 50’000 iterations, with the parameter of SIR
set to N = 500. The initialization of z0 is a random partition of the nodes into 10 clusters,
while the initialization for zk, k = 1, . . . ,K is provided by V singletons. Figure 3.17 displays
the traceplot of the (unnormalised) log-likelihood log q(Y |z)=∑K

k=1 log q(Yk|zk), with 10’000
iterations of burn-in. The traceplot does not point towards issues of non-convergence.
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Figure 3.17: Traceplot of the log-likelihood log q(Y |z), across 50’000 iterations and with
10’000 iterations of burn-in.

Inference on the layer-specific partitions z Figure 3.18 displays the posterior coclus-
tering matrices of the (approximate) samples z1, . . . ,zK from p(z1, . . . ,zK |Y ,z0), obtained
through Algorithm 1. Most of the subjects show two diagonal blocks, denoting similar
structural connections among areas of the same hemisphere. Nevertheless, some patients
display layer-specific partitions clustering together areas from opposite hemispheres (e.g.
patients 1, 12, 16, 19), while other subjects (e.g. patients 6, 15, 17, 18) experience a parti-
tion with most of the clusters being included in the same half of the brain. Besides DTI
scans for each patient, the dataset also contains some information about the subjects in-
volved in the study: in particular, patients 6 and 17 experience alcohol and cannabis abuse,
subject 7 is diagnosed with a major depressive disorder (MDD) as well as an eating disor-
der and cannabis dependence. Subject 13 also suffers from MDD. We argue that the areas
for which the subject-specific partitions z1, . . . ,zK vary the most across different patients,
are also the ones commonly impacted by substance abuse and/or depressive disorders,
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Figure 3.18: Posterior coclustering matrices of the samples z1, . . . ,zK under the multiplex
extended stochastic block model.
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according to the literature. In particular, analysing the regions with the most uncertain
cluster labelling (i.e. the areas where the mean posterior pairwise coclustering proportion
across z is ∈ (0.45,0.55) with at least 10 nodes), one can notice that the brain zones that ex-
hibit the most dubious clustering patterns across subjects belong to the temporal and limbic
system. The temporal and limbic systems (containing the hippocampus and the amyg-
dala, performing a primary role in decision making and emotional responses) are the parts
of the brain which are most affected by both drug addiction [Franklin et al., 2002, Unter-
rainer et al., 2019] and MDD [O’Shea et al., 2018, Kim and Park, 2021]. In particular, it
is known that patients with depressive disorders show increased activation in the limbic
system, specifically in the amygdala, insula, and hippocampus, compared with healthy
controls [Bellani et al., 2010, Zamoscik et al., 2014, Lemke et al., 2022]. MDD has also been
linked to structural changes in temporal brain regions [Caetano et al., 2007, Garcia, 2012,
Ramezani et al., 2014, Barbosa et al., 2021]. For a more in-depth analysis of the impact of
MDD on brain areas, see Zeng et al. [2012], Helm et al. [2018] and Zhang et al. [2018].

Besides the coclustering matrices of the posterior samples of the layer-specific parti-
tions z given Y ,z0, we can analyze the point posterior estimates ẑ obtained through the
minimization of the Variation of Information measure, as explained in Section 3.4.4. Fig-
ure 3.19 shows the brain map of each subject, where the nodes of the graph are placed in the
correct bidimensional coordinates of the corresponding cerebral regions, while the edges
represent subject-specific interconnections. Node colors correspond to the posterior point
estimate of the layer-specific partitions ẑ= [ẑ1, . . . , ẑK ]′. Table 3.1 and Figures 3.20, 3.21 show
a preliminary analysis of the Variation of Information distance between each layer-specific
partition z1, . . . ,zK and the common partition z0. In particular, Table 3.1 shows the sum-
mary statistics of the quantity VI(ẑ0, ẑk) for k = 1, . . . ,K . Notice that the maximum possible
value for such quantity is equal to log2V = 4.322. Moreover, Figure 3.20 shows the values
and the boxplot of VI(ẑ0, ẑk) for k = 1, . . . ,20. Some layer-specific partitions are closer to the
common clustering estimated by the mESBM (e.g. z7,z9,z16), while other ones are more
different (e.g. z1,z5,z6,z18). Finally, Figure 3.21 displays the empirical distributions of the
Variation of Information between the common clustering ẑ0 estimated by the mESBM and
each sampled posterior partitions zt

k, for k = 1, . . . ,K and t = 1, . . . , #iterations. In this case,
the distance of some layer-specific posterior samples from the common cluster ẑ0 show a
higher variability of (e.g. for subject 2, 7, 12, 19) with respect to others (e.g. subject 6, 15).

Minimum First quartile Mean Median Third quartile Maximum
0.958 1.327 1.447 1.435 1.678 1.766

Table 3.1: Summary statistics of the posterior Variation of Information distance VI(ẑ0, ẑk)
between the layer-specific partitions ẑ, . . . , ẑK and the common partition ẑ0.

Inference on the common partition z0 The most innovative part of the mESBM is the
possibility to infer the common partition z0. Figure 3.22 displays the tering matrix of the
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Figure 3.19: Graphical representation of the subject-specific brain networks: node colors
correspond to the posterior point estimate of the layer-specific partition ẑ under the multi-
plex extended stochastic block model.
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Figure 3.20: Values and empirical distribution of the posterior Variation of Information dis-
tance VI(ẑ0, ẑk) between the layer-specific partitions ẑ, . . . , ẑK and the common partition ẑ0.

approximate samples z0 ∼ p(z0|z,Y ), obtained using Algorithm 1. The x-axis and y-axis dis-
play the names of the cerebral regions, in the fashion of the Desikan atlas. The acronyms
lh and rh stand for left hemisphere and right hemisphere, respectively. Looking
at the reordered posterior coclustering matrix in Figure 3.22, the diagonal blocks show that
most of the clusters include areas within the same hemisphere, on both the left and the
right side. However, some areas of the brain are grouped together with their counterparts
in the opposite hemisphere for most of the iterations: in particular, the rostral ante-

rior cingulate and rostral middle frontal in the right hemisphere cluster with
their counterparts in left hemisphere, and the same happens with the caudal anterior

cingulate, medial orbito-frontal, parsopercularis, parstriangularis.
Such a partition is evident looking at the point estimate of the posterior partition ẑ0, ob-
tained once again through the minimization of the Variation of Information measure (see
Section 3.4.4). Figure 3.23 shows a brain network (in this case, of subject 1), where each
node represents a brain area and it is plotted in the actual bidimensional coordinates of
its position in the human anatomy. The edges denote the presence of white fiber connec-
tions in the patient. The color of each node corresponds to the cluster labelling according
to the point posterior estimate ẑ0. Analyzing the brain map in Figure 3.23, the posterior
partition ẑ0 seems to provide a physical division of the brain: the turquoise and the black
clusters are symmetric (with the only exception of the rh-isthumuscingulate), group-
ing mirrored areas in the right and the left hemisphere, respectively. On the contrary, the
red and the blue groups are spread across hemispheres: in particular, they combine the
frontal part of the brain and they are symmetrical, in the sense that they include exactly
the same areas from both the left and the right hemisphere. The blue and red clusters
make up the majority of the temporal and frontal lobes, and thus the entire frontal part
of the brain. The purple and green clusters are also symmetrical, with the same exception
of the rh-isthumuscingulate area. Hence, the mESBM learns a non-trivial anatomical
segmentation of the human brain: the learnt structure is a lobe/hemisphere segmentation,
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Figure 3.21: Empirical distribution of the posterior Variation of Information dis-
tance VI(z0,zt

k) per each subject, across iterations.
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Figure 3.22: Posterior coclustering matrix of z0 under the multiplex extended stochastic
block model.
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which is more complex than a standard hemisphere or lobe division. In particular, the
model discerns both the hemisphere and lobe division in the posterior part of the brain
(where the hemisphere information is important, according to the literature), while it only
provides a lobe division in the frontal part, where the lobes show similar connectivity pat-
terns regardless of whether they are located on the left or right part.
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Colors: Z0 partition

Figure 3.23: Brain map of patient 1: the colors denote the clusters provided by the posterior
point estimation of z0 under the multiplex extended stochastic block model.
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3.7.3 Competitor models

In this section, we assess the performances of the mESBM versus the two competitors il-
lustrated in Section 3.5. More precisely, we compare the estimation of the common par-
tition z0 to the clustering z∗0 provided by the bESBM on the collapsed network, and the
layer-specific groups z to the partitions z∗ obtained by independent ESBM on each layer
of the multiplex network. Both the competitor models are defined with a DP prior on the
partitions, with a concentration parameter equal to 1. The corresponding posterior dis-
tributions are estimated using 10’000 iterations of Gibbs sampler, with 1′000 iterations of
burn-in. Figures 3.24 and 3.25 show the collapsed graph obtained from the supra-adjacency
matrix of the edge-colored graph Y ∗ = ∑K

k=1 Yk. Figure 3.24 shows the resulting weighted
adjacency matrix: the division in two distinct blocks (i.e. the two hemispheres) is evident.
Figure 3.25 shows the resulting weighted graph, where the edge color is proportional to the
corresponding weight: the vast majority of the darkest edges are connecting areas within
the same hemisphere, meaning that the strongest connections are between regions in the
same half of the brain. The result of the posterior estimation provided by the bESBM are
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Figure 3.24: Collapsed adjacency matrix
Y ∗ = ∑K

k=1 Yk. The y-axis show the name
of the brain areas, according to the Desikan
parcellation. The color of each element is
proportional to the edge weight (the darker,
the higher).

Figure 3.25: Graphical representation of the
collapsed brain network Y ∗ =∑K

k=1 Yk: each
node, representing a brain area, is placed
in the correct coordinates as in the human
anatomy. The edge colors are proportional
to their weight (the darker, the higher).

shown in Figures 3.26 and 3.27. Figure 3.26 shows the coclustering matrix of the samples
obtained from the posterior distribution p(z∗0 |Y ) of the bESBM. There seems to be almost
no uncertainty, denoting an unjustified overconfidence in the estimation of the latent parti-
tion. Figure 3.27 shows the collapsed graph, where the node colors are with respect to the
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point posterior estimation of the bESBM partition ẑ∗0 (obtained by minimising the Variation
of Information measure). The grouping of the frontal part of the brain (orange clusters) is
similar to the one provided by the mESBM in Figure 3.6 and reported on the right side for
the sake of convenience. However, we lose all the distinction between right and left hemi-
sphere we observed in the posterior part of the brain partition ẑ0 estimated by the mESBM:
in this case, the black cluster is scattered through hemispheres, and the blue and light blue
groups do not have a symmetric counterpart in the left hemisphere. In general, we do not
have a physical division of the brain areas anymore: groups do not capture nodes in close
proximity, but are spread across opposite sides of the human brain. Moreover, the esti-
mated partition ẑ∗0 does not show any symmetry (contrary to the expectations, given the
symmetrical nature of the human brain).

A further comparison is between the layer-specific partitions provided by the mESBM,
and the clustering obtained by fitting K independent ESBMs on each layer of the multiplex
network. Figure 3.28 shows the K coclustering matrices of the posterior samples provided
by independent, layer-wise ESBMs: they show more uncertainty about the clustering pro-
cess (gray areas), making the point estimation more difficult. Thus, it seems that adding a
dependence among the partitions z1, . . . ,zK through a common clustering z0 also improves
the final estimation of layer-specific groups.

3.8 Discussion and future research directions

This work proposes the first —- to our knowledge —- general model in the literature to
perform inference on both layer-specific and common partitions of multiplex networks. It
also presents a non-trivial algorithm to estimate the posterior clusters. The application on
brain maps obtained through DTI scans illustrates how our approach could find valuable
patterns in the data: the estimated layer-specific partitions seems related to possible men-
tal illnesses of the subjects involved in the study, while the common clustering provides a
physical and anatomical division of the brain areas, shared by all humans. Differently from
the competitors tested in this work, the mESBM does not require any preprocessing of the
data (such as collapsing all the layers of the multiplex network into one - which may yield
an important loss of information), and exploits all the features contained in such a data
structure (for example, the identity of the nodes in all the layers). Although we specifically
focus on brain networks, our method can be applied in many other settings. For exam-
ple, it may be used to study the evolution of patterns of connections among individuals
through time: in this case, we could apply the mESBM to a temporal network, where each
layer contains the interactions among the same V nodes at a specific time point. More-
over, it would interesting to generalize the mESBM in several directions: first, its coun-
terpart in the case of weighted, edge-colored networks could be defined. This extension
is pretty straightforward, changing only the block prior and the likelihood distribution of
the mESBM. Secondly, a supervised framework is also worth of exploration; for example,
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Figure 3.26: Coclustering matrix of the posterior samples estimated by the binomial ex-
tended stochastic block model.
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Figure 3.27: Graphical representation of a brain network: each node, representing a brain
area, is placed in the correct coordinates as in the human anatomy. The node colors are with
respect to the point posterior estimation of ẑ∗0 under the binomial extended stochastic block
model (left) and under the multiplex extended stochastic block model estimated common
partition (right).

in the brain application, the layer-specific partitions could be informed by features of each
subject, and the common clustering could be supervised by brain structural characteristics.
Another possible modelling extension is to inject knowledge about the common clustering
by centering its prior distribution on a partition of interest, using for example the centered
partition process [Paganin et al., 2021], or any law encompassing such a desired structure.
The proposed inferential framework remains valid, regardless of the prior distribution de-
fined on the common partition.

Appendix
Borrowing of information

A fundamental parameter of the mESBM defined in Section 3.3 is the similarity parameter
α, which regulates the amount of information borrowed between z0 and z= [z1, . . . ,zK ]′. In
fact, the similarity parameter α plays a key role not only in updating the network partitions
z given the common grouping z0, but also in proposing the auxiliary variables z̃ ∼ p(z|z0)
and in accepting z0 in the exchange step (see Algorithm 1). In this section, we study
how the similarity function g(z0h) and the informed Gibbs-type distribution p(z|z0) behave
when α→ 0 or α→∞. Without loss of generality, we consider the case K = 1 (and z = z1).
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Posterior z1 Posterior z2 Posterior z3 Posterior z4 Posterior z5

Posterior z6 Posterior z7 Posterior z8 Posterior z9 Posterior z10

Posterior z11 Posterior z12 Posterior z13 Posterior z14 Posterior z15

Posterior z16 Posterior z17 Posterior z18 Posterior z19 Posterior z20

Figure 3.28: Coclustering matrix of the posterior samples estimated by the K independent
extended stochastic block models on each layer.
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We will show the results both for the model using the unnormalised and the normalised
similarity function, justifying our final choice of retaining the normalisation constant in the
similarity function of the mESBM.

