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Abstract
In recent years the empirical success of transfer learning with neural networks has stimulated an
increasing interest in obtaining a theoretical understanding of its core properties. Knowledge Dis-
tillation where a smaller neural network is trained using the outputs of a larger neural network is
a particularly interesting case of transfer learning. In the present work, we introduce a statistical
physics framework that allows an analytic characterization of the properties of knowledge distil-
lation (KD) in shallow neural networks. Focusing the analysis on a solvable model that exhibits
a non-trivial generalization gap, we investigate the effectiveness of KD. We are able to show that,
through KD, the regularization properties of the larger teacher model can be inherited by the smaller
student and that the yielded generalization performance is closely linked to and limited by the op-
timality of the teacher. Finally, we analyze the double descent phenomenology that can arise in the
considered KD setting.
Keywords: Knowledge Distillation, Transfer Learning, Logistic Regression, Gaussian Mixture,
Replica Method

1. Introduction

Deep learning practice in the past decade has repeatedly confirmed a remarkable observation:
Stochastic Gradient Descent (SGD) based training of neural networks becomes easier and more
effective as the number of tunable parameters increases. While a higher model complexity could
in principle entail high risks of over-fitting, large scale Deep Neural Networks (DNNs) display
surprising generalization capabilities, allegedly allowed by an “implicit regularization” mechanism
(Neyshabur et al. (2015); Zhang et al. (2017)) that still escapes clear theoretical understanding. On
the flip side, the steady scaling up of DNN architectures also carries a massive increase in associated
inference and memory costs.

Many attempts at achieving better quality-computation trade-offs have been proposed in the last
decade (Han et al. (2015, 2016); Jacob et al. (2018); Frankle and Carbin (2019)), often based on
the observation that good generalization scores can be retained if one first trains a more complex
DNN and then derives a lighter model from it. In this context, Knowledge Distillation (KD) (Hin-
ton et al. (2015)) has established itself as one of the most popular transfer learning and network
compression strategies (Anil et al. (2018); Chen et al. (2018, 2017); Yim et al. (2017); Yu et al.
(2017); Kim and Rush (2016)). The general idea of KD is to try and transfer the generalization
properties from a larger capacity model (teacher) to a weaker model (student) at training: instead of
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learning directly from the vector encodings of the ground truth labels, the KD student learns from
the outputs (“dark knowledge”) produced by the teacher model on the same training dataset. Not
only the KD optimization step, with real-valued outputs, seems to be generally more well-behaved
than usual training, numerical experiments also show that with very little fine-tuning at the level of
the employed regularization and optimization heuristics one can reach competitive generalization
scores (Tang et al. (2020)).

Despite its effectiveness, KD is still not very well understood from a theoretical standpoint.
Few recent works (Celik et al. (2017); Phuong and Lampert (2019); Tang et al. (2020); Rahbar et al.
(2020); Yuan et al. (2019); Furlanello et al. (2018)) have attempted to analyse KD in controlled set-
tings, breaking down its net positive impact into separate contributions and proposing a connection
between the effectiveness of KD and the role of label smoothing and sample reweighting strategies
and that of priors on data geometry (Yuan et al. (2019); Furlanello et al. (2018)). In this work we
approach the problem from a statistical physics perspective, aiming to characterize the typical gen-
eralization performance achieved by a KD student in the asymptotic limit of large input dimension
and dataset size. The main questions we want to investigate are how KD can transfer the regulariza-
tion properties between mismatched models and when the KD student can display an improvement
upon the best score achievable with usual training procedures.

In order to allow a mathematical definition of knowledge distillation, consider a typical clas-
sification problem where, given a large dataset of input-output associations D = {xµ, yµ}Mµ=1 the
task is to learn a parametrized rule f(xµ, {w}) (f representing a neural network and {w} its pa-
rameters or weights) that allows correct classification of test data points not seen in the training
set. As customary, learning can be framed as an empirical risk minimization problem, introducing
a regularized loss-function:

L({w} ,D ;λ) =

M∑
µ=1

` (yµ, σ (f(xµ, {w}))) +
λ

2
‖w‖22 (1)

where, in the binary classification case, σ(·) is the sigmoid activation function σ (x) = (1 + exp (−x))−1

(softmax in the multi-class case), and where a typical choice would be a cross-entropy loss
`(p, q) = H(p, q):

H(p, q) = −p log q − (1− p) log(1− q) (2)

and an L2-norm regularization.
In knowledge distillation (KD), one assumes to be granted access to the outputs f̃(xµ, {w̃})

produced over the training set by a (more complex) teacher model {w̃}, and one aims at training a
(weaker) student model through the modified loss:

