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Spin glass theory and its new challenge: structured disorder
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Abstract: This paper first describes, from a high-level viewpoint, the main challenges that had to be solved in order to

develop a theory of spin glasses in the last fifty years. It then explains how important inference problems, notably those

occurring in machine learning, can be formulated as problems in statistical physics of disordered systems. However, the

main questions that we face in the analysis of deep networks require to develop a new chapter of spin glass theory, which

will address the challenge of structured data.

Spin glasses

Statistical physics is more or less one and a half century

old. Its creation was based on renouncing to follow the

trajectories of single particles and moving rather to a

coarser, statistical description of systems with many

interacting particles. This radical move allowed to handle

the specific effects that emerge when the number of par-

ticles becomes large, as summarized in Phil Anderson’s

famous paper ‘‘More is different’’ [1]. One of its great

achievements is the understanding and analysis of phase

transitions, and the discovery of universality classes at

second-order phase transitions, where the divergence of the

correlation length wipes out many of the microscopic

details of the particles.

About fifty years ago, statistical physics developed a

new research direction, the one of strongly disordered

systems. An important building piece of its construction is

the theory of spin glasses, magnetic systems with disor-

dered interactions. In this section, we shall mention some

of the formidable challenges that had to be solved in order

to develop a theory of spin glasses, keeping to the case of

classical systems (parallel developments in the field of

quantum statistical physics deserve a separate

presentation).

As is well known, magnetism has played an important

role in the development of statistical physics. The solution

by Onsager of a ‘‘simple’’ model of ferromagnet, the Ising

model in two dimensions, was crucial in establishing the

concept of spontaneous symmetry breaking. And the

understanding of Ising models in d-dimensions, including

non-integer values of d, also played a major role in the

development of the renormalization group.

A few well-known landmarks from the ferromagnetic

Ising model

It is useful to set the stage and prepare the discussion of

spin glasses, starting with a very short sketch of the well-

known case of ferromagnetism, which can be found in any

standard book of statistical physics. In the Ising model,

two-state spins si ¼ �1 located on the N ¼ Ld vertices of a

hypercubic d-dimensional lattice interact through pair

interactions, with an interaction energy which is a sum over

pairs of adjacent spins

EðsÞ ¼ �J
X

ðijÞ
sisj ð1Þ

where J[ 0 is the ferromagnetic coupling constant.

The order parameter is the magnetization density

M ¼ 1

N

X

i

hsii ; ð2Þ

where hsii is the expectation of the spin si with respect to

the Boltzmann measure PðsÞ ¼ ð1=ZÞe�bEðsÞ. This measure

is even under the simultaneous flipping of all the spins

si ! �si; therefore, for a fixed N one has M ¼ 0 at any

inverse temperature b. On the other hand, if one adds a

small symmetry breaking term to the energy,

EðsÞ ! EðsÞ � B
P

i si, then
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lim
B!0�

lim
N!1

M ¼ �M� ; ð3Þ

with M�ðbÞ[ 0 in the low-temperature phase b[ bc,
where the inverse critical temperature bc is finite for d� 2.

This is the ferromagnetic phase transition, associated with

the phenomenon of spontaneous symmetry breaking.

In order to get a first qualitative understanding of this

phase transition, one can use the mean-field approximation.

Starting from the exact relation

hsii ¼ htanh b Bþ J
X

j2Di

sj

 !
i ð4Þ

where Di is the set of neighbors of spin i, one neglects

fluctuations, substituting the expectation value of the tanh

by the tanh of the expectation value (this is the mean field).

Seeking a homogeneous solution hsii ¼ M (which is

correct far from the boundaries, or using periodic

boundary conditions), one finds

M ¼ tanh b Bþ zJMð Þ ð5Þ

where z ¼ jDij is the number of neighbors of each spin.

This equation predicts a ferromagnetic phase transition

when B ! 0, with an inverse critical temperature

bc ¼ 1=ðzJÞ.
The mean-field approximation is better in larger

dimensions; it actually becomes exact when d ! 1, while

it wrongly predicts the existence of a phase transition when

d ¼ 1. A popular model where the mean-field approxima-

tion becomes exact is the Curie–Weiss model, where all the

pairs of spins interact with a rescaled coupling J ¼ ~J=N. In

this model, the mean-field equation M ¼ tanh b Bþ ~JM
� �

is exact and the phase transition takes place at bc ¼ 1= ~J.

Spin glasses

A simple model for spin glasses is the Edwards–Anderson

model [12]. This has the same ingredients as the Ising

model, except that the coupling constant between two spins

i, j depends on the pair. The energy becomes

EðsÞ ¼ �
X

ðijÞ
Jijsisj : ð6Þ

Depending on the pair (ij), the coupling constant can be

ferromagnetic (Jij [ 0, favoring the alignment of spins at

low temperatures), or antiferromagnetic (Jij [ 0, favoring

spins pointing in opposite directions at low temperatures).

With respect to the ferromagnetic case, this modification

is crucial and poses a number of remarkable challenges that

had to be solved in order to elaborate a theory of spin

glasses. This elaboration is an outstanding achievement

which culminated in the solution by Parisi of the mean-

field Sherrington–Kirkpatrick model [48] (Parisi’s Nobel

lecture [44] gives a nice summary, and the recent book [7]

gives an idea of the applications that it has had in several

branches of science).