Similarity Function

Following the notation of Section 3.3.2, we consider the following similarity function of
the informed Gibbs-type distribution p(z|z0), given that the information is provided by a
categorical variable (z0):

g(z0h)= Γ(H0α)∏H0
h0=1Γ(α)

1
Γ(nh +H0α)

H0∏
h0=1

Γ(nhh0 +α)= Γ(H0α)∏H0
h0=1Γ(α)

k(z0h)∝ k(z0h)

for h = 1, . . . ,H. Thus, g(z0h) is the normalised Dirichlet-multinomial distribution (where
the normalising constant depends on α, with respect to which we are studying the limits)
and k(z0h) is its unnormalised counterpart. Potentially, they both can define a similarity
function for the informed Gibbs-type distribution.

Unnormalised similarity function k(z0h) Let us first study the limit of the unnormalised
similarity function k(z0h) as α→ 0 and α→∞. For α→ 0:

lim
α→0

k(z0h)= lim
α→0

1
Γ(nh +H0α)

H0∏
h0=1

Γ(nhh0 +α)= 1
Γ(nh)

H0∏
h0=1

Γ(nhh0).

In this case we have maximum borrowing of information between z and z0. The informed
Gibbs-type distribution p(z|z0) is only influenced by the size of the intersections between
clusters in z and clusters in z0, normalised. For α→∞:

lim
α→∞k(z0h)= lim

α→∞
1

Γ(nh +H0α)

H0∏
h0=1

Γ(nhh0 +α)< lim
α→∞

Γ(α+V )H0

Γ(1+H0α)
= 0,

where the last equality holds for H0 > 1. If H0 = 1, k(z0h)= 1 and limα→∞ k(z0h)= 1.

Normalised similarity function g(z0h) Let us now consider the limits of the normalised
similarity function g(z0h). For α→ 0, the result is the same as before, with k(z0h):

lim
α→0

g(z0h)= lim
α→0

k(z0h)= 1
Γ(nh)

H0∏
h0=1

Γ(nhh0)
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For α→∞, the result is different. The normalised similarity function does not converge to
zero anymore, but to a positive constant:

lim
α→∞ g(z0h)= lim

α→∞
Γ(H0α)∏H0
h0=1Γ(α)

1
Γ(nh +H0α)

H0∏
h0=1

Γ(nhh0 +α)

= lim
α→0

∫
∆H0−1

H0∏
h0=1

p
nhh0
h0

Γ(H0α)∏H0
h0=1Γ(α)

H0∏
h0=1

pα−1
h0

dp

=
H0∏

h0=1

( 1
H0

)nhh0 =
( 1

H0

)∑H0
h0=1 nhh0 =

( 1
H0

)nh > 0,

with p = (p1, . . . , pH0) and ∆H0−1 the support of the Dirichlet distribution. In the latter, we
exploit the property of the Dirichlet distribution with a growing concentration parameter:
in the limit, its variance converges to zero and the process converges to its mean. Hence,
for α→ ∞, g(z0h) converges to a constant value, does not depend on the structure of z0

anymore and fails in sharing information between z and z0 through p(z|z0).

Informed Gibbs-type distributions

Using the results of the previous section, we can study how informed Gibbs-type distribu-
tions vary according to limits with respect to α, using as similarity function either g(z0h) or
k(z0h). For α→ 0, we get the same limit for p(z|z0)= q(z|z0)

c(z0) in both cases:

lim
α→0

q(z|z0)= lim
α→0

WV ,H

H∏
h=1

g(z0h)(1−σ)nh−1 = lim
α→0

WV ,H

H∏
h=1

k(z0h)(1−σ)nh−1

=WV ,H

H∏
h=1

1
Γ(nh)

H0∏
h0=1

Γ(nhh0)(1−σ)nh−1.

On the other hand, the result for α→∞ is different for the two similarity functions. How-
ever, in both cases, for α→∞, the informed Gibbs-type distribution p(z|z0) converges to a
law independent of z0, basically nullifying the influence of z0 on z in different ways.

Informed Gibbs-type distributions p(z|z0) with unnormalised similarity function k(z0h)

lim
α→∞q(z|z0)= lim

α→∞WV ,H

H∏
h=1

k(z0h)(1−σ)nh−1 = δ{z=(1,1,...,1)},

since k(z0h) always converges to zero, but for the partition z = (1,1, . . . ,1) it converges at
a slower pace. Hence, for α → ∞, the informed Gibbs-type distribution converges to a
degenerate Dirac measure on the configuration with all the nodes in one cluster, making
all the layer-specific partitions almost surely identical. This is not clearly desirable, and also
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the reason why we have introduced the normalising constant in the similarity function in
the mESBM.

Informed Gibbs-type distribution p(z|z0) with normalised similarity function g(z0h)

lim
α→∞q(z|z0)= lim

α→∞WV ,H

H∏
h=1

g(z0h)(1−σ)nh−1 =WV ,H

H∏
h=1

( 1
H0

)nh
(1−σ)nh−1

=WV ,H

[ H∏
h=1

( 1
H0

)nh
] H∏

h=1
(1−σ)nh−1

=
( 1

H0

)V
WV ,H

H∏
h=1

(1−σ)nh−1 ∝ p(z),

that is, the informed Gibbs-type distribution p(z|z0) is converging to its (uninformed) Gibbs-
type counterpart for α→∞. Thus, in this case, the mESBM reduces to the standard ESBM,
without any supervision or borrowing of information, and with a non-degenerate prior on
the layer-specific partitions.
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Chapter 4

Spatially-informed Bayesian
clustering for weighted networks

4.1 Introduction

Complex networks can represent transportation connections between an origin and a desti-
nation, such as roads, railways, and airline routes: these transportation networks are intri-
cate and dynamic, comprising numerous interconnected nodes and links. Analyzing these
networks as a whole can be challenging due to their size and intricate relationships. Clus-
tering comes into play to simplify and understand their underlying structure by grouping
similar entities (embedded in the same geographical space) together. These subsets, known
as clusters or communities, represent groups of entities that are closely related to each other
compared to nodes in other clusters. The clustering process can be guided by various fac-
tors, such as geographical proximity, traffic flow patterns, connectivity, or other relevant
attributes, depending on the specific application and context.

In network analysis, clustering of network nodes is a fundamental task that has been
studied extensively; see, e.g., see Fortunato and Hric [2016] and Fortunato and Newman
[2022] for a review. A first taxonomy of clustering is that into soft and hard clustering.
The former allows nodes to belong to multiple clusters with different probabilities, while
in the latter each node is assigned to a single community. In this chapter we focus on
hard clustering. Given a clustering aim — either soft or hard — a further subdivision of
clustering techniques is that into algorithmic and model-based strategies.

Algorithmic clustering is typically based on the optimization of some measure of good-
ness of the resulting partition or, alternatively, on automatic detection of groups. Arguably,
the most famous algorithmic technique is greedy clustering [Clauset et al., 2004, Newman,
2004], which outputs the partition with the highest (local) modularity. The Louvain algo-
rithm [Blondel et al., 2008] provides a hierarchical clustering, that recursively merges com-
munities until reaching a single one and executes a greedy clustering on the condensed
graph. Finally, spectral clustering [Von Luxburg, 2007] is based on the spectral decom-
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position of some similarity matrix of the nodes. Possible choices for such a matrix are
the adjacency or the Laplacian matrix of a graph, as well as some of their regularized
versions [Amini et al., 2013]. All the aforementioned methods are well-defined for both
weighted and unweighted networks.

On the other hand, model-based techniques assume an underlying probabilistic model
for the data, opening the way for statistical analysis. One class of such models are latent
space models [Gollini and Murphy, 2016], but their analysis and comparison is out of the
scope of this thesis and deferred to future work. We focus instead on the well-known
stochastic block model (SBM) [Nowicki and Snijders, 2001, Schmidt and Morup, 2013], and
its generalizations, such as the mixed-membership SBM [Airoldi et al., 2008], the degree
corrected SBM [Karrer and Newman, 2011, Côme et al., 2021], the bipartite SBM [Larremore
et al., 2014] and the extended stochastic block model (ESBM) [Legramanti et al., 2022].
The SBM was originally defined on binary networks, but several adaptations to weighted
graphs have then been formulated [Aicher et al., 2013, Peixoto, 2018, Xu et al., 2020, Ng
and Murphy, 2021]. Peng and Carvalho [2013] introduce a Bayesian degree-corrected SBM
with priors on the node-specific parameters. However, they develop a model for binary
networks which requires setting the number of desired clusters a priori. Herlau et al. [2014]
define the degree-corrected infinite relational model, which overcomes the issue of choos-
ing the number of communities a priori. However, most of these models do not include
covariate supervision.

In fact, network data often come with node attributes, which can inform the node par-
tition. Some clustering techniques, both model-based and algorithmic, were then designed
to leverage this additional information. In the Bayesian literature, a widely used strategy to
include covariates information in the partition process is through product partition mod-
els [Hartigan, 1990, Barry and Hartigan, 1992, Dahl, 2008, Park and Dunson, 2010, Muller
et al., 2011]. Legramanti et al. [2022] apply this general strategy — which is not restricted
to network data — in the context of SBMs. This is made possible by the fact that their ex-
tended SBM relies on Gibbs-type priors, which have a product-partition-model structure.
In the context of soft clustering, a model-based solution for weighted networks with node
attributes is provided by Yang et al. [2013]. Algorithmic alternatives for attribute-assisted
clustering include Combe et al. [2015] and Binkiewicz et al. [2017], Mu et al. [2022], who re-
spectively adapt the Louvain algorithm and spectral clustering to include node attributes.
Zhang et al. [2016] propose to maximize a joint community detection criterion, which takes
into account both edges information and node attributes. For a more comprehensive re-
view about clustering algorithms for node-attributed networks, see Chunaev [2020].

As explained in the next sections, the goal of this work is to present a model-based
method for clustering municipalities. These municipalities are represented as nodes within
a transportation network, and our aim is to group them based on their flow patterns, tak-
ing into account their geographical location. From a methodological and applicative view-
point, the work of Egidi et al. [2023] is extremely related to ours: the authors introduce
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a Bayesian latent mixture model aimed at designing administrative structures on the ba-
sis of commuting flows between municipalities, represented as nodes. They propose to
augment the geographical node attributes of a transport network, including the longitude
and latitude of each municipality, with a third, latent variable accounting for hidden fac-
tors impacting the commuting structure, such as geographical barriers or socio-economics
differences between the units.

We apply the methodology developed in this chapter to the data provided by Azienda
dei Trasporti di Bergamo (ATB), one of the public transportation companies operating in
Bergamo and surroundings. As carefully explained in the next sections, the proposed
model produces a clustering of municipalities, which is determined by considering both
their connectivity patterns and geographical positions. Clusters of this type can be use-
ful to a public transportation company to, for example, establish new pricing zones in
order to decide where to change the price of the tickets or monthly subscriptions, still re-
maining within budget constraints. In fact, clusters of municipalities allow for a better
understanding of travel patterns and passenger demand. By analyzing flows within and
between clusters, transportation companies can identify high-demand routes and adjust
ticket prices accordingly. For example, routes connecting busy urban clusters may have
higher demand and, therefore, warrant higher ticket returns compared to routes serving
less-populated areas. Moreover, some clusters of municipalities often have multiple trans-
portation providers operating within the same region, and the presence of competition can
also influence ticket pricing strategies. Transportation clusters may also provide opportu-
nities for pricing incentives and discounts. ATB could introduce promotional fares, loy-
alty programs, or group discounts targeting specific clusters or travel corridors, to attract
more passengers, encourage loyalty, and stimulate demand within the cluster. Considering
as primary goal the definition of new zones for ticket pricing, we can notice that pricing
zones usually have radial shapes. Radial clusters are relatively common in transportation
networks, especially in urban areas. They refer to a network structure where transporta-
tion routes radiate outward from a central hub to surrounding regions. This configuration
is often observed in areas with a central main town and where transportation routes ex-
tend outward to connect the surrounding municipalities. Our modeling approach focuses
on developing a Bayesian clustering model for networks that specifically incorporates the
concept of radial clusters. To achieve this, we utilize a relevant covariate for each node,
namely the distance of each municipality from the main hub of the network. By incorporat-
ing the distance as node attribute, our Bayesian clustering model will effectively encourage
the formation of radial clusters within the network. This means that municipalities with
the same distance from the main hub of the network will have a higher tendency to be
grouped together, forming clusters that radiate outward from the central hub.

The rest of this chapter is organized as follows: Section 4.2 defines a family of models
for Bayesian network clustering and also discusses the prior settings, including a mecha-
nism to infer the amount of node attribute information in the model in a mathematically
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rigorous way. Section 4.3 provides the computational framework to sample from the pos-
terior distribution of such models. Section 4.4 shows results from alternative algorithmic
approaches to cluster the transport network of interest and displays the performances of
the proposed model on transport data and Section 4.5 offers a conclusive discussion, along
with some new, desirable research directions.