LKD({w} , {w̃} ,D ;λ, χ) =

N∑
µ=1

`KD

(
yµ, f̃(xµ, {w̃}), f(xµ, {w}), χ

)
+
λ

2
‖w‖22 (3)

where:
`KD (y, p, q, χ) = (1− χ)H(y, σ(q)) + χH(σ(p), σ(q)). (4)

The student is thus mixing the usual data-fitting approach with a goal of approximating the
behavior of the teacher, the external parameter χ serving to balance between fitting the ground truth
labels and the teacher outputs. A key idea behind distillation is that for the student the optimization
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process becomes more transparent, as it can rely on the more explicit knowledge derived from
the teacher outputs: the softer outputs can prevent student overconfidence on noisy data points
and highlight correlations among different labels. Note that, in multi-class problems one typically
considers also a distillation temperature T , reweighing teacher and student outputs: we will ignore
this additional external parameter in the following, since we focus on a binary classification setting
(a short analysis of its effect can be found in Appendix B).

1.1. Main contributions

In this manuscript, we develop and apply an analytic framework to study knowledge distillation
in models where the learning performance is solvable with the replica method. We then consider
specifically a Gaussian mixture model where the student is constrained to be sparse, and we perform
a series of controlled studies that allowed an investigation of the inheritance properties of knowledge
distillation. All analytical results are crosschecked with numerical experiments. Our main results
can be summarized in the following qualitative observations:

• Without any fine-tuning at the level of the student loss function, using KD allows a transfer
of the (possibly fine-tuned) regularization properties of the teacher, even if the two models
are mismatched and even if the regularization strategy in the teacher training is not known
explicitly.

• When the regularization mechanism employed for regularizing the teacher can also be applied
directly to the student, fine-tuning the direct regularization and fine-tuning the parameters of
the KD loss leads to comparable generalization performance. No improvement is observed in
this setting.

• If one can access a trained network with superior generalization performance and employ it as
a teacher in a KD process, also the KD student will inherit superior generalization properties.

• In the limit of zero direct regularization on the student, the KD loss gives rise to a hy-
brid double-descent phenomenology, displaying both logistic regression and linear regression
types of cusps.

Of course, the results we derived in the simple Gaussian mixture model may not generalize
directly to more complex network architectures or different types of model mismatches. We argue,
however, that the observed qualitative behavior is in line with the empirical observations about KD
practice in deep learning (Hinton et al. (2015); Rahbar et al. (2020)), and support the propositions
that transferring knowledge from larger (implicitly regularized) neural network models is almost
automatically beneficial for the test performance of weaker students. Moreover, the development
of a general theoretical framework for this type of study could stimulate a similar analysis in more
realistic settings.

In the next section, we introduce our analytical framework, yielding an asymptotic description
of training through knowledge distillation. In section 3, we present a solvable model where the
test performance associated with logistic regression is largely sub-optimal and we define in which
sense the considered student network is a smaller model than the teacher. In section 4, we apply
the analytical framework to the model and we derive a set of deterministic fixed-point equations
that allow an estimate of the KD student generalization performance. In section 5, we showcase
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the main results of this work, comparing our predictions with numerical simulations. In particular,
we characterize the inheritance properties and the limits of KD and show when KD can potentially
lead to improved generalization with respect to typical logistic regression. In section 6, we focus
on the double-descent phenomenology that appears in our simple transfer learning setup. Finally, in
section 7 we discuss our results and propose some future research perspectives.

2. Statistical physics framework to analyze knowledge distillation

The main technical contribution of this work consists in the introduction of an analytic framework
based on the replica formalism (Mézard et al. (1987); Mezard and Montanari (2009)), that allows
the characterization of learning through knowledge distillation in tractable models.

The proposed analytic setup stems from the simple observation that KD can naturally be framed
as a 2-level problem: in the first step one trains a teacher model with the true labels and the dataset
D; in the second step a student network is trained with the same inputs and the outputs produced by
the teacher. From the perspective of the replica method, the fact that the two systems are sharing the
same inputs (same quenched disorder) is effectively coupling them. However, because of the fixed
order of the two training procedures, the teacher model is not affected by the presence of the student
and therefore its statistical properties can be determined self-consistently. On the other hand, the
statistical measure of the student is directly dependent on the specific realization of the teacher.