In this paper, I shall not enter any detail of spin glass

theory, but adopt a high-level point of view, trying to point

out the four most important challenges.

First challenge: ensembles of samples

The first challenge that can be identified is the characteri-

zation of a spin glass sample. In order to define the energy,

and therefore the Boltzmann probability, one needs to

know all the coupling constants J ¼ fJijg1� i\j�N . If the

interactions are short range, this is a number of parameters

which grow proportionally to the size of the system N. This

raises two problems. On the one hand, for macroscopic

systems it is impossible to even write the energy function:

the description of a given sample requires to know a

number of parameters of the order of the Avogadro num-

ber. On the other hand, for each new sample characterized

by these couplings J , there is a new Boltzmann probability

PJ ðsÞ ¼
1

ZJ
e
b
P

ðijÞ Jijsisj ; ð7Þ

where ZJ , called the partition function, is a sample-de-

pendent normalization constant which ensures that the total

probability is normalized to one.

In a step that mimics the one which was taken when

statistical physics was first introduced, this double problem

was solved by introducing a second level of probability,

namely a probability distribution in the space of samples.

The couplings J are supposed to be generated from a

probability distribution PðJ Þ. A given realization of J is a

sample. For instance, in the Edwards–Anderson model [12]

one assumes that for each pair (ij) of neighboring spins we

draw Jij independently at random, from a distribution with

probability density q. In the SK model each of the NðN �
1Þ=2 couplings Jij is drawn at random from a normal dis-

tribution with mean 0 and variance 1/N.

We have now two levels of probability. The first one

draws a sample J generated from the probability PðJ Þ.
Then, one studies the Boltzmann law PJ ðsÞ for this sample.

The averages of spin configurations with respect to PJ ðsÞ
are called thermal averages, while the averages over sam-

ples, with respect to PðJ Þ, are called quenched averages.

I’ll call PðJ Þ the quenched probability, to distinguish it

from Boltzmann’s probability.

Then one is led to make a distinction between two types

of properties.

On the one hand, there are properties which depend on

the sample. For instance, the ground state configuration of
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spins, the one which minimizes the energy, obviously

depends on J . Actually, all the details of the energy

landscape depend on J .

On the other hand, some properties turn out to be ’self-

averaging’, meaning that they are the same, for almost all

samples (with a quenched probability that goes to one in

the large N limit). For instance, in the EA or SK model the

internal energy density

UJ ¼ 1

N

X

s

PJ ðsÞEJ ðsÞ ð8Þ

is self-averaging (this is easily proven in EA because one

can cut a sample into many pieces and neglect the inter-

actions between pieces which are of relative order surface

to volume; the proof is less easy for models in the SK

family [21]). This means that the distribution of UJ (when

one picks a sample at random from the quenched proba-

bility) has a probability density that concentrates, when

N ! 1, around a given value u that depends only on the

inverse temperature b and on the statistical properties of

the distribution of J . The typical sample-to-sample fluc-

tuations of UJ around this value are of order 1=
ffiffiffiffi
N

p
. In the

limit b ! 1, this also implies that the ground state energy

density is self-averaging. The same is true for all the

extensive thermodynamic properties. For instance, the

magnetization density in the presence of a magnetic field,

or its linear dependence at small fields, the magnetic sus-

ceptibility, are self-averaging. This property of self-avera-

geness is crucial: it is the reason why the measurements of

magnetic susceptibilities or specific heat of two distinct

spin glass samples with the same statistical properties

(take, for instance, two samples of CuMn with 1% of Mn)

give the same result: these are reproducible measurements

because the measured property is self-averaging.

Notice that, for the properties which are not self-aver-

aging, one can study their quenched distribution. A typical

example is the order parameter function that we shall dis-

cuss below [37].

Second challenge: inhomogeneity

The second challenge that spin glass theory had to face is

inhomogeneity. The lesson we learn from detailed studies

of the SK model is the following. For a typical sample J

there exists a low-temperature ’spin glass’ phase in which

the spins develop nonzero local magnetizations:

hsii ¼ mi ð9Þ

Because of the disorder in the coupling constants Jij,

contrarily to the ferromagnetic case these magnetizations

are not uniform. Analyzing a spin glass order in detail thus

requires to use as order parameter the set of all the

magnetizations. This is a N-component order parameter.

Thouless Anderson and Palmer were able to write a closed

system of N equations that relate all these components [54].

The TAP equations, which generalize (5) to the spin glass

case, are:

mi ¼ tanh b
X

j

Jijmj � bð1 � qÞmi

 !" #
ð10Þ

where q ¼ ð1=NÞ
P

j m
2
j . With respect to the naive mean-

field equations mi ¼ tanh b
P

j Jijmj

h i
, they are character-

ized by the appearance of the ‘‘Onsager reaction term’’.

This basically says that, when one computes the mean of

the local magnetic field on site i, one should subtract from

the naive estimate
P

j Jijmj the part of mj which is polarized

by i itself. This means using a ‘‘cavity’’ magnetization

mc
j ¼ mj � vjJjimi where vj ¼ bð1 � m2

j Þ is the local mag-

netic susceptibility of an Ising spin.

When N is not too large, say a few tens of thousands,

TAP-like equations can be used as an algorithm, and they

can be solved by iteration using a specific iteration

schedule that was found by Bolthausen [6]. This gives

information on the behavior of a given sample J .