4.2 Poisson extended stochastic block models (pESBM)

Consider an undirected integer-weighted network with V nodes, and its V×V symmetric
adjacency matrix Y , whose elements Yuv = Yvu ∈ {0,1,2, . . . } contain the integer weight of
the edge connecting nodes u and v, for u,v = 1, . . . ,V . Self-loops are not informative for
our clustering purposes, and thus we set Yvv = 0 for each v = 1, . . . ,V . Denote with xv =
(xv1, . . . , xvp) the p-dimensional row vector of covariates associated to node v, and with X
the V×p matrix obtained by stacking all the xv’s. Finally, let z = (z1, . . . , zV ) ∈ {1, . . . ,H}V be
the vector of node memberships associated to a partition of the V nodes into H groups, so
that zv = h if and only if node v belongs to cluster h. To model the integer edge weights,
we define the following Poisson extended stochastic block model (pESBM):

Yuv|zu = h, zv = k,λhk
ind.∼ Poisson(λhk), for 1≤ u < v ≤V , (4.1)

λhk|z i.i.d.∼ Gamma(a,b), for 1≤ h ≤ k ≤ H, (4.2)

p(z,α; X ) ∝ p(z|α; X ) ·π(α) (4.3)

∝WV ,H

H∏
h=1

(1−σ)nh−1 g(X∗
h)α ·π(α),

where X∗
h is the nh×p matrix obtained by stacking the row vectors of the covariates of

nodes in cluster h. Each element Yuv below the diagonal of Y is modeled with a condi-
tionally independent Poisson distribution whose rate depends solely on the cluster mem-
berships of the involved nodes, u and v. As a result, there are as many distinct Poisson
rates λhk as the possible unordered pairs of clusters, including identical ones. To exploit
conjugacy, each distinct Poisson rate is given an independent Gamma(a,b) prior. In Equa-
tion (4.3) the conditional distribution p(z|α; X ) is a Gibbs-type prior, modified by the sim-
ilarity function g(X∗

h)α. The former depends on the cardinality nh of each cluster and is
parametrized by the discount parameter σ < 1, while {WV ,H : 1 ≤ H ≤ V } is a collection of
non-negative weights such that WV ,H = (V − Hσ)WV+1,H +WV+1,H+1 and W1,1 = 1. Instead,
the similarity g(X∗

h) is a function of the covariates of nodes in cluster h, and is raised
to power α ≥ 0 thus allowing to adjust the relative importance of node covariates. The
law π(α) is an auxiliary distribution, needed to properly define the joint prior for α,z in a
computationally convenient way. According to the auxiliary distribution of choice, we can
get different prior distributions. We analyze two scenarios in the next subsections.

It is worth noticing that z identifies labeled clusters: hence, technically, a vector z and z′
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may contain different labels (and thus be mismatched objects), even though they iden-
tify the same partition. Henceforth, we use the following convention to identify a unique
labeling for each given partition, setting z∗1 → z1 = 1 and sequentially relabeling each mem-
bership value in z∗ = (z∗1 , . . . , z∗V ) as

z∗i → zi =
max{z1, . . . , zi−1}+1 if z∗i ∉ (z∗1 , . . . , z∗i−1),

z j for j : z∗j = z∗i ,
(4.4)

for i = 2, . . . ,V . This operation effectively defines an equivalence class, so that labeled vector
attaining the same partition will be reduced to the same object. This procedure is equiva-
lent to the canonical projection in Peng and Carvalho [2013]. In the next section, we moti-
vate the prior choice of the pESBM, and elaborate on the role of the smoothing parameter α.

4.2.1 Prior specification

The prior specification for the clusters z and the smoothing parameter α provided by the
pESBM is not trivial: in this section, we first establish our choice for the similarity function
used throughout this chapter. Then, we present the class of Product Partition Models (to
which Gibbs-type distributions belong to), used to define the prior in the pESBM. More-
over, according to the choice of the auxiliary distribution π(α), we can either allow the user
to specify the smoothing parameter, or we can learn it from the data. We present these two
scenarios in the next subsections.

A crucial choice: the similarity function

The choice of the similarity function g(·) is of paramount importance in applications, and
obviously depends on the type of node covariates. The chosen g(·) reflects the assumed
agreement of each cluster with respect to the node attributes, and should increase as the
covariates of nodes in cluster h get more similar. Among the possible ways to define the
similarity function [e.g. Dahl, 2008, Muller et al., 2011], we follow Muller et al. [2011], Page
and Quintana [2015, 2018] and derive its core as the marginal distribution of a conjugate
Bayesian model:

˜̃g(X∗
h)=

∫ ∏
v:zv=h

p(xv|ξh)p(ξh)dξh.

Even though covariates are not random, this procedure offers modeling advantages in-
cluding predictive coherence; see Muller et al. [2011], Page and Quintana [2015] for more
details. In the motivating transportation network application, each node v = 1, . . . ,V , which
represents a municipality, is equipped with its latitude and longitude, and consequently
with its distance from the major hub of the network (Bergamo, the main city). As ex-
plained in Section 4.1, our objective is to induce radial clustering, particularly relevant
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for transport networks and useful to, for example, define new pricing zones for public
transport. To achieve this, municipalities with similar distances from Bergamo can be en-
couraged to join the same cluster, thereby increasing the likelihood of partitioning mu-
nicipalities into rings surrounding the main city. Hence, in the application, the node at-
tribute supervising the partition process is the distance of each municipality from Berg-
amo. We standardize such a distance (in order to provide a more general framework,
which can be useful in other applications), and we denote the final covariate of inter-
est xv ∈ Rp, with p = 1 in our case. Hence, we choose to derive the similarity using a
conjugate Gaussian-Inverse Wishart model. Namely, we assume that the similarity func-
tion for the general case of p−dimensional covariates is defined as:

xv|µh,Σh ∼Np(µh,Σh)

for each node v in cluster h, and we set

µh|Σh ∼Np(µ0,k−1
0 Σh), Σh ∼ Inverse-Wishart(Σ0,ν0)

for h = 1, . . . ,H, with k0 > 0 and ν0 > p+1. By conjugacy, marginalizing out µh and Σh, we
obtain a multivariate Student’s t kernel, which is higher when the covariates of the nodes
in cluster h are more concentrated around x̄h, which denotes centroid of cluster h:

˜̃g(X∗
h)=2p(ν0+nh)/2√

k0 +nh
Γp

(ν0 +nh

2

)
·

·
∣∣∣Σ−1

0 + k0nh

k0 +nh
(x̄h −µ0)T (x̄h −µ0)+ ∑

v:zv=h
(xv − x̄h)T (xv − x̄h)

∣∣∣− ν0+nh
2

, (4.5)

where Γp(x) = π(p−1)/2Γ(x)Γp−1(x− 1/2), Γ1(·) = Γ(·) is the Gamma function, and | · | is the
matrix determinant; recall that x̄h, µ0 and xv are row vectors in p > 1 dimensions. Detailed
computations can be found in the Appendix. From the analytic form of the similarity, it
is clear that attributes of the nodes in cluster h with more variability yield lower values
of ˜̃g(X∗

h), thus discouraging municipalities with too-diverse distances from Bergamo from
being clustered together.

We also perform two additional transformations, with the scope of rescaling the simi-
larity function. First, we normalize the value of each similarity measure ˜̃g(X∗

h), inspired by
the calibrated similarity function of Page and Quintana [2018]:

g̃(X∗
h) def=

˜̃g(X∗
h)∑H

h=1
˜̃g(X∗

h)
.

This operation rescales the original support of the similarity function from [0,∞) to [0,1].
Moreover, we also apply an additional linear transformation:
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g(X∗
h) def= e2 −1

e
g̃(X∗

h)+ 1
e

.

This last transformation has the effect of changing again the support of g(X∗
h) to [1/e, e]

causing, more importantly, the support of log g(X∗
h) to be [−1,1]. This is necessary to control

the mean a posteriori in case of non-trivial inference on α, as carefully explained below.

Supervised product partition models (PPMx)

Product partition models (PPMs) [Hartigan, 1990] have gained significant popularity in the
domains of machine learning and probabilistic modeling due to their ability to capture de-
pendencies among variables. These models provide a framework for representing complex
relationships and interactions between variables in a structured manner, with their main
application being probabilistic clustering. PPMx [Muller et al., 2011, Page and Quintana,
2015, 2018], an extension of PPMs, introduces additional flexibility by allowing instances
to be partitioned into multiple groups estimated by leveraging covariate information. Con-
cerning our work, we notice that the conditional distribution p(z|α; X ) in Equation (4.3) is
an instance of a PPMx, since it can be written as

p(z|α; X )∝
H∏

h=1
WV ,H(1−σ)nh−1 g(X∗

h)α =
H∏

h=1
c(Sh)g(X∗

h)α, (4.6)

where Sh is the cluster with label h defined in the partition z, and c(·) is called cohesion
function. In the pESBM, the cohesion function is chosen according to the Gibbs-type dis-
tribution of interest. Moreover, the definition of the similarity function g(·) is crucial, as
well motivated below. It is important to note that PPMx models usually lack a closed-form
normalizing constant, which hinders their computation and posterior inference. In fact,

p(z|α; X )= 1
k(α)

H∏
h=1

c(Sh)g(X∗
h)α, (4.7)

where k(α) = ∑
z∈Z

∏H
h=1 c(Sh)g(X∗

h)α. This means that the normalising constant k(α) can
only be obtained through a sum over the space of all the possible partitions of the V nodes,
which is computationally unattainable even for moderate values of V . In general, this issue
prevents the straightforward calculation of the posterior distribution of any parameter of
the PPMx model, including α. In the next sections we use two auxiliary distributions π(α)
to define ad hoc prior distributions for α and z trying to circumvent this problem.

Poisson extended stochastic block model, with fixed smoothing parameter

The simplest choice for the auxiliary distribution π(α) used in the prior of Equation (4.3) is
a point mass on a user-defined value for the smoothing parameter

π(α′)= δα(α′).
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This specification yields the following joint distribution, which basically amounts to a
PPMx with a fixed smoothing parameter:

p(z,α; X )= p(z|α; X )∝
H∏

h=1
c(Sh)g(X∗

h)α =WV ,H

H∏
h=1

(1−σ)nh−1 g(X∗
h)α. (4.8)

With this model, there is no (non-trivial) posterior inference on α to perform; moreover, α acts
as a user-defined smoothing parameter. In fact, it is clear from Equation (4.6) that α regu-
lates the amount of information provided by the node attributes in the distribution of the
partitions z. This is particularly clear taking the logarithm of the PPMx:

logp(z|X ,α)=
H∑

h=1
logc(Sh)+α

H∑
h=1

logg(X∗
h)− logk(α).

Notice that α = 0 corresponds to the case of a PPM prior with no supervision from the
node attributes. We furtherly validate our intuition regarding the influence of α by sam-
pling from the prior distribution for various values of α, specifically α= 0 (no supervision),
α= 1 (weak supervision), α= 5 (middle supervision) and α= 500 (strong supervision). This
allows us to see how the induced prior partitions change according to the smoothing pa-
rameter. Prior sampling is possible through the specification of a standard Gibbs sampler,
which is feasible since PPMx endowed with Gibbs-type distributions have closed-form urn
schemes:

p(zv = h|z−v,α; X )∝
WV ,H−v (nh −σ)

g(X∗
h,−v∪{xv})α

g(X∗
h,−v)α for h = 1, . . . ,H−v,

WV ,H−v+1 g(xv)α for h = H−v +1.
(4.9)

In the subsequent experiments, the cohesion function c(·) we chose to model the partitions
a priori is defined by the Gnedin process, which yields σ = −1, WV ,H = (γ)V−H

∏H−1
h=1 (h2 −

γh)/
∏V−1

v=1 (v2 +γv) for some γ ∈ (0,1). For a Gnedin process with parameter γ ∈ (0,1), the
abovementioned prior urn scheme becomes

p(zv = h|z−v,α; X )∝
(nh,−v +1)(V −H−v +γ)

g(X∗
h,−v∪{xv})α

g(X∗
h,−v)α for h = 1, . . . ,H−v,

(H2−v −γH−v)g(xv)α for h = H−v +1.

The next paragraphs contain the random partitions induced by the prior distribution, with
different degree of information provided by the node attributes.

Sampling from the prior, with no spatial information We report the result of 5’000 sam-
ples from the law on the partitions induced by the Gnedin process [Gnedin and Pitman,
2004, Gnedin, 2010], with γ = 0.3 (corresponding to a conservative framework, where the
prior expected number of clusters approximately equal to ∼ 35). A burn-in of 500 iterations
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has been applied. Precisely, we sample from

p(z)= (γ)V−H

∏H−1
h=1 (h2 −γh)∏V−1
v=1 (v2 +γv)

H∏
h=1

(2)nh−1. (4.10)

The Gnedin process is particularly suitable to model the clusters in the application of in-
terest, since it has a finite prior expected number of clusters which can be learned from
the process at hand. Among other advantages, the Gnedin process has a simple analytical
expression for the urn scheme (Equation (4.2.1)) and for the distribution of the number of
clusters H for V →∞:

p(H = h)= γ(1−γ)h−1

h!
.

Such a law has a mode for H = 1 , that is p(z) has a mode in the configuration with all the
nodes in the same cluster, heavy tails and infinite expectation in the number of clusters,
for infinite data [Gnedin, 2010]. Hence, the associated partition law favors parsimonious
representations of the block structure of transportation patterns among municipalities, po-
tentially more interpretable and usable from an operational perspective, but still preserves
a positive prior mass for a high number of clusters. Figure 4.1 shows the partition induced
by the prior distribution for V = 186 nodes of interest (obtained by minimizing the Varia-
tion of Information measure — see Wade and Ghahramani [2018] and Sections 3.4.4, 4.3),
the prior coclustering matrix and the prior distribution of H. In the scatterplot, the points
are placed in the geographical coordinates of the municipalities they represent. As ex-
pected, given a substantial number of nodes, the prior mode is for H = 1 and thus the prior
partition estimate is a cluster containing all the instances. However, the off-diagonal values
of the coclustering matrix are not equal to 0, and the distribution of H shows a heavy tail,
giving a prior positive mass to every possible H = 1, . . . ,186.

