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Abstract

Networks are abundant in the world around us. Network and relational

data arise in a variety of fields and disciplines and there is a vast choice of

methods for analysis. In this work we study probabilistic and statistical

approaches for analyzing such data.

Most of the literature dedicated to networks deals with the static case,

when only one snapshot of network is observed. While in practice a lot

of processes in life are continuously changing and evolving. So the big

challenge is modeling dynamic evolution of the network data.

Idea of the thesis is to follow this aim, starting from studying under-

lying probabilistic notions, that act as founding stones for constructing

dynamic statistical models. New representation theorems are proved for

assumptions of Markov exchangeability and its combination with array

exchangeability. After that, a new statistical model, that extends the la-

tent distance model, is proposed for network dynamics, and illustrated on

examples.
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Chapter 1

Introduction

This thesis studies modeling static and dynamic network data. Network

data consist of measured relations between pairs of actors, and, as such,

is different from data in other forms. The implication is that there is a

dependence across actors in the network, and particular assumptions are

needed to model such data.

As network data are abundant around us, interest in modeling arises

in many fields. The first scientific works on networks appeared in the

first half of the 20th century, in the social sciences area. The mathemat-

ical basis started actively developing from 1950s, and currently the field

is growing and bringing together people from different domains. In recent

years contributions were made from a variety of disciplines, such as biol-

ogy, computer science, statistical physics, sociology and statistics. While

there are many different approaches to analyzing networks, here we discuss

probabilistic and statistical models, focusing on binary data.

In many cases, the observed data represents a “snapshot” of a net-

work at one particular moment. While in fact real-life networks are often

dynamic. Literature for the static network modeling is very rich. We fo-

cus on a particular class of models that use latent variables. This class

includes several proposals with different properties, but they can be put

under a unifying framework, based on reasonable assumptions of invari-

ance in distributions of the residuals in the model. Dynamic modeling is

rapidly evolving, but still highly open field. The problems concern dis-
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2

covering changes in the structure of networks, and interpreting them to

explain changes in relations between individual actors.

Our motivations include exploring theoretical foundations of statistical

network models, that can shed light on better ways of defining new mod-

els. We explore the relevant probabilistic concepts, starting from notions

of exchangeability for sequences and random binary matrices. New results

are provided for Markov exchangeability, notion that can be applied in

dynamic modeling, and its combination with array exchangeability. Func-

tional representation theorems are developed for these cases.

From a more applied side, we study latent variable models, and possi-

bilities to introduce dependence along time in these models. In particular

the latent distance model, based on the idea of proximity in the “social

space”, is extended to the dynamic case by means of an infinite hidden

Markov model. Our proposed model allows to capture changes in the over-

all cohesion of the network over time.

The thesis is organized as follows.

In Chapter 2, we introduce problems in network modeling, discuss

methods of describing data and give a review of network modeling ap-

proaches, with large focus on the latent variable models and the unifying

framework for them. Then, Chapter 3 is devoted to underlying proba-

bilistic concepts. An overview of representation theorems for various no-

tions of exchangeability is provided, after that we present our contributions

on functional representations for Markov exchangeable sequences, and ex-

changeable arrays of such sequences. In Chapter 4 an original dynamic

model is described and illustrated. Finally, we conclude in Chapter 5 with

discussion of possible extensions for our proposals, and future directions of

research.
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Chapter 2

Review of network

models

In this chapter we describe network data, particular properties and chal-

lenges emerging in their analysis. After that, a concise review of proba-

bilistic approaches to network data modeling is provided.

2.1 Introduction

The study of networks started around the middle of the 20-th century.

Nowadays network data are abundant and arise in a variety of different

fields, from social networks of people or organizations to networks of pro-

tein and gene interactions. The field of network analysis developed as an

interdisciplinary one and there exist many approaches from different an-

gles. The contributions come from such disciplines as biology, computer

science, statistical physics, sociology, probability and statistics. In partic-

ular, statistical analysis of such data is an active and evolving field, started

from probabilistic models of 1950s.

One of the most fruitful directions is the study of “social networks”,

relations between social entities, such as people, groups, communities. It

comes from the social and behavioral science literature, where many topics

of interest can be better described and understood in relational terms. We

will not limit the discussion to necessarily “social” networks, but will speak
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4

about network and relational data in their generality. But, of course, social

networks have some interesting properties that arise specifically from their

nature.

The interest in networks and, in particular, the development of new

methods has emerged and grew at impressive rate in the recent years,

because of great amounts of such data that becomes easily accessible,

and growing computational power, that allows to handle and analyze vast

amounts of data in reasonable time. Almost all the interactions in the

world are recorded on a continuous basis in one way or another, and the

possibilities of analyzing this data are unlimited.

2.2 Data description and presentation

As we said, network data can arise in a variety of different fields. Some

examples include friendship, working subordination and other relations

between people, volume of international trade or state of conflict between

countries, co-authorship of papers between scientists, protein–protein, gene–

protein and gene–gene interactions in systems biology to name just a few.

What is common for all these examples is the nature of the data and

their main components. Objects of interest are relations between actors,

and not the actors themselves. In general, we call network data any data

that is obtained on the set of interacting actors, and comprises of rela-

tions between them. We will also use the term “relational data”. So the

main components are actors (individuals, nodes) and measurements of re-

lations (links, ties) between the pairs of them. Actors and their relations

are considered interdependent, and so network methods focus on these col-

lections of individuals and links between them; hence some new methods

are needed.

But before discussing methods, we need to introduce some notation,

describe the properties of different networks and possibilities of represent-

ing the data. To make the presentation easier, we will demonstrate the

ideas on an example dataset, that is later used for analysis in Chapter 4.
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2.2.1 INFOCOM’06 dataset

The data, collected by Chaintreau et al. [2007] and downloaded from Scott

et al. [2009], consist of measurements of contacts on an INFOCOM work-

shop in 2006. All participants were given proximity sensors, small wearable

devices, to detect their interactions during the conference days. The two

devices can “see” each other, if they are close enough, and then the in-

teraction is recorded. So relations here are contacts of participants of the

conference. The interactions were observed during the 4 days of the con-

ference on 78 individuals, students and professors. This is an example

of time-evolving network, where the interactions are changing over time,

while the set of actors is not.

Of course, contacts between people can be described by a continuous

process, but due to the way of recording, the data are discrete. To remove

the noise and to simplify the dataset, the contacts were aggregated into

hourly time periods. So, the relation between two individuals at hour t was

recorded, if there had been at least one contact between them during this

hour. Also here, by design of the experiment, the contacts are supposed

to be reciprocated, and the dataset was cleaned of errors in measurement,

to conform. As the recorded time runs from 17:00 on the first day to 15:00

on the 4th day, that gives 94 aggregated time points. The total number of

links ranges from 0 to 918 with the mean of 311 contacts per hour.

In the next subsections of this chapter, we will address this dataset as

“our example”.

2.2.2 Basic terminology and properties

As was already hinted by different examples, in the relations in question,

pairs of actors can be ordered, giving a directed relation, or unordered,

that gives an undirected relation. A relation can be directed or undirected

by the nature of the data, or it may come from limitations of the data

collection process. A special case is the possible presence of self-links,

which does not make sense in some datasets (such as friendship), but can

be quite common in others (such as protein interactions).

Tesi di dottorato "Bayesian Modeling of Dynamic Network Data"
di NAZAROV MAXIM
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2014
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



6

In our example, as already mentioned, the relations are undirected,

meaning that each tie is reciprocated. This also holds true for such kinds

of relations as people’s friendship or being coauthors of a paper.

Next, the measured relation can be on a continuous or discrete scale.

In simple, and the most common case, relations in question are binary,

encoding the presence or absence of some property. Our example is in fact

the case, and the property in question is the indication of having a contact

in the particular hour. Further in the thesis, we limit our studies to the

binary case, while noting that for some models, extension to the general

case is immediate.

As we said, our example is time-evolving, or dynamic. If we observe

the network at one point in time, or if it is produced by the aggregation

over some period, it is called static. A lot of models developed in the

literature are for the static case, as the additional time dimension adds to

the complexity of the data.

To formalize the description of the data, often the language of graph

theory is used, as graphs are a quite natural way of representing relational

data. A graph G = (V,E) consists of a set of vertices (or nodes) V =

{v1, . . . , vN} and a set of edges (or links) E = {e1, . . . , eK}, where each ek

is a pair of vertices (vi, vj), that can be either ordered or not, and possibly

include a weight; but as said, we limit our attention to binary networks. For

most of the uses it will be enough to consider finite graphs, but some notions

defined for infinite graphs are used in Chapter 3. Relevant definitions from

the graph theory are also useful, such as degree of a vertex, diameter of

a graph and so on. An extensive description of these and other notions

can be found in the comprehensive book by Wasserman and Faust [1994,

Chapter 4].

The alternative representation for a graph is the adjacency matrix. In

the social science literature the corresponding object for social networks

is called “socio-matrix”. The adjacency matrix Y = (Yi,j)1≤i,j≤N is con-

structed as follows: for all pairs (i, j) set Yi,j = 1 if (vi, vj) ∈ E and Yi,j = 0

otherwise. For undirected graphs, by assumption Yi,j = Yj,i, and in fact

only the upper (or lower) triangle part of the matrix Y is considered. As
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for the diagonal entries Yi,i, often they are left undefined or considered as

structural zeros.

2.2.3 Visualizing data

Data visualization is an important step both for preliminary exploratory

analysis, and for reporting discovered structure and patterns. Clearly vi-

sualizing a large and possibly evolving dataset is a difficult task, and the

methods described here are suitable, mostly, for relatively small graphs.

For the adjacency matrix, the visualization is quite straightforward.

For binary data typically black squares are put when Yi,j = 1, that is, an

edge is present, and white squares when Yi,j = 0, that is, edge is absent.

Applying to our example for t = 20, we obtain the matrix on the left in

Figure 2.1. While reordering rows and columns according to the degree of

vertices gets us the matrix on the right. Other reordering schemes may

be applied to emphasize highly-connected clusters that may be present in

the data. So the perception can be changed a lot by a simple reordering

of rows and columns. We will see in Chapter 3 that in many cases the

distribution of a network can be assumed to be invariant with respect to

permutations of rows and columns.

Another possible visual representation is a layout of the graph struc-

ture of nodes and links as points and lines on the plane. The chosen

layout, i.e. relative positions of vertices and edges for the given graph ob-

ject, can again play a big role in the perception and interpretation of the

data. There are deterministic algorithms that position vertices and edges

according to some pre-specified criteria, which usually include simplicity

and readability of the resulting figure. Other algorithms try to highlight

some desired properties of the graph, such as clustering or grouping of

the nodes. Without going into much details, for the INFOCOM example

four different layout algorithms are illustrated in Figure 2.2. The first is a

random layout, the second one is the so called “force-directed” algorithm

of Fruchterman and Reingold [1991], the third one is a layout based on

singular value decomposition of the adjacency matrix, and the last one is
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Figure 2.1: Adjacency matrix for the INFOCOM dataset at time t = 20,

unsorted (left) and sorted by nodal degree.

based on multi-dimensional scaling of the shortest path distance matrix.

As we can see, the resulting graphs look very different. Good starting

point for selection of appropriate algorithms is a recent review of the tools

for graph visualization by Von Landesberger et al. [2011]. See also Salter-

Townshend et al. [2012].

Some statistical models, such as the latent distance model by Hoff et al.

[2002], that will be described in Section 2.4, provide model-based graphical

representation of the data.

2.2.4 Network summary statistics

Another useful way of describing and summarizing network data is via

summary statistics. They can be selected to help characterizing some local

properties of the nodes of the network, or instead summarize the whole

network. One simple example is the degree of a node. This is the number

of edges to which a node belongs. If the graph is directed, then we can

speak about the in-degree and out-degree for each node.

In addition to individual degrees, the total number of edges (or propor-

tion of maximal number of edges) in a graph can give an idea of its overall
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density. For dynamic data, we can look at the evolution of this density

(see Figure 2.3 for our data example).

Other common summaries to consider are the number of triangles and

in general cliques, and stars. A k-clique is a subgraph, in which every node

is connected with each other. So a triangle is a 3-clique. While a k-star is

a subgraph with k + 1 vertices such that one of them is connected to all

others with exactly one edge, i.e. there is one vertex with degree k and k

vertices with degree of 1 each.

There are other characteristics that can be considered as summary

statistics, good reference is the book by Wasserman and Faust [1994]. Sev-

eral models based on the sufficient summary statistics are described in

Section 2.4.

2.3 Main principles and goals of statistical

network modeling

One of the main aims of the statistical analysis of network data is discover-

ing the structure explaining the relations between actors. This may mean

identifying groups or clusters, identification of important nodes, discover-

ing patterns. Other goals may include prediction of missing or unobserved

links. For dynamically evolving networks the task is even more difficult, as

we may be interested in the evolution of these underlying network struc-

tures over time and in predicting future links in this context.

Other problems may involve studying the spread of information or,

for example, decease along the network. This is conceptually a different

problem than the one we consider, so we will not go into details. Our

setting is that we observe a network of relations either at one point in

time (static) or evolving. By evolution we imply that the set of edges may

change, while the set of vertices is fixed.

When besides observing relations, there is some additional individual or

pairwise information (covariates), we want to explain the links from these

covariates.
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An important feature of network data is that they are highly dependent,

as the observations are on pairs of actors. There are some common types of

dependence occurring due to this in a variety of real-life networks. These

include:

Symmetry or reciprocity for directed data. Even if the graph is di-

rected, meaning that Yi,j is not necessary equal to Yj,i, the links tend to be

reciprocated with high probability.

