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Uncertainty Quantification for the Horseshoe
(with Discussion)

Stéphanie van der Pas∗§, Botond Szabó†§¶, and Aad van der Vaart‡¶

Abstract. We investigate the credible sets and marginal credible intervals re-
sulting from the horseshoe prior in the sparse multivariate normal means model.
We do so in an adaptive setting without assuming knowledge of the sparsity level
(number of signals). We consider both the hierarchical Bayes method of putting
a prior on the unknown sparsity level and the empirical Bayes method with the
sparsity level estimated by maximum marginal likelihood. We show that credible
balls and marginal credible intervals have good frequentist coverage and optimal
size if the sparsity level of the prior is set correctly. By general theory honest con-
fidence sets cannot adapt in size to an unknown sparsity level. Accordingly the
hierarchical and empirical Bayes credible sets based on the horseshoe prior are not
honest over the full parameter space. We show that this is due to over-shrinkage
for certain parameters and characterise the set of parameters for which credible
balls and marginal credible intervals do give correct uncertainty quantification. In
particular we show that the fraction of false discoveries by the marginal Bayesian
procedure is controlled by a correct choice of cut-off.

AMS 2000 subject classifications: Primary 62G15; secondary 62F15.

Keywords: credible sets, horseshoe, sparsity, nearly black vectors, normal means
problem, frequentist Bayes.

1 Introduction

Despite the ubiquity of problems with sparse structures, and the large amount of re-
search effort into finding consistent and minimax optimal estimators for the underly-
ing sparse structures Tibshirani (1996); Johnstone and Silverman (2004); Castillo and
Van der Vaart (2012); Castillo et al. (2015); Jiang and Zhang (2009); Griffin and Brown
(2010); Johnson and Rossell (2010); Ghosh and Chakrabarti (2015); Caron and Doucet
(2008); Bhattacharya et al. (2014); Bhadra et al. (2017); Roc̆ková (2015), the number
of options for uncertainty quantification in the sparse normal means problem is very
limited. In this paper, we show that the horseshoe credible sets and intervals are effec-
tive tools for uncertainty quantification, unless the underlying signals are too close to
the universal threshold in a sense that is made precise in this work. We first introduce
the sparse normal means problem, and our measures of quality of credible sets.
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The sparse normal means problem, also known as the sequence model, is frequently
studied and considered as a test case for sparsity methods, and has some applications
in, for example, image processing (Johnstone and Silverman (2004)). A random vector
Y n = (Y1, . . . , Yn) of observations, taking values in R

n, is modelled as the sum of fixed
means and noise:

Yi = θ0,i + εi, i = 1, . . . , n, (1)

where the εi follow independent standard normal distributions. The sparsity assumption
made on the mean vector θ0 = (θ0,1, . . . , θ0,n) is that it is nearly black, which stipulates
that most of the means are zero, except for pn =

∑n
i=1 1θ0,i �=0 of them. The sparsity

level pn is unknown, and assumed to go to infinity as n goes to infinity, but at a slower
rate than n: pn → ∞ and pn = o(n).

This paper studies the Bayesian approach based on the horseshoe prior Carvalho
et al. (2010, 2009); Scott (2011); Polson and Scott (2012a,b). The horseshoe prior is
popular due to its good performance in simulations and under theoretical study (e.g.
Carvalho et al. (2010, 2009); Polson and Scott (2012a, 2010); Bhattacharya et al. (2014);
Armagan et al. (2013); van der Pas et al. (2014); Datta and Ghosh (2013)). The horse-
shoe prior is a scale mixture of normals, with a half-Cauchy prior on the variance. It is
given by

θi |λi, τ ∼ N (0, λ2
i τ

2),

λi ∼ C+(0, 1), i = 1, . . . , n.
(2)

Across i the variables are assumed independent, with the exception of the hyperparam-
eter τ if this is given a prior as well. The “global hyperparameter” τ was determined
to be important towards the minimax optimality of the horseshoe posterior mean as an
estimator of θ0 (van der Pas et al. (2014)). The results in van der Pas et al. (2014) show
that τ can be interpreted as the proportion of nonzero parameters, up to a logarithmic
factor. If it is set at a value of the order (pn/n)

√
log(n/pn), then the horseshoe poste-

rior contracts around the true θ0 at the (near) minimax estimation rate for quadratic
loss. Adaptive posterior contraction, where the number pn is not assumed known but
estimated by empirical Bayes or hierarchical Bayes as in this paper, was proven for
estimators of τ that are bounded above by (pn/n)

√
log(n/pn) with high probability in

van der Pas et al. (2017a).

The adaptive concentration of the horseshoe posterior is encouraging towards the
usefulness of the horseshoe credible balls for uncertainty quantification, as in the
Bayesian framework the spread of the posterior distribution over the parameter space
is used as an indication of the error in estimation. It follows from general results of Li
(1989); Robins and van der Vaart (2006); Nickl and van de Geer (2013) that honest
uncertainty quantification is irreconcilable with adaptation to sparsity. Here honesty of
confidence sets Ĉn = Ĉn(Y

n) relative to a parameter space Θ̃ ⊂ R
n means that

lim inf
n→∞

inf
θ0∈Θ̃

Pθ0(θ0 ∈ Ĉn) ≥ 1− α,

for some prescribed confidence level 1− α. Furthermore, adaptation to a partition Θ̃ =
∪p∈PΘp of the parameter space into submodels Θp indexed by a hyper-parameter p ∈ P ,
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means that, for every p ∈ P and for rn,p the (near) minimax rate of estimation relative
to Θp,

lim inf
n→∞

inf
θ0∈Θp

Pθ0(diam(Ĉn) ≤ rn,p) = 1.

This second property ensures that the good coverage is not achieved by taking conser-
vative, overly large confidence sets, but that these sets have “optimal” diameter. In our
present situation we may choose the models Θp equal to nearly black bodies with p
nonzero coordinates, in which case r2n,p 
 p log(n/p), if p � n. Now it is shown in Li

(1989) that confidence regions that are honest over all parameters in Θ̃ = R
n cannot

be of square diameter smaller than n1/2, which can be (much) bigger than p log(n/p), if
p � n1/2. Similar restrictions are valid for honesty over subsets of Rn, as follows from
testing arguments (see the appendix in Robins and van der Vaart (2006)). Specifically,
in Nickl and van de Geer (2013) it is shown that confidence regions that adapt in size to
nearly black bodies of two different dimensions pn,1 � pn,2 cannot be honest over the
union of these two bodies, but only over the union of the smallest body and the vectors
in the bigger body that are at some distance from the smaller body. As both the full
Bayes and empirical Bayes horseshoe posteriors contract at the near square minimax
rate rn,p, adaptively over every nearly black body, it follows that their credible balls
cannot be honest in the full parameter space.

In Bayesian practice credible balls are nevertheless used as if they were confidence
sets. A main contribution of the present paper is to investigate for which parameters θ0
this practice is justified. We characterise the parameters for which the credible sets of
the horseshoe posterior distribution give good coverage, and the ones for which they do
not. We investigate this both for the empirical and hierarchical Bayes approaches, both
when τ is set deterministically, and in adaptive settings where the number of nonzero
means is unknown. In the case of deterministically chosen τ , uncertainty quantifica-
tion is essentially correct provided τ is chosen not smaller than (pn/n)

√
log(n/pn). For

the more interesting full and empirical Bayes approaches, the correctness depends on
the sizes of the nonzero coordinates in θ0. If a fraction of the nonzero coordinates is
detectable, meaning that they exceed the “threshold”

√
2 log(n/pn), then uncertainty

quantification by a credible ball is correct up to a multiplicative factor in the radius.
More generally, this is true if the sum of squares of the non-detectable nonzero coordi-
nates is suitably dominated, as in Belitser and Nurushev (2015).

We show in this work that the uncertainty quantification given by the horseshoe pos-
terior distribution is “honest” only under certain prior assumptions on the parameters.
In contrast, interesting recent work within the context of the sparse linear regression
model is directed at obtaining confidence sets that are honest in the full parameter set
Zhang and Zhang (2014); van de Geer et al. (2014); Liu and Yu (2013). The resulting
methodology, appropriately referred to as “de-sparsification”, might in our present very
special case of the regression model reduce to confidence sets for θ0 based on the trivial
pivot Y n−θ0, or functions thereof, such as marginals. These confidence sets would have
uniformly correct coverage, but be very wide, and not accommodate the presumed spar-
sity of the parameter. This seems a high price to pay; sacrificing some coverage so as to
retain some shrinkage may not be unreasonable. Our contribution here is to investigate
in what way the horseshoe prior makes this trade-off. In addition, we provide a specific
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example of an estimator that meets our conditions for adaptive coverage: the maximum
marginal likelihood estimator (MMLE). The MMLE is introduced in detail in van der
Pas et al. (2017a). In this paper, we expand on the MMLE results in van der Pas et al.
(2017a) by showing that it meets the imposed conditions for adaptive coverage as well.

Uncertainty quantification in the case of the sparse normal means model was ad-
dressed also in the recent paper Belitser and Nurushev (2015). These authors con-
sider a mixed Bayesian-frequentist procedure, which leads to a mixture over sets I ⊂
{1, 2, . . . , n} of projection estimators (Yi1i∈I), where the weights over I have a Bayesian
interpretation and each projection estimator comes with a distribution. Treating this as
a posterior distribution, the authors obtain credible balls for the parameter, which they
show to be honest over parameter vectors θ0 that satisfy an “excessive-bias restriction”.
This interesting procedure has similar properties as the horseshoe posterior distribution
studied in the present paper. While initially we had derived our results under a stronger
“self-similarity” condition, we present here the results under a slight weakening of the
“excessive-bias restriction” introduced in Belitser and Nurushev (2015).

The performance of adaptive Bayesian methods for uncertainty quantification for the
estimation of functions has been previously considered in Szabó et al. (2015a,b); Serra
and Krivobokova (2017); Castillo and Nickl (2014); Ray (2014); Sniekers and van der
Vaart (2015a,c,b); Belitser (2017); Rousseau and Szabo (2016). These papers focus on
adaptation to functions of varying regularity. This runs into similar problems of honesty
of credible sets, but the ordering by regularity sets the results apart from the adaptation
to sparsity in the present paper.

For single coordinates θ0,i uncertainty quantification by marginal credible intervals
is quite natural. Credible intervals can be easily visualised by plotting them versus the
index (cf. Figure 1). A simulation study in the context of the linear regression model
is given in Bhattacharya et al. (2015). Marginal credible intervals may also be used as
a testing device, for instance by declaring coordinates i for which the credible interval
does not contain 0 to be discoveries. We show that the validity of these intervals depends
on the value of the true coordinate. On the positive side we show that marginal credible
intervals for coordinates θ0,i that are either close to zero or above the detection boundary
are essentially correct. In particular, the fraction of false discoveries tends to zero. On
the negative side the horseshoe posteriors shrink intervals for intermediate values too
much to zero for coverage. Different from the case of credible balls, these conclusions
are hardly affected by whether the sparseness level τ is set by an oracle or adaptively,
based on the data.

The paper is organized as follows. Section 2 is concerned with marginal credible
intervals. Consequences for the false and true discoveries are explored in Section 3.
Results for credible balls are collected in Section 4. In all cases, the results are given for
deterministic and general empirical and hierarchical Bayes approaches. The coverage
as well as model selection properties of the marginal credible sets are investigated in
a simulation study in Section 5. Section 6 contains proofs for the marginal credible
intervals. A supplement (van der Pas et al., 2017b) contains the proofs of the other
results, as a sequence of appendices.
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1.1 Notation

The posterior distribution of θ relative to the prior (2) given fixed τ is denoted by
Π(· |Y n, τ), and the posterior distribution in the hierarchical setup where τ has re-
ceived a prior is denoted by Π(· |Y n). We use Π(· |Y n, τ̂) for the empirical Bayes “plug-
in posterior”, which is Π(· |Y n, τ) with a data-based variable τ̂ substituted for τ . To
emphasize that τ̂ is not conditioned on, we alternatively use Πτ (· |Y n) for Π(· |Y n, τ),
and Πτ̂ (· |Y n) for Π(· |Y n, τ̂).

The function ϕ denotes the density of the standard normal distribution. The class of
nearly black vectors is given by �0[p] = {θ ∈ R

n :
∑n

i=1 1θi �=0 ≤ p}, and we abbreviate

ζτ =
√

2 log(1/τ), τn(p) = (p/n)
√

log(n/p), τn = τn(pn).

The cardinality of the discrete set S is denoted by #(S).

2 Credible intervals

We study the coverage properties of credible intervals for the individual coordinates θ0,i.
We show that the marginal credible intervals fall into three categories, dependent on
τ . We show that coordinates θ0,i that are either “small” or “large” will be covered, in
the sense that within both categories the fraction of correct intervals is arbitrarily close
to 1. On the other hand, none of the “intermediate” coordinates θ0,i are covered. We
show this first for the deterministic case, where the boundaries between the categories
are at multiples of τ and ζτ respectively. Furthermore, we show that the results for
deterministic marginal credible intervals extend to the adaptive situation for any true
parameter θ0, with slight modification of the boundaries between the three cases of
small, intermediate and large coordinates. We elaborate on the implications for model
selection in Section 3.

2.1 Definitions

Non-adaptive marginal credible intervals can be constructed from the marginal posterior
distributions Π(θ : θi ∈ · |Y n, τ). By the independence of the pairs (θi, Yi) given τ , the
ith marginal depends only on the ith observation Yi. We consider intervals of the form

Ĉni(L, τ) =
{
θi : |θi − θ̂i(τ)| ≤ Lr̂i(α, τ)

}
, (3)

where θ̂i(τ) = E(θi |Yi, τ) is the marginal posterior mean, L a positive constant, and
r̂i(α, τ) is determined so that, for a given 0 < α ≤ 1/2,

Π
(
θi : |θi − θ̂i(τ)| ≤ r̂i(α, τ) |Yi, τ

)
= 1− α.