On the other hand, when N is very large, for instance of

the order of the Avogadro number, one cannot write

explicitly or solve the TAP equations. One must use a

statistical study of the properties of these solutions. It turns

out that this cannot be done directly on the TAP equations

themselves, because the Onsager reaction term creates

subtle correlations. The cavity method [38, 39] allows to

circumvent this problem, by first analyzing the statistics of

the cavity field, the field acting on a spin in absence of this

spin. This allows to build a full solution to the problem.

Third challenge: the many-valleys landscape

Keeping to the SK model, it was found that there actually

exist many different ’states’ where the system can freeze,

and therefore many solutions of the TAP equations. Each

state a is characterized by N magnetizations ma
i , so the

order parameter is actually a N-component vector. This

generalizes the situation of the ferromagnet. Instead of two

states, identified by their average magnetization, we have

many states. In each of them the average magnetization in

the absence of external field, ð1=NÞ
P

i m
a
i , vanishes in the

thermodynamic limit.

Defining these states correctly is actually difficult. If one

parallels the construction of the two pure states that we

introduced in (3) for the ferromagnet, the natural general-

ization is to introduce for each state a a site-dependent

small magnetic field Ba
i and take the limit where all these

Spin glass theory and its new challenge



local fields go to zero after the thermodynamic limit. This

leads to

ma
i ¼ lim

Ba!0
lim
N!1

hsiiBa ð11Þ

The weakness of this definition is that we do not know how

to choose the local orientations of Ba
i : on which site should

they be positive and on which site should they be negative?

Solving this problem requires knowing the signs of ma
i . So,

while this definition of the order parameter is interesting, in

practice it is useless.

The replica method which was used to solve the SK

model [38, 42] actually has an interesting interpretation

from this point of view. The idea is that, if we do not know

the preferred orientations where the spins will polarize, the

systems knows them. So, for theoretical understanding, one

can introduce, for a given sample J , two replicas of spins,

s and r, with the same energy function EJ . In this system,

the probability of the two configurations is

PJ ðs; rÞ ¼
1

Z2
J

e�bðEJ ðsÞþEJ ðrÞÞ ð12Þ

One can introduce the overlap q ¼ ð1=NÞ
P

i siri, and ask

what is the distribution PJ ðqÞ of this overlap, in the ther-

modynamic limit N ! 1. In the high-temperature para-

magnetic phase, one finds PJ ðqÞ ¼ dðq� q0Þ where

q0 ¼ 0 in the absence of an external field, but it becomes

q0 [ 0 in the presence of a uniform field. In the spin glass

phase, PJ ðqÞ becomes non-trivial, it has a support ½q0; q1�
with q1 [ q0, and it fluctuates from sample to sample. So,

this is a non-self-averaging quantity [37]. Its quenched

average, PðqÞ ¼
R
dJ PðJ ÞPJ ðqÞ, is the order parameter

for the spin glass phase. It is this order parameter which

appears naturally and is computed in the replica method

with replica symmetry breaking, as shown in Parisi’s

seminal work [43].

A simple way to define the existence of a spin glass

phase using two replicas is to introduce a small coupling

between them. The energy of a pair of configurations s; r
now becomes:

E�
J ðs; rÞ ¼ EJ ðsÞ þ EJ ðrÞ � �

X

i

siri ð13Þ

Sampling the pairs of configurations with the

corresponding Boltzmann weight, one can compute the

expectation value of the overlap hqi� ¼
R
dq P�

J ðqÞq.

Taking the limit � ! 0� after the thermodynamic limit,

one finds

q1 ¼ lim
�!0þ

lim
N!1

hqi� ; q0 ¼ lim
�!0�

lim
N!1

hqi� ð14Þ

These are the two limits of the support of P(q). The exis-

tence of a spin glass phase is signaled by q1 [ q0. This

definition gives a very intuitive interpretation to the use of

replicas: one takes two replicas coupled by a small

attractive interaction (�[ 0). When this interaction van-

ishes, if the spins in each of the two replicas remain cor-

related, this signals the spin glass phase. This criterion can

also be used in glassy systems without disorder, like

structural glasses [15, 36].

The whole ‘‘landscape structure’’ of the spin glass phase

can be analyzed as follows: in a given sample there exist

many pure states a. Each of them is characterized by the N-

dimensional vector of magnetizations ma ¼ fma
1; :::;m

a
Ng,

and its free energy Fa. All the states that contribute to the

thermodynamics have the same free energy density

limN!1 Fa=N, but they have finite free energy differences

Fa � Fc ¼ Oð1Þ, and therefore, each state contributes to

the Boltzmann measure with a weight Pa. Therefore,

PðqÞ ¼
Z

dJPðJ Þ
X

a;c

PaPcd q� qacð Þ ð15Þ

Various types of glassy phases are characterized by dif-

ferent types of P(q) functions, two extremes being the

simple ‘‘one-step RSB’’ characteristic of the structural

glass transition ones having only two d peaks at q0 and q1

[9, 11, 20], and the ‘‘full-RSB’’ which occurs in the SK

model and where the support of P(q) is the full interval

½q0; q1�, with an infinity of states organized in a hierarchical

structure called ultrametric [37], and a d peak of P(q) at the

Edwards–Anderson order parameter q ¼ q1. This order

parameter characterizes the size of the states in the sense

that two randomly chosen configurations within the same

state will have overlap q1.