Transitivity, i.e. higher probability to have link Yi,k if there exist links

Yi,j = 1 and Yj,k = 1. Informally “a friend of my friend is likely to be my

friend”.

Homophily by attributes which is tendency of actors with similar char-

acteristics (covariates) to have higher probability of a link.

Stochastic equivalence, when nodes in one group have similar patterns

of connectivity.

Clustering, i.e. existence of densely connected groups, with few con-

nections between clusters, that may be caused by unobserved attributes.

Degree heterogeneity, that describes the existence of more “popular”

nodes, and less popular ones.

When constructing the statistical model, the aim is to be able to cap-

ture the particular properties typical to the network in question. While

modeling dependence, it is still natural to have a form of symmetry across

actors. Assuming exchangeability and partial exchangeability for actors

motivates a large class of models, latent variable models, that will be in-

troduced in the next section.

2.4 Overview of approaches for statistical

network modeling

Here we provide a concise overview of probabilistic models introduced for

the network modeling, starting from the pioneer work of Erdős and Rényi.

We do not discuss non-probabilistic approaches, such as game theoretic

approach by Skyrms and Pemantle [2000] and others. A useful reference
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here is the book by Easley and Kleinberg [2010].

First consider modeling static network data. We remind that our focus

is on binary network data, i.e. the relations are either link or no link.

Let the data be encoded in the array Y = (Yi,j)i,j=1...N . We may also

have additional covariate information for actors or pairs, that we denote

by X = (Xi,j)i,j≥1 where Xi,j = (Xi,j,k)k=1,...,p for each pair (i, j).

For modeling of the static data, approaches provided in the literature

can be broadly divided into two classes: so called “classical approach”,

where the presence of a link between two nodes depends on the net-

work structure (examples include Erdős-Rényi random graph model, the

so called p1 and p2 models, and exponential family random graph models)

and the “latent variable approach”, where the presence of a link between

two nodes depends on underlying latent variables (examples are stochastic

blockmodels and latent distance models).

2.4.1 Erdős and Rényi model

One of the earliest examples of probabilistic models for networks is the

“random graph” model by Erdős and Rényi [1959]. It describes a binary

graph, constructed on a set of N labeled nodes with K edges, by selecting

uniformly at random among the set of all possible such graphs. Hence there

are
((N2)
K

)
possibilities for undirected graphs and

(
N(N−1)

K

)
for directed. This

model is denoted by G(N,K).

Another way to define a random graph was proposed independently

by Gilbert [1959]. The graph is still defined on N nodes, but instead of

specifying the total number of edges, the probability of an edge between

any two nodes is fixed. The presence of each link is represented by a

Bernoulli random variable with parameter θ, and it is independent of the

presence of other links. Common notation for this model is G(N, θ)

These two formulations are quite similar, and can be related by taking

θ = K

(N2)
. In this case expected probability of a link in the G(N,K) model

is θ, while expected number of links in the G(N, θ) model is K. The

G(N, θ) formulation is more common in the literature, as the independence
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assumption for edges makes analysis easier.

In terms of adjacency matrix, P (Yi,j = 1) = θ independently for all

pairs (i, j). Then the distribution of a particular adjacency matrix Y is:

P (Y |θ) =
∏
i,j

θY i,j(1− θ)(1−Yi,j),

where the product is taken on appropriate set of (i, j) depending on whether

the graph is supposed to be directed or not.

This model is quite simple, and has been studied extensively. Erdős and

Rényi [1960] studied the asymptotic behavior of such graphs, depending

on the relation between N and θ (or K).

Due to this simplicity, it is not really suited for statistical analysis of

the network data, as it does not assume any structure in the data and

fails to capture any possible dependencies mentioned in the previous sec-

tion. Furthermore, for the networks generated from the model, all vertices

have approximately the same degree, which is rarely the case in real-life

networks.

2.4.2 ERGMs

After the work of Erdős and Rényi, their model has been extended to be

more suitable for statistical network modeling. Models that are still based

on some network structure or statistics are sometimes termed “classical”,

and include the following ones.

The p1 and p2 models were introduced by Holland and Leinhardt [1981]

and Duijn et al. [2004], adding further parameters for the Erdős-Rényi

model, to make it more expressive. These models, while being able to

capture dependencies on pairs of actors, cannot capture properties referring

to more than two actors, such as transitivity.

Another family of models are Exponential family Random Graph Models

(ERGMs). These models are extension of the Markov graphs idea by Frank

and Strauss [1986], and are defined in terms of joint distribution of all edges.

Such network distribution is parametrized by some set of sufficient statistics

Tesi di dottorato "Bayesian Modeling of Dynamic Network Data"
di NAZAROV MAXIM
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2014
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



13

and the probability distribution is assumed to be in the exponential family.

P (Y = y|θ) = exp(θ′u(y)− ψ(θ)),

where θ are parameters, u(y) is a vector of sufficient statistics, that capture

features of interest, and ψ(θ) is a normalizing constant. Typical choices

of statistics include the number of edges, k-stars or k-cliques for different

values of k.

The major challenge of these models is in the intractability of normal-

izing constant, as it involves summation over all possible networks with

given sufficient statistics. There are computational methods developed to

address this issue; a good review of them is provided in Hunter et al.

[2012]. Also, the ERGMs may suffer from the issue of degeneracy, when

large probability mass is concentrated on a very small proportion of the

possible networks. This can be addressed by a careful choice of the suffi-

cient statistics. The discussion of this issue is also included in Hunter et al.

[2012], and recent paper by Chatterjee and Diaconis [2013].

2.4.3 Latent variable models

While ERGMs are useful for modeling global network characteristics, there

exists another wide class of models, allowing to capture individual char-

acteristics as well. This class of models is based on the assumption of

presence of an additional (latent) layer of variables. Some additional as-

sumptions are put on these variables, in order to capture the structure and

dependencies of the networks. Most latent variable models also make the

assumption that links between actors (or dyads for directed networks) are

conditionally independent given the corresponding latent variables.

Many models proposed in the literature can be described as dependent

on latent variables. Seemingly unrelated, they can be, in fact, put under a

general framework motivated by certain symmetry considerations, namely

row-column exchangeability. This was first explicitly described by Hoff

[2008].

We explain this framework here, while row-column exchangeability and

other symmetry considerations are covered in Chapter 3. Start by taking a
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generalized linear mixed-effects model, which is quite general model for the

binary data. Keeping in mind the conditional independence of the edges

it is enough to define the probability of an edge for every pair (i, j):

P (Yi,j = 1|β,X,Γ) = f(βTXi,j + γi,j) (2.1)

with some link function f , for example inverse logit, to ensure that proba-

bility is between 0 and 1; covariate coefficients β = (β1, . . . , βp) and random

effects Γ = (γi,j). Here Γ represents structure in the data that is not cap-

tured by covariates X. The assumption of i.i.d. Γ would be violated by

many examples of network datasets that exhibit some of the dependence

properties discussed in section 2.3. But it is reasonable to assume that

its distribution is invariant under permutations of the node labels. We

imply that there is no information that distinguishes actors after we have

accounted for the covariates.

This invariance property of the joint distribution of Γ is precisely row-

column exchangeability, extension of exchangeability to the case of matrices

or arrays.

Applying the representation theorem of Aldous [1981] for row-column

exchangeable arrays, we get the latent variable representation for the Γ:

Γ = (γi,j)1≤i,j≤N
d
= (h(θ, Zi, Zj, εi,j))1≤i,j≤N

for i.i.d. latent variables {Z1, . . . , ZN}, i.i.d. pair-specific effects (εi,j)1≤i,j≤N

and some function h, that is symmetric in the second and third arguments.

This is a quite general result, telling that any statistical model for ad-

jacency matrix with assumption of exchangeable nodes can be represented

as a latent variable model. It is confirmed by the variety of models falling

under this scheme. These existing models differ in the specification of

particular function h.

So, our general framework is the following. We assume conditional

independence of links given latent variables:

P (Y |Z,X, β) =
∏
i6=j

P (Yi,j|Zi, Zj, Xi,j, β)
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and probabilities of each edge depend on the corresponding latent variables:

P (Yi,j = 1|Zi, Zj, Xi,j, β) = logit−1(β0 + βT1 Xi,j + h(Zi, Zj)). (2.2)

Note that here the function h is h(Zi, Zj), as is common to most of the

examples we consider.

Different models are constructed with different aims in mind and can

be more suited to a particular problem/dataset, being able to represent

the underlying properties better.

Latent distance model

We start with the latent distance model introduced by Hoff et al. [2002].

We describe this model in further details in Section 4.2, as it acts as a

building block for the novel dynamic model presented in Chapter 4, while

here we briefly summarize the main idea.

The role of latent variables is played by positions Zi ∈ Rd in unob-

served “social space” which is represented by a d-dimensional Euclidean

space. The idea is that the closer actors are in this space, the higher

is the probability of a link between them. This is formalized by taking

h(Zi, Zj) = −‖Zi − Zj‖d in (2.2), for all (i, j); in fact, the distance is not

constrained to be Euclidean as long as the triangle inequality is satisfied.

By construction, this model accounts for reciprocity and transitivity,

and in presence of covariates also for homophily of the data. It also provides

a model-based visual representation, which is most useful when d is small

(2 or 3).

The original proposal was further extended in Hoff [2005], Handcock

et al. [2007] and Krivitsky et al. [2009]. The more general form of function

h is: −‖Zi−Zj‖d + δi +ωj, with Zi coming from a mixture of multivariate

normal distributions, to account for clustering. Here δ and ω are sender and

receiver random effects, that we expect to be different for directed data.

This version additionally captures community structure (via the mixture

distribution for Z’s) and heterogeneity in degrees.

We use the term “latent distance model”, and not “latent space model”

originally used in Hoff et al. [2002] to distinguish it from other models
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that use a latent space, and emphasize that the relations here depend on

the distances. Another latent space model is also proposed in Hoff et al.

[2002]. It is called “projection model”, and the probability of having a

link increases if the latent positions, considered as vectors, have similar

directions in the space, and decreases when they have opposite directions.

Stochastic blockmodels

Another popular example of a latent variable model is the stochastic block-

model, formulated by Nowicki and Snijders [2001], based on the idea of

blockmodels (that appeared in 1970s) with unknown block memberships.

The assumption on the data here is that nodes are divided into groups and

members of the same group have similar patterns of relationships.

More precisely, it is assumed that there are K groups (blocks), and that

probability of interaction between two actors depend only on the groups

they belong to. So there is a matrix of group interaction probabilities

B = (Bk,l)1≤k,l≤K , with Bk,l denoting the probability of interaction between

members of the groups k and l. As the group memberships are unknown,

the latent variables Zi are used to indicate them. And so the function h

in (2.2) can be defined as h(Zi, Zj) = BZi,Zj , where the possible values of

Zi are {1, . . . , K}.
So the assumption above is satisfied: by construction, the probability

of a link between two actors depend only on their respective cluster mem-

berships. This allows to capture such network dependencies as clustering

and stochastic equivalence. Also such models have good interpretability

and, therefore, are commonly used by social scientists.

An extension of this model to the case of infinite number of clus-

ters was proposed in Kemp et al. [2006] and termed “Infinite relational

model” (IRM). The idea is that the number of blocks is not required to be

fixed in advance. Instead a nonparametric prior distribution is put on the

block membership variables Z, that favors small number of groups, at the

same time allowing for a potentially infinite number of groups.

Another extension of interest was proposed by Airoldi et al. [2008] to
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allow the cluster membership to change depending on the particular in-

teracting pair. The latent variables Z still represent cluster memberships,

and Zi,j denotes cluster membership for actor i while interacting with ac-

tor j, and it is given by a unit-vector of dimension K. The function h

from (2.2) is Z ′i,jBZj,i, which can be also written as before, BZi,j ,Zj,i if we

redefine Zi,j as taking values in {1, . . . , K}. The difference, is that here Zi,j

can be different across j for the same actor i. It is achieved by choosing

an appropriate prior distribution for Z’s, allowing the membership of an

actor to change when interacting with other actors. In particular the pair

of group memberships may be different for the links Yi,j and Yj,i, allowing

a more flexible modeling for directed networks.

Factor and feature models

More latent variable models assume yet another way of choosing the inter-

action function h and the latent variables.

For example, the eigenmodel of Hoff [2008] generalizes the stochastic

blockmodel and the latent distance model, but is less interpretable (pat-

terns are in terms of eigenvectors). It is based on the eigenvalue decompo-

sition and the function h is h(Zi, Zj) = Z ′iΛZj with Zi ∈ Rk. The latent

variables can be interpreted as k-dimensional vectors of unobserved factors

(or features), and Λ = diag(λ1, . . . , λk) controls the feature loadings. Thus,

if two actors have similar values for the same feature m, their probability

of having a link can increase or decrease depending on the sign of λm.

This allows the model to distinguish between structural equivalence and

homophily.

Latent feature relational model by Miller et al. [2009] also assumes

that individuals can be described by the set of (unobserved) features that

influence the probability of having a link. Here the vector of features is

binary, indicating the presence or absence of the features. This helps the

interpretation of discovered features. So the latent variable Zi is a “feature

vector” in {0, 1}∞, and the function h in (2.2) is of the same kind as in the

eigenmodel, h(Zi, Zj) = Z ′iΛZj. The prior distribution for Z is chosen in a
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way to allow potentially infinite number of features.