Adaptive empirical Bayes marginal credible intervals are defined by plugging in an
estimator τ̂n for τ in the intervals Ĉni(L, τ) defined by (3).
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Similarly full Bayes credible intervals Ĉni(L) are defined from the full Bayes marginal

posterior distributions, centered around the coordinates of the full posterior mean θ̂ =
E(θ |Y ) as

Ĉni(L) =
{
θi : |θi − θ̂i| ≤ Lr̂i(α)

}
, (4)

for r̂i(α) determined so that Ĉni(1) has posterior probability 1− α.

2.2 Credible intervals for deterministic τ

The coverage of the marginal credible intervals depends crucially on the value of the true
coordinate θ0,i. For given τ → 0, positive constants kS , kM , kL and numbers fτ ↑ ∞ as
τ → 0, we distinguish three regions (small, medium and large) of signal parameters:

S :=
{
1 ≤ i ≤ n : |θ0,i| ≤ kSτ

}
,

M :=
{
1 ≤ i ≤ n : fττ ≤ |θ0,i| ≤ kMζτ

}
,

L :=
{
1 ≤ i ≤ n : kLζτ ≤ |θ0,i|

}
.

The conditions on the constants and fτ in the following theorem make it that these three
sets may not cover all coordinates θ0,i, but their boundaries are almost contiguous. The
following theorem shows that the fractions of coordinates contained in S and in L that
are covered by the credible intervals are close to 1, whereas no coordinate in M is
covered.

Theorem 1. Suppose that kS > 0, kM < 1, kL > 1, and fτ ↑ ∞, as τ → 0. Then for
τ → 0 and any sequence γn → c for some 0 ≤ c ≤ 1/2, satisfying ζγn � ζτ ,

Pθ0

(#(
{i ∈ S : θ0,i ∈ Ĉni(LS , τ)}

)
#
(
S
) ≥ 1− γn

)
→ 1, (5)

Pθ0

(
θ0,i /∈ Ĉni(L, τ)

)
→ 1, for any L > 0 and i ∈ M, (6)

Pθ0

(#(
{i ∈ L : θ0,i ∈ Ĉni(LL, τ)}

)
#(L) ≥ 1− γn

)
→ 1, (7)

where LS = (2.1/zα)[kS + (2/γn)ζγn/2] and LL = (1.1/zα/2)ζγn/2.

Proof. See Section 6.

Remark 1. Statements (5) and (7) concern the fractions of intervals that cover. Under
the conditions of Theorem 1 it is also true that the individual intervals satisfy

Pθ0(θ0,i ∈ Ĉni(L, τ)) ≥ 1− γn,

with L = LS and L = LL for i ∈ S and i ∈ L, respectively. This is shown as part of the
proof of Theorem 1 in Section 6.

Remark 2. The results of Theorem 1 can be extended to the class of global-local scale
mixtures of normals introduced in Ghosh and Chakrabarti (2015) with density π(λ2

i )
given as
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π(λ2
i ) = K

1

λ2+2a
i

L(λ2
i ),

where a ≥ 1/2, K > 0 and the function L : (0,∞) → (0,∞) satisfies that supt>0 L(t) ≤
M and inft≥t0 L(t) ≥ c0 for some c0, t0 > 0. This class of priors includes the horseshoe
prior, normal-exponential-gamma priors, the three parameter beta normal mixtures, the
generalized double Pareto, the inverse gamma and half-t priors. The resulting constants
LS and LL will depend on the hyper-parameters c0, t0,M,K and a.

2.3 Adaptive credible intervals

We show that the adaptive credible intervals mimic the behaviour of the intervals for
deterministic τ given in Theorem 2. The adaptive results require some conditions on
either the empirical Bayes estimator of τ , or the hyperprior on τ . In the empirical Bayes
case, one condition on the estimator of τ suffices, stated below. It is the same condition
under which adaptive contraction of the empirical Bayes horseshoe posterior was proven
in van der Pas et al. (2017a).

Condition 1. There exists a constant C > 0 such that τ̂n ∈ [1/n,Cτn(pn)], with
Pθ0 -probability tending to one, uniformly in θ0 ∈ �0[pn].

A natural choice of estimator τ̂n is the marginal maximum likelihood estimator
(MMLE), defined as

τ̂M = argmax
τ∈[1/n,1]

n∏
i=1

∫ ∞

−∞
ϕ(yi − θ)gτ (θ) dθ, (8)

where gτ (θ) =
∫∞
0

ϕ( θ
λτ )

1
λτ

2
π(1+λ2) dλ. It is shown in van der Pas et al. (2017a) that

Condition 1 holds for the MMLE.

The restriction of the MMLE to the interval [1/n, 1] corresponds to an assumption
that the number of signals is between 1 and n, following the interpretation of τ as
(approximately) the proportion of signals. In van der Pas et al. (2017a), and in the
simulation study in Section 5, the MMLE is compared to the “simple” estimator of
van der Pas et al. (2014), which estimates pn by counting the number of observations
that are larger than (a constant multiple of) the universal threshold

√
2 log n and its

computation is discussed. It is proven that the MMLE meets Condition 1, and thus
that the empirical Bayes procedure with the MMLE as a plug-in estimate of τ leads to
adaptive posterior concentration results.

In the hierarchical Bayes procedure, we impose the same conditions on the hyperprior
πn as for adaptive posterior concentration in van der Pas et al. (2017a). We recall them
below.

Condition 2. The prior density πn is supported inside [1/n, 1].

Condition 3. Let tn = Cuπ
3/2 τn(pn), with the constant Cu as in Lemma G.8(i). The

prior density πn satisfies
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∫ tn

tn/2

πn(τ) dτ � e−cpn , for some c < Cu/2.

Condition 3 may be replaced by the weaker Condition 4, at the price of suboptimal
rates.

Condition 4. For tn as in Condition 3 the prior density πn satisfies,∫ tn

tn/2

πn(τ) dτ � tn.

Examples of priors meeting Conditions 2 and 4 are the Cauchy prior on the pos-
itive reals, or the uniform prior, both truncated to [1/n, 1]. They satisfy the stronger
Condition 3 if pn ≥ C logn, for a sufficiently large C > 0.

In the adaptive case, the three regions (small, medium and large) of signal parameters
are defined as, for given positive constants kS , kM , kL, and fn:

Sa :=
{
1 ≤ i ≤ n : |θ0,i| ≤ kS/n

}
,

Ma :=
{
1 ≤ i ≤ n : fnτn(pn) ≤ |θ0,i| ≤ kM

√
2 log(1/τn(pn))

}
,

La :=
{
1 ≤ i ≤ n : kL

√
2 logn ≤ |θ0,i|

}
.

Theorem 2. Suppose that kS > 0, kM < 1, kL > 1, and fn ↑ ∞. If τ̂n satisfies
Condition 1, then for any sequence γn → c for some 0 ≤ c ≤ 1/2 such that ζ2γn

�
log(1/τn(pn)), we have that

Pθ0

(#(
{i ∈ Sa : θ0,i ∈ Ĉni(LS , τ̂n)}

)
#(Sa)

≥ 1− γn

)
→ 1, (9)

Pθ0

(
θ0,i /∈ Ĉni(L, τ̂n)) → 1, for any L > 0 and i ∈ Ma, (10)

Pθ0

(#(
{i ∈ La : θ0,i ∈ Ĉni(LL, τ̂n)}

)
#(La)

≥ 1− γn

)
→ 1, (11)

with LS and LL given in Theorem 1. Under Conditions 2 and 3 and in addition pn �
logn the same statements hold for the hierarchical Bayes marginal credible sets. This is
also true under Conditions 2 and 4 if fn � log n, with different constants LS and LL.

Proof. See Appendix A.1 in the supplement (van der Pas et al., 2017b).

Remark 3. Under the self-similarity assumption (15) discussed in Section 4.3, the
statements of Theorem 2 hold for the sets S, M and L given preceding Theorem 1 with
τ = τn(pn).

Remark 4. Statements (9) and (11) concern the fractions of intervals that cover. Under
the conditions of Theorem 2 it is also true that the individual intervals satisfy

Pθ0(θ0,i ∈ Ĉni(L, τ̂n)) ≥ 1− γn,
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with L = LS and L = LL for i ∈ Sa and i ∈ La, respectively. The same statement holds
for the hierarchical Bayes marginal credible intervals. This is shown as part of the proof
of Theorem 2 in Appendix A.1 in the supplement (van der Pas et al., 2017b).

Figure 1: 95% marginal credible intervals based on the MMLE empirical Bayes method,
constructed using the 2.5% and 97.5% quantiles, for a single observation Y n of length
n = 200 with pn = 10 nonzero parameters, the first 5 (from the left) being 7 (green),
the next 5 equal to 1.5 (orange); the remaining 190 parameters are coded (blue). The
inserted plot zooms in on credible intervals 5 to 13, thus showing one large mean and
all intermediate means.

Figure 1 illustrates Theorem 2 by showing the marginal credible sets for just a single
simulated data set, in a setting with n = 200, and pn = 10 nonzero coordinates. The
value τ was chosen equal to the MMLE, which realised as approximately 0.11. The
means were taken equal to 7, 1.5 or 0, corresponding to the three regions L,M,S listed
in the theorem (

√
2 logn ≈ 3.3). All the large means (equal to 7) were covered; only 2

out of 5 of the medium means (equal to 1.5) were covered; and all small (zero) means
were covered, in agreement with Theorem 2. It may be noted that intervals for zero
coordinates are not necessarily narrow.

3 Model selection

Marginal credible sets give rise to a natural model selection procedure: a parameter
is selected as a signal (or “is a discovery”) if and only if the corresponding credible
interval does not contain zero. We can study this procedure again both in the case of
deterministic τ and in the adaptive case, where τ is estimated from the data or receives
a hyperprior. For simplicity in this section we only state the result for the adaptive
case, leaving the non-adaptive case to the supplement (van der Pas et al., 2017b), see
Theorem B.1 in Appendix B .

For zero coordinates θ0,i selection is the same as coverage, but for nonzero coor-
dinates selection is easier. While coverage involves both the center and the spread of
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the posterior distribution, selection depends only on the posterior probability that the
signal is positive (or negative). This makes that the blow-up constant L in the definition
(3) or (4) of a credible interval is unimportant. Thus we consider these intervals with an
arbitrary constant L > 0, and say that a parameter θ0,i = 0 is falsely selected, or that a
parameter θ0,i �= 0 is correctly selected, if, in both cases, it is contained in the interval

Ĉni(L, τ̂) or Ĉni(L), in the empirical Bayes or full Bayes cases respectively. These are
the false and true positives, respectively.

Now few zero parameters (the ones with index in N := {1 ≤ i ≤ n : θ0,i = 0}) are
falsely selected and most large signals (the ones with index in La) are correctly selected.
However most of the remaining parameters (the ones with index in (N c∩Sa)∪Ma) are
not selected, and hence constitute false negatives. Thus the procedure is conservative,
the good news being that discoveries tend to be true discoveries.

Theorem 3. Suppose that kM < 1 < kL and fn ↑ ∞ and let L > 0. For any sequence
γn such that ζ2γn

� ζ2τn(pn)
, the following statements hold, with probability tending to

one:

(i) The number of selected parameters with i ∈ N divided by the total number #(N )
of zero parameters is at most γn.

(ii) The number of selected parameters in i ∈ La divided by the total number of large
parameters #(La) is at least 1− γn, i.e.

Pθ0

(#(
{i ∈ La : 0 /∈ Ĉni(L, τ̂)}

)
#(La)

≥ 1− γn

)
→ 1,

and the same for the hierarchical Bayes intervals Ĉni(L).

(iii) At most a fraction γn of the parameters within i ∈ (N c∩Sa)∪Ma will be selected.

Proof. See Appendix B in the supplement (van der Pas et al., 2017b).

The assertion of the theorem are in the spirit of “false discovery rates”. However,
none of the statements concerns the usual false discovery rate, defined as the number
of falsely selected parameters divided by the total number of selected parameters. Our
current methods do not seem to provide realistic bounds on this quantity, partly because
we are working under the assumption of sparsity.

An alternative method for model selection using the horseshoe was proposed by
Carvalho et al. (2010). They proposed to select as nonzero coordinates the indices such

that the ratio κi(τ) = θ̂i(τ)/Yi exceeds a threshold (to be precise κi(τ) > 1/2). This
method has similar behaviour to the credible set based model selection approach, as
proven in Theorem B.2 in Appendix B in the supplement (van der Pas et al., 2017b).
We refer to Datta and Ghosh (2013) for theoretical properties of this procedure, and
compare the credible interval and thresholding methods further through simulation in
Section 5.
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4 Credible balls

By their definition, credible sets contain a fixed fraction, e.g. 95 %, of the posterior
mass. The diameter of such sets will be at most of the order of the posterior contraction
rate. The upper bounds on the contraction rates of the horseshoe posterior distributions
given in van der Pas et al. (2017a) imply that the horseshoe credible sets are narrow
enough to be informative. However, these bounds do not guarantee that the credible
sets will cover the truth. The latter is dependent on the spread of the posterior mass
relative to its distance to the true parameter. For instance, the bulk of the posterior
mass may be highly concentrated inside a ball of radius the contraction rate, but within
a narrow area of diameter much smaller than its distance to the true parameter.

In this section we study coverage of credible balls, that is, credible sets for the full
parameter vector θ0 ∈ R

n relative to the Euclidean distance. We do so first in the case
of deterministic τ and next for the empirical and full Bayes posterior distributions.

4.1 Definitions

Given a deterministic hyperparameter τ , possibly depending on n and pn, we consider
a credible ball of the form

Ĉn(L, τ) =
{
θ : ‖θ − θ̂(τ)‖2 ≤ Lr̂(α, τ)

}
, (12)

where θ̂(τ) = E(θ |Y n, τ) is the posterior mean, L a positive constant, and for a given
α ∈ (0, 1) the number r̂(α, τ) is determined such that

Π
(
θ : ‖θ − θ̂(τ)‖2 ≤ r̂(α, τ) |Y n, τ

)
= 1− α.

Thus r̂(α, τ) is the natural radius of a set of “Bayesian credible level” 1 − α, and L
is a constant, introduced to make up for a difference between credible and confidence
levels, similarly as in Szabó et al. (2015b). Unlike in the latter paper the radii r̂(α, τ)
do depend on the observation Y n, as indicated by the hat in the notation.