Fourth challenge: out of equilibrium dynamics

The last big challenge that spin glass theory had to face was

the one of equilibrium. The whole description that I gave

so far is based on the idea that a given sample of a spin

glass can be characterized by the Boltzmann measure

PJ ðsÞ. However, this is true only in the case where the

system reaches equilibrium. However, experiments pre-

cisely teach us that equilibrium is not reached in the spin

glass phase. For instance, measuring the magnetic sus-

ceptibility by first cooling the system to a temperature

T\Tsg and then adding a small uniform magnetic field B

gives a ‘‘zero-field-cooled susceptibility’’ vZFC which is

different from the one found by placing the sample in the

magnetic field B at high temperature (above the spin glass

transition Tsg), and then cooling it to T. This last procedure

gives a ‘‘field-cooled’’ susceptibility vFC which is in gen-

eral larger than vZFC. In both cases the measurement of the

susceptibility is done at the same point T, B of the phase

diagram, but the results differ, proving that the spin glass is
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out of equilibrium. Then a very legitimate question is: how

can the equilibrium theory be of any use ?

One of the first successes of the Parisi theory has been to

give a qualitative explanation of this difference by

assuming that the FC susceptibility corresponds to the

reaction of the system when perturbing an equilibrium

which is a superposition of pure states, while the ZFC

susceptibility corresponds to a perturbation within one pure

state (see, e.g., [44]). In fact, if one introduces a con-

strained perturbation to a SK spin glass, in which the

system reacts to a small magnetic field, but it is constrained

to remain at an overlap larger than q from its initial state,

then the corresponding susceptibility is

vðqÞ ¼ b
Z 1

q

dq0 Pðq0Þð1 � q0Þ ð16Þ

which gives in the two limiting cases:

vZFC ¼ b 1 �
Z 1

0

dq0 Pðq0Þq0
� �

; vFC ¼ b 1 � q1½ � ð17Þ

One can also go beyond and try to study directly the

dynamics of mean-field models like the SK model. In the

spin glass phase, the time to reach equilibrium diverges in

the thermodynamic limit. One can then study what happens

on various diverging timescales, as in the first works of

Sompolinsky and Zippelius [50].

An alternative approach which gives very interesting

insight is to solve the out of equilibrium dynamics, as was

proposed initially by Cugliandolo and Kurchan [10].

Focusing again on the mean-field models, one can derive a

closed set of equations for the two-time correlation Cðtw þ
t; twÞ ¼ ð1=NÞ

P
ihsiðtwþ tÞsiðtwÞi and the two-time

response function Rðtw þ t; twÞ, which is the linear response

measured at time tw þ t of a system which has started its

dynamics at time 0, and to which a small magnetic field has

been added at the time tw. In systems which reach their

equilibrium, after a long waiting time tw, the functions C

and R become time-translation invariant, i.e., they depend

only on the measurement time t. This invariance is broken

in the spin glass phase: the t dependence of these two

functions depend on the age tw of the system, and they keep

evolving when tw increases, a phenomenon called aging

which is often observed in glassy systems. The simplest

scenario of aging would be one in which C and R become

function of t=taw. For instance, approximate t=tw scaling

with a ¼ 1 is often observed. In link with its hierarchical

static structure, the SK model shows a more complicated

behavior, with various timescales characterized by distinct

exponents a playing a role. In link with the aging phe-

nomenon, one also finds a modification of the standard

fluctuation dissipation theorem (FDT).

In an equilibrium system, at large enough tw, the stan-

dard FDT relation between fluctuation and response is

RðtÞ ¼ bðCð0Þ � CðtÞÞ. (Notice that we use here an inte-

grated response function, as defined above.)

In the spin glass phase, this is modified and becomes a

relation between Cðtw; tÞ and Rðtw; tÞ that holds when both

the waiting time tw and the measurement time t are large:

oRðtw; tÞ
ot

¼ �bXðCðtw; tÞÞ
oCðtw; tÞ

ot
ð18Þ

The function X(C) is the ‘‘fluctuation dissipation ratio’’.

When computed from spin glass theory, one finds that it is

equal to the total probability of an overlap larger than C:

XðCÞ ¼
Z 1

C

PðqÞdq ð19Þ

It can thus be measured by plotting parametrically R versus

C. We have thus a way to measure the equilibrium order

parameter P(q) from an out of equilibrium measurement of

correlation and response. This was done by [24], and the

reader can find a discussion in [44].

Statistical physics of inference

Machine learning as a statistical physics problem

Spectacular recent developments of artificial intelligence

are based on machine learning. I’ll sketch here the formal

framework of supervised learning, in order to relate it to

statistical physics of disordered systems. Recent introduc-

tions can be found in [28, 58].

Machine learning aims at learning a function from a d-

dimensional input n 2 Rd to a k-dimensional output y.

Usually, one is interested in large-dimensional input like an

image, so d is large, in practice it can be 106 or more, and a

small-dimensional output. Taking the famous example of

handwritten digits, the image could be an image of a digit,

and the output would be the digit. In a one-hot encoding,

one would use k ¼ 10 and the digit r would be associated

to yr ¼ 1 and yr0 ¼ 0 for r0 6¼ r. One thus wants to learn a

target function y ¼ ftðnÞ. Actually, in practical applications

we do not have a full definition of the function, but we have

examples, in the form of a database of pairs input–output

D ¼ fnl; ylg, with l 2 f1; :::;Pg.