Nonparametric models

The infinite relational model of Kemp et al. [2006] and the latent fea-

ture relational model of Miller et al. [2009] are examples of nonparametric

models, in the sense that it is not needed to define the number of blocks or

features in advance, but rather they are discovered from the data. Another

example is an the infinite latent attribute model by Palla et al. [2012], that

combines the ideas of feature models with cluster models, by considering

partition of features into sub-clusters.

These nonparametric models were developed in the Machine Learning

community and massively use Bayesian nonparametrics. The advantage

of such approach is that the estimation and inference can be successfully

performed even in the absence of covariates, as the highly flexible models

can discover the underlying structure in data automatically. The downside,

though, is that such models are usually quite complex, and hence often less

interpretable.

An interesting development is presented in Lloyd et al. [2012]. The

authors propose a nonparametric model, that also can be put in a general

framework of (2.2), but the function h is assumed to be a parameter itself.

For this aim a Gaussian Process prior is used for h.

There is also an overview of some other models that can be framed into

the general framework of latent variable models in Lloyd et al. [2012].

2.4.4 Models for dynamic network data

We are still under the assumption of binary network data. The focus of the

thesis is to study and model dynamically evolving networks. The options

to describe the evolution of networks are many, so to fix the setting, we

assume that: the set of actors in the network does not change with time,

but the links can evolve over time, disappear or appear; the observations

are made at the discrete time-points 1, . . . , T . In general, the underlying
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dynamic process may be continuous, but observed only at discrete time

points.

Thus, the data can be encoded in an array Y = (Yi,j,t)i,j=1...N,t=1...T ,

where Yi,j,t denotes the relation between actors i and j at time point t.

We may also have additional covariate information for actors or pairs,

either changing over time or not, and we denote by X = (Xi,j,t)i,j,t≥1 where

Xi,j,t = (Xi,j,k,t)k=1,...,p for each triple (i, j, t).

One of the first probabilistic dynamic network models was introduced

by Holland and Leinhardt [1977]. Their assumption is that there is an

underlying continuous Markov process, which consists of changes of one

network link independently of the others. The assumption of Markov de-

pendence is quite common for modeling dynamic evolution, whether ap-

plying it directly or via a hidden Markov models.

For many of the static models described above, extensions to dynamic

case have been developed. In particular, for the latent variable setting, a

straightforward idea is to assume that the underlying latent variables evolve

over time in a Markovian way. Independent Markov evolution for these

variables is usually assumed. Sarkar and Moore [2005] develop a dynamic

version of the latent distance model of Hoff et al. [2002]. They propose

independent random walk evolution for the latent positions. However,

Sarkar and Moore [2005] do not use a statistical approach, but rather

develop approximation algorithms for the estimation.

Foulds et al. [2011] extend the latent feature model of Miller et al.

[2009] in a similar fashion, by using independent Markov evolution for

each feature of each actor.

Other proposals include Rodriguez [2012], who used an infinite hid-

den Markov model for the block memberships variables in an extension

of the infinite relational model of Kemp et al. [2006]. Westveld and Hoff

[2011] extend the model with sender and receiver effects as the latent vari-

ables, by considering a first-order autoregressive structure over time for

these variables. A dynamic extension of the mixed-membership stochastic

blockmodel was proposed in Xing et al. [2010], by means of a dynamic

state-space model for the vectors of mixed-membership.
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Another interesting development in Heaukulani and Ghahramani [2013]

assumes that the previously observed links influence the latent variables

at the next time point. This model was introduced as an extension of the

latent feature model, but the idea can be easily applied to other examples

of latent variable models.

Good overviews of these and other dynamic extensions are presented

in the recent review papers by Snijders [2011, Chapter 3] and Goldenberg

et al. [2010, Chapter 4]. Although statistical literature for dynamic net-

works is rapidly evolving, many problems are still open. Motivated by that

we try to construct a unifying framework for dynamic models similar to the

one described in this Chapter. First steps to this are presented in Chapter

3. Also adding a dependence across latent variables corresponding to dif-

ferent actors in the dynamic evolution seems of interest. This direction is

explored in Chapter 4.

2.5 Final remarks

The large part of research we did not touch in this review chapter is com-

putations.

With the rapid expansion of interest in networks, the size and complex-

ity of currently available networks are exploding and cannot be compared

with the examples used in the early models. Popular social network web-

sites claim to include hundreds of millions of users. Protein interaction

networks may include up to thousands of nodes. Thus, a big area of re-

search is focused on developing efficient computation algorithms for the

networks of such size.

For very large datasets, the development of efficient computation al-

gorithms is a crucial challenge. Especially, for the networks that evolve

constantly, and the information is updated very fast, the algorithms should

keep up. Unfortunately, often it means sacrificing more expressive model-

ing approaches in favor of simple but fast ones.

A good review paper focusing on the challenges and solutions is Hunter

et al. [2012].
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(b) Fruchterman-Reingold
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(c) SVD
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(d) MDS

Figure 2.2: Different graph layouts for the INFOCOM data at time t =

20; only nodes with non-zero degree are shown: (a) random layout, (b)

layout obtained from the “force-directed” algorithm of Fruchterman and

Reingold [1991], (c) layout based on the singular value decomposition of

the adjacency matrix, (d) layout based on multi-dimensional scaling of the

shortest path distance matrix. Created with igraph R-package by Csardi

and Nepusz [2006]

.
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Figure 2.3: Evolution of total number of links in the INFOCOM dataset

over time
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Chapter 3

Functional representation

of Markov exchangeable

sequences

In this chapter we introduce some underlying concepts that are of gen-

eral interest in probability and Bayesian statistics, and in particular, form

basis for some approaches in modeling network data. We discuss vari-

ous notions of exchangeability and different types of representation theo-

rems, both in the spirit of de Finetti and in the functional form following

Aldous [1981] and Kallenberg [2005]. This chapter provides an original

contribution in giving functional representation theorem for Markov ex-

changeable sequences. Further a representation theorem is provided for the

row-column exchangeable array of Markov exchangeable sequences. These

are interesting results on their own, and can be useful for applications in

dynamic network modeling.

3.1 Introduction

Various notions of symmetry are central for statistical modeling. The most

basic type of (in)dependence is the assumption that random variables are

independent and identically distributed (i.i.d.). The more general notion

Tesi di dottorato "Bayesian Modeling of Dynamic Network Data"
di NAZAROV MAXIM
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2014
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



24

of exchangeability, discussed in the next section, is tightly connected with

Bayesian approach to statistics and was advanced by Bruno de Finetti

starting from the 1930-s. Further extensions of this notion, such as par-

tial exchangeability, also emerged from work of de Finetti and others. In

particular, array generalizations were thoroughly studied in the 1980-s by

Aldous [1981, 1985] and Hoover [1979, 1982]. These ideas are not strictly

related to Bayesian statistics, but reflect the assumptions we may have

about the observations or other quantities, such as errors.

In general, various types of exchangeability assume invariance of the

joint distribution of random variables under some group of permutations. A

comprehensive coverage of the symmetry considerations leading to notions

of exchangeability is provided by Kallenberg [2005], with Chapter 7 entirely

dedicated to arrays.

3.2 Functional representations

For different assumptions of exchangeability described in this chapter, rep-

resentation theorems have the aim of characterizing these assumptions in

terms of simpler objects. The “classical” approach works for the sequences

that are exchangeable (Section 3.3), partial exchangeable (Section 3.4) or

Markov exchangeable (Section 3.5), while when dealing with arrays, other

approach is needed. It was pioneered by Aldous [1981] and Hoover [1982]

and involves functional representations, in which the joint distribution of

the array can be expressed in terms of functions of collections of uniform

random variables. Such an approach can also be taken to give alternative

representation theorems for the former assumptions on the sequences. We

specify the notation we will use, and basic definitions.

Definition 3.2.1. We say that a random sequence or array X has a func-

tional representation f(J), if there exists a measurable function f , that

acts on a family J of independent uniform U(0, 1) random variables, and

satisfies X
d
= (f(J)). Here the joint distributions are equal, meaning that

f(J) is of the same dimension as each element of X and J is indexed
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accordingly.

This idea is explained on the examples below with particular represen-

tations.

Definition 3.2.2. By coding ξ for an S-valued random variable X we

mean a representation X
d
= f(ξ) where ξ ∼ U(0, 1), and f is a measurable

function f : (0, 1)→ S.

It is easy to see that the following result holds.

Proposition 3.2.1. For a Borel space S, each S-valued random variable

X allows a coding f(ξ).

Proof. First consider S = R. Denote with FX a cumulative distribution

function of X. Let f(ξ) = F−1
X (ξ), where F−1

X is the quantile function, i.e.

F−1
X (t) = inf{x : F (x) ≥ t}. Then f(ξ)

d
= X. Now let S be any Borel

space. From the definition, there exists an isomorphism φ between S and

R. Then X̄ = φ ◦X is a random variable on R with distribution function

FX̄ . Take a function f = φ−1 ◦ F−1
X̄

. Then f(ξ)
d
= X for a ξ ∼ U(0, 1).

Expanding the same idea for an i.i.d. sequenceX = (Xi)i≥1, there exists

a function f such that the following representation hold: (X1, X2, . . . )
d
=

(f(ξ1), f(ξ2), . . . ). In view of Definition 3.2.1, we can write X
d
= (f(ξi))i≥1

and say that X has functional representation f(ξi). Further we assume

that the space S is Polish, and so Borel, if not specified otherwise.

Remark (Notational conveniences). In the sequel we will sometimes omit

lower indexing if enumeration of array goes across all dimensions. So by

writing (Xi,j) we will imply (Xi,j)i,j≥1. Also we will use shortcut notation

for joint equality in distribution as follows: when writing, for example,

(Xi)
d
= (Yi) we mean (Xi)i≥1

d
= (Yi)i≥1 that is (X1, X2, . . . )

d
= (Y1, Y2, . . . ).

3.3 Exchangeability

Exchangeability is a probabilistic property, that generalizes the i.i.d. prop-

erty. Informally, exchangeability for a sequence of random variables means

that the order of its elements is not relevant. More formally
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Definition 3.3.1. A sequence (Xi)i≥1 of random variables on a measurable

space S is called (infinitely) exchangeable if for any n and any permutation

π of {1, 2, . . . , n}

(X1, X2, . . . , Xn)
d
= (Xπ(1), Xπ(2), . . . , Xπ(n)).

The well-known de Finetti representation theorem states that every

exchangeable sequence can be represented as a mixture of independent

and identically distributed (i.i.d.) random variables:

Theorem 3.3.1 (de Finetti). Let X = (Xi)i≥1 be an exchangeable sequence

of random variables on a measurable space S. Then there exists a random

probability measure ν on S, called directing random measure for X, such

that X is conditionally i.i.d. given ν, i.e.

P (X ∈ ·|ν) = ν∞(·) a.s.;

moreover, ν is a.s. unique and is given by

ν(A) = lim
n→∞

1

n

n∑
i=1

IA(Xi) a.s.

Alternatively we can write:

P (X ∈ ·) = Eν∞(·) =

∫
ν∞(·)µ(dν)

where µ (measure on probability measures on S) is the probability law of

ν, called de Finetti measure of the sequence X.

As can be seen from the theorem, exchangeability is a natural represen-

tation of sampling at random: at first a distribution ν is chosen randomly

from a measure µ, and then X is sampled from ν.

De Finetti representation theorem plays a fundamental role in Bayesian

statistics, providing motivation for the Bayesian approach: for an ex-

changeable sequence it motivates the use of prior distribution and con-

ditionally independent sampling from a common distribution.

An equivalent representation theorem can be provided in a functional

form, that was shown by Aldous [1981]:
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Theorem 3.3.2 (Aldous [1981, Lemma 1.5]). An infinite sequence X =

(Xi)i≥1 is exchangeable if and only if there exists a measurable function

f : (0, 1)2 → S, such that for independent U(0, 1) random variables α and

i.i.d. (ξi)i≥1, X
d
= (f(α, ξi))i≥1.

Using the Definition 3.2.1, we say that X has a functional representa-

tion f(α, ξi).

Comparing the two representation theorems, we can see that the role of

uniform random variables is the following: α in Theorem 3.3.2 is used for

the coding of the directing random measure ν, obtained through its distri-

bution, µ. While ξi’s are used for the coding of Xi’s, as their distribution

given ν, is known.

The functional representation provides an interpretation for an ex-

changeable sequence: each element Xi is influenced by a common effect

α and by individual effect ξi.

Remark. It is interesting to look at the particular form of the function f

when X is a binary sequence. So, suppose that each Xi takes values 0

or 1 only. Then the function f from Theorem 3.3.2 can be written as an

indicator f(α, ξi) = I(ξi < g(α)) for some function g. Hence, Xi|g(α) ∼
Bern(g(α)). We can see clear parallels with the de Finetti theorem for 0−1

case: denoting g(α) = ν, we have

Xi|ν
iid∼ Bern(ν),

ν ∼ µ.

The theorem 3.3.2, as well as functional representations given further,

can be rewritten also in terms of almost sure equality, using the so called

“transfer theorem”:

Theorem 3.3.3 (Kallenberg [2002, Corollary 6.11]). Fix two Borel spaces

S and T , a measurable mapping f : T → S, and some random elements ξ

in S and η in T with ξ
d
= f(η). Then there exists a random element η̃

d
= η

in T with ξ = f(η̃) a.s.