Sampling from the prior: α fixed The aim of this paragraph is to show that different val-
ues of the smoothing parameter α actually induce dissimilar prior partitions of the nodes
of interest. The setting and procedure are identical to the previous paragraph. Figure 4.2
contains the partitions induced by the described prior PPMx: the data points are displayed
according to latitude and longitude, with colors according to the prior induced partition,
for different values of α: (a) α= 1, (b) α= 5, (c) α= 500. Such values are on different scales:
the reason for that is throughly explained in Section 4.4. The relationship between increas-
ing α and the emergence of more radial clusters is evident. However, if α is too low (e.g.
α= 1), the information provided by the covariates is basically null and the estimated parti-
tion is indistinguishable from the unsupervised case. As a result, we can state that, a priori,
we are effectively promoting the formation of radial clusters by changing the smoothing
parameter α, as desired. Figure 4.3 shows the prior coclustering matrices, induced by the
very same PPMx, for different values of α.
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(a)
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(c)

Figure 4.1: Partition induced by the (unsupervised) product partition model, i.e. a standard
Gnedin process: (a) data points in the dataset of interest, displayed according to latitude
and longitude and colored with respect to the prior induced partition; (b) coclustering
matrix of the data points, with side colors according to the prior induced partition; (c)
prior distribution of the number of clusters H.
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(a) (b) (c)

Figure 4.2: Partitions induced by a supervised product partition model, endowed with
Gnedin process and a Student’s kernel as similarity function. The supervision is provided
by the distance from Bergamo. The data points are displayed according to latitude and
longitude, with colors with respect to the prior induced partition, for different values of α:
(a) α= 1, (b) α= 5, (c) α= 500.
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1 2 3 4 5 6 7 8 9 101112131415161718

(c)

Figure 4.3: Coclustering matrices induced by a supervised product partition model, en-
dowed with Gnedin process and a Student’s kernel as similarity function. The supervision
is provided by the distance from Bergamo. Rows and columns are reordered according to
the prior induced partition, for different values of α: (a) α= 1, (b) α= 5, (c) α= 500.
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Poisson extended stochastic block model, with inferred smoothing parameter

Even though we can visually explore the partitions induced by the prior distribution on
the covariate space for different values of α (at least in our application), it is crucial to have
the capability to learn the smoothing parameter through posterior inference. This ability
is highly desirable in order to enhance the modeling process. However, PPMx presents
intrinsic difficulties in estimating their parameters a posteriori (see also Chapter 3, Sec-
tion 3.3.1). In fact, given a general, non-trivial prior α ∼ p(α), and considering a PPMx as
prior model for p(z|α; X ), in order to be able to learn α from such a model sampling from
its posterior through a Gibbs sampler, we would need the following distribution:

p(α|z; X )∝ p(z|α; X )p(α)= 1
k(α)

H∏
h=1

c(Sh)g(X∗
h)αp(α). (4.11)

Once again, we face the normalising constant k(α) which cannot be discarded (since it
depends on the value of the smoothing parameter), and cannot be computed in closed
form. To circumvent this issue, the rationale of the pESBM is to define a new, joint prior
distribution on the couple (z,α) such that a) p(z|α; X ) is the PPMx in Equation (4.6) and
b) p(α|z; X ) is easy to sample from. This will allow us to set up a Gibbs sampler to infer
both α,z. Such a joint distribution can be defined by means of an auxiliary law π(α) on α

which provides easy integration to obtain p(α|z; X ). In our case, we define π(α) to be:

π(α)∼TN[0,∞)(µ,σ2), (4.12)

that is we use as auxiliary distribution a Normal with mean µ and variance σ2, truncated
in [0,∞) (i.e. a truncated normal). In this way, we obtain the joint distribution of (z,α) as

p(z,α; X ) def= p(z|α; X ) ·π(α) (4.13)

= 1
k∗

{ H∏
h=1

c(Sh)
}

exp
{
− α2

2σ2 + 2α
2σ2

(
µ+σ2

H∑
h=1

log g(X∗
h)

)}
1{α≥0},

where k∗ is a (new) normalising constant defined as

k∗ = ∑
z∈Z

∫ ∞

0

{ H∏
h=1

c(Sh)
}

exp
{
− α2

2σ2 + 2α
2σ2

(
µ+σ2

H∑
h=1

log g(X∗
h)

)}
dα.

Notice that the auxiliary function π(α) is not the prior distribution of the smoothing pa-
rameter. However, the joint prior of Equation (4.13) allows the derivation of the actual,
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marginal prior of α:

p(α; X )= ∑
z∈Z

p(z,α; X ) (4.14)

= ∑
z∈Z

kTN

k∗

{ H∏
h=1

c(Sh)
}

exp
{
− 1

2σ2

(
µ+

H∑
h=1

log g(X∗
h)

)2}
·TN[0,∞)

(
µ+σ2

H∑
h=1

log g(X∗
h),σ2

)
= ∑

z∈Z

wzTN[0,∞)

(
µ+σ2

H∑
h=1

log g(X∗
h),σ2

)
,

that is a mixture of truncated normals with weights wz summing to 1. The quantity kTN is
the normalising constant of the truncated normal in [0,∞) with mean µ+σ2 ∑H

h=1 log g(X∗
h)

and variance σ2. The specification of the joint prior in Equation (4.13) also enables a
straightforward computation of the conditional distribution p(α|z; X ), which yields

α|z; X ∼TN[0,∞)

(
µ+σ2

H∑
h=1

log g(X∗
h),σ2

)
. (4.15)

The detailed computations are reported in the Appendix. This suggests that we can en-
hance the sampling process using a standard Gibbs sampler to also sample from the pos-
terior distribution of α, just adding a computationally simple step. Finally, it is important
to exercise caution when selecting the two hyperparameters, µ and σ2. It is worth noting
that, due to the definition of the similarity function described in Section 4.2.1, we observe
that g(X∗

h) ∈ [1/e, e] for all h = 1, . . . ,H. Consequently, log g(X∗
h) ∈ [−1,1] and

∑H
h=1 log g(X∗

h) ∈
[−H,H]. This implies that the mean of the truncated normal distribution is constrained
and cannot approach negative infinity, as it would be the case if we used the untrans-
formed similarity. Additionally, this constraint prevents the posterior sampling from being
concentrated solely in the tails of a normal distribution truncated in the positive interval
for small values of µ (e.g. µ = 0). However, the choice of µ is crucial (as evident in the
prior samples displayed in Figure 4.4): the higher it is, the higher the (spatial) smoothing
induced by the model.

Sampling from the prior: α random Figures 4.4 and 4.5 report respectively the parti-
tion and the coclustering structure induced by the prior distribution p(z,α; X ) of Equa-
tion (4.13), for different values of µ and σ2. The prior samples are obtained through a
standard Gibbs sampler, which also updates α according to the distribution in (4.15). The
setting and the choice of the hyperparameters is the same of the previous experiments. Fig-
ure 4.4 shows the data points of interest, representing municipalities, in their geographical
coordinates (latitude and longitude): the colors are with respect to the induced prior esti-
mation obtained by minimising the Variation of Information measure [Wade and Ghahra-
mani, 2018]. Once again, increasing µ (and thus shifting to the right the posterior distri-
bution of α) results in a higher amount of information provided by the node attributes
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in X (that is, the distance of each municipality from Bergamo) and, in this application, in
more radial clusters. The clusters also appear to have a smoother radial shape. Figure 4.5
shows the corresponding coclustering matrices, with rows and columns reordered accord-
ing to the induced partition, and side colors denoting such a clustering. More interestingly,
Figure 4.6 reports the estimated prior marginal distribution of α according to different val-
ues of µ,σ2, with the red line corresponding to the prior mean of α, respectively equal to
ᾱ= 0.030 for µ= 0,σ2 = 0.1; ᾱ= 5.196 for µ= 5,σ2 = 0.25 and ᾱ= 219.936 for µ= 500,σ2 = 25.
As expected, the higher µ, the higher the induced α.

(a) (b) (c)

Figure 4.4: Partitions induced by the joint prior distribution of the Poisson extended
stochastic block model, endowed with Gnedin process and a Student’s kernel as similar-
ity function. The supervision is provided by the distance from Bergamo. The data points
are displayed according to latitude and longitude, with colors with respect to the prior
induced partition, for different values of µ,σ2: (a) µ = 0,σ2 = 0.1, (b) µ = 5,σ2 = 0.25, (c)
µ= 500,σ2 = 25.

4.3 Posterior computation and inference

In this section, we outline the inferential framework used to sample from the posterior
distribution of the pESBM discussed in Section 4.2. Specifically, we describe the sampling
procedure for obtaining the posterior distribution of z in the pESBM in the two scenar-
ios described in Section 4.2.1, namely the pESBM with a fixed and an inferred smoothing
parameter. Additionally, we provide the corresponding point estimates.
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Figure 4.5: Coclustering matrices induced by the joint prior distribution of the Poisson
extended stochastic block model, endowed with Gnedin process and a Student’s kernel
as similarity function. The supervision is provided by the distance from Bergamo. Rows
and columns are reordered according to the prior induced partition, for different values of
µ,σ2: (a) µ= 0,σ2 = 0.1, (b) µ= 5,σ2 = 0.25, (c) µ= 500,σ2 = 25.
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Figure 4.6: Marginal distribution of α induced by the joint prior distribution of the Poisson
extended stochastic block model, endowed with Gnedin process and a Student’s kernel as
similarity function, for different values of µ,σ2: (a) µ = 0,σ2 = 0.1, (b) µ = 5,σ2 = 0.25, (c)
µ= 500,σ2 = 25. The supervision is provided by the distance from Bergamo. The red line is
the posterior mean.
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4.3.1 Posterior computation

In this section, we present the procedure used to sample from the posterior of the pESBM
discussed in Section 4.2. Specifically, we focus on the Gibbs sampler for the pESBM with
a random smoothing parameter, with the prior defined in Equation 4.13. It is important to
note that if we want to estimate the pESBM with a fixed value for α (as described in Equa-
tion 4.8), we can utilize the same algorithm, omitting the sampling step for the smoothing
parameter. Posterior inference for the partition provided by the pESBM in (4.1)–(4.3) is car-
ried out via a collapsed Gibbs sampler. In particular, since the cluster-specific connection
rates λhk in (4.1)–(4.2) are not of direct interest, we follow the common practice of treating
them as nuisance parameters and marginalizing them out, thus obtaining

p(Y |z)=
(

ba

Γ(a)

) H2
2 H∏

h=1

h−1∏
k=1

1∏
u,v:zu=h,zv=k yuv!

Γ(mkh +a)
(nhnk +b)mkh+a ·

· 1∏
u<v:zu=zv=h yuv!

Γ(mhh +a)
[nh(nh −1)/2+b]mhh+a , (4.16)

where mhk is the sum of edge weights between clusters h and k, while mhh is the sum
of edge weights within cluster h. We then derive a collapsed Gibbs sampler that, at each
iteration, updates the cluster membership of each node v according to its full conditional

p(zv = h|z−v,α,Y , X )∝ p(zv = h|z−v,α, X ) · p(Y |zv = h,z−v)
p(Y−v|z−v)

, (4.17)

with subscript −v denoting objects and quantities obtained by removing node v. The last
term in (4.17) can be computed from Equation (4.16), yielding

p(Y |zv = h,z−v)
p(Y−v|z−v)

=

= 1∏
u ̸=v yuv!

H−v∏
k=1
k ̸=h

Γ(m−v
hk +

∑
u:zu=k yvu +a)

Γ(m−v
hk +a)

[n−v
h n−v

k +b]m−v
hk+a

[(n−v
h +1)n−v

k +b]m−v
hk+

∑
u:zu=k yuv+a ·

·
Γ(m−v

hh +
∑

u:zu=h yuv +a)

Γ(m−v
hh +a)

[
n−v

h (n−v
h −1)

2 +b]m−v
hh+a

[
n−v

h (n−v
h +1)

2 +b]m−v
hh+

∑
u:zu=h yuv+a

,

while p(zv = h|z−v,α, X ) is the urn scheme of the chosen supervised Gibbs-type distribution.
As already mentioned, for the transportation network application in Section 4.4, among
Gibbs-type priors, we opt for a Gnedin process [Gnedin and Pitman, 2004], under which,
as V → ∞, the number of clusters is random but not infinite like under,for example, the
Dirichlet process.

It is possible to conduct posterior inference for the spatial smoothing parameter α as
well. Due to the joint prior specification in Equation (4.13), the smoothing parameter
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possesses a closed-form full-conditional posterior distribution, independent of the data Y
given the partition z (detailed computations are included in the Appendix)

α|z; X ∼TN[0,∞)

(
µ+σ2

H∑
h=1

logg(X∗
h),σ2

)
.

Therefore, given the partition z sampled from the posterior in the previous iteration, up-
dating α is computationally efficient, since it requires only one sample from a Truncated
Normal distribution, with the mean being dependent on the partition z. Algorithm 2 sum-
marizes the collapsed Gibbs sampler for the pESBM in (4.13) with inference on the spatial
smoothing parameter.

Algorithm 2: Posterior sampling of the joint distribution of α,z yielded by the
pESBM.

Input: Adjacency matrix YV×V , design matrix XV×p, similarity function,
hyperparameters.

Output: Posterior samples from p(α,z|Y , X ).
1 for each iteration do
2 Sample z|α;Y , X using a Gibbs sampler.
3 for v = 1, . . . ,V do
4 Update zv ∼ p(zv|z−v;Y , X ) using Equations (4.9), (4.16) and (4.17);
5 end
6 Sample α|z; X.

7 Update α|z; X ∼TN[0,∞)

(
µ+σ2 ∑H

h=1 logg(X∗
h),σ2

)
.

8 end

4.3.2 Point estimation

The Gibbs sampler described above (as well as the one employed to generate prior samples
discussed in Section 4.2.1) produces joint samples of z and α. However, we may want to
also obtain a point estimate from these samples. Estimating α is relatively straightforward,
as we can utilize any reasonable numerical summary of its posterior distribution, such as
Maximum A Posteriori (MAP) estimation, mean, or median. On the other hand, obtaining
a representative partition from a sample of different partitions is more challenging. To
tackle this, we have opted to follow the approach proposed by Wade and Ghahramani
[2018], which provides a point estimate from partition samples by minimizing the Variation
of Information. The approach is described in detail in Section 3.4.4.
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4.4 Application: transport networks

In this section, we illustrate the application of the two versions of the pESBM (discussed in
Section 4.2) on real-world data from a public transport company. We specifically examine
the take of these two approaches on the final partitioning of the data, fixing at first the
smoothing parameter and then inferring it. Through these visual illustrations, our objec-
tive is to highlight the distinctions and effectiveness of the pESBM in capturing the latent
structures within the transportation network. By analyzing the inferred partitions, we aim
to provide a clear understanding of how each approach finds different clusters in the data.
This analysis enables us to assess the strengths and limitations of the two models in cap-
turing the complex relationships and dependencies in the transportation network.