Modern deep networks are based on artificial neurons

organized in layers. Each neuron in layer L is a simple unit

that receives a signal from the neurons in the previous

layer, applies a nonlinear function and sends this processed

signal to the neurons of the next layer (see Fig. 1). The

activity of neuron i in layer r is given by

Spin glass theory and its new challenge



xri ¼ wr
i

X

j

Wr
ijx

r�1
j

 !
ð20Þ

where Wr is a matrix of the ‘‘synaptic efficacies’’ between

neurons in layer r � 1 and r. The nonlinear function wr
i can

be, for instance, a sigmoid or a rectified linear unit. Usu-

ally, it depends on the layer r but not on the precise neuron

in the layer.

The layer 0 is the input, x0 ¼ n, and the layer L is the

output, xL ¼ y; other layers are called hidden layers. A

given realization of the neural network is given by its

architecture (the depth L and the width of each layer), the

choice of nonlinear functions, and the values of the weights

W ¼ fWrg; r 2 f1; ::::; Lg. We shall denote by N the total

number of weights. If the width of each hidden layers is

constant equal to h, then N ¼ dhþ ðL� 2Þh2 þ hk. A

given network with parameters W implements a function

from input to output y ¼ f ðW ; nÞ.
In most applications the architecture is chosen by the

engineer, based on previous experience, but the weights are

learnt. Indeed, machine learning designates the process by

which the parameters (in this case the weights) are not

given to the machine, but the machine learns them from

data. This learning is called the training phase. In order to

train a network, one defines a ‘‘loss function’’ L(W) which

measures the errors made by the machine with parameters

W on the database. For instance, one could use a quadratic

loss

LDðWÞ ¼
XP

l¼1

yl � f ðW ; nlÞð Þ2 ð21Þ

but many other choices are possible. Then the training

phase consists in finding the W that minimizes the loss. In

practice, people use a form of gradient descent called

stochastic gradient descent, in which one moves in the W

landscape using iteratively noisy versions of the gradient

computed from partial sums involving some batches of l
indices.

Once the learning has been done, one can use the cou-

plings W� which have been found during training, and see

how well the network generalize when it is presented some

new data that it has never seen. The test—or generaliza-

tion—loss has the same expression as (21), but with new,

previously unseen, input–output pairs.

Fig. 1 Top: typical structure of a feedforward neural network. The

input (image of a cat) is presented on the left layer. Data is processed,

layer after layer, until the output is given in the right. Bottom:

(a) Each layer is built from artificial neurons. They receive inputs

from the neurons of the previous layer on their left hand side, these

inputs are weighted, and the linear combination of the reweighted

inputs is then transformed by a nonlinear transfer function. (b, c) Two

examples of such functions are shown here: the ReLu function (b) and

a sigmoid (c)
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Data as disorder

One can also introduce a probability distribution in the

space of weights W, of the form

PDðWÞ ¼ 1

ZD
P0ðWÞe�bLDðWÞ ð22Þ

where ZD is a normalization constant, and P0ðWÞ is a prior

on the weights; one can choose it as a factorized prior

P0ðWÞ ¼
Q

r;i;j qðWr
ijÞ (for instance, one can use for q a

Gaussian if one wants to avoid too large weights). One

could also normalize
P

jðWr
ijÞ

2 ¼ 1, but I will keep here for

simplicity to the factorized case. The parameter b is an

auxiliary inverse temperature parameter. When b is large,

this probability distribution is concentrated on the sets of

weights W which minimize the loss. This formalism

amounts to an approach of statistical physics in the space of

weights. It was pioneered by Elizabeth Gardner [16, 17] in

the study of the simplest network, the perceptron which has

no hidden unit (and is therefore limited to linearly sepa-

rable tasks).

In recent applications of deep networks like the large

language model Chat-GPT, the total number of weights can

be of order 1011, and the total number of operations used in

order to train a network on extremely large databases of

basically all available text is easy to remember; it is of the

order of 1024, a ‘‘mole of operations.’’ So, the distribution

(22) is a measure in a large N-dimensional space. The

elementary variables, the weights, are real-valued variables

with a measure q. They are coupled through an energy

which is the loss LDðWÞ. This energy is a complicated

function of the variables W, and it depends on a large set of

parameters, namely all the input–output pairs D. Therefore,

the measure (22) has all the ingredients of a statistical

physics systems with a quenched disorder which is the

data.

Having in mind our discussion of disordered systems,

we can immediately identify several questions. One can

work on a given data base (a given sample) and ask about

the landscape for learning, and for generalization. But

clearly, for theoretical studies, one would like to have an

ensemble of samples, which is a probability measure in the

space of inputs, and for each input the corresponding out-

put. With such a setup of a data ensemble, one can draw a

database by choosing inputs independently at random from

the ensemble, one can study the property of self-average-

ness (which properties of the optimal network W� are

dependent on the precise realization of the database, and

which ones are not—in the large N limit ?). The test loss

becomes easy to define: it is the expectation value of the

loss, over pairs of input–output generated from the data

ensemble.

Working with a single dataset and with a data ensemble

are two rather different approaches. In many practical

applications the engineer’s approach is to use a single

dataset, and the definition of an ensemble is not obvious.