So the alternative formulation of Theorem 3.3.2 would be:
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Theorem. An infinite sequence X = (Xi)i≥1 is exchangeable if and only if

there exists a measurable function f : (0, 1)2 → S and some U(0, 1) random

variables ᾱ and (ξ̄i), such that X = (f(ᾱ, ξ̄i))i≥1a.s..

Further in the text we will mainly consider distributional equalities for

simplicity. In this case, in principle, the collections of uniform variables

can be taken from one large i.i.d. collection with rich enough set of indices.

For example, functional representation from the previous theorem can be

expressed as f(ξ∅, ξi), where ξ’s come from a collection of i.i.d. U(0,1)

variables, indexed by subsets of N. We will not pursue this generality, but

such notation is used, for example, by Kallenberg [2005] and explained in

the Section 7.1 of the book.

3.4 Partial exchangeability

The assumption of exchangeability is not always desirable. Think of sam-

ples including elements from several distinct groups, as for example in the

case of a population consisting of males and females. One of the natural

generalizations of exchangeability appropriate for this case is partial ex-

changeability introduced in de Finetti [1938]. We should note that the term

“partial exchangeability” has been used in the literature in several different

meanings (see e.g. Aldous [1981] or Diaconis and Freedman [1980]). In all

cases the “partiality” means some restriction on the class of permutations,

that leaves joint distribution invariant. As there is no sure agreement in

the use of the term, we will use the original definition of de Finetti [1938,

1972]. But we will also see that, under certain conditions, it is in fact

equivalent to the definition of Diaconis and Freedman [1980].

Informally, when we speak about partial exchangeability we do not

distinguish the order of the elements inside the groups, while assuming

that the elements from different groups may be distinguishable.

Definition 3.4.1. An array X = (Xi,j)i∈I,j≥1 is called partially exchange-

able (by rows) if its distribution is invariant under finite permutations
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within rows:

X
d
= (Xi,πi(j))i∈I,j≥1

for all finite permutations π1, π2, . . .

Remark. The array X may have a finite or countable number of rows |I|,
while number of columns is infinite.

Remark. We may further assume that rows of X are also exchangeable. In

this case we obtain partially exchangeable RCE array. We will comment

on this in section 3.6.

There exists an extension of de Finetti representation theorem 3.3.1 to

this case:

Theorem 3.4.1 (de Finetti [1938]). Let X = (Xi,j)i=1,...,n;j≥1 be a partially

exchangeable by rows array of random variables on a measurable space S.

Then there exists a vector of probability measures ν = (ν1, . . . , νn) such that

rows Xi,· are conditionally independent given ν, and for each i the sequence

Xi,· = (Xi,j)j≥1 is i.i.d. according to νi, i.e. for the sets (Ai)
n
i=1 ∈ S∞:

P (X1,· ∈ A1, . . . , Xn,· ∈ An) =

∫
ν∞1 (A1) . . . ν

∞
n (An)µ(dν1, . . . , dνn).

The νi are directing random measures for Xi,·, and µ (measure on vec-

tors of probability measures) is the probability law of ν = (ν1, . . . , νn), called

de Finetti measure of X.

Using the proof of this result, it is not difficult to obtain a functional

analogue of the representation theorem:

Theorem 3.4.2. For an S-valued array X = (Xi,j)i,j≥1 of random vari-

ables the following are equivalent:

1. X is partially exchangeable.

2. X can be represented as X
d
= (fi(α, λi,j))i,j≥1 for some measurable

functions fi : (0, 1)2 → S and independent U(0, 1) random variables

α, (λi,j)i,j≥1.
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Proof. (1⇒ 2) Following the proof of de Finetti’s representation theorem

for partially exchangeable random variables (see Aldous [1985, Corollary

3.9]), let νi be the directing random measure for the row Xi,· = (Xi,j)j≥1,

and let S = σ(νi : i ≥ 1). Then νi is the regular conditional distribution

for Xi,j given S, and rows Xi,· are conditionally independent given S.

So for all i, given S, (Xi,j)j≥1 are i.i.d. with distribution νi and thus

have a coding (Xi,j)i,j≥1
d
= (Gνi(λi,j))i,j≥1, where Gνi is the function ob-

tained by Proposition 3.2.1. The measure νi depends on S and i, so

(Xi,j)i,j≥1
d
= (fi(α, λi,j))i,j≥1 taking additionally coding α for S.

(2 ⇒ 1) Follows immediately from the functional representation and

Definition 3.4.1 of partial exchangeability.

Remark. We may also write the representation in (2) as

(Xi,j)i,j≥1
d
= (f(α, i, λi,j))i,j≥1,

which suggests the interpretation of the elements of partial exchangeable

array X as being dependent on a general effect, a fixed row effect and an

individual effect.

Remark. As before, it is interesting to look at the particular example for

the binary case. We suppose that each Xi,j takes values 0, 1 only. Thus,

the functions fi from theorem 3.4.2 can be rewritten as:

fi(α, λi,j) = I(λi,j < gi(α))

with some other functions gi. It means that (Xi,j)j≥1|gi(α) ∼ Bern(gi(α)),

and writing νi = gi(α) we can again see parallels with the de Finetti theo-

rem for 0− 1 partially exchangeable sequences:

Xi,j|νi
iid∼ Bern(νi),

(νi) ∼ µ.

3.5 Markov exchangeability and successors

As we have seen, exchangeable sequences are mixtures of i.i.d. sequences.

As i.i.d. is a basic assumption for sequences, in the dynamic case, Markov
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property can be considered as a basic type of dependence. Diaconis and

Freedman [1980] studied invariance properties that can characterize mix-

tures of Markov chains. Following Zaman [1984] and Zabell [1995] we use

the term “Markov exchangeability” to denote “partial exchangeability” as

defined in Diaconis and Freedman [1980].

Markov exchangeability may be considered as a generalization of ex-

changeability for the case of Markov chains: if a priori we do not distin-

guish the order of transitions (Xi, Xi+1), then the sequences with the same

transition counts and the same initial state should be assigned the same

probability. More formally:

Definition 3.5.1. A sequence X = (Xi)i≥0 of random variables on a count-

able state space S is called Markov exchangeable (ME) if for any n and any

two sequences σ = (σ0, . . . , σn) ∈ Sn+1, τ = (τ0, . . . , τn) ∈ Sn+1 with the

same starting state and the same transition counts, P (X0 = σ0, X1 =

σ1, . . . , Xn = σn) = P (X0 = τ0, X1 = τ1, . . . , Xn = τn). These sequences

are called equivalent (σ ∼ τ).

We will require two further definitions:

Definition 3.5.2. A sequence X = (Xi)i≥0 is called recurrent if

P (Xi = X0 infinitely often) = 1.

Definition 3.5.3. Consider the set P of random transition matrices on

S × S. A sequence X = (Xi)i≥0 is called a mixture of Markov chains if

there exists a distribution µ on the space S ×P such that for any n ≥ 1:

P (X0 = i0, . . . , Xn = in) =

∫
P

n−1∏
m=0

p(im, im+1)µ(i0, dp).

The representation theorem for Markov exchangeable sequences was

given in Diaconis and Freedman [1980]:

Theorem 3.5.1 (Diaconis and Freedman [1980, Theorem 7]). If a sequence

X on a countable state space S is recurrent, then X is Markov exchangeable

if and only if it is a mixture of Markov chains.
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We want to provide an equivalent functional representation for recur-

rent Markov exchangeable sequences. To this aim we need some auxiliary

facts, connecting Markov exchangeability and partial exchangeability. Such

a connection was hinted at by de Finetti [1959] and Zabell [1995], and the

equivalence (under appropriate conditions) of these two notions was proved

in Fortini et al. [2002].

Consider a recurrent Markov exchangeable sequence X on a finite or

countable state space S. It can be shown (see Fortini et al. [2002]) that each

state i ∈ S, that is visited, recurs infinitely often (hence sequence is called

strongly recurrent), say at times τ i1, τ
i
2, . . . . We can consider the sequence

of successor states for state i, defined as Vi,j = Xτ ij+1, j ≥ 1. From the

strong recurrence property, such sequences are infinite. It was shown in

Zabell [1995] that for every i the sequence (Vi,1, Vi,2, . . . ) is exchangeable.

Combining sequences of successors for each state in array, we obtain

V = (Vi,j)i∈S,j≥1 with Vi,j being the j-th successor of the state i. Fortini

et al. [2002] proved that under assumption of recurrence, Markov exchange-

ability and partial exchangeability are equivalent, more specifically:

Theorem 3.5.2 (Fortini et al. [2002, Theorem 2]). The successors array

V of the sequence X is partially exchangeable if and only if X is recurrent

and Markov exchangeable.

3.5.1 Representations for Markov exchangeability

Now we can use the representations for partially exchangeable sequences,

discussed in Section 3.4, to obtain a characterization for recurrent Markov

exchangeable sequences. Starting from the functional representation from

Theorem 3.4.2, we can generate array V which is partially exchangeable,

and construct a Markov exchangeable sequence such that V is its matrix of

successor states. Conversely, any recurrent Markov exchangeable sequence

has a partial exchangeable successors matrix, so there exist functions fi and

families of random variables such that it can be represented as in Theorem

3.4.2.

Assume that the state space S is finite or countable. By relabeling the
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elements of the state space, we may assume, without loss of generality, that

S = {1, . . . , k}, k ≤ ∞.

The direct consequence of the functional representation given in Theo-

rem 3.4.2 and 3.5.2 is the following

Theorem 3.5.3. Let S = {1, . . . , k}, k ≤ ∞ and V = (Vi,j)i∈S,j≥1. The

following are equivalent:

1. The array V has functional representation V
d
= (fi(α, λi,j))i∈S,j≥1,

where α, (λi,j)i∈S,j≥1 are i.i.d. U(0, 1) random variables and (fi)i∈S

is a collection of measurable functions fi : (0, 1)2 → S.

2. A sequence X = (Xi)i≥0 with starting state X0 = 1, generated from

V as successors array, is a recurrent Markov exchangeable sequence

on S.

Remark. Actually it is also possible to consider more general uncountable

space as the state space S, see Fortini et al. [2002].

We describe in more detail the construction of a Markov exchangeable

sequence from the array of successor states in Theorem 3.5.3:

Take X0 = 1. Using V as the array of successors, for each ω ∈ Ω set for

i ≥ 1 Xi(ω) = VXi−1(ω),g(X0(ω),...,Xi−1(ω)), where g(x0, . . . , xi−1) is the number

of occurrences of the state xi−1 among the first i elements of (xi)i≥0. The

constructed sequence (Xi(ω))i≥0 will be a realization of a recurrent and

Markov exchangeable sequence of random variables.

So, basically, we have a recursive representation

Xn = f(α,Xn−1, λXn−1,g(X0,...,Xn−1)).

Looking at this representation we see that indexing of λ by two indexes

is redundant. In fact, pair Xn−1, gn can appear only once (we have only

one j-th successor of state i), and (λi,j) is a family of i.i.d. uniform random

variables. Thus, without loss of generality, we can replace λXn−1,gn in rep-

resentation by λn, as in fact this element is responsible for the randomness

in Xn not accounted for in other elements.

Tesi di dottorato "Bayesian Modeling of Dynamic Network Data"
di NAZAROV MAXIM
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2014
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



34

So the representation changes to:

∀n, Xn = f(α,Xn−1, λn) a.s. (3.1)

for independent uniform(0, 1) random elements α and i.i.d. collection

(λn)n≥1.

Note that the recursive representation (3.1) follows from well-known

recursive representation for Markov chains: Yn = g(Yn−1, λn) a.s. (see, for

example, Kallenberg [2002, Proposition 8.6]) by virtue of Theorem 3.5.1,

as additional mixing variable can be coded as α as in, for example, repre-

sentation for exchangeable sequences (Theorem 3.3.2).

We also note that here we use equality almost surely and not in distri-

bution, but as we said, all the functional representation results can be put

in such form using the transfer theorem 3.3.3.

Next, we would like combine the assumption of Markov exchangeabil-

ity with the array exchangeability. Such assumptions give a 3-dimensional

array with symmetry properties, that can be appropriate for the dynamic

network modeling. We start by reminding the relevant definitions and rep-

resentation theorems for exchangeable arrays, and then move to combining

RCE with ME in Section 3.8.

3.6 Row-column exchangeability

For two-dimensional case, exchangeability may be generalized in a form

of row-column exchangeability. Assume that X = (Xi,j)i,j≥1 is an infinite

array of random variables. The following generalization were proposed:

Definition 3.6.1. X is called row-column exchangeable (RCE) if

X
d
= (Xπ(i),σ(j))i,j≥1 for every finite permutations π of row indices and σ of

column indices.

Definition 3.6.2. X is called jointly RCE array if X
d
= (Xπ(i),π(j))i,j≥1

for every finite permutation π. Analogously, RCE arrays are sometimes

termed separately RCE, to highlight the differences.
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Also useful is

Definition 3.6.3. If (Xi,j : max(i, j) ≤ n) is independent of

(Xi,j : min(i, j) > n) for each n, the array is called dissociated.

For RCE, jointly RCE and dissociated RCE arrays functional represen-

tation theorems were proved by Aldous [1981].

Theorem 3.6.1 (aggregated results from Aldous [1981]).