4.4.1 Data

The dataset used in this study was collected by Azienda dei Trasporti di Bergamo (ATB),
the public transport company operating in Bergamo and its surrounding areas. Each row of
the original dataset contains information pertaining to a user’s account, identified by their
unique card number. This information includes details such as the purchase of monthly
subscriptions, gender, year of birth, as well as the origin and destination of the subscrip-
tion. The dataset specifically covers the year 2019, which was chosen as the last com-
plete year without the disruptive effects of the COVID-19 pandemic. As the pandemic
significantly impacted the transportation network by reducing the number of unique users
and municipalities involved, our focus was on analyzing 2019 as a representative regu-
lar year. Any examination of differences in the transportation network during the sub-
sequent years will be considered as part of future work. Our objective is to cluster mu-
nicipalities based on both their connectivity patterns and their geographical position. To
accomplish this, we aggregate the relevant data into a weighted network where each node
represents a municipality. The edges in the network indicate the presence of public trans-
port subscriptions between two municipalities, with the weight of each edge representing
the cumulative duration of such subscriptions. Self-loops, which indicate subscriptions
within the same municipality, are disregarded for our clustering analysis. We treat the
network as undirected, since subscriptions enable users to freely travel between two mu-
nicipalities. As node attributes, we employ the distance of each municipality from Berg-
amo. This information is obtained by extracting the municipality longitude and latitude
from simplemaps.com/data/it-cities. The inclusion of such node attribute encour-
ages municipalities at the same distance from Bergamo to cluster together, promoting the
formation of radial clusters.

Figure 4.7 displays the transportation network in two equivalent ways: on the top left,
the resulting graph with nodes (representing V = 186 municipalities) located on the map of
Bergamo and surroundings, with a zommed-in detail in the top right plot. On the bottom,
the corresponding adjacency matrix. In the adjacency matrix, each element Yuv represents
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the number of monthly subscriptions between municipality u and municipality v. To vi-
sualize this information in the graph, the color of each edge is proportional to the corre-
sponding subscription count. The two figures clearly indicate that the network of interest
exhibits a star-shaped structure, with Bergamo as the center (and the main hub) and the
only node connected to all the others. Furthermore, the periphery of the network predomi-
nantly shows connections only to the center of the graph. On the other hand, municipalities
that are closer to Bergamo exhibit some interconnections among themselves.

Figure 4.8 includes three exploratory plots of the network of interest. Figure 4.8a repre-
sents the degree distribution across the entire network: it is positively skewed, with a single
observation (corresponding to the city of Bergamo) on the far-right tail. This was highly
predictable, since Bergamo is by far the most populated city of its province, with about
120’000 inhabitants (the second most populated town of the province is Treviglio, with
about 30’000 residents). Moreover, the public transport system is mainly radial, with the
vast majority of bus lines radiating from Bergamo. Figure 4.8b contains a scatterplot of the
log-degree of each municipality versus its number of residents. The overall trend is vaguely
increasing, but not showing a clear linear relationship between the number of residents and
the degree of the nodes (the correlation index is R2 = 0.02). Thus, there seems to be highly
populated municipalities where private or alternative transportation means are preferred
over public transportation provided by ATB. This suggests that these nodes may be under-
served by ATB, or it is possible that alternative transportation companies or services cater
to the transportation needs of these municipalities. Finally, Figure 4.8c displays the node
log-degree versus the distance of each municipality from Bergamo: generally speaking,
the data do not show specific functional relationship, and the linear correlation is weak
(R2 = 0.0003). Once again, it is surprising to observe that the dataset includes municipali-
ties in close proximity to Bergamo with a relatively low number of monthly subscriptions.
This discrepancy suggests that despite their geographical proximity to Bergamo, these mu-
nicipalities have a lower usage of public transport services provided by ATB: this could be
again due to the presence of transport means supplied by other companies.

The next subsections contain the results obtained using three algorithmic competitors
and the pESBM. As for the pESBM, we run Algorithm 2 on the data described in Sec-
tion 4.4.1, fixing the smoothing parameter α at first, and then inferring it. The algorithm
outputs samples from the posterior distribution p(z,α|Y , X ) of the pESBM. The resulting
point estimate ẑ is obtained by minimizing the Variation of Information [Wade and Ghahra-
mani, 2018] (see Section 4.3 for more details). We run the algorithm for 10’000 iterations,
with 1′000 iterations as burn in, initializing it with a random initial partition. The pESBM
is endowed with a Gnedin marginal prior cohesion function, with parameter γ= 0.3, which
corresponds to an unsupervised prior expectation of 35 clusters (a conservative estimate).
As for the gamma prior parameters a and b, we set them to a = Ȳ 2, b = Ȳ , in order to have
E
[
E[Y |λhk]

] = E[λhk] = Ȳ and var
[
E[Y |λhk]

] = var[λhk] = 1, following a moment-matching
criterion but setting the variance a priori to 1. Finally, we set the hyperparameters of the
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Figure 4.7: Graphical representation (top left) with a zoomed-in detail (top right), and ad-
jacency matrix (bottom) of the considered transportation network. Nodes are placed ac-
cording to the longitude and latitude of the corresponding municipality. Edge colors are
proportional to edge weights (the darker, the higher), which in turn are given by the total
number of subscription months among the involved municipalities.

102



4.4. APPLICATION: TRANSPORT NETWORKS

0e+00

2e−04

4e−04

6e−04

8e−04

0 50000 100000 150000
Degree

D
en

si
ty

(a) Node degree distribution

2.5

5.0

7.5

10.0

6 8 10
Number of residents (tens of thousands)

Lo
g−

de
gr

ee
 o

f t
he

 n
od

e

(b) Node log-degree vs Residents

2.5

5.0

7.5

10.0

0 10 20 30 40 50
Distance from Bergamo

Lo
g−

de
gr

ee
 o

f t
he

 n
od

e

(c) Node degree distribution

Figure 4.8: (a) Node degree distribution; (b) node log-degree versus number of residents in
the corresponding municipality; (c) node log-degree versus distance of the corresponding
municipality from Bergamo.

similarity function to µ0 = 0,Σ0 = 1,ν0 = 2,k0 = 0.1. Subsections 4.4.3, 4.4.4 and 4.4.5 contain
respectively the results for the unsupervised and the supervised model, with and with-
out inference on the smoothing parameter. Recall that the supervision is carried out by
means of the node attributes, containing the standardized distance of each municipality
from Bergamo. The convergence of the algorithms used in the study is assessed through
traceplots, which are provided in the Appendix. These checks ensure that the algorithms
have reached a stable state and that the results obtained are reliable.

4.4.2 Algorithmic competitors

We consider three competitor algorithmic approaches for weighted networks. First, we
apply the Louvain algorithm [Blondel et al., 2008] and spectral clustering [Von Luxburg,
2007], where the latter has been applied to the Laplacian matrix of the weighted graph.
At this stage, we are not leveraging the information of the covariate yet. Then, we use the
covariate-assisted spectral clustering [Binkiewicz et al., 2017], where the node attributes are
provided by the distance of each municipality from Bergamo. Figure 4.9 displays the par-
tition of the nodes according to these algorithmic clustering procedures for the weighted
network of interest. The number of clusters for each algorithm has been chosen with the
elbow method, looking at the scree plot of the eigenvalues of the input matrix. These algo-
rithmic techniques output a clustering either too or not enough coarsened that is arguably
of little use for guiding policy decisions, by either the transport company or public admin-
istrations. The covariate-assisted spectral clustering discerns a periphery (in blue), far from
Bergamo, but the clusters are not radial at all, despite the carefully chosen attribute node
supervising the partition estimation. None of algorithms acknowledges the unique nature
of Bergamo in the network topology.
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(a) (b) (c)

Figure 4.9: Clustering provided by (a) Louvain algorithm, (b) spectral algorithm, (c)
covariate-assisted spectral clustering on the transportation network of interest.

4.4.3 Unsupervised clustering

Figures 4.10 and 4.11 report respectively the graph and the reordered adjacency matrix,
where the colors denote the posterior point partition provided by the pESBM trained with
no information from the node attributes (i.e. for α = 0). Figure 4.10 shows an interesting
geographical displacement of the clusters: the red and yellow clusters group municipal-
ities on the external belt of the province of Bergamo, mainly in the surrounding valleys.
Moreover, the two groups display the same connectivity patterns, since they link exclu-
sively to Bergamo, with essentially no connectivity with the other clusters. However, there
is a notable disparity in the number of monthly subscriptions generated by the municipal-
ities in each cluster, with an average of approximately 27 subscriptions in the red cluster
and around 156 subscriptions in the yellow cluster. This discrepancy can be attributed to
a crucial difference between the two groups, namely the average population size of the
municipalities. The red cluster comprises municipalities with an average population of ap-
proximately 3’500 residents, whereas the yellow cluster consists of municipalities with an
average population of around 6’000 residents. This observation highlights that the pESBM
model can effectively distinguish more populated municipalities without an explicit train-
ing, solely relying on a proxy variable, such as the number of subscriptions. We consider
this to be a valuable information not to be overlooked in the partition process and conse-
quently do not incorporate any degree correction in our model, as done in previous work.
On that note, we argue that the degree correction [Karrer and Newman, 2011, Herlau et al.,
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2014] is not suitable for the application of interest: indeed, we want to cluster together mu-
nicipalities with the same connectivity patterns, where the similarity also takes into account
the weights of the edges and the degree of the nodes, without correcting or disregarding
such an important source of information. Lastly, we notice some unexpected municipali-
ties in the red group located in the west part of the Bergamo province, such as Presezzo,
Bonate Sopra, Bonate Sotto, and Mapello. These are towns with a high number of residents
and located close to Bergamo. Normally, one would expect these municipalities to have
a high number of subscriptions to the main city and be clustered with the municipalities
in the green and blue clusters, which represent areas with higher connectivity and trans-
portation services. However, in this case, the municipalities west of Bergamo are primarily
served by another transport company instead of ATB. As a result, the number of monthly
subscriptions for the bus lines provided by ATB is relatively low. This low subscription
rate makes them comparable to (and clustered with) small municipalities in the valleys,
which may have limited public transportation options and lower population densities.

The green cluster encompasses the municipalities in the first belt surrounding the main
city of Bergamo. This cluster is distinguished by a significant level of internal movement,
as depicted in Figure 4.11. The municipalities included in the green cluster are notable be-
cause they are exclusively served by ATB, without the presence of other public transport
companies. This observation indicates that the residents of these municipalities heavily
rely on ATB as their primary mode of public transportation. The blue cluster is similar,
in the sense that it includes municipalities on the second radial belt from Bergamo. The
blue cluster is characterized by a low (almost non-existent) internal movement, but also
by strong connections with the green municipalities. It also shows low connections with
the yellow cluster, but not with the red one. Lastly, we have the singleton cluster consist-
ing of Bergamo, the main hub and center of the network. It is desirable for Bergamo to
be clustered by itself due to its unique position in the network topology. Being the only
node connected to all the other municipalities, clustering Bergamo separately acknowl-
edges its distinct role and connectivity within the transportation network as the origin and
destination of the vast majority of bus lines. Figure 4.12 displays the network represen-
tation of the inferred clusters: each node represents one group and edges are weighted
using a plug-in estimate of the between-clusters rate matrix Λ. Node sizes are proportional
to group cardinalities, while edge colors represent their weights (the darker the higher).
From Figure 4.12, it is clear that the Bergamo orange singleton plays a hub role. Similarly,
the green cluster is connected to all the other groups, and also shows internal movements,
represented by the self-loops in the metagraph. On the contrary, the largest clusters (red,
yellow) are also the ones with less and more moderate connections. Moreover, the red and
yellow clusters show similar connectivity patterns, but, as noticed before, the yellow one
groups municipalities with double the average number of residents with respect to the red
cluster, a fact that obviously has a strong influence on the resulting number of subscrip-
tions and therefore on the strength of the connections. Table 4.1 shows the sample estimate
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of the average block-connection, which are an estimate of expected monthly subscriptions
between two different municipalities according to their cluster labels. Notice that the es-
timated within rate λ̂orange, orange representing the number of subscriptions within the city
of Bergamo is 0. However, in the original dataset the number of monthly subscriptions
within Bergamo is 610. This is due to the fact that, by definition, the pESBM do not model
self-loops and thus this information has not been used to train the model. Nevertheless,
the estimated between-clusters rateΛ can potentially be useful for administrative decisions
and optimization processes.

4.4.4 Supervised clustering, with fixed smoothing parameter

In this section, we report the results for the pESBM described in Section 4.2 with the
spatial-smoothing parameter α fixed (that is, for π(α) = δα(α)). In particular, we consider
three scenarios: no supervision (α= 0, already shown in Section 4.4.3 but also reported be-
low for convenience), moderate supervision (α= 5) and strong supervision (α= 500). Such
values have been chosen according to the study of the induced partition a priori (see Sec-
tion 4.2.1). A similar study for the partitions induced a posteriori on a different set of data
is contained in Ghidini et al. [2023a,b]. Notice that the chosen values for α are on wildly
different scales: from the moderate-supervision scenario to the highly-supervised one, we
increase such parameter by a factor of 100. This is due to the fact that the (unnormalised)
log-cohesion and the log-similarity function in Equation 4.7 are on different scales: in par-
ticular, the log-cohesion is 100 times bigger than the log-similarity. Thus, to value more the
information coming from the node attributes with respect to the connections, we have to
increase the smoothing parameter accordingly.