In particular, we can characterize the typical KD student by considering the disordered partition
function:

Z({w̃},D) = lim
β→∞

∫
dw e−βLKD({w},{w̃},D) (5)

in the limit β → ∞, where the measure focuses on the minimizers of the KD loss functions, and
then evaluate the free-entropy Φ of the model by performing an external average over the realization
of the dataset and an internal average over the measure of the trained teacher:

Φ =
1

N

〈
〈 logZ({w̃},D) 〉{w̃}

〉
D
. (6)

Quantities of interest such as the value of test error of the student are then readily derived from this
free entropy in ways standard to statistical physics (Mezard and Montanari (2009)). Obtaining a
close formula for the free entropy Φ is hence the key difficulty that can be overcome using the replica
trick (Mézard et al. (1987)). The replica formalism required for evaluating the double average in
Eq. (6) is equivalent to a Franz-Parisi potential computation (Franz and Parisi (1997)), where one
first samples a configuration from an independent equilibrium measure and then evaluates the free-
energy of a coupled system sharing the same realization of the disorder.

The computation starts from a chain of identities based on two separate replica tricks:

Φ =
1

N

〈〈
log lim

β→∞

∫
dw e−βLKD({w},{w̃},D)

〉
{w̃}

〉
D

= (7)

1

N

〈〈
lim
n→0

∂

∂n
lim
β→∞

∫ n∏
a=1

dwa e−βLKD({wa},{w̃},D)

〉
{w̃}

〉
D

= (8)

1

N

〈
lim
ñ,n→0

∂

∂n
lim

β̃,β→∞

∫ ñ∏
c=1

dw̃ce−β̃L({w̃c},D)

∫ n∏
a=1

dwa e−βLKD({wa},{w̃1},D)

〉
D

. (9)
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In order to evaluate the disorder average, in the second line the logarithm is removed by replicating
the student configuration {wa}na=1 (using the identity log x = limn→0 ∂nx

n). In the third line,
instead, the average over the teacher is removed by introducing ñ − 1 non-interacting and a single
interacting replica of the teacher {w̃c}ñc=1, so that in the ñ→ 0 limit one can recover the expectation
over its measure.

Because of concentration properties in high-dimensions, the coupled free-entropy asymptoti-
cally converges to a deterministic function of a narrow set of order parameters that capture the
geometrical distribution of teacher and student configurations. Enforcing a saddle-point condi-
tion for the free-energy allows the derivation of a system of fixed-point equations that can yield
an asymptotic prediction for these order parameters, to be compared with the results of numerical
simulations.

The proposed formalism is general and may be applied to analyze knowledge distillation in
any learning model which is amenable of a description through the replica method. Note that the
entailed computation is quite standard in statistical physics and is believed to be exact, although
non-rigorous in general. Moreover, an important remark is that there currently are strong technical
limitations which restrict the set of models tractable with the replica method to a class of shallow
network architectures (Barbier et al. (2019); Aubin et al. (2018)), but these limitations might be
lifted with future progress in the field.

3. Gaussian Mixture Model

We now provide a brief introduction to a model recently analyzed in Mignacco et al. (2020) with
the replica method, which will be employed as a prototypical study case in the rest of the paper.
The same models can be studied with other tools, some of them rigorous, but here we focus on
the replica solution of the model because that is the one that can readily be extended to analyze
the knowledge distillation along the lines of section 2. We consider a high-dimensional binary
classification problem where data is generated according to a Gaussian mixture and the learning
model is a linear classifier trained through L2-regularized logistic regression.

In particular, let N denote the input dimension and M denote the size of the training set D. We
assume the data points in D to be Gaussian distributed around two centroids, located on the same
axis and positioned respectively at± v√

N
, v ∈ RN . Moreover, we assume the two clusters to contain

respectively a fraction ρ and (1 − ρ) of the points. Thus, data {xµ, yµ}Mµ=1 is generated according
to the process:

xµ = (2yµ − 1)
v√
N

+
√

∆z (10)

where each component of the signal v and noise z is i.i.d. Gaussian, vi, zi ∼ N (0, 1). The binary
labels yµ ∈ {0, 1} that determine the cluster membership of the points follow the skewed distribu-
tion yµ ∼ ρ δ (yµ − 1) + (1 − ρ) δ (yµ). We also specialize to the case of a single layer network,
with:

f(xµ, {w}) =
xµ ·w√

N
+ b (11)

where the weights w ∈ RN and the bias b ∈ R represent the tunable parameters of the model. Note
that, as soon as the training set is no longer linearly separable, the optimal learning strategy is to try
and align the weights in the direction of the signal v, so that the probability of a correct labeling of
the data points is maximized.
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Non-trivial behaviour was described in this model in the scaling limit where both N,M →∞,
while their ratio α = M/N remains ofO(1) (Mignacco et al. (2020)). Asymptotically, the model is
fully solvable and one can characterize the typical learning performance as a function of the model
parameters and of the regularization intensity λ. For the reader’s convenience we report some results
in Appendix A, but we reference Mignacco et al. (2020) for the full details on the properties of this
model.