1. X is a RCE array if and only if it has a functional representation

X
d
= (f(α, ξi, ηj, λi,j))i,j≥1

2. X is a dissociated RCE array if and only if it has a functional rep-

resentation

X
d
= (f(ξi, ηj, λi,j))i,j≥1

3. A RCE array is a mixture of dissociated RCE arrays.

4. X is a jointly RCE array if and only if it has a functional represen-

tation

X
d
= (f(α, ξi, ξj, λ{i,j}))i,j≥1

with f symmetric in the 2nd and 3rd argument, and by writing λ{i,j}
we mean that the collection λ is indexed by unordered sets {i, j}, and

so the same elements are used for Xi,j and Xj,i.

Again representations for X can be interpreted in a way that Xi,j is

defined as a function of overall effect, row-effect, column-effect and indi-

vidual effect. These representations are used to motivate latent variable

network models, as described in Chapter 4.

A particular example that is relevant for the network modeling is the

case of binary arrays X. In this case the functional representation can be

simplified the following way:
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Proposition 3.6.2 (from Lloyd et al. [2012]). Let X = (Xi,j)i,j≥1 be a

RCE array with Xi,j taking values in {0, 1}. Then there exists a function

Θ : (0, 1)3 → (0, 1) and independent collections of Uniform(0,1) random

variables α, (ξi), (ηj), (λi,j) such that

X
d
= (I(λi,j < Θ(α, ξi, ηj)))

where IA(x) = 1 when x ∈ A and 0 otherwise.

Proof. From Theorem 3.6.1 above, X has a functional representation f(α, ξi, ηj, λi,j).

Fixing the values of α, ξi, ηj, the function f(α, ξi, ηj, ·) is defined on (0, 1)

and takes values in {0, 1}. Suppose it is equal to 1 on a subset A of (0, 1)

and 0 on its complement. Since λi,j is uniform(0, 1), the probability of

f = 1 is |A| and P (f(α, ξi, ηj, λi,j) = 1) = P (λi,j ∈ A) = P (λi,j < |A|) =

P (I(λi,j < |A|) = 1). As the subset A depends on α, ξi and ηj, define

Θ(α, ξi, ηj) = |A|. This provides the desired representation.

The other side of the proof is obvious, as the function given is a partic-

ular case of functional representation that gives a RCE array, and it clearly

takes values in {0, 1}.

Let us note that the representations in Theorem 3.6.1 can be also refor-

mulated in terms of random functions as is done in Lloyd et al. [2012] and

Orbanz and Roy [2013]: X = (Xi,j)i,j≥1 is RCE if and only if there is a ran-

dom measurable function F : (0, 1)3 → S such thatX
d
= (F (ξi, ηj, λi,j))i,j≥1.

And similarly for jointly RCE. The α in representations above correspond

to randomness in choosing the function F .

The function Θ in Proposition 3.6.2 in this terms also changes accord-

ingly to a random Θ(ξi, ηj), or symmetric Θ(ξi, ξj) for the case of jointly

RCE array, and so corresponds to the following sampling scheme, resulting

in a 0−1 array X:

1. sample a random function Θ : (0, 1)2 → (0, 1)

2. for all (i, j) sample ξi, ξj from U(0, 1)

3. compute Θ(ξi, ξj) and sample λi,j from U(0, 1)
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4. set Xi,j = I(λi,j < Θ(ξi, ξj))

Alternatively, it means that Xi,j|θi,j
ind∼ Bern(θi,j) where (θi,j) is RCE

of particular form θi,j = Θ(ξi, ξj).

Another remark is that functional representations for RCE arrays are

closely connected with notions of graph limits. For this interesting devel-

opment see Lovász [2009] and discussions in Aldous [2010], Orbanz and

Roy [2013].

3.7 Partial Exchangeability and RCE

In section 3.4 we mentioned the possibility of assuming row exchangeabil-

ity in a partially exchangeable array. Relating to the previous section,

a row-column exchangeable array is a particular case of array with these

properties. This is easy to see as column exchangeability is an example of

partial exchangeability within rows, when all permutations are taken to be

the same.

Definition 3.7.1. X is called PE-RCE array, if it is RCE and partially ex-

changeable across rows, i.e. X
d
= (Xσ(i),πσ(i)(j)) for every finite permutations

σ and π1, π2, . . .

For such arrays, with additional property of dissociation, there is a

functional representation result by Aldous [1985]:

Theorem 3.7.1 (14.16 in Aldous [1985]). X is a dissociated partially ex-

changeable RCE array if and only if it has a functional representation

X
d
= (f(ξi, λi,j))i,j≥1.

Removing the assumption of dissociation we show that the following

result holds:

Theorem 3.7.2. For a RCE array X = (Xi,j)i,j≥1 the following are equiv-

alent:

1. X
d
= (Xi,πi(j))i,j≥1 for all finite permutations π1, π2, . . . (partial ex-

changeability)
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2. X
d
= (f(α, ξi, λi,j))i,j≥1 for some f : (0, 1)3 → S and independent

uniform collections of random variables

3. X is a mixture of dissociated PE-RCE arrays

Proof. (2⇒ 3) For each a ∈ [0, 1], let fa(b, c) = f(a, b, c). By conditioning

on α in the representation (2) we see that X is a mixture (over a) of arrays

Xa, where Xa
i,j = fa(ξi, λi,j). But by Theorem 3.7.1 Xa is a dissociated

PE-RCE array.

(3 ⇒ 2) Given the mixing distribution Θ = θ, X is dissociated RCE

array with property (1). So by Theorem 3.7.1 it can be represented as

fθ(ξi, λi,j). Now take a coding α for Θ. Then there exists a function

f : (0, 1)3 → S such that the array X has the same distribution as the

array (f(α, ξi, λi,j))i,j≥1.

(2 ⇒ 1) Same as in the case (b ⇒ a) of Theorem 3.7.1 for dissociated

case, easily follows from the fact that (λi,j) are independent and identically

distributed.

(1⇒ 2) As in the proof of Theorem 3.7.1, let µi be the directing random

measure for (Xi,j)j≥1. By de Finetti theorem for partially exchangeable

sequences ([Aldous, 1985, Corollary 3.9]) for each pair (i, j) we have: µi is

a regular conditional distribution for Xi,j given σ (Xi′,j′ : (i′, j′) 6= (i, j)).

Note that we can rewrite condition (1)+RCE is the condition in Defi-

nition 3.7.1:

(1’). X
d
= (Xσ(i),πσ(i)(j))i,j≥1 for all finite permutations σ, π1, π2, . . .

And, in particular, the distribution of sequence of rows is exchangeable.

To see this, take in (1’) for all i, πi = id, leaving all the elements the same,

and permute only with σ.

As for each i, µi is the directing random measure for rowXi,· = (Xi,j)j≥1,

then we know from Aldous [1985, Lemma 2.15], that µi is the limit of the

empirical distribution of sequence Xi,·:

µi(·) = lim
n→∞

1

n

n∑
j=1

δXi,j
(·).

So we obtain that µi’s are also exchangeable.
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So by de Finetti theorem 3.3.1 this sequence is a mixture of i.i.d. and

there exists a random measure ν such that (µ1, µ2, µ3, . . . ) | ν = θ
iid∼ θ.

Then by usual construction, we assume coding α for ν, i.e. α ∼ U(0, 1),

ν
d
= Gν(α), where Gν is the function obtained by Proposition 3.2.1 for ν.

Now, given ν = θ, the distribution of µ is known: µi|ν = θ
iid∼ θ. So we can

code µi’s by ξi with µi
d
= Gµ(ξi). Then, given µi, (Xi,j)j≥1 are i.i.d. with

distribution µi. So, finally, we code Xi,j
d
= Gµi(λi,j).

Combining the three above codings we obtain a desired functional rep-

resentation X = (Xi,j)i,j≥1

d
= (f(α, ξi, λi,j))i,j≥1 for α, (ξi)i≥1, (λi,j)i,j≥1 in-

dependent U(0, 1).

Remark. Comparing Theorem 3.4.2 and 3.7.2 we can see that the removal

of the assumption of exchangeability of rows replaces random ξi’s with

non-random i’s in the representation.

3.8 Combining RCE and ME

Now to combine properties of row-column exchangeability and Markov

exchangeability, define an infinite 3-dimensional array X in the following

way:

Let X = (Xi,j)i,j≥1 be a (jointly) RCE array of sequences, i.e. each Xi,j =

(Xi,j,t)t≥1 with Xi,j,t ∈ S = {1, . . . , K}, K ≤ ∞. The assumption for the

time evolution is that each Xi,j is Markov exchangeable and recurrent, but

these sequences are not necessary independent, as we allow dependence

across i, j by RCE property.

We formalize these two assumptions:

A1. X is a jointly RCE array of sequences, i.e. (Xi,j)
d
= (Xσ(i),σ(j)) for

all finite permutations σ of N, which is the same as writing (Xi,j,t)
d
=

(Xσ(i),σ(j),t).

A2. For every pair (i, j) the sequence (Xi,j,t)t≥1 is Markov exchangeable

and recurrent.
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Our aim is to have a functional representation of X. By Theorems 3.6.1

and 3.5.3, we have two functional representations for assumptions A1 and

A2.

We show that they can be combined in the following result.

Theorem 3.8.1. A 3-dimensional array X satisfies assumptions (A1) and

(A2) if and only if there exist a function f , such that for independent

collections of i.i.d. U(0,1) random variables the following representation

holds:

X = (Xi,j,t)
d
=
(
f(α, ui, uj, w{i,j}, λ{i,j},t, Xi,j,t−1)

)
(3.2)

Proof. (⇒):

We show a general case for (separately) RCE array, and then just change

uniform random variables in the representation accordingly for jointly RCE

array.

As X is a RCE array, we can repeat initial steps of the proof of func-

tional representation theorem 3.6.1, taken from Aldous [1985]. Suppose

that X is a part of the array (Xi,j)i,j∈Z. Define A,B,C, the following way:

A = (Xi,j)i,j≤0,

Bi = (Xi,j)j≤0, B = (Bi)i≥1,

Cj = (Xi,j)i≤0, C = (Cj)j≥1.

Following Aldous [1985, 14.11], we have that:

1. B1, B2, . . . , C1, C2, . . . are conditionally independent and identically

distributed, given A. Conditional distributions of Bi and Cj do not

vary with i and j respectively

2. (Xi,j)i,j≥1 are conditionally independent given (A,B,C). Conditional

distribution of Xi,j depends only on (A,Bi, Cj).

Take a coding α for A and condition everything on α. Then we can

choose codings ξ = (ξi) for B and η = (ηj) for C. As, conditionally on A,

B and C are independent, so are the uniform sequences (ξi) and (ηj). Then
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there exist a coding function g1, such that g1(α, ξi, ηj) is the conditional

distribution of Xi,j, given (A,B,C).

So, given (α, ξ, η), the distribution of Xi,j is known and depends only on

(α, ξi, ηj). As Xi,j = (Xi,j,t)t≥1 is a sequence, it means that the joint distri-

bution of the whole sequence is known. And, in particular, the transition

matrix πi,j of Xi,j is

πi,j
d
= g2(α, ξi, ηj) (3.3)

for some function g2.

But, given the transition matrix, Xi,j is a Markov chain. So, by our

results from Theorem 3.5.3,

(Xi,j,t)|πi,j
d
=
(
gπ

i,j

3 (Xi,j,t−1, λ
i,j
t )
)
. (3.4)

As the Xi,j are conditionally independent, given (α, ξ, η), so the (λi,jt ) can

be taken from sequences independent across (i, j).

Combining (3.3) with (3.4), we obtain:

(Xi,j,t)|(α, ξ, η)
d
= (g4(α, ξi, ηj, Xi,j,t−1, λi,j,t))

for some function g4. And as given (α, ξ, η), the (Xi,j) are independent, we

use coding βi,j to get the unconditional representation

(Xi,j,t)
d
= (f(α, ξi, ηj, βi,j, Xi,j,t−1, λi,j,t))

Changing the indexing of uniform collections for jointly RCE array, we

get the desired representation (3.2).

(⇐):

For fixed (i, j) define

γ(i,j) =


α

ξi

ηj

βi,j


Then, because of the independence and identical distribution of the

initial collections of uniform random variables, we have that γ(i,j) are in-

dependent from λi,j,t. Then

Xi,j = (Xi,j,t)t≥1
d
=
(
f
(
γ(i,j), Xi,j,t−1, λ{i,j},t

))
t≥1
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and by changing function as needed we can obtain representation

Xi,j = (Xi,j,t)t≥1
d
= (f̄(γ̄, Xi,j,t−1, λ̄t))

with γ̄, λ̄t being independent U(0, 1) random variables. And from (3.1),

Xi,j is Markov exchangeable sequence. And this holds true for every pair

(i, j), as needed for assumption (A2).

Now to show that (A1) also holds, let similarly

β̃{i,j} =

 β{i,j}
(λ{i,j},t)

(Xi,j,t−1)


By construction β̃{i,j}) are i.i.d. Note that joint distribution of shifted

sequences (Xi,j,t−1) have identical distributions because X is RCE.

Then

X
d
=
(
f̃(α, ξi, ξj, β̃{i,j})

)
,

and by appropriate change of the function we obtain a RCE functional

representation for X by uniform(0,1) collections. This shows, by virtue of

Theorem 3.6.1, that condition (A1) is satisfied.

Corollary. It can be shown that an alternative representation in terms of

successors is the following:

Y = (Yi,j,k,l)
d
=
(
fk(α, ξi, ξj, β{i,j}, λ{i,j},k,l)

)
Here Y is a RCE array of partially exchangeable arrays, and Yi,j,k,l repre-

sents l-th successor of state k in the sequence at the (i, j)-th element of the

array Y.