Figures 4.13 and 4.14 show the transportation graph and the reordered adjacency ma-
trix, where the colors denote the posterior point partition provided by the pESBM trained
with different levels of information specified by the distance of each municipality from
Bergamo. It is clear that increasing α, we also increase the spatial smoothing provided by
the node attribute, inducing more radial clusters. The pESBM with a moderate supervi-
sion (α= 5) still distinguishes the two groups of municipalities in the surrounding valleys
of Bergamo with the same connectivity pattern but different number of subscriptions (red
and green nodes in Figure 4.13b). Additionally, the singleton Bergamo is maintained as
a distinct cluster. However, in this case, the municipalities in the first and second belt are
combined into a single cluster, denoted by the blue group. Notably, the blue cluster exhibits
significant internal connections, distinguishing it from the other clusters. With a strong su-
pervision (α= 500), the clusters are clearly radial: the municipalities in the valleys are now
clustered according to their distance from Bergamo (which is overwhelming the informa-
tion provided by the strength of their connections). However, the closest municipalities to
Bergamo are again partition into a first and second belt, similarly to the pESBM for α = 0.
Bergamo is still clustered as a singleton.

Figure 4.15 displays the posterior coclustering matrices obtained for the estimation of
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Figure 4.10: Graphical representation of the considered transportation network: node col-
ors correspond to the posterior point estimate of the partition under the Poisson extended
stochastic block model endowed with a Gnedin prior.
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Figure 4.11: Adjacency matrix of the considered transportation network: the side colors
correspond to the posterior point estimate of the partition under the Poisson extended
stochastic block model, endowed with a Gnedin prior. The left column contains the names
of the municipalities, the top row the labels of the clusters.
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Figure 4.12: Network representation of the
inferred clusters in the transportation net-
work. Each node denotes one group and
edges are weighted by the estimated block
rates Λ. Node sizes are proportional to clus-
ter cardinalities, edge colors to the corre-
sponding weights (the darker, the higher).

0.00 0.00 0.13 0.00 27.62
0.00 0.49 15.71 0.02 1329.80
0.13 15.71 102.65 0.66 5797.64
0.00 0.02 0.66 0.00 156.60

27.62 1329.80 5797.64 156.60 0

Table 4.1: Empirical estimates for Λ given by
the sample average weight of edges between
clusters.

(a) (b) (c)

Figure 4.13: Graphical representation of the considered transportation network: node col-
ors correspond to the posterior point estimate of the partition under the Poisson extended
stochastic block model, endowed with a Gnedin prior and supervised with the distance
of each municipality from Bergamo. Three scenarios are presented, according to the fixed
value of the smoothing parameter: (a) no supervision (α = 0), (b) moderate supervision
(α= 5), (c) strong supervision (α= 500).
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NETWORKS

1 2 3 4 5

ADRARA SAN MARTINO
ADRARA SAN ROCCO

ALGUA
ARCENE

ARDESIO
BEDULITA

BERZO SAN FERMO
BIANZANO
BOLTIERE

BONATE SOPRA
BONATE SOTTO

BORGO DI TERZO
BOSSICO
BRACCA

BREMBATE
BRIGNANO GERA D'ADDA

CALCIO
CANONICA D'ADDA

CAPIZZONE
CARAVAGGIO

CARONA
CARVICO
CASNIGO

CASTEL ROZZONE
CASTIONE DELLA PRESOLANA

CASTRO
CAZZANO SANT'ANDREA

CENATE SOPRA
CERETE

CHIARI
CHIUDUNO
CISERANO

COLERE
COLOGNO AL SERIO

COLZATE
CORTENUOVA

FARA GERA D'ADDA
FINO DEL MONTE

FIORANO AL SERIO
FONTENO

FORESTO SPARSO
FORNOVO SAN GIOVANNI
FUIPIANO VALLE IMAGNA

GANDELLINO
GANDOSSO

GAVERINA TERME
GORNO
GRONE

GRUMELLO DEL MONTE
LENNA

LURANO
LUZZANA
MADONE

MAPELLO
MOIO DE' CALVI

MONASTEROLO DEL CASTELLO
MONTELLO
MORENGO

MOZZANICA
OLMO AL BREMBO

OLTRE IL COLLE
OSIO SOTTO
PAGAZZANO
PALAZZAGO

PARRE
PEIA

PIANICO
PIARIO

PIAZZA BREMBANA
PIAZZATORRE

POGNANO
PONTE NOSSA

PREDORE
PREMOLO

PRESEZZO
PUMENENGO

RANZANICO
ROGNO

RONCOBELLO
ROTA D'IMAGNA

SCHILPARIO
SEDRINA
SELVINO

SERGNANO
SOLTO COLLINA

SOTTO IL MONTE
SPINONE AL LAGO

SUISIO
TELGATE

TREZZO SULL'ADDA
UBIALE CLANEZZO

VAPRIO D'ADDA
VIADANICA

VIGOLO
VILLA D'OGNA

VILMINORE DI SCALVE
ALBANO SANT'ALESSANDRO

LALLIO
OSIO SOPRA

PALADINA
PRADALUNGA

TORRE DE' ROVERI
URGNANO

VILLA D'ALME
ZANICA
ZOGNO
ALBINO

ALME
ALZANO LOMBARDO
AZZANO SAN PAOLO

CURNO
DALMINE

GORLE
GRASSOBBIO

MOZZO
NEMBRO

ORIO AL SERIO
PEDRENGO

PONTE SAN PIETRO
PONTERANICA

RANICA
SCANZOROSCIATE

SERIATE
SORISOLE
STEZZANO

TORRE BOLDONE
TREVIOLO

VILLA DI SERIO
ALMENNO SAN SALVATORE

BAGNATICA
BARIANO

BERBENNO
BOLGARE

BREMBATE DI SOPRA
BRUSAPORTO

CALCINATE
CAROBBIO DEGLI ANGELI

CASAZZA
CASTELLI CALEPIO

CAVERNAGO
CENATE SOTTO

CENE
CIVIDATE AL PIANO

CLUSONE
COMUN NUOVO
CORNA IMAGNA

COSTA DI MEZZATE
COSTA SERINA

COSTA VOLPINO
COVO

CREDARO
CREMA

DARFO BOARIO TERME
ENDINE GAIANO

ENTRATICO
FONTANELLA

GANDINO
GAZZANIGA

GHISALBA
GORLAGO

GROMO
LEFFE

LOVERE
MARTINENGO

MORNICO AL SERIO
PALOSCO

ROMANO DI LOMBARDIA
RONCOLA
ROVETTA

SAN GIOVANNI BIANCO
SAN PAOLO D'ARGON

SAN PELLEGRINO TERME
SANT'OMOBONO TERME

SARNICO
SERINA

SONCINO
SOVERE

SPIRANO
TAVERNOLA BERGAMASCA

TRESCORE BALNEARIO
URAGO D'OGLIO
VAL BREMBILLA

VERTOVA
VILLONGO

ZANDOBBIO
BERGAMO

(a)

1 2 3 4

ADRARA SAN MARTINO
ADRARA SAN ROCCO

ALGUA
ARCENE

ARDESIO
BARIANO
BEDULITA

BERBENNO
BERZO SAN FERMO

BIANZANO
BOLTIERE

BONATE SOPRA
BONATE SOTTO

BORGO DI TERZO
BOSSICO
BRACCA

BREMBATE
BREMBATE DI SOPRA

BRIGNANO GERA D'ADDA
CALCIO

CANONICA D'ADDA
CAPIZZONE

CARAVAGGIO
CARONA
CARVICO
CASNIGO

CASTEL ROZZONE
CASTIONE DELLA PRESOLANA

CASTRO
CAVERNAGO

CAZZANO SANT'ANDREA
CENATE SOPRA
CENATE SOTTO

CENE
CERETE

CHIARI
CHIUDUNO
CISERANO

COLERE
COLOGNO AL SERIO

COLZATE
CORNA IMAGNA

CORTENUOVA
COSTA SERINA

COVO
ENTRATICO

FARA GERA D'ADDA
FINO DEL MONTE

FIORANO AL SERIO
FONTANELLA

FONTENO
FORESTO SPARSO

FORNOVO SAN GIOVANNI
FUIPIANO VALLE IMAGNA

GANDELLINO
GANDINO

GANDOSSO
GAVERINA TERME

GORLAGO
GORNO
GROMO
GRONE

GRUMELLO DEL MONTE
LENNA

LURANO
LUZZANA
MADONE

MAPELLO
MOIO DE' CALVI

MONASTEROLO DEL CASTELLO
MONTELLO
MORENGO

MOZZANICA
OLMO AL BREMBO

OLTRE IL COLLE
OSIO SOTTO
PAGAZZANO
PALAZZAGO

PALOSCO
PARRE

PEIA
PIANICO

PIARIO
PIAZZA BREMBANA

PIAZZATORRE
POGNANO

PONTE NOSSA
PREDORE
PREMOLO

PRESEZZO
PUMENENGO

RANZANICO
ROGNO

RONCOBELLO
ROTA D'IMAGNA

ROVETTA
SCHILPARIO

SEDRINA
SELVINO

SERGNANO
SOLTO COLLINA

SOTTO IL MONTE
SPINONE AL LAGO

SUISIO
TAVERNOLA BERGAMASCA

TELGATE
TREZZO SULL'ADDA
UBIALE CLANEZZO

URAGO D'OGLIO
VAPRIO D'ADDA

VERTOVA
VIADANICA

VIGOLO
VILLA D'OGNA

VILMINORE DI SCALVE
ZANDOBBIO

ALBANO SANT'ALESSANDRO
ALBINO

ALME
ALZANO LOMBARDO
AZZANO SAN PAOLO

CURNO
DALMINE

GORLE
GRASSOBBIO

LALLIO
MOZZO

NEMBRO
ORIO AL SERIO

OSIO SOPRA
PALADINA

PEDRENGO
PONTE SAN PIETRO

PONTERANICA
RANICA

SCANZOROSCIATE
SERIATE

SORISOLE
STEZZANO

TORRE BOLDONE
TREVIOLO

VILLA D'ALME
VILLA DI SERIO

ALMENNO SAN SALVATORE
BAGNATICA

BOLGARE
BRUSAPORTO

CALCINATE
CAROBBIO DEGLI ANGELI

CASAZZA
CASTELLI CALEPIO
CIVIDATE AL PIANO

CLUSONE
COMUN NUOVO

COSTA DI MEZZATE
COSTA VOLPINO

CREDARO
CREMA

DARFO BOARIO TERME
ENDINE GAIANO

GAZZANIGA
GHISALBA

LEFFE
LOVERE

MARTINENGO
MORNICO AL SERIO

PRADALUNGA
ROMANO DI LOMBARDIA

RONCOLA
SAN GIOVANNI BIANCO

SAN PAOLO D'ARGON
SAN PELLEGRINO TERME
SANT'OMOBONO TERME

SARNICO
SERINA

SONCINO
SOVERE

SPIRANO
TORRE DE' ROVERI

TRESCORE BALNEARIO
URGNANO

VAL BREMBILLA
VILLONGO

ZANICA
ZOGNO

BERGAMO

(b)

1 2 3 4 5 6 7

ADRARA SAN MARTINO
ADRARA SAN ROCCO

BARIANO
BERZO SAN FERMO

BIANZANO
BORGO DI TERZO

BRIGNANO GERA D'ADDA
CANONICA D'ADDA

CARAVAGGIO
CASAZZA
CASNIGO

CASTELLI CALEPIO
CAZZANO SANT'ANDREA

CIVIDATE AL PIANO
COLZATE

CORNA IMAGNA
CORTENUOVA

COVO
CREDARO

FARA GERA D'ADDA
FIORANO AL SERIO
FORESTO SPARSO

FORNOVO SAN GIOVANNI
FUIPIANO VALLE IMAGNA

GANDINO
GANDOSSO

GAVERINA TERME
GAZZANIGA

GORNO
GRONE

GRUMELLO DEL MONTE
LEFFE

LUZZANA
MONASTEROLO DEL CASTELLO

MORENGO
MOZZANICA

OLTRE IL COLLE
PAGAZZANO

PALOSCO
PEIA

RANZANICO
ROMANO DI LOMBARDIA

ROTA D'IMAGNA
SAN GIOVANNI BIANCO

SANT'OMOBONO TERME
SARNICO

SERINA
SPINONE AL LAGO

VAPRIO D'ADDA
VERTOVA

VIADANICA
VILLONGO

ALBANO SANT'ALESSANDRO
LALLIO

OSIO SOPRA
PALADINA

PRADALUNGA
TORRE DE' ROVERI

URGNANO
VILLA D'ALME

ZANICA
ALBINO

ALME
ALZANO LOMBARDO
AZZANO SAN PAOLO

CURNO
DALMINE

GORLE
GRASSOBBIO

MOZZO
NEMBRO

ORIO AL SERIO
PEDRENGO

PONTE SAN PIETRO
PONTERANICA

RANICA
SCANZOROSCIATE

SERIATE
SORISOLE
STEZZANO

TORRE BOLDONE
TREVIOLO

VILLA DI SERIO
ALGUA

ALMENNO SAN SALVATORE
ARCENE

BAGNATICA
BEDULITA

BERBENNO
BOLGARE
BOLTIERE

BONATE SOPRA
BONATE SOTTO

BRACCA
BREMBATE

BREMBATE DI SOPRA
BRUSAPORTO

CALCINATE
CAPIZZONE

CAROBBIO DEGLI ANGELI
CARVICO

CASTEL ROZZONE
CAVERNAGO

CENATE SOPRA
CENATE SOTTO

CENE
CHIUDUNO
CISERANO

COLOGNO AL SERIO
COMUN NUOVO

COSTA DI MEZZATE
COSTA SERINA

ENTRATICO
GHISALBA
GORLAGO

LURANO
MADONE

MAPELLO
MARTINENGO

MONTELLO
MORNICO AL SERIO

OSIO SOTTO
PALAZZAGO

POGNANO
PRESEZZO
RONCOLA

SAN PAOLO D'ARGON
SAN PELLEGRINO TERME

SEDRINA
SELVINO

SOTTO IL MONTE
SPIRANO

SUISIO
TELGATE

TRESCORE BALNEARIO
TREZZO SULL'ADDA
UBIALE CLANEZZO

VAL BREMBILLA
ZANDOBBIO

ZOGNO
ARDESIO
BOSSICO

CALCIO
CASTRO
CERETE

CHIARI
CLUSONE

ENDINE GAIANO
FINO DEL MONTE

FONTANELLA
FONTENO

LENNA
LOVERE

MOIO DE' CALVI
OLMO AL BREMBO

PARRE
PIANICO

PIARIO
PIAZZA BREMBANA

PIAZZATORRE
PONTE NOSSA

PREDORE
PREMOLO

PUMENENGO
RONCOBELLO

ROVETTA
SERGNANO

SOLTO COLLINA
SOVERE

TAVERNOLA BERGAMASCA
URAGO D'OGLIO

VIGOLO
VILLA D'OGNA

BERGAMO
CARONA

CASTIONE DELLA PRESOLANA
COLERE

COSTA VOLPINO
CREMA

DARFO BOARIO TERME
GANDELLINO

GROMO
ROGNO

SCHILPARIO
SONCINO

VILMINORE DI SCALVE

(c)

Figure 4.14: Adjacency matrix of the considered transportation network: the side colors
correspond to the posterior point estimate of the partition under the Poisson extended
stochastic block model, endowed with a Gnedin prior and supervised with the distance
of each municipality from Bergamo. Three scenarios are presented, according to the fixed
value of the smoothing parameter: (a) no supervision (α = 0), (b) moderate supervision
(α= 5), (c) strong supervision (α= 500).

the pESBM with a fixed smoothing parameter, specifically for α= 0,5,500. These matrices
provide insights into the level of uncertainty associated with the posterior estimation of the
clusters. For α= 0 and α= 5, the coclustering matrices display less uncertainty, leading to
relatively certain point estimates provided by the pESBM. However, when more informa-
tion is incorporated from the node attributes (i.e., α= 500), the posterior estimation exhibits
increased uncertainty, particularly for nearby groups of municipalities that share similar
connectivity patterns (e.g. light blue-orange clusters, blue-green clusters). The presence
of uncertainty in these cases highlights the complexity and overlapping nature of the un-
derlying structures in the data, emphasizing the need to carefully consider the influence of
node attributes in the clustering process. One possible reason for the uncertainty could be
that the two sources of information, represented by X and Y , are not perfectly aligned. For
example, certain nodes may exhibit different characteristics or behaviors in terms of their
connections (Y ) even though their their attributes (X ) are similar, causing uncertainty in
the clustering process.