For instance, if one wants to identify if there is a cat or a

dog on an image, so far what is done is use huge databases

of images of cats and dogs, randomly choosing part of them

for training, and another part for the test phase. However,

in such a single database setup it is not easy to develop a

theory: on the one hand, there is a risk of developing a

theory which is too much tailored to this precise database,

and from which one cannot draw general conclusions; also,

one cannot use probabilities to compute the generalization

error. So, the use of data ensembles is clearly welcome

from a theoretical point of view, but then one faces the

difficulty of defining the ensemble in such a way that it will

include some essential features of real databases, but it

should be smooth enough so that one can interpolate

through it reasonably (the ensemble which would use a

probability law that is a sum of d peaks on each point of a

database is useless), and simple enough that it can be

studied. So, the question of finding good ensembles is a

fundamental question of how to model the ‘‘world’’, i.e.,

the set of all possible inputs that can be presented. Here by

modeling one intends it in a physics’ approach, namely

being able to identify the key features that should be

incorporated into the ensemble, neglecting less important

‘‘details’’.

Interestingly, this quest for modeling of data meets with

an important recent direction of development of machine

learning, which are generative models. In parallel to, and in

symbiosis with, the supervised machine learning that I have

briefly exposed, very significant progress has been made on

generative models. These aim at generating data ’similar

to’ a given database. Among the processes that have been

explored, one can mention generative adversarial networks

(GAN), or the very physical generative diffusion models

which take a database, degrade it using a Langevin process

until it has been transformed into pure noise, and then

reverse the Langevin process to reconstruct artificial data

from noise (see [49, 51, 52]); for a recent review see [57],

and for a statistical physics perspective: [5]).

Surprises

Perceptrons

Training a neural network in supervised learning amounts

to finding the ground state of a strongly disordered system.

One can thus ask what properties of spin glasses one can

find in neural networks. Early studies on perceptrons have

provided important benchmarks. Two main categories of

tasks have been studied: learning arbitrary labels, or
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learning from a ‘‘teacher rule’’. In both cases, the database

consists of P independent input datapoints each consisting

of d i.i.d. numbers from a distribution q0ðnÞ. In the case of

learning from arbitrary labels, for each input one generates

a desired output which is drawn randomly, independently

from the input. In this case one studies only the training

phase, generalization has no meaning. In the case of

learning a teacher rule, one generates the output from a

‘‘teacher’’ set of weights, Wt, through y ¼ f ðWt; nÞ. The

quality of training can be monitored by computing some

distance between W� and Wt, like, for instance,

jW� �Wtj2=jW2
t j.

The behavior of the training depends a lot on the a priori

measure on the weights, q. If q is Gaussian or imposes a

spherical constraint, the training problem is convex and the

landscape is simple. The training and generalization error

decrease continuously with a ¼ P=N. If q is discrete,

corresponding to Ising spins, then the training on random

labels shows a replica symmetry breaking phase at ac ¼
:83 [27] which has a strange nature. On the one hand, the

typical configurations at a close to ac are isolated points,

building a golf-course potential [26]. On the other hand,

atypical, exponentially rare regions of phase space con-

centrate a large number of neighboring solutions [2], and

are easy to find. As far as learning a teacher rule is con-

cerned, with binary synapses, the generalization error

shows a first order phase transition to perfect generalization

[22] when a is larger than a threshold ag ’ 1:25. The phase

diagram can be studied rigorously, and when a[ ’ 1:5

one can also use iterative message-passing algorithms

based on the cavity-TAP method [35] in order to find the

optimal weights defined by the teacher [4].

Deep networks

The recent experimental successes of deep networks have

triggered a lot of analyses, but the situation is less clear

than in perceptrons. So far, statistical physics approaches

can be used efficiently in multilayer networks either when

the transfer functions are linear [32], or when there is a

single layer of learnable parameters with a size that

diverges in the thermodynamic limit, like, for instance, in

committee machines or parity machines.

Also, the empirical observations of the learning process

show a picture which is rather different from the usual spin

glass landscape. The first observation is that very complex

functions involving billions of weights are learnable from

examples, using the simple stochastic gradient descent

algorithm. This means that the loss function which is

optimized is not as rough as one would have in a spin glass.

Typically, stochastic gradient descent, when initiated from

generic initial conditions (with small weights), finds a set

of weights W� not far from the initial condition, which has

a small loss. Surprisingly, in this large-dimensional space,

the set of weights with small loss is not sparse, as one could

have expected from our experience of optimizing in large

dimensions.

Once the network has been trained, typically using a

number N of weights that is of the same order as the

number of points in the database, one must study its gen-

eralization properties. From a statistics’ perspective, what

has been done in the training phase is fitting a complicated

N-dimensional function using P datapoints. This is possible

because N is large, but one should expect to be in a regime

of overfitting, and therefore a poor generalization. This is

not the case. Actually, increasing the depth of the network,

and therefore the number N of fitting parameters, one

observes that the generalization errors keeps decreasing,

while it should shoot-up in the overfitting regime. Among

all these minima of the loss, some generalize better than

others, and this seems to be correlated with the flatness of

the landscape around the minimum [3].