Starting from this representation, new models can be motivated for

dynamic network modeling. The arising interpretation is reasonable: the

array is modeled as function of some non-changing effects on individual

and pair level, by time-evolving effects, and previous values, capturing

dependence.
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Chapter 4

Dynamic latent distance

model for network

analysis

In this chapter we introduce a new statistical model for analyzing dynamic

networks. In particular, we model the overall network cohesion over time

by means of an infinite hidden Markov model. The performance of the

model is illustrated on a simulated data example, and it is also applied to

the INFOCOM dataset discussed in Chapter 2.

4.1 Introduction

One of the main aims of the statistical analysis of network data is the

discovery of hidden structures underlying relations between actors. This

helps to understand the nature of the network and its properties. For the

dynamic networks observed over time, the underlying structures are also

evolving, and capturing such evolution is of interest. Further in the text

we speak about ”dynamic data” or ”dynamic networks”, assuming that

the set of actors is invariant, but the set of links between them can change

over time.

Many models have been proposed for static network data and most of
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them have extensions to the case of dynamic networks. As discussed in

Chapter 2, the latent variables approach provides a rich class of models

able to capture various properties of network data. Therefore it is natural

to consider dynamic extensions of this class of models. The most common

idea for introducing dynamics is to assume that the underlying latent vari-

ables evolve over time. Proposed dynamic extensions usually assume an

independent Markov evolution for these variables, as in Foulds et al. [2011],

who give a dynamic extension of the latent feature model of Miller et al.

[2009]; or Sarkar and Moore [2005], who extend the latent distance model

of Hoff et al. [2002]. Other proposals include Rodriguez [2012], who used

an infinite hidden Markov model for class memberships variables in the

infinite relational model of Kemp et al. [2006]; Westveld and Hoff [2011],

where the latent variables are sender and receiver effects, and they are

considered to have a first-order autoregressive structure over time.

A common limitation for most dynamic models is the assumption that

the evolution of the latent variables is independent. This can be generalized

by assuming an underlying global process governing the latent variable

evolution.

In this chapter we present a new model for the analysis of network

data evolving over time. It is a dynamic extension of the latent distance

model of Hoff et al. [2002], that we describe in detail in Section 4.2. On

its basis, we account for temporal evolution by means of an infinite hidden

Markov model for the latent positions. Thus, our model keeps track of the

general process, underlying changes in latent positions of actors, allowing to

discover structural changes in the cohesion of the network over time, while

keeping the advantages of the static model for each time point, i.e. being

able to capture individual behavior at a fixed time. This is a simple idea,

but it is worth exploring, as it introduces the assumption of a dependent

evolution of the latent positions. Even with a single parameter controlling

this evolution over time, some aspects, such as the implemetation of a

MCMC algorithm for inference, the interpretation and the presentation of

results, present challenges. Therefore, for ease of the exposition, we develop

this simple one-parameter case, while the extension or generalization to a
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more complex and complete model is rather straightforward.

We start by reminding the latent distance model in Section 4.2, then

describe the idea of capturing the cohesion of the network, and explain

infinite hidden Markov models. Our dynamic model follows in Section 4.4,

explaining estimation procedures in Section 4.5. Examples are shown in

Section 4.6.

4.2 Latent distance model for static networks

Based on the idea of a social space, that is a space of unobserved latent

characteristics, Hoff et al. [2002] defined the latent distance model for static

network data. The idea of a social space manifests that each actor has a

position, determined by his characteristics, in this space. Then for actors

that are similar, their positions will be close. The latent distance model

implements this assumption by letting the probability of a link to depend

on the distance between actors’ positions in the unobserved social space.

Additionally, the links are taken to be conditionally independent given

the relative distances between actors.

The model was introduced for binary network data. Formally, let the

data be encoded in the array Y = (Yi,j)i,j=1...N , where each Yi,j is 0 or

1 denoting relation between actors i and j. Both directed or undirected

relations can be modeled with this approach. Covariates may also be ob-

served, which can be either on an individual or a pairwise level. Denote

the covariate information by X = (Xi,j)i,j=1...N where Xi,j = (Xi,j,k)k=1,...,p

for each pair (i, j).

Putting the model in the general framework of latent variable models,

introduced in Chapter 2, here the role of latent variable for each actor i is

played by its position Zi in a latent space Rd. The model itself is a logistic

regression with the conditional independence assumption:

P (Y |Z,X, β) =
∏
i6=j

P (Yi,j|Zi, Zj, Xi,j, β)

P (Yi,j = 1|Zi, Zj, Xi,j, β) = logit−1(β0 + βT1 Xi,j − ‖Zi − Zj‖d)
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The Euclidean distances, denoted by di,j = ‖Zi − Zj‖d, are used in

the model specification. As discussed in Hoff et al. [2002], it is possible

to substitute them with a set of other distance, as long as the triangle

inequality is satisfied for di,j’s. The dimension of the latent space must be

specified; for parsimony and better interpretability it is usually chosen to

be low, i.e. 2 or 3.

The model allows to capture such properties of the dependence in the

data as reciprocity, transitivity and homophily, explained in Section 2.3.

Furthermore, it provides a model-based spatial representation of the data:

by plotting the estimated latent positions together with the observed links,

we obtain a visualization of the assumed social space. Of course, this is

feasible only if the dimension of the latent space is chosen to be low.

Inference for this model has been developed both by maximum-likelihood

and Bayesian approach. The fact that the likelihood is convex as a function

of pairwise distances may be used for likelihood maximization and finding

estimates for the distances. Then, approximated latent positions can be

found by means of multidimensional scaling methods. These methods are

intended for finding estimates for positions corresponding to a given set

of distances. These are the estimates used in the maximum-likelihood ap-

proach. In the Bayesian approach priors are formulated for Z and β and

inference on the unknown parameters is carried out by MCMC sampling.

The implementation details for both approaches are provided in the origi-

nal paper by Hoff et al. [2002].

One of the challenges arising in computations which is worth mention-

ing here, is the un-identifiability of the latent positions. Note that if we

rotate, reflex or shift all the positions together, the joint likelihood will

not change, as it actually depends only on the relative distances between

points, which are preserved by the aforementioned transformations. These

are called “Procrustean transforms”. To handle this issue in the posterior

computation, Hoff et al. [2002] select, within each equivalence class of con-

figurations, the one that is closest, in mean square difference, to a reference

configuration, specified beforehand. The chosen configuration is then used

as the estimate of the set of actor positions in the latent space.
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Extensions of the static latent distance model have been proposed, to

account for further network properties, see Hoff [2005], Handcock et al.

[2007], Krivitsky et al. [2009]. In particular, the prior for the Z’s can be

taken to be a mixture of normal distributions, in order to capture a possible

clustering structure amongst actors. Additionally, variables representing

possible variability in sending and receiving links can be incorporated into

the model.

4.3 Towards dynamics: modeling network

“cohesion”

In the static case, as described above, the prior distributions for the latent

positions Z = (Zi)i=1...N are chosen such that (Zi) are a priori i.i.d. and

distributed as Nd(0, σ
2Id). As Z are latent, usually the prior knowledge is

vague, so a large value of σ2 is used. In this case, the prior information

will have little effect on the posterior, which will, therefore, be driven by

the data.

We are interested to study overall network “cohesion”, or density of

links, depending on the parameters. It is influenced by β0 and σ2 (and β1,

if present).

If we simulate from the model with different values of β0 and σ2, the

resulting datasets can vary a lot in the network cohesion. In the Figure 4.1

an example is shown. The total number of links, considered as a measure

of the network cohesion, varies from 87 to 12 for β0 = 1 when σ2 = 4 and

σ2 = 16, respectively. Smaller values of σ2 mean that actors have closer

positions, and, therefore, tend to form more links. When σ2 grows the

cohesion decreases.

At the same time, β0 captures the maximum possible probability of

a link, i.e. when the relative distance is zero. It can be seen that in

the absence of covariates, if Zi = Zj the probability of having a link is

logit−1(β0) which grows quickly from 1
2 when β0 = 0 to 1 when β0 goes to

infinity.
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Figure 4.1: Four networks with N = 20, simulated from the static latent

distance model with different values of parameter σ2 in the prior distribu-

tion of the latent positions Z’s and different β0. By columns σ2 = 4 and

σ2 = 16, by rows β0 = 1 and β0 = 3.

Thus, the role of β0 is to provide a baseline for the overall cohesion,

which then can be changed by changing σ2. In the second row on Figure

4.1 β0 = 3, and the total number of links is increased to 175 and 62

correspondingly.

For dynamic data, we assume the existence of an underlying phe-
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nomenon affecting the relations between actors. This can be modeled

through a process, explaining the time evolution of the latent variables. In

the dynamic extension we propose for Hoff et al. [2002] model, we model

changes in cohesion over time, by including σ2 in the model, and allowing

it to over time. This is a simple way of modeling time evolution, which

assumes the underlying process affects all individuals equally.

As a measure of the network cohesion we choose overall number of

links, that is influenced both by the static β0 and the sequence of variance

parameters σ2. We comment on this in the examples of Section 4.6.

4.3.1 Infinite hidden Markov models

In order to model the time-evolution of the underlying process that gov-

erns the changes in the latent positions, we use an infinite hidden Markov

model. This is a nonparametric extension of classical hidden Markov mod-

els. In this section, we briefly describe these models and some relevant

computational challenges for inference.

In general, hidden Markov models (HMMs) assume that there is an

observed process Z = (Zt), that depends on a latent (hidden) discrete-

valued Markov process S = (St), called the state process.

Remark. In our model Zt is the vector of all latent positions at time t, so

it is not observed. In this section we give description of HMMs in general.

Given S = (St), the Z’s are independent, with each Zt having a dis-

tribution F (·|φSt), that depends on S only through St. The state process

S is Markov, taking values in {1, 2, . . . , K}, and its probability law is de-

scribed by the initial distribution P (S0) and the transition probabilities

πi,j = P (St = j|St−1 = i), for i, j ∈ {1, . . . , K}, that form a transition

matrix π = (πi,j).

A limitation of hidden Markov models is the assumption of a fixed

number of possible values for the state process. This assumption may lead

to inability to capture dependence structure in the data in full, as fixing

a particular number of states forces the model to find these states even if
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the data does not justify this choice. At the same time, often one can have

only vague idea on the possible number of states.

To overcome this limitation, Beal et al. [2002] introduced a nonpara-

metric extension termed the “infinite hidden Markov model” (iHMM). The

model was refined by Teh et al. [2006] in a hierarchical Bayesian way. The

idea is to allow a countably infinite number of values for the hidden states,

and to use a hierarchical Dirichlet process prior on the infinite-dimensional

transition matrix.

For finite HMMs, a symmetric Dirichlet distribution is a common choice

of prior for the transition probabilities. As a natural extension, the basic

idea of iHMMs is to assign to each row πi of the transition matrix a Dirich-

let process (DP, Ferguson [1973]) prior. However, a DP with a diffuse base

distribution would not allow for a shared support for the different proba-

bilities πk. The solution is to use another DP as a base measure, giving

the hierarchical DP construction of Teh et al. [2006]. See Section 4.4 for

details.

Note that a HMM can be considered as a set of conditional finite mix-

ture models. This can be seen by looking at the relevant part of the

specification of the HMM:

St|St−1, π = (πi)i=1...K ∼ πSt−1

Zt|St, (φi)i=1...K ∼ F (·|φSt)

For each value i of the current state t the row πi of the transition matrix

gives the mixing proportions for the next state t + 1. In other words, the

next observation is drawn from the mixture component indexed by the

value of the next state. In our notation:

(Zt+1|St = i) ∼
K∑
j=1

πi,jF (·|φj)

Thus, the infinite HMM can be defined by replacing the set of condi-

tional finite mixture models in the finite HMM with conditional hierarchical

DP mixture models.
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As can be expected, inference for such models is not an easy task. We

mention briefly the relevant algorithms and ideas that will surface again

in the description of inference in our model. Teh et al. [2006] presented a

Gibbs-sampling algorithm for the posterior estimation of the parameters

of the iHMM. A drawback of this algorithm is the slow mixing due to a

likely correlation in the time series data. The “beam sampler” introduced

in Van Gael et al. [2008] addresses this problem by sampling the whole

state sequence S at once. It also exploits the idea of slice sampling by

introducing auxiliary variables such that, depending on them, the number

of possible trajectories of the state process is finite. The slice sampler was

introduced by Neal [2003]; the idea of applying it for mixtures of Dirichlet

processes first appeared in the paper by Walker [2007] and a was further

extended by Kalli et al. [2011]. Our estimation algorithm is built upon the

latter paper (see Section 4.5).

4.4 Our proposed model

We now formalize our proposed model for dynamic networks. The observed

data is a discrete-time sequence (Yt)t=1...T of binary N × N arrays Yt =

(Yi,j,t)i,j=1...N , where Yi,j,t indicates the presence or absence of a link between

individuals i and j at time point t. Possibly, vectors of covariates Xi,j,t =

(Xi,j,t,k)k=1...p are also available for each pair (i, j). For the ease of notation

we sometimes write Yijt, Zit, Xijt instead of Yi,j,t, Zi,t, Xi,j,t.

We extend the static model presented in the section 4.2 to the case of

dynamic data by allowing the latent positions Z to evolve over time. As we

mentioned before, our assumption is that their evolution can be described

by an infinite hidden Markov model. This allows us to model a general

underlying process and identify structural changes, corresponding to the

evolution of the general ”cohesion” of the network. The evolution of the

latent positions of the actors, in this case, is not independent.