4.4.5 Supervised clustering, with inferred smoothing parameter

In this section, we report the results for the pESBM described in Section 4.2 with additional
inference on the spatial-smoothing parameter α. In particular, we consider again three sce-
narios, induced by the prior distribution on α: low supervision (µ = 0,σ2 = 0.1), moderate
supervision (µ = 5,σ2 = 0.25) and strong supervision (µ = 500,σ2 = 25). Such values have
been chosen according to the study of the induced partition a priori (see Section 4.2.1).
In these experimental setting, we vary the hyperparameter µ,σ2 jointly and accordingly,
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4.4. APPLICATION: TRANSPORT NETWORKS
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Figure 4.15: Posterior coclustering matrix of the considered transportation network: the
side colors correspond to the posterior point estimate of the partition under the Poisson
extended stochastic block model, endowed with a Gnedin prior and supervised with the
distance of each municipality from Bergamo. Three scenarios are presented, according
to the fixed value of the smoothing parameter: (a) no supervision (α = 0), (b) moderate
supervision (α= 5), (c) strong supervision (α= 500).

to define a sensible auxiliary distribution π(α). However, we argue that while the value
of µ is clearly influencing the distribution of α a posteriori (in particular, the higher it is,
the more shifted the distribution to the right), the hyperparameter σ2 is not impacting the
posterior that much. The reason is clear from the shape of Equation (4.15). There, we can
see that the higher σ2 is, the higher the impact of log g(X∗

h) mean but also the higher the
marginal, posterior variance of α. Thus, even if increasing σ2 changes the mean, it also
changes the variance resulting in a bigger support around the posterior marginal mean. To
support such conjecture, several experiments with µ fixed and varying σ2 are reported in
the Appendix.

Figures 4.16 and 4.17 show the transportation graph and the reordered adjacency ma-
trix, where the colors denote the posterior point partition provided by the pESBM trained
with the three scenarios above, and Figure 4.18 the corresponding posterior coclustering
matrix. The results obtained with the pESBM with an inferred α are consistent with those
obtained using the pESBM with a fixed smoothing parameter. However, with this second
model, the partitions estimated with low and moderate supervision remain the same, in-
dicating that the clustering structure is preserved for reasonable supervision levels. How-
ever, the level of uncertainty associated with the partitions is generally higher. When more
information from the node attributes is incorporated, as in the case of moderate supervi-
sion, the posterior estimation exhibits higher uncertainty, as depicted in Figure 4.18. This
suggests that incorporating additional information from the node attributes increases the
complexity of the clustering problem and introduces more uncertainty in the estimation.
Furthermore, as previously observed, the pESBM with high supervision induces radial
clusters and also leads to even more increased uncertainty in the posterior estimation.

111



CHAPTER 4. SPATIALLY-INFORMED BAYESIAN CLUSTERING FOR WEIGHTED
NETWORKS

(a) (b) (c)

Figure 4.16: Graphical representation of the considered transportation network: node col-
ors correspond to the posterior point estimate of the partition under the Poisson extended
stochastic block model, endowed with a Gnedin prior and supervised with the distance of
each municipality from Bergamo. Three scenarios are presented, according to the prior hy-
perparameters of the smoothing parameter: (a) low supervision (µ = 0,σ2 = 0.1), (b) mod-
erate supervision (µ= 5,σ2 = 0.25), (c) strong supervision (µ= 500,σ2 = 25).
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Figure 4.17: Adjacency matrix of the considered transportation network: the side colors
correspond to the posterior point estimate of the partition under the Poisson extended
stochastic block model, endowed with a Gnedin prior and supervised with the distance of
each municipality from Bergamo. Three scenarios are presented, according to the prior hy-
perparameters of the smoothing parameter: (a) low supervision (µ = 0,σ2 = 0.1), (b) mod-
erate supervision (µ= 5,σ2 = 0.25), (c) strong supervision (µ= 500,σ2 = 25).
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4.4. APPLICATION: TRANSPORT NETWORKS
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Figure 4.18: Posterior coclustering matrix of the considered transportation network: the
side colors correspond to the posterior point estimate of the partition under the Poisson
extended stochastic block model, endowed with a Gnedin prior and supervised with the
distance of each municipality from Bergamo. Three scenarios are presented, according to
the prior hyperparameters of the smoothing parameter: (a) low supervision (µ = 0,σ2 =
0.1), (b) moderate supervision (µ= 5,σ2 = 0.25), (c) strong supervision (µ= 500,σ2 = 25).

4.4.6 Quantitative evaluation

In this subsection, we report a first, quantitative evaluation of the partitions obtained. Such
evaluation can be carried out using standard goodness-of-fit indices for clustering, such as
the Rand index or the Silhouette. Table 4.2 displays the Silhouette indices for the clusters
obtained in Subsections 4.4.4 and 4.4.5. In general, as expected, models with an increasing
level of supervision perform better when the Silhouette is computed taking into account
not only the similarity with respect to the edge weights, but also with respect to the node
attributes. Moreover, models with random α seems to perform at least as well as the mod-
els with fixed α, with a clear advantage in the scenario of low or high supervision.

Low/no supervision Moderate supervision High supervision
α fixed - Sil(Y ) 0.500 0.545 -0.127
α fixed - Sil(X ,Y ) 0.500 0.545 -0.126
α fixed - Sil(X ) -0.087 0.02 0.375
α random - Sil(Y ) 0.545 0.545 -0.053
α random - Sil(X ,Y ) 0.545 0.545 -0.052
α random - Sil(X ) 0.02 0.02 0.403

Table 4.2: Silhouette index computed for all the posterior point estimates obtained in Sub-
sections 4.4.4 and 4.4.5.
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4.5 Discussion and future research directions

In conclusion, this chapter has demonstrated the effectiveness of the Poisson extended
stochastic block model (pESBM) in uncovering the underlying structures and patterns of
a public transportation network. By incorporating both connectivity patterns and node
attributes, such as the distance from the main hub, the pESBM enables the identification
of meaningful clusters of municipalities which can be useful for policy decision as, e.g.,
the definition of new pricing zones. The results have provided valuable insights into the
considered network, such as the distinction of underserved municipalities.

There are several directions for future and current work, as the development of this
project is still in progress at the time of writing. Firstly, defining classes of similarity func-
tions that consider administrative needs, such as measuring similarity based on polar co-
ordinates or bus line alignment, can provide more tailored and relevant clustering results.
Additionally, extending the model to multiplex networks, possibly incorporating different
means of transportation, would enable a comprehensive analysis of transportation pat-
terns and facilitate strategic decision-making for public transport companies. Integration
of data from multiple public transport companies and the expansion of the analysis to a
regional level can also provide a broader perspective on transportation networks, uncover-
ing core-periphery structures and supporting administrative divisions. Multi-level cluster-
ing techniques can be employed to capture hierarchical organization within transportation
networks, enabling a finer-grained understanding of network dynamics. Also, latent space
models could be employed to study latent embeddings of the network. Their usage could
be two-fold: on the one hand, geographical distance between two municipalities could be
used as an edge covariate in order to find the latent embedding which is not explained by
the geographical information. On the other hand, the prior on the latent node positions
can be centered on the true geographical coordinates of the municipalities.

Methodologically, there are opportunities for further improvements in the estimation
and computational aspects of the pESBM. One area of focus is the development of bet-
ter inference methods for estimating the smoothing parameter α, with particular attention
to reducing the reliance of the posterior density on the prior parameters. Furthermore,
addressing computational complexity issues is crucial for improving the scalability and
applicability of Bayesian nonparametric models like the pESBM. Efficient algorithms and
techniques, such as approximate inference methods or parallel computing, could be ex-
plored to reduce the computational burden and facilitate the analysis of larger networks.

Lastly, considering the temporal variation and the impact of external factors on trans-
portation networks, such as the COVID-19 pandemic, would provide valuable insights into
evolving traffic flows and congestion patterns. Comparative analyses of pre-pandemic and
post-pandemic years can shed light on the resilience and adaptability of transportation
systems. Overall, this study has showcased the capabilities of the pESBM in capturing the
complexity of transportation networks, thus potentially facilitating transportation plan-
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ning, network optimization, and policy-making.

Appendix
We are interested in augmenting our pESBM with node attributes, incorporating such in-
formation using cohesion functions. Using the standard approach proposed by Muller
et al. [2011], we can define the probability of a partition as follows

p(z;α, X )∝WV ,H

H∏
h=1

(1−σ)nh−1 g(X∗
h)α

where

• WV ,H ,σ are defined by the choice of the Gibbs-type prior,

• g(X∗
h) is the cohesion function of cluster h.

According to the recipe proposed by Muller et al. [2011], a standard way to obtain a
cohesion function as a marginal distribution is:

g(X∗
h)=

∫ ∏
i:zi=h

q(xi|ξh)q(ξh)dξh.

We consider the case in which the node attributes are p-dimensional vectors xi, i = 1, . . . ,V .

xi|µh,Σh ∼Np(µh,Σh), for i : zi = h

which yields

q(xi|ξh = (µh,Σh))∝|Σh|−
1
2 exp

{
− p

2
(xi −µh)TΣ−1

h (xi −µh)
}

The conjugate distribution of a multivariate gaussian random variable is the Normal-Inverse-
χ2 distribution, i.e.

Σh ∼ Inv-Wishartν0(Λ−1
0 )

µh|Σh ∼Np(µ0,
Σh

k0
)

and the joint prior distribution is

p(µh,Σh)∝|Σh|−
(
ν0+p

2 +1
)
exp

{
− 1

2
tr(Λ0Σ

−1
h )− k0

2
(µh −µ0)TΣ−1

h (µh −µ0)
}
.
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Since it is a conjugate model, the posterior distribution is again a Normal-Inverse-χ2 dis-
tribution, available at page 73 in Gelman et al. [2004] (recall that X∗

h = {xi : zi = h}):

p(µh,Σh|X∗
h)∝|Σh|−

(
νn+p

2 +1
)
exp

{
− 1

2
tr(ΛnΣ

−1
h )− kn

2
(µh −µn)TΣ−1

h (µh −µn)
}
.

where

• µn = k0
k0+nh

µ0 + nh
k0+nh

x̄h;

• kn = k0 +nh;

• νn = ν0 +nh;

• Λn =Λ0 +S+ k0nh
k0+nh

(x̄h −µ0)(x̄h −µ0)T , S =∑
i:zi=h(xi − x̄h)(xi − x̄h)T .