These facts indicate that deep learning landscapes are

rather different from the ones that have been explored in

spin glass theory or in perceptrons. What are the ingredi-

ents responsible for the relatively easy training and the lack

of overfitting in deep networks? Three directions are being

explored: (1) the architecture of the networks, and in par-

ticular the importance of using deep enough networks, with

many layers; in practice the design of the architecture,

including the choice of nonlinearities, is an engineer’s

decision based on previous experience; (2) the learning

algorithm; stochastic gradient descent started from weights

with small values seems efficient at finding out first the

main pair correlation in the data, then gradually improving

[46]; and (3) the structure of data: practical problems deal

with highly structured data, whether they are text, image,

amino-acid sequences. In the next section I shall focus on

this last point, argue about the relevance of structured data

and describe the challenge it poses to statistical physics.

The new challenge of spin glass theory: structured

disorder

Data are highly structured, and a major objective is to

develop mathematical models for the datasets on which

neural networks are trained. Most theoretical results on

neural networks do not model the structure of the training

data. Statistical learning theory [40, 55] usually provides

bounds that hold in the worst case, but are far from

describing typical properties seen in experiments. On the

other hand, traditional statistical physics approaches use a

setup where inputs are either drawn component-wise i.i.d.

from some probability distribution, or are Gaussian-

M Mézard



distributed [13, 47]. Labels are either random or given by

some random, but fixed function of the input. Despite

providing valuable insights, these approaches ignore key

structural properties of real-world datasets.

In recent years several aspects of data structure have

been explored, and the first ensembles of structured data

have started to be developed. The challenge is of course to

create ensembles which contain some of the essential

structure, but are at the same time simple enough to be

analyzed. I will mention here three categories of data

properties which are being studied: effective dimensional-

ity, correlations, and combinatorial/hierarchical structure.

Effective dimension

Let us consider perhaps the simplest canonical problem of

supervised machine learning: classifying the handwritten

digits in the MNIST database using a neural network [29].

The input patterns are images with 28 � 28 pixels, so a

priori we work in the high-dimensional space R784. How-

ever, the inputs that may be interpreted as handwritten

digits, and hence constitute the ‘‘world’’ of our problem,

span but a lower-dimensional manifold within R784.

Although this manifold is not easily defined, its dimension

can be estimated based on the distance between neigh-

boring points in the dataset [8, 19, 31, 53]. In fact, if we

consider P independent datapoints in a D-dimensional

space, we expect that the distance between nearest neigh-

bors scales like P�1=D. Analyzing the MNIST data base,

one finds the effective dimension to be around D 	 15,

much smaller than N ¼ 784. The ‘‘perceptual submani-

fold’’ associated with each digit also has an effective

dimension, ranging from 	 7 for the digit 1 to 	 13 for the

digit 8 [23]. Therefore, the task of identifying a hand-

written digit consists in finding these ten perceptual sub-

manifolds, embedded in the 15-dimensional ‘‘world’’

manifold of handwritten digits. Of course, the problem is

that these manifolds are nonlinear, folded, and it is hard to

find them (see [14] for algorithmic approaches). The same

phenomenon of reduction in effective dimension is found

in other datasets. For instance, images in CIFAR10 are

defined in dimension N ¼ 1024, but have an effective

dimension D 	 35. In most machine learning problems, the

effective ‘‘world’’ on which we train our networks has an

effective dimension D 
 N (in fact, a good practice would

be to train the networks so that they can identify when they

see an input which is far from the world in which they were

trained, and refuse to give an answer in such cases).

A simple attempt at including this effective dimen-

sionality in ensemble of data is the ‘‘hidden manifold

model’’ [18]. In this model, the seed s of a datapoint is

generated i.i.d. in a D-dimensional ‘‘latent’’ space, for

instance, from a Gaussian distribution. Then the datapoint

components ni are generated as

ni ¼ g
XD

r¼1

Firsr

 !
ð23Þ

where Fir are given and define the model, as well as

g which is a nonlinear function. It turns out that, when the

components of F are well balanced (and in particular if

they are generated i.i.d. from a well-behaved distribution),

one can generalize the statistical physics studies of the

perceptrons or shallow networks to data which has this

hidden manifold structure. The reason is that the hidden

units actually receive an input which becomes Gaussian-

distributed. This ‘‘Gaussian equivalence theorem’’ allows

to use the whole traditional spin glass machinery. It also

tells that this kind of model has its limitations, as it is

equivalent to some type of Gaussian distributed inputs.

Note that the hidden manifold structure of data defined

in (23) can receive a different interpretation, where one

would like to learn from the latent signal s in D dimen-

sions, but one first projects it to a N-dimensional space of

random features which are fixed, and not learnt, a problem

which has been studied in detail when the matrix F is

generated from a random matrix ensemble [34] (but

Gaussian equivalence holds beyond this, as long as matrix

elements are well balanced, like, for instance, in Hadamard

transformation).

Actually, the construction of hidden manifolds can be

elaborated by using, instead of (23), an iterative construc-

tion based on several layers of projections, as done in the

GAN approach. In that case, Gaussian equivalence is

conjectured to hold, although it has not been proven yet

[18].

Correlations

From the database, one can construct the empirical pair

correlation Cij between two components of the input

Cij ¼
1

P

XP

l¼1

nli n
l
j ð24Þ

as well as higher-order correlations. (Here we assume that

we use centered data, in which the empirical mean of ni has

been subtracted.) A distinguishing property of practical

datasets is that correlations are highly structured, and

actually some of this structure is already seen at the level of

the pair correlation.