As before, each actor i at time t is assumed to have a (latent) position

Zi,t in a d-dimensional Euclidean space, so Zi,t = (Z l
i,t)

d
l=1. Further we

assume that the latent positions evolve according to a state process S =
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(St)t=1,...T , which is a discrete-time Markovian process on {1, 2, . . . }. The

presence (or absence) of a link between two individuals i and j at time t is

conditionally independent of all other links, given the state of the system

St, and positions Zi,t and Zj,t. Formally,

Yt|Zt, Xt, St, β
ind∼
∏
i6=j

P (Yijt|Zit, Zjt, St, Xijt, β) .

As our interest is in binary data, for defining the distribution

P (Yijt|Zit, Zjt, St, Xijt, β) it is enough to specify the probability of having

a link. To this aim we use the logistic regression model:

P (Yijt = 1|Zit, Zjt, St, β0, β1t, Xijt)
ind∼ logit−1(β0 + β1

′
tXijt − ‖Zit − Zjt‖d),

where logit(p) = log
(

p
1−p

)
. This can be rewritten, for each i, j and t,

with yijt = 0 or 1, as:

P (Yijt = yijt|Zit, Zjt, St, β0, β1t, Xijt) =

=
exp

(
yijt(β0 + β1

′
tXijt − ‖Zit − Zjt‖d)

)
1 + exp

(
β0 + β1

′
tXijt − ‖Zit − Zjt‖d

) . (4.1)

Furthermore, we assume that the latent positions (Zt)t≥1 are obtained

from an infinite HMM, that is:

Zt|St, (σ2
k)

ind∼
N∏
i=1

Nd(Zit|0, σ2
St
Id)

Here by Nd we denote density of the d-variate normal distribution and

Zt = (Zit)i≥1.

As we can see from equation (4.1), the distribution of Y depends on

Z only via pairwise distances between actors’ positions. So if we rotate,

reflex or shift all the positions together, the joint distribution does not

change. We will elaborate on this issue in the next section, when describing

estimation procedures, but for now we note that this means that it is

unnecessary to assume different means for the distributions of Zit’s for

different t. And for each t, we can always center the positions in order to

have mean 0 and preserve the relative distances.
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We can see that the dependence on the underlying time evolution is

introduced via the variance parameter σ2
St

. As discussed in Section 4.2 this

parameter controls the general cohesion of the network at time t. The prior

on σ2
k is taken to be conjugate, and is given by:

σ2
k
iid∼ InvGam(aσ, bσ), k = 1, 2, . . .

The state process (St) takes values in {1, 2, . . . } and, conditional on the

transition matrix π, it is Markovian, i.e.

P (St = l|St−1 = k, π) = πk,l

From the specification of an infinite HMM, π is assumed to have a hier-

archical Dirichlet process prior, so that the rows πk of π are conditionally

independent Dirichlet processes:

πk|η
ind∼ DP(α, η)

and

η =
∞∑
j=1

ηjδj with (ηj) ∼ SB(α0)

where DP(α, η) is a Dirichlet Process with concentration parameter α and

base measure η; and SB(α0) represents the so called “stick breaking” con-

struction:

ηj = vj

j−1∏
k=1

vk, (vj)
iid∼ Beta(1, α0)

Finally, the prior distributions for β = (β0, β1) are specified as follows:

β0 ∼ Gamma(aβ0, bβ0)

β1t
iid∼ Np(ξ,Φ)

Note that the prior for β0 has a positive support. The choice is justified

by the role of β0: in the absence of covariates, if the distance between two

positions is 0, the probability of having a link is exp(β0)
1+exp(β0) , so if β0 < 0,

it becomes less than 1
2 , which does not reflect the idea of a social space

described in 4.2.
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We can consider hyperparameters α and α0 as fixed, or use hyperpriors:

α ∼ Gamma(aα, bα), α0 ∼ Gamma(aα0
, bα0

).

4.5 Estimation

Summarizing our model we have:

P (Y = y|Z, β0, β1,X) =
T∏
t=1

∏
i6=j

exp
(
yijt(β0 + β1

′
tXijt − ‖Zit − Zjt‖d)

)
1 + exp

(
β0 + β1

′
tXijt − ‖Zit − Zjt‖d

)
Zt|St, (σ2

k)
ind∼

N∏
i=1

Nd(Zit|0, σ2
St
Id)

P (St = l|St−1 = k, π) = πkl

πk|η ∼ DP(α, η); η =
∞∑
j=1

ηjδj; ηj ∼ SB(α0)

σ2
k
iid∼ InvGam(aσ, bσ), k = 1, 2, . . .

β0 ∼ Gamma(aβ0, bβ0); β1t
iid∼ Np(ξ,Φ)

α ∼ Gamma(aα, bα); α0 ∼ Gamma(aα0
, bα0

),

where aα, bα, aα0
, bα0

, aβ0, bβ0, aσ, bσ, ξ,Φ are hyperparameters to be speci-

fied.

We would like to estimate the parameters of the model, that is (σ2
k), β0,

underlying state sequence (St) along with transition matrix π, the posi-

tions (Zi,t) of the actors in the latent space and, when present, covariate

coefficients β1.

We use a Bayesian approach for estimation, and, as is often the case

with latent distance models, only vague information is known about the

parameters, we therefore specify hyperparameters corresponding to diffuse

priors on β and (σ2
k).
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To estimate the posterior distribution of the parameters we build a

Markov chain Monte Carlo algorithm described below. The MCMC sam-

ples are used for inference on the model parameters and latent states, as

well as their distributions. In addition, point estimates for the covariate

coefficients and the cohesion parameters (σ2
k) may be of interest.

For the posterior computation we build a Gibbs sampling scheme updat-

ing all the components sequentially. For the state sequence and transition

matrix we implement a modification of the beam sampling algorithm by

Van Gael et al. [2008], updating the whole trajectory of (St)t=1...T simulta-

neously at each iteration. We cannot use the algorithm directly, as, in our

case, the iHMM describes thee unobserved (Zit), in other words we have

an additional latent layer in the hierarchical representation of the model.

The parameters η, π are updated following Teh et al. [2006]. The vari-

ances (σ2
k), for which conjugate priors were specified, are updated by sam-

pling from the corresponding full conditional distributions. Finally, the

coefficients, β, and latent positions, Z, are updated using random walk

Metropolis-Hastings algorithm.

As we mentioned before, there is a non-identifiability issue regarding

the latent positions Z, due to the fact that probabilities of links depend on

Z only through the distances between pairs of individual locations. If we

rotate, reflect or move all the positions at the same time, the joint likelihood

does not change. To handle this issue in the estimation procedure, we follow

the approach of Hoff et al. [2002] and apply a Procrustean transformation

after resampling the new positions. Such transformation chooses the closest

configurations (in terms of sum of squared distances) to a predefined set

of reference positions, within the class of equivalent configurations, i.e.

the set of configurations with the same pair-wise distances. This is done

for each time point t. Denote this closest configuration by Z∗, dropping

the t index, then Z∗ = arg minTZ tr(Z0 − TZ)′(Z0 − TZ), where Z0 are

reference positions, and transformation T ranges over the set of possible

rotations, reflections and shifts. If Z and Z0 are centered at the origin, Z∗

can be computed by taking Z∗ = Z0Z
′(ZZ ′0Z0Z

′)−1/2Z. For the Z0 we find

approximate maximum-likelihood estimates for the latent positions. This
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is possible as the likelihood is convex with respect to distances, and after

finding MLE for distances di,j = ‖Zi,t − Zj,t‖d, we apply multidimensional

scaling to get the estimates for (Zi,t)’s. We then use these estimates also

as starting point for the Markov chain in the MCMC algorithm to speed

up convergence.

4.5.1 Sampling the hidden state sequence (St)

We build our algorithm based on the beam sampler developed by Van Gael

et al. [2008]. In the beam sampler, auxiliary variables U = (Ut)t≥1 are

introduced, such that conditionally on U , the number of state trajectories

with positive probability is finite. After that, dynamic programming is

used to compute the conditional probabilities of each of these trajectories

and thus sample whole trajectories efficiently.

For each t, the auxiliary variable Ut is sampled from the conditional

distribution

Ut|St−1, St, π ∼ Uniform(0, StπSt−1,St).

We have augmented the original algorithm by changing the distribution

of the auxiliary variables from initial Uniform(0, πSt−1,St) to expand the

number of possible trajectories and speed up mixing following ideas from

Kalli et al. [2011].

After sampling the U ’s, we sample the state sequence St given U and

other variables using a forward-filtering backward sampling algorithm:

First, we calculate the full conditional distributions

P (St|Z1:t, U1:t) = P (St|Z1, . . . , Zt, U1, . . . , Ut),

where, for the ease of notation, we omit the dependence on π and other
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variables:

P (St|Z1:t, U1:t) ∝ P (St, Zt, Ut|Z1:t−1, U1:t−1)

=
∑
St−1

P (Zt|St)P (Ut|St, St−1)P (St|St−1)P (St−1|Z1:t−1, U1:t−1)

= P (Zt|St)
∑
St−1

1

St
I(Ut < StπSt−1,St)P (St−1|Z1:t−1, U1:t−1)

=
P (Zt|St)

St

∑
St−1:ut<StπSt−1,St

P (St−1|Z1:t−1, U1:t−1)

Note that, after introducing the auxiliary variables, there are only

finitely many trajectories for St with non-zero probability. Furthermore,

the sum over the possible values of St−1 actually involves a finite number

of elements, after the truncation by Ut.

Then, in order to sample the complete trajectory S, we perform a back-

ward pass, i.e., we first sample ST from P (ST |Z1:T , U1:T ), and then, for each

t we sample St given St+1 from the updated full conditional distribution:

P (St|St+1, Z1:T , U1:T ) ∝ P (St|Z1:t, U1:t)P (St+1|St, Ut+1)

For a more detailed account of beam sampling see the original paper by

Van Gael et al. [2008].

4.5.2 Sampling the iHMM parameters π and η

Following Teh et al. [2006], the conditional distribution of(
πk,1, . . . , πk,K ,

∑∞
l=K+1 πk,l

)
given S, η,m is

Dirichlet

(
tk,1 + αη1, . . . , tk,K + αηK , α

∞∑
i=K+1

ηi

)
where tk,l is the number of of transitions from k to l in the trajectory

S = (St)t=1,...T , and K is the number of distinct states in S.

For the sampling of (ηj), we again follow Teh et al. [2006], introducing

further auxiliary variables mi,j such that

P (mi,j = m|S, η, α) ∝ s(ti,j,m)(αηj)
m
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for m = 1, . . . , N , where s(t,m) are unsigned Stirling numbers of the first

kind and mi,j correspond to the number of tables in restaurant i serving

dish j in the Chinese Restaurant Franchise metaphor(see Teh et al. [2006]

for details).

The conditional distribution of
(
η1, . . . , ηK ,

∑∞
l=K+1 ηl

)
is then

Dirichlet(m·,1, . . . ,m·,K , α0).

4.5.3 Sampling the “cohesion” parameters σ2
k

As we have specified a conjugate prior for σ2
k, the updates are obtained by

sampling from the full-conditional:

P (σ2
k|S,Z) ∼ InvGam

(
aσ +NTk, bσ +

1

2

∑
t:St=k

N∑
i=1

d∑
l=1

Z l
i,t

2

)
,

where Tk is number of time points state process St spent in the state k.

The σ2
k’s can be updated for all k simultaneously, due to of the conditional

independence assumption.

4.5.4 Sampling the latent positions Z

The full conditional distribution for Z is given by

P (Zit|St = k, Y, (σ2
k), β,X) ∝ P (Y |Zit, β,X)Nd(Zit|0, σ2

kId)

We use a random walk Metropolis-Hastings algorithm with a d-variate

Normal proposal:

First, draw Z∗it ∼ Nd(·|Zit, τ 2
z Id) with a predefined variance parameter

τ 2
Z .

Accept with probability

P (Y |Z∗it, β,X)Nd(Z
∗
it|0, σ2

St
Id)

P (Y |Zit, β,X)Nd(Zit|0, σ2
St
Id)

,

where Nd denotes the density of a d-variate Normal distribution.

After that, apply a Procrustean transformation to choose a configura-

tion of positions Z, with minimum sum of squared distances to the reference

configuration Z0, as described earlier in this section.
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4.5.5 Sampling the covariate coefficients β

For the covariate coefficients we also use random walk Metropolis Hastings

step. For β0 we use a truncated uniform proposal, as β0 must be positive:

First, draw β∗0 ∼ |U(β0 − δ, β0 + δ)| with a predefined parameter δ.

Accept with probability

P (Y |Z, β∗0 , β1, X)Ga(β∗0 |aβ0, bβ0)
P (Y |Z, β0, β1, X)Ga(β0|aβ0, bβ0)

,

where Ga denotes density of a Gamma distribution.

For β1t we use a p-variate Normal proposal:

First, draw β1
∗
t ∼ Np(β1t, τ

2
βIp) with a predefined τ 2

β .

Accept with probability

P (Y |Z, β0, β1
∗
t , X)Np(·|β1

∗
t |ξ,Ψ)

P (Y |Z, β0, β1, X)Np(β1
∗
t |ξ,Ψ)

.

4.6 Numerical illustrations

We apply our model to the simulated data, and to the INFOCOM dataset,

described in Section 2.2.1.

4.6.1 Example 1: simulated data

To see how our model works, we apply it to the estimation of simulated

data, generated from the model itself, and check the ability to recover a

given structure and parameters.