In the empirical Bayes approach we define a credible set by plugging in an estimator
τ̂n of τ into the non-adaptive credible ball Ĉn(L, τ) given in (12):

Ĉn(L, τ̂n) =
{
θ : ‖θ − θ̂(τ̂n)‖2 ≤ Lr̂(α, τ̂n)

}
. (13)

In the hierarchical Bayes case we use a ball around the full posterior mean θ̂ =∫
θΠ(dθ |Y n), given by

Ĉn(L) =
{
θ : ‖θ − θ̂‖2 ≤ Lr̂(α)

}
, (14)

where L is a positive constant and r̂(α) is defined from the full posterior distribution
by

Π
(
θ : ‖θ − θ̂‖2 ≤ r̂(α) |Y n

)
= 1− α.

The question is whether these Bayesian credible sets are appropriate for uncertainty
quantification from a frequentist point of view.
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4.2 Credible balls for deterministic τ

The following lower bound for r̂(α, τ) in the case that nτ → ∞ is the key to the
frequentist coverage. The assumption nτ/ζτ → ∞ is satisfied for τ of the order the
“optimal” rate τn(pn) provided pn → ∞ (as we assume).

Lemma 1. If nτ/ζτ → ∞, then with Pθ0-probability tending to one,

r̂(α, τ) ≥ 0.5
√
nτζτ .

Proof. See Appendix C.1 in the supplement (van der Pas et al., 2017b).

Theorem 4. If τ ≥ τn and τ → 0 and pn → ∞ with pn = o(n), then, there exists a
large enough L > 0 such that

lim inf
n→∞

inf
θ0∈�0[pn]

Pθ0

(
θ0 ∈ Ĉn(L, τ)

)
≥ 1− α.

Proof. The probability of the complement of the event in the display is equal to
Pθ0(‖θ0 − θ̂(τ)‖2 > L r̂(α, τ)). In view of Lemma 1 this is bounded by o(1) plus

Pθ0

(
‖θ0 − θ̂(τ)‖2 > 0.5L

√
nτζτ

)
� Eθ0‖θ̂(τ)− θ0‖22

L2nτζτ
.

By Theorem 3.2 of van der Pas et al. (2014) the numerator on the right is bounded by
a multiple of pn log(1/τ) + nτ

√
log 1/τ . By the assumption τ ≥ τn ≥ 1/n the quotient

is smaller than α for appropriately large choice of L.

Theorem 4 combined with the upper bound on the posterior contraction rate in
van der Pas et al. (2014) show that a (slightly enlarged) credible ball centered at the
posterior mean is of rate-adaptive size and covers the truth provided τ is chosen of
the order of the “optimal” value τn(pn). This is not possible in general, as it requires
knowing the number of signals. In the next sections, we will show that if the empirical
Bayes estimator of τ is “close” to τn(pn), or if a hyperprior on τ places “enough” mass on
a neighborhood of a quantity of order τn(pn), then adaptation to the unknown number
of signals is possible.

4.3 Adaptive credible balls

We now turn to credible sets in the more realistic scenario that the sparsity parameter
pn is not available. We investigate both the empirical Bayes and the hierarchical Bayes
credible balls. We show that both empirical and hierarchical credible balls cover the true
parameter θ0, if θ0 satisfies the “excessive-bias restriction”, given below, under some
conditions on the empirical Bayes plug-in estimate or the hierarchical Bayes hyperprior
on τ .
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The excessive-bias restriction

Unfortunately, coverage can be guaranteed only for a selection of true parameters θ0.
The problem is that a data-based estimate of sparsity may lead to over-shrinkage, due to
a too small value of the plug-in estimator or concentration of the posterior distribution
of τ too close to zero. Such over-shrinkage makes the credible sets too small and close
to zero. A simple condition preventing over-shrinkage is that a sufficient number of
nonzero parameters θ0,i are above the “detection boundary”. The minimum threshold

for detection required in our proof is
√
2 log(n/pn). This leads to the following condition.

Assumption 1 (self-similarity). A vector θ0 ∈ �0[p] is called self-similar if

#
(
i : |θ0,i| ≥ A

√
2 log(n/p)

)
≥ p

Cs
. (15)

The two constants Cs and A will be fixed to universal values, where necessarily Cs ≥ 1
and it is required that A > 1.

The problem of over-shrinkage is comparable to the problem of over-smoothing in
the context of nonparametric density estimation or regression, due to the choice of a too
large bandwidth or smoothness level. The preceding self-similarity condition plays the
same role as the assumptions of “self-similarity” or “polished tail” used by Picard and
Tribouley (2000); Giné and Nickl (2010); Bull (2012); Nickl and Szabo (2016); Szabó
et al. (2015b); Sniekers and van der Vaart (2015c); Rousseau and Szabo (2016) in their
investigations of confidence sets in nonparametric density estimation and regression,
or the “excessive-bias” restriction in Belitser (2017) employed in the context of Besov-
regularity classes in the normal mean model.

The self-similarity condition is also reminiscent of the beta-min condition for the
adaptive Lasso van de Geer et al. (2011); Bühlmann and van de Geer (2011), which
imposes a lower bound on the nonzero signals in order to achieve consistent selection
of the set of nonzero coordinates of θ0. However, the present condition is different in
spirit both by the size of the cut-off and by requiring only that a fraction of the nonzero
means is above the threshold.

For ensuring coverage of credible balls the condition can be weakened to the following
more technical condition.

Assumption 2 (excessive-bias restriction). A vector θ0 ∈ �0[p] satisfies the excessive-
bias restriction for constants A > 1 and Cs, C > 0, if there exists an integer q ≥ 1
with ∑

i:|θ0,i|<A
√

2 log(n/q)

θ20,i ≤ Cq log(n/q), #
(
i : |θ0,i| ≥ A

√
2 log(n/q)

)
≥ q

Cs
. (16)

The set of all such vectors θ0 (for fixed constants A,Cs, C) is denoted by Θ[p], and
p̃ = p̃(θ0) denotes #(i : |θ0,i| ≥ A

√
2 log(n/q)), for the smallest possible q.

If θ0 ∈ �0[p] is self-similar, then it satisfies the excessive-bias restriction with q = p,
C = 2A2 and the same constants A and Cs. This follows, because the sum in (16) is
trivially bounded by #(i : θ0,i �= 0)A22 log(n/q).
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In the following example we show that the excessive-bias restriction is also implied
by a condition with the same name introduced in Belitser and Nurushev (2015). The
latter condition motivated Assumption 2, which is more suited to our investigation of
the horseshoe credible sets.

Example 1. For a given θ0 and any subset I ⊂ {1, 2, . . . , n} let

G(I) =
∑
i∈Ic

θ20,i + 2A2#(I) log
ne

#(I)
.

In Belitser and Nurushev (2015) θ0 is defined to satisfy the excessive-bias restriction if
G takes its minimum at a nonempty set Ĩ such that G(Ĩ) ≤ C#(Ĩ) log(ne/#(Ĩ)).

We now show that in this case θ0 also satisfies Assumption 2, with q = #(Ĩ). Let
θ0,i be a coordinate with i ∈ Ĩ of minimal absolute value |θ0,i| = min{|θ0,j | : j ∈ Ĩ}.
From G(Ĩ) ≤ G(Ĩ − {i}) we obtain that θ20,i ≥ 2A2#(Ĩ) log(ne/#(Ĩ)) − 2A2(#(Ĩ) −
1) log(ne/(#(Ĩ) − 1)) ≥ 2A2 log(n/#(Ĩ)), since the derivative of x → x log(ne/x) is
log(n/x). Consequently, first #(j : θ20,j ≥ 2A2 log(n/#(Ĩ))) ≥ #(j : θ20,j ≥ θ20,i) ≥ #(Ĩ),
by the minimising property of θ0,i, verifying the second inequality in (16). Second {j :

θ20,j < 2A2 log(n/q)} ⊂ {j : θ20,j < θ20,i} ⊂ Ĩc, again by the minimising property of θ0,i.

Thus the first inequality of (16) follows by the fact that G(Ĩ) ≤ C#(Ĩ) log(ne/#(Ĩ)).

Empirical Bayes condition and the MMLE

To obtain coverage in the empirical Bayes setting, we replace Condition 1 by the fol-
lowing.

Condition 5. The estimator τ̂n satisfies, for a given sequence pn and some constant
C > 1, with p̃ = p̃(θ0),

inf
θ0∈Θ[pn]

Pθ0

(
C−1τn(p̃) ≤ τ̂n ≤ Cτn(p̃)

)
→ 1.

The lower bound of order τn(p̃) instead of 1/n prevents over-shrinkage. Although
this condition may appear more restrictive than Condition 1, Condition 5 may not be
more stringent than Condition 1, because it only needs to hold for vectors θ0 that meet
the excessive-bias restriction.

For the coverage results in this paper, we need the additional result that the MMLE
is of the order τn(p̃(θ0)) for all vectors θ0 satisfying the excessive-bias restriction.

Lemma 2. For pn → ∞ such that pn = o(n), the MMLE τ̂n satisfies Condition 5.

Proof. See Appendix D.1 in the supplement (van der Pas et al., 2017b).

The relative performances of the empirical Bayes procedures with the MMLE or the
“simple” estimator are studied further in Section 5.
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Main result on adaptive credible balls

Under the excessive-bias restriction, both the empirical and hierarchical Bayes credi-
ble balls are honest and adaptive. In the hierarchical Bayes setting, the hyperprior is
assumed to be supported on [1/n, 1], similar to the MMLE.

Theorem 5. Let p̃n ≤ pn be given sequences with p̃n → ∞ and pn = o(n). If the esti-
mator τ̂n of τ satisfies Condition 5, then for a sufficiently large constant L (depending
on A,Cs, C) the empirical Bayes credible ball Ĉn(L, τ̂n) has honest coverage and rate
adaptive (oracle) size:

lim inf
n→∞

inf
θ0∈Θ[pn],p̃(θ0)≥p̃n

Pθ0

(
θ0 ∈ Ĉn(L, τ̂n)

)
≥ 1− α,

inf
θ0∈Θ[pn]

Pθ0

(
diam

(
Ĉn(L, τ̂n)

)
�

√
p̃ log(n/p̃)

)
→ 1.

In particular, these assertions are true for the MMLE. Furthermore, if p̃n ≥ C logn
for a sufficiently large constant C, then the hierarchical Bayes method with τ ∼ πn for
πn probability densities on [1/n, 1] that are bounded away from zero also yields adaptive
and honest confidence sets: for sufficiently large L,

lim inf
n→∞

inf
θ0∈Θ[pn],p̃(θ0)≥p̃n

Pθ0

(
θ0 ∈ Ĉn(L)

)
≥ 1− α,

inf
θ0∈Θ[pn],p̃(θ0)≥p̃n

Pθ0

(
diam

(
Ĉn(L)

)
�

√
p̃ log(n/p̃)

)
→ 1.

Proof. See Appendix E.1 in the supplement (van der Pas et al., 2017b).

It may be noted that for self-similar θ0 the square diameter of the credible balls is
of the order p log(n/p), improving on the square contraction rate p logn obtained in
van der Pas et al. (2017a). For parameters satisfying the excessive-bias restriction, this
may further improve to p̃ log(n/p̃).

The size of the required blow-up factor L in the radius of the credible ball depends
on the constants A,Cs, C in the excessive-bias restriction, Assumption 2. As argued
in the introduction no statistical procedure can simultaneously adapt to sparsity and
give uniform coverage over all parameters, so that with every given L necessarily some
parameters will not be covered. In practice the validity of the excessive-bias restriction
for particular A,Cs, C cannot be verified, but one must be satisfied with coverage for a
set of “reasonable” parameters. The choice of L operationalises “reasonable”; it will be
hard to define an optimal choice. In our simulations in the next section we used L = 1,
which is the natural Bayesian choice and seems to work well, at least for the parameters
considered in the simulation.

5 Simulation study

In the first simulation study in Section 5.1, we compare four versions of the horseshoe
(empirical Bayes with two different estimators and hierarchical Bayes with two different
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priors) and evaluate the coverage properties and interval lengths of the resulting credible
intervals. In addition, we include an approximation to the credible intervals based on
the normal distribution.

In the simulation study in Section 5.2, we compare the model selection properties of
the method based on credible intervals resulting from the horseshoe with the MMLE,
as discussed in Section 3, to the thresholding method introduced by Carvalho et al.
(2010), with the MMLE of τ plugged in. We use the MMLE because the best results
are obtained for the horseshoe with MMLE in the first simulation in Section 5.1. All
simulations were carried out using the R package ‘horseshoe’ (van der Pas et al., 2016b).

5.1 Coverage, interval length, and τ

Several Markov Chain Monte Carlo (MCMC) samplers and software packages are avail-
able for computation of the posterior distribution (Scott, 2010; Makalic and Schmidt,
2016; Gramacy, 2014; van der Pas et al., 2016b; Hahn et al., 2016).

We study the relative performances of the empirical Bayes and hierarchical Bayes ap-
proaches further through simulation studies, extending the simulation study in van der
Pas et al. (2014). We consider empirical Bayes combined with either (i) the simple es-
timator (with c1 = 2, c2 = 1) or (ii) the MMLE, and for hierarchical Bayes with either
(iii) a Cauchy prior on τ , or (iv) a Cauchy prior truncated to [1/n, 1] on τ . We study
the coverage and average lengths of the marginal credible intervals resulting from these
four methods, as well as intervals based solely on the posterior mean and variance.
In addition, we study intervals of the form θ̂i(yi, τ̂M ) ± 1.96

√
var(θi | yi, τ̂M ), based on

a normal approximation to the posterior, where θ̂i(yi, τ̂M ) is the posterior mean and
var(θi | yi, τ̂M ) refers to the posterior variance, both with the MMLE plugged in. We
include the approximation because it offers a computational advantage over the other
methods, as no MCMC is required.