For instance, if one diagonalizes the matrix of pair

correlations, which is of Wishart type, one finds a spectrum

of eigenvalues which differs notably from the Marcenko

Pastur one that would be obtained if the components nli
were distributed independently and identically. Instead,
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one typically gets a power-law distribution of the large

eigenvalues, and it has been argued that this power-law

scaling is actually related to the power-law decay of the

loss with respect to either N or P, found in large language

models [33]. A simple attempt at including this effective

dimensionality in an ensemble of data is to use random

Wishart matrices with a power-law distributed spectrum

[30, 33].

Note that this power-law scaling (with small exponents)

of eigenvalues of the correlation matrix points to the

existence of some type of long-range correlations. In fact,

very structured and long-range correlations in data are very

important, and the recently developed ’’attention mecha-

nism’’ is precisely built in order to handle such correlations

[56]. These are of a type which is rather different from

what one is used to in statistical physics. The easiest way to

illustrate them is through language models. In these mod-

els, one decomposes the sentences into tokens (typically

words or—for composite words—portions of words) and

the language models are trained from a large corpus, at the

task which is to take a text, interrupt it somewhere, and

give the best guess of the next token. Clearly the simplest

approach would be to sample the conditional probability

distribution: take the previous k tokens before being

interrupted, and look in the database at sentences which

have exactly this sequence of k tokens, and compute from

this database the most probable next token. This approach

was started very early on, by Shannon himself. But clearly

it is limited to small values of k: beyond k of order a dozen,

one does not have the statistics to infer the conditional

probability. But it turns out that key tokens, which are

crucial for guessing the next one, can be found much

earlier in the text. Take, for instance, this sentence written

above: ‘‘Instead, one gets typically a power law distribu-

tion of the large eigenvalues, and it has been argued that

this power-law scaling is actually related to the power-law

decay of the’’. In order to guess the next word, ’loss’, it

would be useful to focus on portions of this paper which

appear much earlier, where the loss is defined. It is this type

of long-range correlation that is handled by the attention

mechanism.

Combinatorial and hierarchical structure

A third distinctive structure of datasets used in practice is

its combinatorial nature. Imagine, for instance, a photo of a

lecture hall: it is composed by a group of students, each

sitting at his desk. Then each student is ‘‘composed’’ of

head, chest, arms, and each head is ‘‘composed’’ of eyes,

nose, mouth, hair, and the eyes are ‘‘composed’’ by pig-

mented epithemial cells, etc. This is actually typical, and

most of the images that we want to analyze have this type

of combinatorial structure with a hierarchy of features and

subfeatures related to the scale at which one looks. This

structure is also related to the decoding that happens when

learning from images with a deep network: one typically

finds that the first layers of the network decode small scales

elements like edges, and going further into the network one

gradually identifies larger scale properties, until in the final

layers one is able to decide the content of an image.

Interestingly, the same type of analysis, from small scale to

larger scales, takes place in the sequence of visual areas

used in the brains of primates. One also finds the same

combinatorial/hierarchical structure in text, for instance,

and also in protein sequences with their primary, secondary

and ternary structures.

The first attempts at building ensembles with combina-

torial/hierarchical properties are still rather rudimentary.

An easy case, although not very realistic, is the one of

linear structures. Interestingly, one can show that an

associative memory network [25] trying to store such

hierarchical patterns can be mapped onto a layered network

where the first layers analyze the small scale features, and

the information is then built gradually to larger scales, by

combining smaller scale features of previous layers. Very

recently, simple nonlinear versions of combinatorial/hier-

archical data ensembles have started to be explored

[41, 45].

Conclusions

Constructing a theory of deep learning is an important

challenge, both from the theoretical point of view, but also

for applications: only a solid theory will be able to turn a

deep network prediction from a black-box best guess into a

statement which can be explained and justified, and whose

worst-case behavior can be controlled. The main high-level

challenge that is faced in deep network is the one of

emergence: how is the information gradually elaborated

when it is processed from layer to layer in the network?

How is it encoded collectively? Contemporary networks

are working in a high-dimensional regime, and what we

need is a good control of the representations obtained from

data of probability distributions in large dimensions. This is

typically a problem of statistical physics. One big question

is whether we will be able to elaborate a statistical physics

of deep network which is based on a not-too-large number

of order parameters that can be controlled statistically, as

was done in spin glasses.

In order to be relevant, this approach to deep networks

must be able to take into account important ingredients of

the real ’world’, and in particular its structure. So far, spin

glass theory has been developed mostly for ensembles in

which the coupling constants are identically and indepen-

dently distributed. It is known that more structured
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ensembles can be very hard to study. This is the case, for

instance, of the EA model: in this model, the fact that the

spins are coupled only among nearest neighbors on a cubic

lattice is a type of Euclidean structure, and this problem has

not been solved exactly so far. A fascinating new challenge

of spin glass theory is to develop new ensembles of cor-

related disorder, including some of the most relevant

ingredients that are found in real databases, like long-range

correlations, hierarchy, combinatorial structures and

effective dimensions, while being able to keep some ana-

lytic control of the problem.

Funding Open access funding provided by Università Commerciale
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[37] M Mézard, G Parisi, N Sourlas, G Toulouse and M A Virasoro

Phys. Rev. Lett. 52 1156 (1984)
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