We generate a relatively small dataset, with N = 20 actors and T =

50 time-points with K = 3 states, from the model with the following

parameters: σ2 = [1, 9, 25], β0 = 2, with (St)
T
t=1 generated from 3x3

transition matrix π obtained from a uniform distribution, normalized to be

a valid transition matrix. The states are chosen to represent different levels

of “cohesion” along time. This is illustrated by a subset of the generated

data in Figure 4.2. Note that scales are chosen for better visualization, but

the higher is the value of σ2
k, the tighter are the actors’ positions.
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Figure 4.2: Visual representation of the subset of simulated data. Specifi-

cally, time points 8, 9, 10 are shown, that correspond to 3 different states of

the system. As variances σ2 vary, overall cohesion of the network is clearly

different.

For the estimation, we set the prior hyperparameters as follows: aβ0 =

2, bβ0 = 1, aα = 1, bα = 1, aα0
= 1, bα0

= 1, aσ = 2, bσ = 1 giving diffuse

priors for parameters. Standard deviations for the proposal distributions

were taken τZ = 0.5, δ = 0.5. These latter variables influence the efficiency

of the sampling algorithm, and were chosen empirically.

We show the results of MCMC approximation after a burn-in period of

5000 iterations, taking further 10000 iterations and saving each 100th.

The estimated from posterior distribution state sequence St is illus-

trated in Figure 4.3, together with posterior probabilities of belonging to

each state.

The colors on the “heat-map” in Figure 4.3 represent the probability of

being assigned to a particular state at a particular time point – the darker

the color the higher is the probability. We have reordered the sampled

state sequences in “order of appearance” to handle label switching problem.

The estimated state sequence is obtained by taking, at each time point,

the state with highest posterior probability. The resulting sequence (green

in the figure) differs little from the true simulated sequence (differences

marked with blue dots in the figure). We can observe that sampler tends

to switch between 3 and 4 states, but the ambiguity is present only at time

points that belonged to the third state in the true sequence.
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Figure 4.3: Posterior estimates of the state sequence (St) (green) and the

true states that were estimated incorrectly (blue) with the heat-map of

posterior probabilities of belonging to each state.

Figure 4.4 illustrates the point estimates for MCMC approximation

of the posterior expected transition probabilities, compared with the true

transition matrix π and with the matrix of normalized transition counts,

computed for the true state sequence. In this example, we see that esti-

mated π is more close to the transition probabilities. This can be explained

by the fact that the only information about π that we have, is the generated

from π state sequence S.

Having checked that the model is able to discover the hidden states,

we now look at the estimated values of “cohesion” parameters σ2 = (σ2
k).

We look at the variability of samples from posterior distribution of σ2 over

time in figure 4.5. The samples follow closely the estimated state sequence,

apart from some inaccuracies, as, for example at t = 9, σ2 has a bimodal

distribution.

The figure 4.6 shows the MCMC estimates of posterior densities of β0

and (σ2
k) for the estimated states k = 1, 2, 3.
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Figure 4.4: Estimated transition probability matrix (left), compared with

the true transition matrix π (center) and matrix of normalized transition

counts for the true state sequence (right).

Figure 4.5: Posterior samples from the sequence of variance parameters

(σ2
St

). The box-plots show summary of the posterior distributions of σ2
St

for each t.

Looking at the point estimates, obtained as posterior medians (shown in

the Table 4.1), and comparing with the truth, we see that we underestimate

the values of all parameters. At the same time, as we have noted earlier

in Section 4.3, σ2 and β0 are interconnected, and increase in the variances
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Figure 4.6: Posterior density distributions for β0 and σ2
k for the 3 discovered

states in the estimated state sequence S.

invokes the increase in the β0 to compensate. Due to this fact, differences

across variances for the states are relative.

If we fix the value of β0 in the estimation procedure, and consider the

ratios of estimated variances, we get close to the true ratios, as can be seen

in Table 4.2.

β0 σ2
1 σ2

2 σ2
3

true 2 1 25 9

estimated 1.70 0.57 18.02 6.40

Table 4.1: True values of the parameters and point estimates, obtained as

medians of samples from posterior distributions.

σ2
1 σ2

2 σ2
3

true 1 25 9

estimated 0.83 21.02 7.99

normalized 1 25.34 9.62

Table 4.2: True values of the parameters, point estimates, obtained as

medians of samples from posterior distributions, and the same values nor-

malized by the variance of state 1. β0 = 2 fixed.

The model is able to capture changes in the “cohesion” of the network
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and to illustrate this, we look at the total number of links in the graph as

a measure of cohesion.

In figure 4.7 we observe posterior distributions of the expected number

of links for each state, and compare them to median number of links at

the corresponding states in the data. We see that the true medians for all

states have high posterior probabilities, as shown by percentile numbers in

the figure 4.7.

Figure 4.7: Posterior estimates for distribution of expected number of links

aggregated by the 3 estimated states. The medians of number of true links

at these states are shown with green lines, and corresponding percentiles

are provided.

4.6.2 Real data

Now we use our model to analyze the INFOCOM’06 dataset, described in

Section 2.2.1. To remind briefly, the data were collected on the INFOCOM

conference in 2006: all participants were given a proximity sensors to detect

their interactions during the conference days. The interaction was recorded

if two devices “see” each other for some non-negligible amount of time.

For the analysis, data were aggregated into hourly intervals, and only

the interactions, that are reciprocal, i.e. undirected, were used. Time runs

from 18:00 on the first day till 16:00 on the 4th day, giving 94 time points.

The total number of individuals observed is 78. The evolution of number

of links was shown in the Figure 2.3.
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The particularity of this dynamic network data is that there are known

underlying processes for the interactions, time of day, recorded at constant

discrete intervals, and events on the conference. We can expect that the

hidden states discovered will have connections to these processes.

We use our model with default (as in example 1) hyperparameters, and

run the MCMC chain for 30000 iterations, saving each 100-th, after the

initial burn-in period of 10000. Plot of the estimated state sequence (St)

with posterior probabilities of belonging to each state over time is shown

in Figure 4.8.

Figure 4.8: Estimated state sequence S) (green), with the heat-map of

posterior probabilities of belonging to each state. Time of day is on the

x-axis.

Six states were discovered. By looking at the estimated state sequence,

the periodicity is apparent, confirming that the discovered hidden process

follows time of day. Table 4.3 presents summary of states. Some of them

can be interpreted as “night time” (state 1), “active sessions” (state 2),

“social events” (state 3), “late evenings” (state 4).

Looking at the estimated transition matrix (Figure 4.9), we see that

with high probability system tends so stay in the same state. Also some

transitions are more common, as, for example state 4 is mostly followed by

state 1, that is in line with our interpretation.
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state 1 2 3 4 5 6

number of time points 35 17 9 18 8 7

average σ2 424 14 21 141 32 63

average number of links 9 1101 612 47 389 109

Table 4.3: Summaries for discovered states of the system.

Figure 4.9: Estimated posterior transition probabilities between states.

4.7 Conclusion

We have presented an extension of a popular latent space model to the case

of dynamically changing network over time. Our aim here was to capture

the evolution of the general network cohesion. To this aim, we introduced

an infinite hidden Markov model, that is able to capture such evolution,

to describe the dynamics of latent positions.

As our proposed model is based on the static latent distance model of

Hoff et al. [2002], it can also be extended as the former to accommodate

more flexibility, following the ideas of proposed extensions for the original

static model in Handcock et al. [2007], Krivitsky et al. [2009] or Hoff [2008].
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This can allow to capture more properties of the real-life networks (such

as clustering and degree heterogeneity).

For the dynamic part, the use of infinite HMM allows the discovery of

states, that are characterized by changes in the overall cohesion of links in

a network. The assumption of observing changes in a discrete way may not

be an appropriate for some real data, if a network changes continuously.

Therefore, another interesting possibility would be to explore the use of a

continuous time process for the time evolution.
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Chapter 5

Final remarks and future

directions

In this short chapter we discuss possible extensions of the work presented

in the thesis, and further directions of interest.

5.1 Extending the static part of the dynamic

latent distance model

As we anticipated in Chapter 4, our proposed model is a simple idea, that

can be easily extended. The static model by Hoff et al. [2002] has been

extended in the recent literature by adding sender and receiver random

effects (Hoff [2005]), allowing the latent positions to have a cluster structure

(Handcock et al. [2007]) and, combining this two notions (Krivitsky et al.

[2009]).

It would be interesting to change the static part of our model to these

cases. This will allow to capture more of the typical network properties. In

particular, for the models with clusters, the latent positions are assumed

to come from mixture of normal distributions:

Zi|λ, µ, σ2 ind∼
G∑
g=1

λgNd(·|µg, σ2
gId). (5.1)
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The time evolution here can be put on the group means and variance

parameters µg, σ
2
g in a similar fashion to our model.

Another extension for the cluster components of the model, can be to

include a Dirichlet Process mixture in place of a finite mixture in (5.1). For

the dynamics we would have different DPs across t, and can use dependent-

DP to define dependence.

Here we should note, that despite the added flexibility, and ability to

discover number of clusters from the data, there are some limitations. The

property of the Dirichlet Process to favor few large groups and many small

groups may not be realistic for applications. At the same time extensions

of the DP with different implied partition structure exist in the literature,

and can be implemented.

5.2 Stronger individual dependence

Another line of extension of the proposed model is to add direct depen-

dence on the previous position in the evolution of Zi,t. In its current form

our model can be applied when, for example, the covariates capture the

individual temporal dependence in Yt, and, therefore, the RCE residuals,

that we model with latent distances, can be assumed to be fairly indepen-

dent, apart from the global parameters, σ2. Alternatively, if the network

represents a tight system of actors, such as physical particles or large bio-

logical systems, that has no memory of the previous individual positions,

our proposal can be used to model the global evolution, while being able

to track individual interactions at the fixed time-points.

Adding stronger dependence on the previous positions can be achieved

by means of a random walk:

Zi,t ∼ Nd(Zi,t−1, σ
2
St

)

Combining this idea with the existing approaches, there are four possi-

bilities for the form of evolution of the latent positions over time:
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1. Independent latent distance models across time

Zi,t ∼ Nd(0, σ
2)

Considers all time points to be independent, as if they are snapshots

of unrelated networks. Not a very realistic assumption, but can be

used as a benchmark.

2. Our proposal, variances from a iHMM (Section 4.4)

Zi,t ∼ Nd(0, σ
2
St

)

Variance changes according to a hidden state of the system. Can

capture structural changes in the network, but weak individual de-

pendence over time.

3. Random walk evolution with fixed variance (Sarkar and Moore [2005])

Zi,t ∼ Nd(Zi,t−1, σ
2)

The positions evolve independently, with the fixed variance. The

level of individual dependence is controlled by one parameter and is

not changing over time.

4. Random walk evolution with variances from a iHMM (a new proposal)

Zi,t ∼ Nd(Zi,t−1, σ
2
St

)

A new proposal that combines two previous ones. The individual

dependence can be stronger or weaker depending on a current hidden

state of the system.

5.3 Dynamic eigenmodel

A possible improvement of our model may also be achieved by changing

the underlying static model to the “eigenmodel” by Hoff [2008]. In this

model the residuals Γ are taken to be Z ′iΛZj, where Zi ∈ Rd are vectors
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of latent characteristics, and Λ is a diagonal d× d matrix, controlling how

these characteristics contribute to the overall probability of link (positively

or negatively depending on the sign of corresponding λk). The dynamic

evolution can again be implemented with our idea of using a iHMM for the

Z’s. At the same time, from the interpretation, it is reasonable to assume

that characteristics should not change often, so a better time dependence

structure may be preferred. One possibility can be in adding dynamics

for Λ, as it is reasonable to assume that, with time, influence of different

characteristics on the tendency to have a link may change.

5.4 Models from the RCE-ME representa-

tion

Relating Chapters 3 and 4, it would be interesting to construct models

based on the representation obtained in (3.2). As the functional repre-

sentation of Aldous [1981] allowed to motivate the large class of static

network models and put the existing models in a common framework, we

hope that our representation theorem can be of use in motivating models

for dynamic networks. Looking at the general framework of Section 2.4.3

for static models, we note, that in fact, the assumption of RCE can be

put in two different ways, either on the network adjacency matrix itself

(Y is RCE), or on the residuals in the statistical model with covariates

(Γ is RCE, in the notation of Section 2.4.3). This will also apply for our

assumption of a RCE array of ME sequences. Either the sequence of ad-

jacency matrices for each time point can be combination of RCE and ME,

or the residuals in the regression model.

Also it is interesting to study different kinds of functional representa-

tions arising when additional restrictions are made, similarly to results in

[Aldous, 1985, Chapter 14]. While comparing the other ways of combining

RCE with ME can give additional insights on the use of representations in

modeling.
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5.5 Other directions

On a more general note about network modeling, another interesting point,

is, as Orbanz and Roy [2013] write, “Exchangeable random structures are

not ‘sparse’. . . In contrast, graphs representing network data typically have

a finite number of edges per vertex, and exhibit properties like power-

laws and ‘small-world phenomena’, which can only occur in sparse graphs.

Hence, even though exchangeable graph models are widely used in network

analysis, they are inherently misspecified.”

The absence of sparsity is a consequence of exchangeability assumption,

and so, to adequately model sparse network data, other non-exchangeable

assumptions should be imposed. This is an interesting open problem, and

further discussion can be found in Orbanz and Roy [2013].

Also of particular interest are connections with related areas, briefly

mentioned in this work, including graph limits and asymptotic properties

for complex network models.
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