We consider a mean vector of length n = 400, with pn ∈ {20, 200}. We draw the
nonzero means from a N (A, 1)-distribution, with A = c

√
2 log n for c ∈ {1/2, 1, 2},

corresponding to most nonzero means being below the universal threshold, close to
the universal threshold, or well past the universal threshold, respectively. Instead of
the symmetric intervals studied in our theorems, we computed the practically appeal-
ing quantile-based 95% marginal credible sets for the hierarchical and empirical Bayes
methods, taking the 2.5%- and 97.5%-quantiles of the MCMC samples as the endpoints.
We did not include a blow-up factor. The procedure was repeated N = 500 times.

Figure 2 gives the coverage results averaged over the 500 iterations, for all parame-
ters, and separately for the pn nonzero means and the (n−pn) zero means. The average
lengths of the credible sets, again for all signals and separately for the nonzero and zero
means, are displayed in Figure 3. Figure 4 gives the mean value of τ - in the hierarchical
Bayes settings, the posterior mean of τ was recorded for each iteration. No value is given
for the normal approximation, as it uses the MMLE as a plug-in value for τ .

We remark on some aspects of the results. First, we see that the zero means are
nearly perfectly covered by all methods in all settings, and the main differences lie in
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Figure 2: Average coverage of all parameters (top), the nonzero means (middle) and
the zero means (bottom) for the five methods, from left to right: empirical Bayes with
simple estimator (c1 = 2, c2 = 1) and MMLE, normal approximation, hierarchical Bayes
with Cauchy prior on τ and with Cauchy prior truncated to [1/n, 1]. The pn nonzero
means were drawn from a N (A, 1) distribution. Results are based on averaging over 500
iterations.

the nonzero means. Secondly, coverage of the nonzero means improves as their values
increase. Thirdly, the lengths of the credible intervals adapt to the signal size. They
are smaller for the zero means than for the nonzero means, and smaller for the nonzero
means corresponding to A = (1/2)

√
2 log n than for the nonzero means corresponding

to A =
√
2 logn and A = 2

√
2 log n, while there is not much difference between the

interval lengths in those latter two settings, suggesting that the interval length does not
increase indefinitely with the size of the nonzero mean.

Furthermore, empirical Bayes with the simple estimator achieves the lowest overall
coverage, and especially bad coverage of the nonzero means. This appears to be due to
smaller interval lengths caused by lower estimates of τ compared to the other methods.
The normal approximation leads to better coverage than the simple estimator, and has
the highest coverage of the nonzero means, even though the corresponding intervals are
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Figure 3: Average length of the credible sets of all parameters (top), the nonzero means
(middle) and the zero means (bottom) for the five methods, from left to right: empir-
ical Bayes with simple estimator (c1 = 2, c2 = 1) and MMLE, normal approximation,
hierarchical Bayes with Cauchy prior on τ and with Cauchy prior truncated to [1/n, 1].
The pn nonzero means were drawn from a N (A, 1) distribution. Results are based on
averaging over 500 iterations.

slightly shorter than those of empirical Bayes with the MMLE and the hierarchical Bayes
approaches. However, its coverage of nonzero means is worse than that of those three
methods, while the corresponding intervals are longer, except in the case where A is
largest. The normal approximation appears to be reasonable for very large signals only.

The hierarchical Bayes approach with a non-truncated Cauchy on τ leads to the
highest overall coverage and coverage of the nonzero means, albeit by a small margin.
The price is slightly larger intervals compared to the other methods, mostly for the
zero means. These larger intervals are most likely due to the larger values of τ that
are employed, this being the only approach that allows for estimates of τ larger than
one, and it avails itself of the opportunity in the non-sparse setting. Finally, we again
observe that the results for empirical Bayes with the MMLE and hierarchical Bayes
with a truncated Cauchy lead to highly similar results. Their coverage is comparable
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Figure 4: Average value of τ for four methods, from left to right: empirical Bayes with
simple estimator (c1 = 2, c2 = 1) and MMLE, hierarchical Bayes with Cauchy prior on
τ and with Cauchy prior truncated to [1/n, 1]. For the hierarchical Bayes approaches,
the posterior mean of τ was recorded for each iteration. The pn nonzero means were
drawn from a N (A, 1) distribution. Results are based on averaging over 500 iterations.

to that of hierarchical Bayes with a non-truncated Cauchy in all settings except when
pn = 200 and A is at least at the threshold, in which case the non-truncated Cauchy
has slightly better coverage. Their intervals are shorter on average, because τ is not
allowed to be larger than one.

In conclusion, empirical Bayes with the simple estimator should not be used for
uncertainty quantification. The normal approximation is faster to compute than the
marginal credible sets, but leads to worse coverage of the nonzero compared to the
empirical Bayes with the MMLE and the hierarchical Bayes approaches, unless the
nonzero means are very large. The results of those latter three methods are very similar
to each other. All these results can be understood in terms of the behaviour of the
estimate of τ : larger values lead to larger intervals and better coverage, which may
lead to worse estimates however (as seen in the previous section). Empirical Bayes
with the MMLE, or hierarchical Bayes with a truncated Cauchy, appear to be the best
choices when considering both estimation and coverage. Those two approaches yield
highly similar results and the choice for one over the other may be based on other
considerations such as computational ones.

5.2 Model selection

We compare the procedure based on credible intervals studied in Section 3 to the thresh-
olding method introduced in Carvalho et al. (2010). Two scenarios are considered. In the
first, the signals are either “small”, “intermediate” or “large”, as defined in Section 2.3.
In the second, all signals are drawn from a distribution.

In the credible interval method, a parameter is selected as a signal if zero is not con-
tained in the corresponding credible interval. For the thresholding method of Carvalho
et al. (2010), the posterior mean is divided by the observation. The result is a number
between zero and one, which indicates the amount of shrinkage of that particular ob-
servation. If this number is larger than 0.5, the corresponding parameter is considered
a signal. For both methods, we estimate τ by the MMLE.



1240 Uncertainty Quantification for the Horseshoe

Figure 5: Number of true discoveries, split up by signal size, in scenario 1. The true
number of signals in each category is indicated by the dotted line.

Figure 6: Number of true discoveries in scenario 2. The true number of signals in each
category is indicated by the dotted line.

In the first scenario, we have n observations, with pn signals. The pn signals are
divided into three groups, corresponding to the three intervals of Section 2.3. The small
ones are equal to 1/n, the intermediate ones are 0.5

√
2 log(1/τn(pn)), and the large ones

are equal to 1.5
√
2 logn. We study four combinations of n and pn: n = 400, pn = 60;

n = 800, pn = 60; n = 800, pn = 120 and n = 1600, pn = 120. We count the number
of false positives, that is the noise signals that are incorrectly selected as signals, and
the number of correctly selected signals in each group. The number of true discoveries,
averaged over N = 500 iterations, are in Figure 5, and the false discovery rate (FDR)
is in the upper left panel of Figure 7.

In the second scenario, all signals are drawn from a distribution: the Laplace distri-
bution with dispersion parameter equal to 3, the Gamma distribution with shape and
scale equal to 2, or the Cauchy distribution with scale equal to 5. The number of false
positives and the number of correctly selected variables are counted. The number of
true discoveries, averaged over N = 100 iterations, are in Figure 6, and the FDRs are
in Figure 7.

Both simulation scenarios tell a consistent story: the thresholding method results in
more discoveries, both true and false, than the credible interval method. The findings of
Figures 5 are as expected based on the theoretical results of Section 3: almost none of
the small and medium signals are detected, while the large signals are nearly perfectly
detected by both methods. In scenario 2, where the signals are drawn from a distribution,
the thresholding method finds more of the signals. Comparing the left and right columns
of Figure 6, we see that both methods detect more of the signals when the truth is less
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Figure 7: False discovery rate in scenarios 1 and 2. (i) n = 400, pn = 60; (ii) n = 800,
pn = 60; (iii) n = 800, pn = 120; (iv) n = 1600, pn = 120.

sparse. This may be due to the behaviour of the MMLE, which is likely to be larger in
the less sparse settings, leading to less shrinkage of the true signals.

The FDR of the credible interval method remains well below 0.05 in all settings
(Figure 7). In contrast, the FDR of the thresholding method exceeds 0.10 in all cases,
and is much larger still when the observations are drawn from a Cauchy distribution.
The FDR of the thresholding method can of course be lowered by taking a different
cut-off than 0.5, but no guidelines are available at the moment, and a decrease of the
FDR will come at the cost of the number of true discoveries. The credible intervals
have low FDR, but fail to detect small and medium observations. We speculate that
improvement might be possible by combining the information contained in the posterior
mean and variance.

6 Proof of Theorem 1

The posterior distribution of θi given (Yi, τ, λi) is normal with mean and variance

θ̂i(τ, λi) :=E(θi |Yi, τ, λi) =
λ2
i τ

2

1 + λ2
i τ

2
Yi, (17)

r2i (τ, λi) := var(θi |Yi, τ, λi) =
λ2
i τ

2

1 + λ2
i τ

2
. (18)

Furthermore, the posterior distribution of λi given (Yi, τ) possesses a density function
given by

π(λi |Yi, τ) ∝ e
− Y 2

i
2(1+λ2

i
τ2) (1 + τ2λ2

i )
−1/2(1 + λ2

i )
−1.

The parameter θ0,i is contained in Cni(L, τ) if and only if |θ0,i − θ̂i(τ)| ≤ Lr̂i(α, τ). We
show that this is true, or not, for θ0,i belonging to the three regions separately for S, L
and M.

Case S: proof of (5). If i ∈ S, then |θ0,i − θ̂i(τ)| ≤ kSτ + τ |Yi|eY
2
i /2, by the triangle

inequality and Lemma 3(iii). Below we show that r̂i(α, τ) ≥ τzαc, with probability
tending to one, for zα the standard normal upper α-quantile and every c < 1/2. Hence

θ0,i ∈ Cni(L, τ) as soon as |Yi|eY
2
i /2 ≤ Lzαc− kS .
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For i ∈ S the variable |Yi| is stochastically bounded by |θ0,i| + |εi| ≤ kSτ +
|εi|. Since the variables |εi| are i.i.d. with quantile function u → Φ−1((u + 1)/2) ≤√
2 log(2/(1− u)), a fraction 1− γ of the variables Yi with i ∈ S is bounded above by

kSτ +
√
2 log(2/γ) + δ = kSτ + ζγ/2 + δ, with probability tending to 1, for any δ > 0.

Then the corresponding fraction of parameters θ0,i is contained in their credible interval
if L is chosen big enough that

Lzαc− kS ≥ (kSτ + ζγ/2 + δ)e(kSτ+ζγ/2+δ)2/2.

As the right hand side of the above inequality is bounded above by 2
γ ζγ/2(1+ ε), where

ε → 0 if γ, τ, δ → 0, this is certainly true for LS as in the theorem. We also note that
the above argument implies that for every given i ∈ S the variable Yi is bounded from
above by kSτ + ζγ/2 + δ with probability at least 1− γ.

We finish by proving the lower bound for the radius r̂i(α, τ). Because the conditional

distribution of θi given (Yi, τ, λi) is normal with mean θ̂i(τ, λi) it follows by Anderson’s

lemma that Π(θi : |θi − θ̂i(τ)| > r |Yi, τ, λi) ≥ Π(θi : |θi − θ̂i(τ, λi)| > r |Yi, τ, λi), for
any r > 0. Furthermore, by the monotonicity of the variance in λi of this conditional
distribution, the last function is increasing in λi. If π̃(· | τ) is the probability density given
by π̃(λi | τ) ∝ (λ2

i τ
2 + 1)−1/2(1 + λ2

i )
−1, then λi → π(λi |Yi, τ)/π̃(λi | τ) is increasing.

Combining the preceding observations with Lemma G.2, we see that

α =

∫ ∞

0

Π(θi : |θi − θ̂i(τ)| > r̂i(α, τ) |Yi, τ, λi)π(λi |Yi, τ) dλi

≥
∫ ∞

0

Π(θi : |θi − θ̂i(τ, λi)| > r̂i(α, τ) |Yi, τ, λi)π̃(λi | τ) dλi. (19)

On the other hand, since sd(θi |Yi, τ, λi) ≥ τ/2(1 + o(1)), for λi ≥ 1/2, by (18), the
normality of the conditional distribution of θi given (Yi, τ, λi) gives that∫ ∞

0

Π
(
θi : |θi − θ̂i(τ, λi)| > zατ/2(1 + o(1))) |Yi, τ, λi)π̃(λi | τ

)
dλi (20)

≥ 2α Π̃(λi ≥ 1/2 | τ) ≥ 2α× 2/3 > α.

Here the second last inequality follows from∫ 1/2

0
(λ2

i τ
2 + 1)−1/2 (1 + λ2

i )
−1 dλ∫∞

0
(λ2

i τ
2 + 1)−1/2 (1 + λ2

i )
−1 dλi

→
∫ 1/2

0
(1 + λ2

i )
−1 dλi∫∞

0
(1 + λ2

i )
−1 dλi

<
1

3
, (21)

as τ → 0, by two applications of the dominated convergence theorem. Combination of
(19) and (20) shows that r̂i(α, τ) ≥ zατ/2(1 + o(1)).

Case L: proof of (7). If i ∈ L, then

|θ0,i − θ̂i(τ)| ≤ |θ0,i − Yi|+ |Yi − θ̂i(τ)| ≤ |εi|+ 2ζ−1
τ , (22)

eventually, provided |Yi| ≥ Aζτ for some constant A > 1, by the triangle inequality
and Lemma 3(i). Below we show that r̂i(α, τ) ≥ zα′/2 + o(1), for every α′ > α with
probability tending to one. It then follows that θ0,i ∈ Cni(L, τ) as soon as |Yi| ≥ Aζτ
and |εi| ≤ Lzα′/2 + o(1)− 2ζ−1

τ = Lzα′/2 + o(1).
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For i ∈ L the variable |Yi| is lower bounded by |θ0,i| − |εi| ≥ kLζτ − |εi| and hence
|Yi| ≥ Aζτ if |εi| ≤ (kL−A)ζτ . This is automatically satisfied if |εi| ≤ Lzα′/2+ o(1), for
constants L with L � ζτ . As for the proof of Case S we have that |εi| ≤ Lzα′/2 + o(1)

with probability tending to one for a fraction 1−γ of the indices i ∈ S if L ≥ z−1
α′/2ζγ/2+δ,

for some δ > 0. This is satisfied by LL. Also note that for every i ∈ L the inequality
|εi| ≤ Lzα′/2 + o(1) holds with probability at least 1− γ for L ≥ z−1

α′/2ζγ/2 + δ.