Thus, the cohesion function becomes (keeping in mind that ξh = (µh,Σh)):

g(X∗
h)=

∫ ∏
i:zi=h

q(xi|ξh)q(ξh)dξh ∝
∫

q(ξh|X∗
h)dξh

and using the posterior distribution above:

=
∫

|Σh|−
(
νn+p

2 +1
)
exp

{
− 1

2
tr(ΛnΣ

−1
h )− kn

2
(µh −µn)TΣ−1

h (µh −µn)
}

dµh dΣh

Here, we can exploit the normalising constant of the multivariate gaussian and of the
Inverse-Wishart distribution getting:

= (2πkn)−
1
2

∫
|Σh|−

(
νn+p+1

2

)
exp{−1

2
tr(ΛnΣ

−1
h )}dΣh

∝ k
− 1

2
n 2

p
2 νnΓp(

νn

2
)|Λn|−

νn
2

= 2p(ν0+nh)/2√
k0 +nh

Γp

(ν0 +nh

2

)
·
∣∣∣Σ−1

0 + k0nh

k0 +nh
(x̄h −µ0)T (x̄h −µ0)+ ∑

v:zv=h
(xv − x̄h)T (xv − x̄h)

∣∣∣− ν0+nh
2

Supervised full conditional distribution As before, we compute the posterior probabil-
ities of the labels according to the formula:

p(zv = h|z−v, X ,Y )∝ p(zv = h|z−v, X )
p(Y |zv = h,z−v)

p(Y−v|z−v)

where

p(zv = h|z−v, X )∝ p(zv = h,z−v|X )
p(z−v|X−v)

= p(zv = h,z−v)
p(z−v)

g(X∗v
h)α

g(X∗h
−v)α

= p(zv = h|z−v)
g(X∗

h
v)α

g(X∗h
−v)α
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Notice that p(zv = h|z−v) is provided by the urn scheme of the Gibbs-type distribution of
choice. Thus, we are just left with the computation of the ratio g(X∗v

h)
g(X∗−v

h ) , where X∗v
h is the

set of covariates in cluster h adding the v node to such a cluster, and X∗−v
h is the set of

covariates in cluster h, discarding node v. Taking the log posterior distribution, we get:

logp(zv = h|z−v, X ,Y )

∝ logp(zv = h|z−v, X )+ logp(Y |zv = h,z−v)− logp(Y−v|z−v)

= logp(zv = h|z−v)+α[logg(X∗v
h)− logg(X∗−v

h )]+ logp(Y |zv = h,z−v, X )− logp(Y−v|z−v, X−v)

and we can compute logg(X∗v
h)− logg(X∗−v

h ) as follows:

logg(X∗
h)=− 1

2
log(k0 +nh)+ (ν0 +nh)log2+ 1

2
logπ+ logΓ

(ν0 +nh

2

)
+ logΓ

(
ν0 +nh −1

2

)
− ν0 +nh

2
log|Λ0 +

∑
i:zi=h

(xi − x̄h)(xi − x̄h)T + k0nh

k0 +nh
(x̄h −µ0)(x̄h −µ0)T |

As a consequence:

logg(X∗v
h)− logg(X∗−v

h )=

=−1
2

log(k0 +n−v
h +1)+ 1

2
log(k0 +n−v

h )+ logΓ
(
ν0 +n−v

h +1

2

)
− logΓ

(
ν0 +n−v

h −1

2

)
−
ν0 +n−v

h +1

2
log|Λ0 +

∑
i:zi=h or i=v

(xi − x̄v
h)(xi − x̄v

h)T +
k0(n−v

h +1)

k0 +n−v
h +1

(x̄v
h −µ0)(x̄v

h −µ0)T |

+
ν0 +n−v

h

2
log|Λ0 +

∑
i:zi=h and i ̸=v

(xi − x̄−v
h )(xi − x̄−v

h )T +
k0n−v

h

k0 +n−v
h

(x̄−v
h −µ0)(x̄−v

h −µ0)T |

for h = 1, . . . ,H−v and

logg(X∗v
h)− logg(X∗−v

h )=

=−1
2

log(k0 +1)+ 1
2

log(k0)+ logΓ
(
ν0 +1

2

)
− logΓ

(
ν0 −1

2

)
− ν0 +1

2
log|Λ0 + k0

k0 +1
(xv −µ0)(xv −µ0)T |+ ν0

2
log|Λ0|

for h = H−v +1.

Inference on the smoothing parameter α

In this section, we report the inferential framework for the smoothing parameter α. The
trick is to exploit an auxiliary law π(·) on αwhich provides easy integration to obtain p(α|z).
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In our case, we define π(·) to be:

π(α)∼TN[0,∞)(µ,σ2),

that is we use as auxiliary distribution for α a normal with mean µ and variance σ2, trun-
cated in [0,∞) (i.e. a truncated normal). In this way, we obtain the joint distribution of (z,α)

p(z,α)= p(z|α)π(α)

∝
[ H∏

h=1
c(Sh)

]
exp

{
α

H∑
h=1

logg(X∗
h)

}
·exp

{
− (α−µ)2

2σ2

}
1{α≥0}

∝ 1
k∗

{ H∏
h=1

c(Sh)
}

exp
{
− α2

2σ2 + 2α
2σ2

(
µ+σ2

H∑
h=1

logg(X∗
h)

)}
1{α≥0},

where k∗ is a (new) normalising constant defined as

k∗ = ∑
z∈Z

∫ ∞

0

{ H∏
h=1

c(Sh)
}

exp
{
− α2

2σ2 + 2α
2σ2

(
µ+σ2

H∑
h=1

logg(X∗
h)

)}
dα.

From here, the posterior distribution of the smoothing parameter can be obtained, using

p(α|z)∝ p(z,α)∝ exp
{
− α2

2σ2 + 2α
2σ2

(
µ+σ2

H∑
h=1

logg(X∗
h)

)}
1{α≥0}

∝ exp
{
− 1

2σ2

[
α− (

µ+σ2
H∑

h=1
logg(X∗

h)
)]2

}
1{α≥0}

⇒α|z∼TN[0,∞)

(
µ+σ2

H∑
h=1

logg(X∗
h),σ2

)
.

Finally, we can also obtain the actual prior distribution of α as:

p(α)= ∑
z∈Z

p(α,z)

= ∑
z∈Z

1
k∗

[ H∏
h=1

c(Sh)
]
exp

{
− 1

2σ2

(
µ+

H∑
h=1

logg(X∗
h)

)2
}
exp

{
− 1

2σ2

[
α− (

µ+σ2
H∑

h=1
logg(X∗

h)
)]2

}
1{α≥0}
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Denoting by kTN the normalising constant of the truncated normal in [0,∞) with mean
µ+σ2 ∑H

h=1 logg(X∗
h) and variance σ2, we get:

p(α)= ∑
z∈Z

p(α,z)

= ∑
z∈Z

kTN

k∗
[ H∏

h=1
c(Sh)

]
exp

{
− 1

2σ2

(
µ+

H∑
h=1

logg(X∗
h)

)2
}
·TN[0,∞)

(
µ+

H∑
h=1

logg(X∗
h),σ2)

= ∑
z∈Z

wz ·TN[0,∞)
(
µ+

H∑
h=1

logg(X∗
h),σ2)

,

that is a mixture of truncated normal distributions.

MCMC diagnostic
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Figure 19: Traceplots for the unsupervised prior sampling for: (a) the number of clusters
H, (b) the log-prior p(z).
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Figure 20: Traceplots for prior sampling with smoothing parameter α= 5 for: (a) the num-
ber of clusters H, (b) the log-prior p(z|X ).
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Figure 21: Traceplots for prior sampling with smoothing parameter α = 500 for: (a) the
number of clusters H, (b) the log-prior p(z|X ).
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Figure 22: Traceplots for prior sampling with inferred smoothing parameter for µ = 0 for:
(a) the number of clusters H, (b) the log-prior p(z|X ), (c) the smoothing parameter α.
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Figure 23: Traceplots for prior sampling with inferred smoothing parameter for µ = 5 for:
(a) the number of clusters H, (b) the log-prior p(z|X ), (c) the smoothing parameter α.
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Figure 24: Traceplots for prior sampling with inferred smoothing parameter for µ= 500 for:
(a) the number of clusters H, (b) the log-prior p(z|X ), (c) the smoothing parameter α.
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Figure 25: Traceplots for unsupervised, posterior sampling for: (a) the number of clusters
H, (b) the log-likelihood (unnormalised) q(Y |z).
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Figure 26: Traceplots for supervised, posterior sampling for fixed smoothing parameter
α= 5: (a) the number of clusters H, (b) the log-likelihood (unnormalised) q(Y |z).
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Figure 27: Traceplots for supervised, posterior sampling for fixed smoothing parameter
α= 500: (a) the number of clusters H, (b) the log-likelihood (unnormalised) q(Y |z).
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Figure 28: Traceplots for supervised, posterior sampling with inferred smoothing parame-
ter for µ= 0,σ2 = 0.1 for: (a) the number of clusters H, (b) the log-likelihood (unnormalised)
q(Y |z), (c) the smoothing parameter α.
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Figure 29: Traceplots for supervised, posterior sampling with inferred smoothing param-
eter for µ = 5,σ2 = 0.25 for: (a) the number of clusters H, (b) the log-likelihood (unnor-
malised) q(Y |z), (c) the smoothing parameter α.
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Figure 30: Traceplots for supervised, posterior sampling with inferred smoothing param-
eter for µ = 500,σ2 = 25 for: (a) the number of clusters H, (b) the log-likelihood (unnor-
malised) q(Y |z), (c) the smoothing parameter α.
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Impact of the hyperparameter σ2 on the learned posterior

Here we report the results of the posterior inference of the model reported in Section 4.2.1.
The aim of this experiment is to study the impact of the hyperparameter σ2 on the posterior
inference. Even though different experiments have been performed, we report here the
study for µ = 5, and σ2 = 5,10,25. For sensible values of σ2 (i.e. σ2 = 5,10) the inferred
posterior partition does not change at all. For a high value of σ2, the partition slightly
changes, even though the macro areas (orange, red, green, yellow and blue) are preserved.
However, this is an extreme situation: in general, one would not choose such an auxiliary
distribution. The standard deviation is in fact equal to the variance, yielding a coefficient
of variation equal to 1. Anyway, the results are reported for didactic purposes, and confirm
the robustness of the model with respect to the hyperparameter σ2.

(a) (b) (c)

Figure 31: Graphical representation of the learned partitions a posteriori, keeping µ = 5
fixed and varying σ2: (a) σ2 = 5, (b) σ2 = 10, (c) σ2 = 25.
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Figure 32: Posterior coclustering matrix of the of the learned partitions a posteriori, keeping
µ= 5 fixed and varying σ2: (a) σ2 = 5, (b) σ2 = 10, (c) σ2 = 25.

D
en

si
ty

0 2 4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

(a)

D
en

si
ty

0 5 10 15

0.
00

0.
05

0.
10

0.
15

(b)

D
en

si
ty

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

(c)

Figure 33: Posterior distribution of the smoothing parameter α provided by the Poisson
extended stochastic block model, keeping µ= 5 fixed and varying σ2: (a) σ2 = 5, (b) σ2 = 10
(c) σ2 = 25.

125



Chapter 5

Discussion

The ideas and findings presented in this thesis could serve as a foundation for numerous
promising directions for future research. In particular, Chapter 2 introduces a novel frame-
work for defining explanations in a statistically coherent manner. This work could be a
starting point for the definition and estimation of explanations with both theoretical guar-
antees and good practical heuristic results. By building upon this initial framework, future
research can strive to enhance our understanding of explanations and their application in
various domains, leading to more robust and reliable methods for explaining black-box
models, with the possibility of performing uncertainty quantification. Furthermore, there
is potential for advanced exploration of the proposed Xi method itself. While Chapter 2
presents the Xi method for classifiers, a straightforward generalization could be the defi-
nition of similar post hoc explanations for regression models. This extension would allow
for a broader application of the Xi method and provide valuable insights. In addition,
a significant direction to pursue is the improvement of the computational framework for
the corresponding explanations. Firstly, it is crucial to evaluate and refine the proposed
estimators for the probability distributions involved, as there may exist more optimal al-
ternatives. Secondly, while the Xi method defines explanations that already consider the
dependence structure of a set of random variables, estimating explanations in this case
can be challenging due to the curse of dimensionality. Therefore, there is a clear neces-
sity to explore and develop more effective methods that can incorporate the influence of
dependence structures into explanations. By addressing these computational challenges,
researchers can enhance the interpretability and practicality of the explanations, ultimately
advancing the field of statistical explainability.

Chapter 3 introduces the multiplex extended stochastic block model (mESBM), a gener-
alization of the stochastic block model for multiplex networks, graph-like structures repre-
senting different types of relationships among the same nodes. The mESBM goes beyond
traditional models by providing both layer-specific groupings, that capture the latent par-
titions within each layer, and a common clustering of the nodes representing a general
latent structure. A first, natural extension of the mESBM would involve adapting it to han-
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dle weighted multiplex networks, where the edge weights can be continuous or discrete.
This extension can be defined by modifying the likelihood distribution and the prior on the
block matrix while preserving the probabilistic structure of the partitions. Similar exten-
sions could also be explored for bipartite or directed networks, changing the definition of
the likelihood accordingly. A further direction to explore is the introduction of supervision
in the partitioning process through suitable covariates. These covariates can either be node
attributes or layer attributes, providing flexibility in the specification of the model. This ap-
proach enables the utilization of additional information to guide the partitioning process
and enhance the quality and interpretability of the results. Regarding the application, it
would be valuable to expand the analysis of the results presented in Chapter 3: namely, the
relationship between the subject-specific partitions and the diagnosed mental illnesses for
each patient could be furtherly unraveled. To this aim, collaborating with neuroscientists
and physicians is of fundamental importance. Furthermore, applying the mESBM to other
contexts may be compelling. For instance, examining multiplex transportation networks
that encompass various graphs representing different means of transportation within the
same cities can reveal the underlying structure, and could offer valuable insights for urban
planning and transportation management. Also investigating multiplex social networks
would present another relevant real-world scenario to explore: understanding the intri-
cate relationships and dynamics across different layers of social interactions could provide
interesting observations into various fields.

Chapter 4 introduces the Poisson extended stochastic block model (pESBM) for com-
munity detection in weighted networks with continuous and multidimensional node at-
tributes. The starting point is the analysis of a real-world transportation network embed-
ded in a geographical space, with the goal of obtaining latent radial clusters around a
central hub. By focusing on the spatial arrangement of the transportation network and
leveraging the formation of radial clusters, the aim is to uncover meaningful patterns and
insights that can inform decision-making processes. However, it is important to acknowl-
edge that this work is still ongoing and evolving. In particular, specific modifications need
to be implemented in the inferential framework of the smoothing parameter α to mitigate
the dependency of its posterior distribution on the parameters of the auxiliary distribu-
tions. This aspect becomes particularly significant when dealing with complex modeling
tasks, where it is desirable to minimize the user intervention as much as possible. The goal
of these necessary modifications is to enhance the autonomy and efficiency of the inference
process, leading to more reliable, robust and automated results. Furthermore, it is impor-
tant to consider that the proposed similarity function may not be the only or the optimal
choice for the given context. Alternative approaches could be explored, including the in-
corporation of different geometric features of the network. For instance, leveraging polar
coordinates could offer alternative means to define clusters with non-traditional shapes:
incorporating the angle of each municipality with respect to the central hub may lead to
angular clusters, i.e. groups of nodes that are encouraged to cluster based on their angular

127



CHAPTER 5. DISCUSSION

proximity. By exploiting additional geometrical aspects of the network, researchers can ex-
pand the possibilities for cluster formation and capture more nuanced patterns within the
data.
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