The proof that r̂i(α, τ) ≥ zα′/2 + o(1) follows the same lines as the proof of the
corresponding result in Case S, expressed in (19) and (20), but with the true density
π instead of π̃. Inequality (19) with π instead of π̃ is valid by Anderson’s lemma, while
in (20) we replace zατ/2(1 + o(1)) by zα′/2 + o(1). Since var(θi |Yi, τ, λi) ≥ gτ/(1 +
gτ ) = 1 + o(1) for every λi ≥ gτ/τ and gτ → ∞, the desired result follows if Π(λi ≥
gτ/τ |Yi, τ) = 1+o(1), for every i such that |Yi| ≥ Aζτ . Now by the form of π(λi |Yi, τ),
for any c, d > 0,

Π(λi ≤ gτ/τ |Yi, τ) ≤
e
− Y 2

i
2(1+c2)

∫ c/τ

0
(1 + λ2)−1 dλ+ e

− Y 2
i

2(1+g2τ )
∫ gτ/τ

c/τ
(1 + c2/τ2)−1 dλ

e
− Y 2

i
2(1+d2g2τ )

∫ 2dgτ/τ

dgτ/τ
(1 + 4d2g2τ )

−1/2(1 + 4d2g2τ/τ
2)−1 dλ

�
exp

[
−Y 2

i

2

(
1

1+c2 − 1
1+d2g2

τ

)]
+ exp

[
−Y 2

i

2

(
1

1+g2
τ
− 1

1+d2g2
τ

)]
gτ τ

(gτ/τ)(1/gτ )(τ2/g2τ )
.

(23)

For |Yi| > Aζτ and A > 1 we can choose c sufficiently close to zero so that the first
exponential is of order τA

′
for some A′ > 1. Then it is much smaller than the denomi-

nator, which is of order τ/g2τ , provided gτ tends to infinity slowly. If we choose d > 1,
then the term involving the second exponential will also tend to zero for |Yi| > Aζτ as

soon as e−cζ2
τ/g

2
τ g3τ → 0, for a sufficiently small constant c. This is true (for any c > 0)

for instance if gτ =
√
ζτ . Then the quotient tends to zero, whence the analogon of (20)

is lower bounded by α′(1− o(1)) > α, eventually.

Case M: proof of (6). We show below that r̂i(α, τ) � Uτ := τ(1 ∨ |Yi|eY
2
i /2), with

probability tending to one, whenever i ∈ M. By Lemma 3(iii) exactly the same bound is

valid for |θ̂i(τ)|. If |θ̂i(τ)|+r̂i(α, τ) � Uτ , but |θ0,i| � Uτ then θ0,i /∈ Cni(L, τ) eventually,
and hence it suffices to prove that the probability of the event that |θ0,i| � Uτ tends to
one whenever i ∈ M. Consider two cases. If |θ0,i| ≤ 1, then |Yi| ≤ 1 + |εi| = OP (1) and
hence Uτ = OP (τ). For i ∈ M, we have |θ0,i| � τ and hence |θ0,i| � Uτ with probability
tending to one. On the other hand, if |θ0,i| ≥ 1 but |θ0,i| ≤ kMζτ , then |Yi| ≤ kζτ with

probability tending to one for any k > kM , and hence Uτ � τζτe
k2ζ2

τ/2 = τ1−k2

ζτ . Since

kM < 1 we can choose k < 1, so that τ1−k2

ζτ → 0, and again we have |θ0,i| � Uτ with
probability tending to one.

We finish by proving that r̂i(α, τ) � Uτ , with probability tending to one. As a first
step we show that, for k < 1,

lim
M→∞

sup
|y|≤kζτ

Π(λi ≥ M |Yi = y, τ) → 0. (24)
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By the explicit form of the posterior density of λi we have

Π(λi ≥ M |Yi = y, τ) ≤
∫∞
M

e
− y2

2(1+λ2
i
τ2) (1 + λ2

i τ
2)−1/2(1 + λ2

i )
−1 dλi∫ 2

1
e
− y2

2(1+λ2
i
τ2) (1 + λ2

i τ
2)−1/2(1 + λ2

i )
−1 dλi

≤ ey
2/25

√
2

∫ ∞

M

e
− y2

2(1+λ2
i
τ2) (1 + λ2

i τ
2)−1/2(1 + λ2

i )
−1 dλi. (25)

We split the remaining integral over the intervals [M, τ−a) and [τ−a,∞), for some a < 1.
On the first interval we use that y2/(1 + λ2

i τ
2) = y2 + o(1), uniformly in |y| � ζτ and

λi ≤ τ−a, while on the second we simply bound the factor e−y2/(2(1+λ2
i τ

2)) by 1, to see
that the preceding display is bounded above by

ey
2/25

√
2
[
e−y2/2eo(1)

∫ τ−a

M

(1 + λ2
i )

−1 dλi +

∫ ∞

τ−a

(1 + λ2
i )

−1 dλi

]
.

The first term in square brackets (times the leading term) contributes less than a multi-

ple of
∫∞
M

λ−2 dλ = 1/M , while the second term contributes less than ey
2/2τa ≤ τ−k2+a,

for |y| ≤ kζτ , which tends to zero if a > k2. This concludes the proof of (24).

By the reverse triangle inequality, for any M > 0,∫ ∞

0

Π(θi : |θi − θ̂i(τ)| ≥ r + |θ̂i(τ, λi)− θ̂i(τ)| |Yi, λi, τ)π(λi |Yi, τ) dλi

≤
∫ M

0

Π(θi : |θi − θ̂i(τ, λi)| ≥ r |Yi, λi, τ)π(λi |Yi, τ) dλi +Π(λi ≥ M |Yi, τ).

For sufficiently large M the second term on the far right is smaller than α/2 by the
preceding paragraph and for r = zα/4 supλ≤M ri(τ, λ) the first term on the right is
smaller than α/2 as well, by the normality of θi given (Yi, λi, τ) and the definition of

ri(τ, λi). The inequality remains valid if |θ̂i(τ, λi)− θ̂i(τ)| in the first line is replaced by

supλi≤M |θ̂i(τ, λi)|+ |θ̂i(τ)|. It follows that

r̂i(α, τ) ≤ zα/4 sup
λi≤M

ri(τ, λi) + sup
λi≤M

|θ̂i(τ, λi)|+ |θ̂i(τ)|.

The first term is bounded above by Mτ , and the second by Mτ |Yi|, by the definitions

of ri(τ, λ) and θ̂i(τ, λ), while |θ̂i(τ)| ≤ τ |Yi|eY
2
i /2, by Lemma 3(iii). This concludes the

proof that r̂i(α, τ) � Uτ .

Remark 5. The proof of the more general statement of Remark 2 follows similar lines of
reasoning as the proof of Theorem 1. The main differences are that in the computation of
the marginal posterior probabilities in (21), (23) and (25) the term (1+λ2)−1 is replaced

by λ−1−2aL(λ2) and that the upper bound |θ̂i(τ)| ≤ C̃τ |Yi|eY
2
i /2 can be derived using

(19) of van der Pas et al. (2016a) instead of Lemma 3(iii).

The following lemma and its proof can be found in van der Pas et al. (2017a).

Lemma 3. For A > 1 and every y ∈ R,

(i) |E(θi |Yi = y, τ)− y| ≤ 2ζ−1
τ , for |y| ≥ Aζτ , as τ → 0.
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(ii) |E(θi |Yi = y, τ)| ≤ |y|.

(iii) |E(θi |Yi = y, τ)| ≤ τ |y|ey2/2, as τ → 0.

(iv) | var(θi |Yi = y, τ)− 1| ≤ ζ−2
τ , for |y| ≥ Aζτ , as τ → 0.

(v) var(θi |Yi = y, τ) ≤ 1 + y2.

(vi) var(θi |Yi = y, τ) � τey
2/2(y−2 ∧ 1), as τ → 0.

(vii) |E(θi |Yi = y, τ)− y| � (log |y|)/|y|, uniformly in τ ≥ τ0 > 0 and |y| → ∞.

Supplementary Material

Supplement to: Uncertainty quantification for the horseshoe
(DOI: 10.1214/17-BA1065SUPP; .pdf). The remaining proofs are given in the supple-
ment.
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Ismaël Castillo∗

The presently discussed paper by Stéphanie van der Pas, Botond Szabó and Aad van
der Vaart is a third of a series of very interesting works on convergence properties of
posterior distributions associated to the horseshoe prior in the sparse normal means
model. The horseshoe prior distribution as considered in the paper is a specific scale
mixture of normal distributions. Given τ , it is the distribution of θ1 obtained from

θ1 |λ, τ ∼ N (0, λ2τ2), λ ∼ C+(0, 1). (1)

Convergence rates are obtained in van der Pas et al. (2014) and adaptive counterparts
are derived in van der Pas et al. (2017). In the present paper the authors make an im-
portant step further and study uncertainty quantification: they demonstrate that under
certain conditions credible sets derived from the horseshoe posterior distribution, either
local marginal credible intervals or global �2 credible balls, can be used as confidence
sets, asymptotically in the number of observations. This is, after Belitser and Nurushev
(2015), one of the first works on the subject using Bayesian methods in sparse settings.

I really enjoyed reading this paper and the previous ones. Below I discuss two main
points and then close my discussion with a couple of more specific questions. The first
comment draws some analogies with spike and slab priors with sparsity parameter
calibrated by empirical Bayes (EB) and asks for possibly more general horseshoe-type
distributions. In a second comment, we discuss model selection properties and credible
sets for the horseshoe.

Some of the comments below are inspired by current work in progress with Romain
Mismer Castillo and Mismer (2017) and Botond Szabó Castillo and Szabó (2017), in
which we consider related questions for spike and slab prior distributions

θ1 ∼ (1− α)δ0 + αG, (2)

for some absolutely continuous distribution G and α calibrated by an empirical Bayes
approach: following the steps of Johnstone and Silverman (2004), who studied risks of
a class of point estimators derived from the EB approach, we consider the convergence
of the full EB-posterior and related credible sets properties.

1. More flexible horseshoe prior distributions?

Following Carvalho et al. (2010), if π(θ1) denotes the marginal density of θ1 in (1),

1

τ
log

(
1 +

4τ2

θ21

)
� π(θ1) �

1

τ
log

(
1 +

2τ2

θ21

)
. (3)
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This implies that the horseshoe prior, given τ , has a pole at zero and Cauchy tails. The
pole at zero guarantees shrinkage of small signals while heavy tails avoid over-shrinkage
of large signals.

There seems to be a striking correspondance between the tuning parameter τ of the
horseshoe and the success probability α in the spike and slab prior, especially when G
is taken to be a distribution with Cauchy tails. For instance, when using a marginal
maximum likelihood empirical Bayes (MMLE) method to estimate α for such a spike
and slab prior with Cauchy tails, one can show Castillo and Mismer (2017) (thereby
slightly improving, in the case one restricts to �0[pn] classes, upon the estimate from
Lemma 10 and (101) in Johnstone and Silverman (2004)) the estimate α̂ is such that,
as n → ∞,

sup
θ0∈�0[pn]

Pθ0

[
α̂ > (pn/n)

√
log(n/pn)

]
= o(1),

where pn is the sparsity parameter. This is the same as the upper boundary for τ
obtained by the authors who established in van der Pas et al. (2017) that the MMLE
τ̂n verifies

sup
θ0∈�0[pn]

Pθ0 [τ̂n > τ(pn)] = o(1),

which is part of Condition 1 of the present paper. This suggests that tails of the horse-
shoe and tails of the slab distribution play a similar role, also at level of precise conditions
arising in the proofs.

This naturally leads to the question of whether it is possible to allow for other
tail distributions for the marginal distribution of θ1 for horseshoe-type priors. Another
reason why we mention this is that it appears from Castillo and Mismer (2017)-Castillo
and Szabó (2017) that in the spike and slab case, tails of G are particularly critical
in obtaining optimal adaptive rates and confidence sets when using an empirical Bayes
method. While Cauchy tails are fine in the spike and slab case when the squared �2 loss
‖θ− θ′‖2 =

∑
i(θi − θ′i)

2 is considered, they presumably lead to suboptimal rates if the
loss is measured in terms of dq-distances dq(θ, θ) :=

∑
i |θi − θ′i|q (as in Castillo and

van der Vaart (2012)) when q < 1 (we note here that we are talking about results for
the full EB posterior distribution, not aspects of it such as the median or mode as in
Johnstone and Silverman (2004), for which this phenomenon does not arise).

Perhaps heavier tails, such as θ−1−δ
1 with δ < 1 could be obtained by considering

one of the other mixture priors mentioned in the paper such as the normal-exponential-
gamma or the more general global-local scale mixture of normals, although we could not
find any explicit results on tails of the marginal distribution in the mentioned references.

2. Model selection: ‘sparsifying’ the horseshoe?

By construction, a draw from the posterior distribution associated to the horseshoe
prior does not set any component exactly to zero. In a sense, again by construction,
the horseshoe prior is not exactly ‘made for’ �0[pn] classes. Still, as the authors nicely
prove, it leads to very good results for estimation and confidence sets for the squared
�2 loss and �0[pn] classes.
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When one looks at a different type of results, such as model selection, or results
for loss functions that are more sensible to missing the exact zeros, such as dq–losses,
something must be done, and the authors propose an additional selection rule to set
some of the coefficients to zero.

The selection rule consists in looking at marginal credible intervals for individual
coefficients θi and to select the given index i if the credible interval does not contain
zero. This rule is very intuitive, but is there a qualitative justification of this specific
choice? For instance, can something be said about its corresponding ‘threshold’ in the
sense of the smallest signal strength that gives detection?

Part of the interesting message from Sections 2 (credible intervals) and 3 (model se-
lection) from the paper is that, after the selection rule is applied, the resulting procedure
does qualitatively something similar to what priors with a built-in selection procedure,
such as spike and slab, would do: most true zero parameters are set to zero, large enough
signals are always detected, while ‘intermediate’ signals are often set to zero.

One can wonder whether it is possible to recover some results obtained for priors
with built-in selection with the horseshoe combined with the selection rule, for instance
in the following two directions

a) Number of non-zero coefficients. From (i) of Theorem 3.1, it follows that the total
number of selected coefficients is no larger than pn + (n − pn)γn (I believe γn
should be read (n − pn)γn in point (i) of the statement). The condition on γn
implies that nγn is of larger order than pn. Could one prove that the bound is
close to pn, or rather here, say, a constant times pn

√
log(n/pn)?

b) dq–losses. In principle, one could also expect that, once some of the smallest
coefficients of the horseshoe estimator are set to zero, the resulting ‘after selection’-
estimate would perform well also in terms of dq–distances, at least for some qs in
(0, 2). This question arises for estimation as in van der Pas et al. (2017) but also
for credible sets as in Section 4 of the present paper.

Specific questions

(i) Adaptive minimax rate with precise logarithmic term.

In the companion paper van der Pas et al. (2017), the authors obtain a nearly optimal
minimax rate Cpn logn for the horseshoe posterior, which may miss the minimax rate
of the order pn log(n/pn) for signals that are nearly dense (e.g. pn = n/ logn or pn =

n/e
√
logn). It would be interesting to see whether the precise logarithmic term can be

obtained.

(ii) Simulations.

In principle, when looking at classes of sparse vectors that do not specifically contain
zeros, such as strong or weak �p classes (0 < p < 2), the horseshoe estimator should
perform even better, in the sense that it is not ‘penalised’ by the fact of not setting
some coefficients to zero. Did the authors do some simulations in this type of setting?
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Also, how does one choose in practice the blow-up factor L of the credible intervals
or credible balls? Is there a recommended rule to chose it in simulations?
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1 Introduction

Since its first appearance, not quite 10 years ago, the horseshoe prior has come a very
long way. When I first learned about it as a graduate student in 2008,1 I remember
thinking that building a hierarchical model around a prior with both a huge spike at
zero and very heavy tails was a clever way to induce this kind of shrinkage needed for
structured high-dimensional problems. What I didn’t realize at the time was that the
horseshoe was more than just a clever idea; it was a game-changer, motivating the now
very active research on general classes of global–local priors. While I may have missed
my chance in 2008 to get in on the ground floor of the horseshoe enterprise, it is great
to have the opportunity here in 2017 to reflect a bit on these developments.

The normal mean model discussed here has Xi ∼ N(θi, σ
2), i = 1, . . . , n, indepen-

dent, and the goal is inference on the mean vector θ = (θ1, . . . , θn). Let Π
n denote the

posterior distribution for θ based on the horseshoe prior, with either a plug-in estimator
or a hyper-prior for the global scale factor τ . The theoretical questions that Bayesians
are currently interested in revolve around the asymptotic concentration, as n → ∞, of
the posterior Πn at certain “true” mean vectors θ0 ∈ R

n, in particular, at θ0 which are
p-sparse. The most precise of such questions concern the properties of marginal poste-
rior credible intervals or posterior credible balls; that is, does a credible set have the
right size and the right coverage probability? The impossibility theorem (e.g., Li, 1989)
says that no confidence sets—Bayesian or otherwise—are both adaptive, in the sense
that their size corresponds to the minimax rate for the true-but-unknown sparsity level
p = o(n), and honest, in the sense that they attain the nominal frequentist coverage
probability, uniformly over all θ0. It is intuitively clear that the troublemaker θ0’s, the
so-called “inconvenient truths” in Szabó et al. (2015), have too many |θ0,i| close to a
certain detectability boundary. The authors of the present paper, namely, van der Pas,
Szabó, and van der Vaart, are to be congratulated for their efforts to give a precise
mathematical characterization of these troublemakers in the context of the horseshoe
model. A natural next step would be to develop similar results for other horseshoe-like
models, such as those in Ghosh et al. (2016) and Ghosh and Chakrabarti (2017). While
I am excited to see how far these efforts can go, I also have some reservations.

For my discussion here, I’ll focus on two higher-level points, namely, the choice of a
one-group model, like the horseshoe, versus a two-groups model, and coming to terms
with the inevitable dishonesty of posterior credible sets.

∗Department of Statistics, North Carolina State University, rgmarti3@ncsu.edu
1The 2008 technical report I read is, as of the time I’m writing this, still available on Prof. Polson’s

website: http://faculty.chicagobooth.edu/nicholas.polson/research/papers/Horse.pdf.
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2 One group or two?

The horseshoe is an example of a one-group model since it does not treat the zero and
non-zero θi’s differently a priori. A two-groups model, on the other hand, treats the
zero and non-zero θi differently, usually with a discrete mass at zero and continuous
density away from zero, respectively. If there is reason to believe that the true θ0 is
sparse in the sense that it contains many exact zeros, then the two-groups formulation
is clearly more natural. But the one-group approach has an apparent computational
advantage in that it does not require posterior exploration over the very large space
of zero/non-zero configurations. This advantage is further boosted by the theoretical
fact that a two-groups formulation with conjugate, fixed-center normal priors for the
non-zero θi’s can lead to sub-optimal posterior concentration properties (e.g., Castillo
and van der Vaart, 2012, Theorem 2.8). The heavier-than-normal-tailed priors that have
the desired theoretical properties, such as Laplace, make computation more expensive.
Of course, the computational benefits afforded to these one-group models would be of
little relevance if there was no supporting theory, but see the present paper, as well as
Ghosh and Chakrabarti (2015) and van der Pas et al. (2017).

Despite the nice results for one-group priors, I still would lean towards a two-groups
model in this case: the sparsity assumption is genuine prior information, “genuine” in
the sense that I’m willing to make that assumption in the supporting theory, so my prior
ought to allow, and even encourage, many of the means to be exact zeros. But how to
address the challenges presented in the previous paragraph? It turns out that both the
computational and theoretical obstacles can be overcome by taking a conjugate normal
prior for the non-zero means but with an informative choice of center. In the context of
this normal means model, Martin and Walker (2014) suggest centering the (conditional)
prior for the non-zero means at the observations; that is,

(θi | θi �= 0) ∼ N(μi, γ
−1),

where μi is chosen to be Xi and γ > 0 is some (small) fixed constant. Then, of course,
a prior is assigned to the configurations of zero and non-zero means, which is where
the sparsity assumption is incorporated. This prior has some intuitive appeal: we are
taking an informative prior on the configuration, the aspect of θ that we have genuine
prior information about, and a data-driven “non-informative” prior on the actual val-
ues of the non-zero means, about which we have no genuine prior information. From a
computational point of view, the data-dependence does not affect conjugacy, so poste-
rior computations are relatively simple. Theoretically, Stephen and I showed that the
corresponding “empirical Bayes” posterior has the same adaptive and asymptotically
minimax concentration rate as has been demonstrated for the horseshoe. I won’t say
any more here about our specific formulation, but I’ll note that Stephen and I have
since extended these results to sparse high-dimensional regression (Martin et al., 2017)
and even to some nonparametric problems (Martin and Walker, 2017).

To conclude this part of my discussion, I want to revisit van der Pas, Szabó, and
van der Vaart’s example in Section 2.2 of their paper. There they have n = 200 means,
p = 10 of which are non-zero, with five means equal to 7 and the other five equal to
1.5. The point is that 7 easily exceeds their detection boundary but 1.5 is right near



1256 Invited comment on Article by van der Pas et al.

Figure 1: Marginal equal-tailed 95% credible intervals based on (a) the two-groups
empirical Bayes approach in Martin and Walker (2014) and (b) the horseshoe, for the
same experiment summarized in Figure 1 of van der Pas, Szabó, and van der Vaart.

it; therefore, according to their theory, the means equal to 1.5 ought to be difficult to
cover. For comparison, Figure 1 shows the naive equal-tailed 95% marginal empirical
Bayes credible intervals from the same example but based on the two-groups empirical
Bayes formulation in Martin and Walker (2014) and our simple Gibbs sampler. Just
like van der Pas, Szabó, and van der Vaart, we cover all the zero means (green) and all
the size-7 means (black), but miss a couple of the size-1.5 means (red). However, some
of the marginal credible intervals are actually singletons, whereas the horseshoe always
returns intervals. I wonder if the two-groups formulation has some efficiency advantage
over the one-group version in the sense that the coverage rates ought to be the same but
the former’s “overall length” is shorter? In this particular instance, the average length
of the 200 one- and two-groups intervals were about 1.5 and 0.25, respectively.

To be fair, coverage properties for our credible sets have not yet been worked out,
but given the results in Belitser and Nurushev (2017), we have every reason to think
that this can be done, and we’ll report these details elsewhere.

3 “Honesty is the best policy”

My Google search results attribute this saying to Benjamin Franklin, and its long life-
time is, I think, a testament to the quality of the advice. I remember my parents telling
me this as a child. But I didn’t expect it to be relevant in both life and statistics!

Indeed, just like life presents circumstances where we, as individuals, have to choose
between honesty and dishonesty, the impossibility theorem says that we, as statisti-
cians, must choose between honesty and adaptation. These adaptation properties are
mathematically elegant, of practical importance in terms of efficiency of estimation,
and, frankly, fun to work out. Having a characterization of those troublemaker param-
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eter values at which adaptivity holds but honesty fails, as van der Pas, Szabó, and
van der Vaart, among others, have given, is theoretically valuable, primarily for the
insights it provides. Unfortunately, these insights don’t translate to practical guidance;
for example, for fixed n, it’s impossible to tell if a particular θ0 satisfies the excessive-
bias restriction. Moreover, it’s exactly those “intermediate” parameters carved about
by the theorem’s conditions for which a precise uncertainty quantification is needed.
In any case, I think many users of Bayesian methods are sold by the often-spoken but
rarely-written claim that “Bayes provides automatic uncertainty quantification.” But
the impossibility theorem says that if the posterior is good, i.e., adaptive, then this
rationale breaks down. Of course, the impossibility theorem applies to Bayes and non-
Bayes approaches alike, but Bayes isn’t needed to construct an adaptive estimator so, if
the posterior doesn’t provide honest uncertainty quantification, then what does it have
to offer? Call me over-dramatic, but does taking the “honesty is the best policy” advice,
as I think we should, require a change of perspective? Our theoretical efforts thus far
have focused primarily on adaptation-driven priors; is the next game-changer a class of
honesty-driven priors? If so, then what will be the horseshoe’s fate?

To conclude, I want to mention that this conflict between concentration properties
and uncertainty quantification is not unique to the type of high-dimensional problems
considered in van der Pas, Szabó, and van der Vaart’s paper and the ensuing discus-
sion. For example, even in apparently simple fixed-dimensional problems, Fraser (2011)
and Fraser et al. (2016) describe situations where Bayesian uncertainty quantification is
less than fully satisfactory. More generally, there are known concerns about uncertainty
quantification via the marginal posterior distribution for non-linear interest parameters,
including the extreme cases in Gleser and Hwang (1987) where marginal posterior cred-
ible intervals could have zero coverage probability for all n. My co-authors and I have
been writing on these points recently (e.g., Martin and Liu, 2016b; Balch et al., 2017;
Martin, 2017), advocating for a stronger property called validity that can stand up to
these problematic cases. Efforts to develop a framework for valid statistical inference are
underway (e.g., Martin and Liu, 2016a), and I am excited to see how the new approach
can handle these high-dimensional problems.
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Invited comment on Article by van der Pas,
Szabó, and van der Vaart

Nicholas G. Polson∗

Let me first congratulate the authors on an impressive paper that solves an open prob-
lem on uncertainty quantification for the horseshoe estimator. These are challenging
problems and of great importance to our understanding of uncovering sparse signals.
Most of my comments are based on their main result (Theorem 2) and the ensuing
Figure 1 which illustrates the marginal credible sets in a simple simulation.

The sparse normal means problem is concerned with inference for the parameter
vector θ = (θ1, . . . , θp) where we observe data yi = θi + εi where the level of sparsity
might be unknown. From both a theoretical and empirical viewpoint, regularised es-
timators have won the day. This still leaves open the question of how does specify a
penalty, denoted by πHS , (a.k.a. log-prior, − log pHS)? Lasso simply uses an L1-norm,∑K

i=1 |θi|, as opposed to the horseshoe which (essentially) uses the penalty

πHS(θi|τ) = − log pHS(θi|τ) = − log log

(
1 +

2τ2

θ2i

)
. (1)

The motivation for the horseshoe penalty arises from the analysis of the prior mass and
influence on the posterior in both the tail and behaviour at the origin. The latter is the
key determinate of the sparsity properties of the estimator. See Bhadra et al. (2017) for
a recent review that compares and contrasts Lasso and Horseshoe. The “choice” of τ
depends on how much one is willing to assume a priori about the sparsity properties of
the underlying vector. Among other things, the authors propose a marginal maximum
likelihood estimator (MMLE), defined in (8). This has been discussed by many authors,
e.g. Gelman (2006), personally I like to relate this to a similar problem in the Bayesian
analysis of variance, see Tiao and Tan (1965), Stein (1969) which I discuss below.

From an applied perspective, many of the authors’ results can be inferred from their
Figure 1. This illustrates their main theoretical result in Theorem 2.4. The marginal
credible sets for uncovering the parameter vector are shown for a single simulated normal
means problem with n = 200 and p = 10 non-zero coordinates. The true means are
taken to be 0, 1.5, 7, corresponding to the three regions analyzed theoretically to provide
bounds in Theorem 2. As predicted by theory, all the means equal to 7 are recovered
nicely—as an aside, this would no be true for lasso.The sparse zeroes are also recovered
by design. The “honesty” of the estimator, as defined by the authors, can be seen by
behavior at recovering the means equal to 1.5 where only 2 out of 5 succeeded for this
particular simulation. Lasso would have done a better job! As there is no free lunch for
admissible estimators, maybe this result is not that surprising. Assessing the magnitudes
(a.k.a. uncertainty quantification) is the goal of the authors’ analysis.

∗5807 S Woodlawn Avenue, Chicago, IL 60637, USA, ngp@chicagobooth.edu
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From a historical perspective, James–Stein (a.k.a L2-regularisation) is only a global
shrinkage rule—there are no local parameters—to learn about sparsity. A simple spar-
sity example shows the issue with L2-regularisation. Consider the sparse r-spike prob-
lem where focusing solely on rules with the same global shrinkage weight (albeit ben-
efiting from pooling of information) has an issue. Let the true parameter value be
θp = (

√
d/p, . . . ,

√
d/p, 0, . . . , 0). James–Stein is equivalent to the hierarchical model

yi = θi + εi and θi ∼ N
(
0, τ2

)
all λi ≡ 1.

This dominates the plain MLE but loses admissibility! This is due to the fact that a
“plug-in” estimate of global shrinkage τ̂ is used. Tiao and Tan’s original “closed-form”
analysis is particularly relevant here. They point out that the mode of p(τ2|y) is zero
exactly when the shrinkage weight turns negative (their condition 6.6). From a risk

perspective E‖θ̂JS − θ‖ ≤ p, ∀θ showing the inadmissibility of the MLE. At origin the
risk is 2, but!

p‖θ‖2
p+ ‖θ‖2 ≤ R

(
θ̂JS , θp

)
≤ 2 +

p‖θ‖2
p+ ‖θ‖2

implying R(θ̂JS , θp) ≥ (p/2). Simple thresholding rule beats this with a risk,
√
log p.

This simple historical example merely shows that the choice of penalty should not be
taken for granted. The same thought applies to lasso—the credible sets implicit in lasso
are not optimal and the horseshoe approach achieves much large gains both theoretically
and empirically—which the optimality properties and caveats revealed by the authors’
paper.

There are still many fruitful areas of research in Bayesian sparsity and horseshoe
estimation. One avenue is to further understand Tiao and Tan’s (1965) condition for
the posterior on τ to have a mode at the origin in the case of sparsity.

On the empirical side, it is pleasing to see many R packages available to implement
horseshoe estimation in a variety of situations, see Bhadra et al. (2017) for further discus-
sion. Bhattacharya et al. (2016) provide one such package and also shows how horseshoe
can vastly outperform lasso in typical applied contexts. These packages are closing the
gap on computational speed that lasso enjoys. On the theoretical side, hyper-parameter
selection stills seems an interested area to me where many of the old discussions are
still relevant. Recent applications of these methods are in evermore complicated models,
such as deep learning (Polson and Sokolov, 2017), and understanding the theoretical
underpinnings is as important as ever.
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Contributed comment on Article by van der
Pas, Szabó, and van der Vaart

William Weimin Yoo∗

Abstract. We begin by introducing the main ideas of the paper under discussion.
We discuss some interesting issues regarding adaptive component-wise credible in-
tervals. We then briefly touch upon the concepts of self-similarity and excessive
bias restriction. This is then followed by some comments on the extensive simu-
lation study carried out in the paper.

Keywords: horseshoe, half-Cauchy, MMLE, credible intervals, model selection,
credible balls, adaptive, excessive bias restriction.

I would like to congratulate the authors for such an comprehensive and interesting
paper on the horseshoe prior and its use in Bayesian uncertainty quantification. Let me
first summarize key ideas of van der Pas et al. (2017b) in order to set the tone for my
discussion. The horseshoe prior is a scale mixture of normals with the half-Cauchy as
the mixing distribution. The half-Cauchy is in turn the absolute value of a standard
Cauchy distribution. Working under the normal means model Yi = θi + εi, i = 1, . . . , n,
this hierarchical prior takes the form θi|λi, τ ∼ N(0, λ2

i τ
2) and λi ∼ Half-Cauchy.

The paper considers two methods of estimating τ , namely by empirical Bayes through
the maximum marginal likelihood estimator (MMLE) or by endowing another layer of
hyper-prior.

The true signal θ0 is assumed to be sparse, and the task of recovering these nonzero
values using the horseshoe prior was studied by the same authors previously in van der
Pas et al. (2017a). The present paper however deals with the issue of accessing the qual-
ity of this recovery procedure. This is accomplished through the construction of (adap-
tive) component-wise credible intervals and �2-credible balls. Moreover, the authors
introduced a simple model selection procedure by declaring that a signal component is
unimportant if its corresponding credible interval includes 0 within its span.

My discussion will focus on the case of component-wise credible interval, since I
find that its results are the most interesting and these intervals are the ones used in
the simulations. The most prominent feature regarding results for these intervals is
the division of the true signal components into three regimes corresponding to small,
intermediate and large signals. The horseshoe interval was able to provide adequate
coverage for small and large signals but not the intermediate ones. The existence of this
intermediate layer and the gaps in between these regimes made me wonder whether
this is due to the intrinsic nature of component-wise credible intervals, or other more
extrinsic factors such as the horseshoe prior used or perhaps an artefact of the proof
techniques employed.
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It is now well known that adaptive credible sets cannot do honest uncertainty quan-
tification over all possible true signals, and some of these signals must be permanently
excluded. To this end, the authors discussed two criteria for removal, one based on the
concept of self-similarity and the other based on the excessive bias restriction intro-
duced by Belitser and Nurushev (2017). In the present setting of sparse signals, the key
insight into these conditions is that the true signals must be at some distance away
from the zero signal in a sense made precise in the paper. Interestingly as mentioned
in Remark 3, the three regimes become more “contiguous” under self-similarity when
compared to the situation where self-similarity was not assumed, as this is evident by
comparing Sa,Ma,La with S,M,L for τ = τn(pn). This in turn suggests that throw-
ing away troublesome truths enables the horseshoe credible interval to fill in the gaps
between the three regions.

For the sake of discussion, let us continue working under the self-similarity or exces-
sive bias restriction. From the simulation results, it is clear that the horseshoe credible
intervals have the best performance in terms of high coverage and shortest lengths when
the means (or the true signals) are zero. Two settings of pn the number of nonzero sig-
nals were used, i.e., pn = 20 and pn = 200 when n = 400. Now let us increase the
proportion of zero means (n − pn) to a point that the self-similarity condition is vio-
lated, will the horseshoe still enjoy this near-perfect performance? By looking at the bar
charts on coverage and lengths, it is conceivable that we can still get good performance
even if this condition is violated slightly. My question concerns whether it is possible
to observe empirically what will happen when sparse signals become non self-similar in
the sense discussed in the paper.

Uncertainty quantification is undoubtedly one of the most active research areas in
Bayesian statistics, and as the present paper shows, it involves resolving many delicate
technical and practical issues. The horseshoe prior has proven itself to be optimal in
sparse signal recovery, and we are able to access the quality of this recovery thanks
to the theories and methods developed in the paper. It would be interesting also to
consider other classes of priors, e.g., spike-and-slab types, and I hope that there will be
more papers on Bayesian uncertainty quantification for sparse models in the future.
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Contributed comment on Article
by van der Pas, Szabó, and van der Vaart

Juho Piironen∗, Michael Betancourt†, Daniel Simpson‡, and Aki Vehtari§

The authors present a detailed analysis of the asymptotic frequentist properties of cred-
ible sets derived from posteriors with normal-linear measurement models and horseshoe
priors. Although we disagree with the claim that “In Bayesian practice credible balls are
nevertheless used as if they were confidence sets”, the results in the paper are important
for identifying where the horseshoe priors are fragile asymptotically, and hence partic-
ularly dangerous in the non-asymptotic regimes more typical in the applied problems
where sparse models are needed.

One clarification we believe is warranted is that the horseshoe family of prior dis-
tributions does not encode sparsity as is typically interpreted. Instead of partitioning
parameters into those that are zero and non-zero, the horseshoe priors actually separate
parameters into those that are resolvable by measurements and those that are not. In
particular, as with any model the horseshoe priors cannot be interpreted outside of the
context of a particular likelihood (Gelman et al., 2017). Consequently the statement
that “τ can be interpreted as the proportion of nonzero parameters, up to a logarithmic
factor” is not quite true.

Piironen and Vehtari (2017b; 2017c) demonstrate that the effects of τ in horse-
shoe priors are intimately related to the measurement variability σ, even for the simple
normal-linear measurement model. Figure 6 of Piironen and Vehtari (2017c), for exam-
ple, clearly illustrates that rescaling the data changes the impact of the horseshoe prior
unless τ is scaled by σ, even with an oracle prior information about the true number
of significant parameters, p0 = pn. In particular, the resolution threshold

√
2 log(n/pn)

arising in the paper implicitly assumes that the measurement variability σ is equal to 1,
but a more realistic threshold has to take into account the value of σ, which is typically
unknown a priori. We are very curious as to how robust the results presented in the
paper are to these circumstances where also σ must be inferred.

Additionally, we find that the focus on marginal credible intervals is a significant
limitation. One of the defining features of the family of horseshoe priors, and indeed
a strong reason for their utility, is that they do not regularize each parameter inde-
pendently but rather induce a joint regularization over the entire parameter space. In
particular, joint credible intervals can behave much differently from marginal intervals.
Figure 1 illustrates that with a linear model that employs a uniform prior over the
slopes of two correlating predictors x1 and x2 it may happen that the joint posterior
concentrates away from the origin without either of the marginals clearly distinguished
from zero.
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Figure 1: The left plot shows marginal posteriors of effects which overlap zero. The
right plot shows the corresponding joint distribution which reveals strong posterior
dependency and the fact that zero is not included in the joint credible region.

The situation becomes even more difficult with a large number of correlating predic-
tors when utilizing the horseshoe prior. In this case even for the most relevant variables
most of the posterior mass can concentrate around zero, see for example Figure 9 in
Piironen and Vehtari (2017c), which makes a reliable variable selection based on the
posterior intervals challenging. Moreover, the method by Carvalho et al. (2010) of in-
cluding all variables with κj > 1/2 would fail in this case because none of the predictors
have κj > 1/2. Consequently, we believe the only reliable variable selection strategy in
these situations is based on the estimated effect on the predictive distribution, for ex-
ample using the projection predictive variable selection (Piironen and Vehtari, 2017a).
This framework has the added benefit that it provides guidance on how to select out
significant parameters jointly, instead of one by one as discussed in the paper.

Finally, we advise caution with regard to the recommendation of the maximum
marginal likelihood estimator (MMLE) for τ in practical problems. The large p, small
n applications where horseshoe priors are most needed lie far away from the asymptotic
regime that stabilizes the MMLE. Any complexity of the measurement model beyond
the normal-linear model only makes the matter worse.
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Contributed comment on Article by
van der Pas, Szabó, and van der Vaart

Eduard Belitser∗ and Nurzhan Nurushev†

We congratulate the authors for this very interesting article focused on the frequentist
coverage of the credible sets resulting from the horseshoe prior in the sparse multivariate
normal means model both for the empirical and hierarchical Bayes approaches. In paper
Belitser and Nurushev (2015) (last version from 2017), we studied the empirical Bayes
approach to the same problem but using a different (mixture of normals) prior. For
brevity, we refer to the discussion paper as paper PSV and our paper as paper BN. We
skip (because of space limitations) some computations that might be needed to back up
some claims we state below, these can be provided upon request to an interested reader.

The main results of PSV are adaptive over the sparsity scale within a grand space
�0[pn] = {θ ∈ R

n :
∑n

i=1 1{θi �= 0} ≤ pn} for some pn = o(n). Although this excludes
some “almost sparse” parameters that are formally non-sparse (with many very small,
but nonzero, entries), this is a mild assumption (as pn is not assumed to be known) and
in fact necessary to ensure the asymptotic regime n → ∞ considered in PSV. In BN
we obtain local results without relating to any sparsity scale, e.g., the true parameter θ
may be not �0[pn]-sparse at all. For example, as a consequence we derive the results not
only for �0[pn], but also for other sparsity scales, such as weak �s-balls ms[pn]. Besides,
in BN we derive local non-asymptotic exponential concentration bounds, which give a
refined characterization of the quality of coverage and size relation results (finer, than,
e.g., Theorem 5 from PSV, which is asymptotic in n → ∞) and allow subtle analysis
for various asymptotic regimes. We should mention that the derivation of our somewhat
stronger results in BN relies on certain explicit posterior expressions resulting from our
choice of prior (mixture of normals, although the model is not assumed to be normal),
whereas the horseshoe prior studied in PSV leads to only implicit posterior quantities
so that the authors had to overcome complicated technical issues in the proofs.

It is well known and understood that in the studied model it is impossible to con-
struct a confidence set simultaneously with a good coverage and optimal size adap-
tively to sparsity scales. Insisting on the uniform coverage would necessarily lead to a
“big” size of resulting confidence set (therefore uninteresting, although optimal among
all sets of uniform coverage), while pursuing the optimal size results in bad coverage
for some “deceptive” parameters. In the both papers, PSV and BN, the second sit-
uation is studied, where the non-deceptive parameters are described by the so called
“excessive-bias restriction” (EBR). This condition was introduced in BN and slightly
weakened in PSV. Let us give an intuition behind the EBR. For σ2 = 1 and any θ ∈ R

n,
the oracle rate introduced in EBR is minI⊆[n] G(I) = G(Io) where G(I) = G(I, θ) =∑

i∈Ic θ2i + τ |I| log(en/|I|) = B(Ic) + V (I). It is always smaller than the minimax rate

∗Department of Mathematics, VU Amsterdam, e.n.belitser@vu.nl
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over any sparsity class containing θ: G(Io, θ) � pn log(en/pn) for all θ ∈ �0[pn]. Think
of Io as the set of the (oracle) significant coordinates, B(Ico) as the approximation term
(or “bias”) and V (Io) as the complexity term (or “variance”) of the oracle rate. Because
of the non-asymptotic study, we need log(en/|Io|) instead of log(n/|Io|) (as compared
with PSV) in the “variance” V (Io), which are of the same order if |Io| ≤ pn = o(n).

The EBR from BN basically means that the bias of the oracle rate is of the order
of the variance: B(Ico) ≤ tV (Io) for some t > 0. Consider now the weakened version of
the EBR introduced in PSV. Since pn = o(n), without loss of generality one can set
Cs = 1 in the EBR condition of PSV. If the EBR from BN is fulfilled, then the EBR
from PSV (the two relations of display (16)) is also fulfilled which is in our notation
as follows: for τ > 2, C > 0, B(Ico) ≤ CV (Io) and #{i : θ2i ≥ τ log(n/|Io|)} ≥ |Io|.
The first relation is exactly the EBR from BN and the second relation is implied by the
definition of the oracle Io. The EBR from PSV is based on the fact that it is always
possible to enlarge the oracle set Io to the smallest I∗ ⊇ Io such that the relation
B(Ic∗) ≤ CV (I∗) is fulfilled. At worst, I∗ is the support of θ: {i ∈ [n] : θi �= 0}. It is easy
to show that V (I∗) 
 G(I∗) 
 G(Io), i.e., the “variance” is the main term in the rate
G(I∗) that is of the oracle rate order. Then the EBR in PSV gives p̃ 
 |I∗| and the size
p̃ log(n/p̃) 
 G(I∗) of the confidence set Ĉn(L) in Theorem 5 is actually of the oracle
rate order. The first relation of the EBR from PSV (in display (16)) can always be made
satisfied, if not for the oracle set Io, then for an enlarged version I∗ of it. But this does
not mean that the problem of adaptive confidence is solved without any price: “there
is no free lunch”. The point is that the second relation #{i : θ2i ≥ τ log(n/|I∗|)} ≥ |I∗|
in display (16) from PSV is not automatically fulfilled for I∗ as it was for the oracle
set Io. It is this relation that becomes the actual restriction on the parameter space,
and the (uniform) lower bound on the constant τ is crucial here. In paper PSV, τ > 2

and this has to do with the fact that εi
ind∼ N(0, 1). In BN, we assume that the error

vector ε satisfies only certain mild exchangeable exponential moment condition (allowing
non-normal and dependent coordinates) and the constant τ depends on the parameters
of that condition. The main massage here is that the second relation in (16) must hold
for some sufficiently large (depending on the distribution of ε) constant τ .

Motivated by the above discussion, we further weaken the EBR condition.
EBR condition. For some (fixed) C > 0 and � ∈ (0, 1) there exists a k ∈ [n] such

that
∑n−k

i=1 θ2(i) ≤ Ck log(en/k) and
∑n−��k

i=n−k+1 θ
2
(i) ≥ (1−�)τk log(en/k) for sufficiently

large τ , where θ2(1) ≤ θ2(2) ≤ . . . ≤ θ2(n). Let i∗ be the smallest possible such k.

The above EBR condition follows from the EBR version of PSV with i∗ = p̃ and
G(I∗) 
 i∗ log(en/i∗) 
 G(Io) where I∗ = {i ∈ [n] : θ2i ≥ θ2(n−i∗+1)} becomes the
structure of the parameter θ. The EBR condition ensures that the structure I∗ of θ
becomes “identifiable”, which is the necessary ingredient in constructing the adaptive
confidence sets. Under this weaker EBR version, we can prove exactly the same results
as in BN with slightly modified constants.

We finish with two remarks/questions to the authors of PSV. First, the size relation
for the constructed confidence set in Theorem 5 of PSV holds uniformly only over the
EBR class (intersected with �0[pn]), whereas in BN the size relation holds uniformly
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over the whole space R
n. It would be interesting to know whether this is an artefact

of the proofs or of the Bayesian procedure based on the horseshoe prior. Second, it
might be interesting to study whether the (weakest version of) EBR is minimal for the
existence of adaptive confidence sets, and what would even be a proper formulation of
this property.
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We sincerely thank all discussants for their generous discussions.

Yoo appears to raise the question if the noncoverage of intermediate values of the
parameters is intrinsic or due to the horseshoe or due to our proof. Unless our proof
is in error, the third possibility can be safely discarded. As we have pointed out, there
are absolute restrictions on confidence sets, which cannot be overcome by any methods,
Bayesian or nonBayesian, so the horseshoe seems not to blame either. But perhaps
Yoo is referring more to the small gaps between the regions of small, medium and
large parameter values in our presentation. There is indeed room for further research on
parameters near the boundaries of the regions. This is likely to be delicate, and may not
yield essentially more insight than our current treatment, the gaps between the regions
being small. Yoo also asks what would happen for a steadily increasing number of zero
parameters. As shown by our results, this will depend on the values of the nonzero
parameters, not just on their proportion of the whole.

Polson contrasts the LASSO and the horseshoe. We are also not a fan of the LASSO,
perhaps for other reasons. As pointed out in Castillo et al. (2015), in the sparse case
the Bayesian LASSO posterior, as opposed to the LASSO as a posterior mode, lacks
accurate uncertainty quantification through the spread of the posterior. This fact is not
surprising, as the LASSO prior does not model sparsity in any way. Polson makes a link
to the James–Stein estimator and notes that the choice of penalty (i.e. prior density)
has a big effect on the type of shrinkage one gets. We agree. For a sparse model one
needs a prior that allows for sparsity. Both the Laplace prior of the LASSO and the
Gaussian prior behind James–Stein are incapable to induce sparsity in the posterior,
although the LASSO at least has a sparse mode. One might ask if a nonparametric
prior, for instance a hierarchical one where the means come from a distribution that
itself receives a Dirichlet process prior, or the empirical Bayes version of this, might work
in both sparse and non-sparse situations. The simulation study in Koenker and Mizera
(2014) seems to say that at least recovery is good. We do not know about uncertainty
quantification. We note that in a true Bayesian spirit a comparison between various
priors should always take into account the full posterior distribution, not just a measure
of its center. Thus the prior plays a bigger role than just suggesting a penalty that is
added on to the likelihood.

Martin contrasts continuous priors with a peak at zero, such as the horseshoe, with
“two-group” priors that have a pointmass at zero. If many parameters are thought to be
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exactly zero and not just “small”, then such a two-group parameter is indeed attractive
as a model. The exact zero values in Ryan’s Figure 1 are a boon (although one gets
almost the same picture by shrinking the zero intervals of the horseshoe to a point; in
fact in this example this gives an even more correct result). We have shown elsewhere
Castillo and Van der Vaart (2012); Castillo et al. (2015) that the recovery obtained
with the spike-and-slab and horseshoe (and many other priors) is comparable, and ex-
pect the uncertainty quantification of the full posterior distributions also to be similar.
(Preliminary work by Castillo appears to confirm this.) We have shown in Castillo and
Van der Vaart (2012) that a heavier-tailed distribution than Gaussian for the non-zero
parameters is useful here, as the Gaussian shrinks too much to zero (unless the noise
variance is very small relative to the prior Gaussian variance). Martin proposes to solve
the latter problem by using Gaussian “priors” centered at the observations, a device
that it is similar to the one used in Belitser (2017); Belitser and Nurushev (2015). This
will indeed get rid of the shrinkage effect, but is perhaps not elegant from a Bayesian
point of view. Regrettably the device does not remedy the computational disadvantage
of the two-group priors, which is the main motivation for continuous priors such as
the horseshoe. Martin concludes with an intriguing suggestion to look for a “change of
perspective” going against honesty of credible intervals. As a contribution to this discus-
sion we like to highlight that the failures of credible sets, which we observed in function
estimation Szabó et al. (2015) and in sparse estimation in the present paper, appear
to be of different natures. In function estimation the problem is the extrapolation from
more or less observable features of an unknown response function to clearly unobserved
ones that cannot be known. The data-analyst is not forced to extrapolate; the trouble
is that hierarchical Bayesian procedures (and other adaptive schemes) automatically do
so. In sparse estimation parameters are shrunk to zero, with the amount of shrinkage
determined by a hierarchical or other adaptive scheme. In both cases we like hierarchical
procedures, even if they necessarily bring trouble for credible sets. A difference between
the cases is that in sparse estimation we know the type of trouble: spurious near-zeros.
A possible change-of-perspective here is to interpret credible sets in the sense of false
discovery rates: a non-zero is a true discovery, but a zero may be a false nondiscovery.
In the case of function estimation the distortion is much less predictable. However, the
response functions for which distortion occurs, the “inconvenient truths” of Szabó et al.
(2015), are perhaps so unrealistic that they can be a-priori ruled out (don’t worry be
happy). The “a-priori” may be taken literally here, as Szabó et al. (2015) show that the
priors used there do never produce them. This seems also a difference between the two
cases: the intermediate values that are shrunk too much to zero in sparse estimation,
seem very real (and their location depends on sample size and error variance and in
regression on number of parameters and presumably the design matrix). We feel that
honesty is a good policy, and do not feel that this lofty goal is at odds with adaptivity.
A honest description of the honesty of adaptive credible intervals, and admission that
there is a gray area where we run into a detectability limit, offers actionable insight into
the results of a data-analysis, and is surely not in conflict with a statistician’s integrity.

Belitser and Nurushev give a valuable summary of their interesting paper. They
are interested in finding an optimal procedure, in some sense, under minimal conditions,
in some sense, whereas our interest was to study the coverage properties of a reasonable
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and popular Bayesian procedure. It is interesting that the horseshoe comes close to op-
timality in the sense of Belitser and Nurushev, and also that their optimal procedure,
although not Bayesian, uses empirical Bayesian thinking. At the end of their contri-
bution Belitser and Nurushev note that their procedure possesses a certain uniformity
property over the full parameter space (restricted to nearly black bodies), whereas our
stated results on the horseshoe do not. One might indeed look further into uniformity.
However, in our current formulation the parameter p̃ is defined by θ0 and so without
the restriction we impose our statement would not make any sense. So this is built into
formulation, and not an ‘artefact of our proof’.

Castillo notes parallels between the performance of the horseshoe procedure and
the procedure based on the spike-and-slab prior. For instance, there is a strong cor-
respondence between the horseshoe tuning parameter τ and the weight of the spike.
We are very much looking forward to the work in progress by him and his co-authors.
Conceptually the spike-and-slab is attractive, perhaps more so than the horseshoe. The
performance of the recovery procedure (as opposed to the uncertainty quantification)
has been studied in more detail for the spike-and-slab than for the horseshoe, for in-
stance relative to other loss functions than the square Euclidean norm and for other test
classes than the class �0[p] of nearly black bodies. We agree that it will be interesting
to study these for the horseshoe as well. We do not know of work or simulation studies
in this direction. Our qualitative justification of using marginal credible intervals as
a selection rule of nonzero parameters is purely Bayesian: it seems reasonable to use
posterior uncertainty in this manner. We do provide ‘some justification’ by studying the
frequentist properties and do mention some thresholds. One might wish to refine these
results. Regarding the logarithmic factors in the case of signals with very few zeros,
which we do not really cover, we agree that it would be interesting to refine the results,
although we note that a purely asymptotic treatment without getting hold of the con-
stants may not be very informative about performance. The suggested refinement of
the bound on the number of selected coefficients would indeed be interesting. We would
also welcome results on the false discovery rate, which do not follow from our results
(although some of our results have that flavour). Regarding the choice of the blow-up
factors L in practice, we recommend to set them equal to 1, as we did in our simulations,
as this yields the natural Bayesian credible sets. Bayesian and frequentist coverage are
not the same, and we see no compelling reason to correct Bayesian credible sets for
exact frequentist coverage, in particular in situations where full frequentist coverage is
known to be impossible. For instance, joint credible balls will have large frequentist
coverage only for parameters that satisfy an ‘excessive bias condition’, and the coverage
probability will depend both on the constants in the latter condition and the blow-up
factor. Then there is no universally good blow-up factor. For credible intervals the case
appears to be more favourable in that at least the large intervals seem to have a uni-
versal constant, for which we have set a concrete value LL. (In the final version of the
paper, we have improved this to 1.1ζγ/2/zα/2 ≈ 1 if γ = α are small; in the asymptotics
1.1 can be replaced by any constant strictly bigger than 1.)

Piironen, Betancourt, Simpson and Vehtari contest our claim that τ can be
interpreted as the ‘proportion of nonzero parameters, up to a logarithmic factor’. Their
argument against it seems to be that one can make such a statement only relative to
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Figure 1: Scatterplots of bivariate marginal posterior distributions and histograms of
the corresponding univariate marginal posterior distributions of a pair of parameters
for which the true parameters are both above the detection boundary (top) or both
zero (bottom). Markov Chain Monte Carlo (MCMC) samples computed in R with the
horsehoe package.

a likelihood. That is true of course. By itself the horseshoe is even a prior for a single
parameter, and it makes no logical sense to call one of its hyper parameters a proportion.
Clearly the likelihood we have in mind is the one of the sequence model, and we give
ample arguments for our claim, in the form of mathematical theorems backed up by
simulations, referring both to recovery and uncertainty quantification. It is true that in



1274 Rejoinder

the paper under discussion we have set the variances of the observations equal to 1. In
earlier work we used a flexible value, and this leads to the same findings as long as one
scales the horseshoe prior with the error standard deviation, as is standard (and the
threshold then scales with the error standard deviation as well). Piironen, Betancourt,
Simpson and Vehtari have done simulations with the horseshoe prior on parameters in a
regression model. This model is beyond our current paper, and similar results can only
be expected if one makes strong assumptions on the design matrix, as is common in the
literature (‘restricted isometry’, ‘compatibility’, etc.). This is studied in the Bayesian
context for recovery in Castillo et al. (2015); we do not know of work on uncertainty
quantification. The restrictions are necessary, because in high-dimensional regression
models there must be collinearities between the columns of the design matrix, which
the data cannot resolve, so that the posterior will load on multiple columns. We wonder
if this is what happened in the figure of a bivariate posterior marginal they contributed
in their discussion. We are certainly not against also considering bivariate marginals, or
other projections, but in the context of our model they seem not so interesting, because
the likelihood does not make the parameters interact. We confirmed this by making
some pictures of bivariate posteriors in our model; examples are shown in Figure 1.
Piironen, Betancourt, Simpson and Vehtari close with a warning against the marginal
maximum likelihood estimator. They are not the first to do so. We can only say that we
have not noted problems, not in the theory and not in the simulations. We also prefer
full Bayes, but the greater efficiency may weigh in the other direction.
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