3.1. Sub-optimal performance of logistic regression

One of the main motivations for considering this simple model in the present knowledge distillation
study comes from the sub-optimal generalization behavior of regularized logistic regression in the
unbalanced cluster case, at ρ < 0.5. As reported in Mignacco et al. (2020), given the overlap
between the weight configuration and the signal, m = w·v

N and the norm q = w·w
N , one obtains the

asymptotic generalization error of the trained configuration from the following analytic expression:

εg = ρH

(
m+ b√

∆q

)
+ (1− ρ)H

(
m− b√

∆q

)
, (12)

where H(x) =
∫∞
x

dt√
2π

exp(−t2/2) is the Gaussian tail function. This score can then be compared
with the Bayes optimal generalization error (computed by matching the inference model with the
generative one), which represents a lower bound for the performance of any learning algorithm.
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Figure 1: Generalization performance of L2-regularized logistic regression compared to the Bayes
optimal lower bound, in a Gaussian Mixture with ρ = 0.2 and ∆ = 1. Red line: reg-
ularized logistic regression with optimal intensity λ. Black line: Bayes optimal perfor-
mance. The data points with error bars represent the results of numerical experiments at
N = 4000 (10 samples per point).
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Remarkably, in this specific model there always exist at least a point estimator that achieves
such Bayes-optimal performance, constructed according to a Hebbian principle (Hebb (2005)):

wBO =
1

α
√
N

αN∑
µ=1

(2yµ − 1)xµ, bBO =
∆‖wBO‖22

2
log

ρ

1− ρ
. (13)

Thus, the question is whether one can set an optimal value of the regularization such that logistic
regression can perform similarly. The somewhat surprising answer is that, at ρ < 0.5 and any
value of α and ∆, one observes a sizable gap between the best generalization performance obtained
through logistic regression and the optimal one. This phenomenon can be clearly seen in Fig. 1. In
section 5 we will investigate whether KD can help the student close this performance gap. Note
that this sub-optimal behavior does not appear with balanced clusters ρ = 0.5, where the optimal
regularization level is obtained in the limit λ→∞ (Mignacco et al. (2020)).

3.2. Teacher-student mismatch

In the present work, we want to analyze a setting where teacher and student model classes are
mismatched, so that the weaker student is not able to exactly replicate the behavior of the teacher.
Introducing some type of mismatch is not only closer to KD practice, but also crucial for inducing
a richer model phenomenology. As a matter of fact, it was shown in Phuong and Lampert (2019)
that as soon as the density of patterns becomes larger than α > 1 a linear KD student can trivially
recover the teacher weight configuration.

We thus consider a scenario where the student model can only train a fraction 0 < η < 1 of
its weights while the rest is set to 0 ab initio. In this way it will be impossible for the student to
exactly infer (and achieve the same performance as) the teacher, and we can focus on the transfer
of knowledge between the two models. Of course, this type of mismatch is much simpler than the
architectural mismatches typically entailed in KD learning procedures, but we will see it is sufficient
to display non-trivial phenomenology.

Note that, because of the simple nature of the considered generative model, setting a fraction
η < 1 is equivalent to rescaling the effective signal-to-noise ratio in the student learning problem. In
fact, the two inference tasks with {η, α,∆} and with {1, α/η,∆/η} are information-theoretically
equivalent in the asymptotic limit. Moreover, one can easily define a Bayes optimal lower bound
also in the sparse sub-space spanned by the student, achieved by a point-estimator with the same
bias bBO as in Eq. (13) and trimmed weights:

(wBO)i =

{
1

α
√
N

∑
(2yµ − 1)xµi , for i ≤ ηN

0, for i > ηN
. (14)

As expected, one can easily prove that the associated performance coincides with the typical Bayesian
generalization obtained after rescaling α and ∆ by a factor 1/η.

4. Knowledge Distillation in the Gaussian Mixture Model

We apply the replica framework sketched in Sec. 2 to derive a set of deterministic equations charac-
terizing typical knowledge distillation processes in the above introduced logistic regression setting,
where one first trains a teacher linear classifier and then employs the KD loss Eq. (4) to train a
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sparsified linear student. The convex nature of the two nested optimization problems justifies the
employment of the so-called Replica Symmetric ansatz (Mignacco et al. (2020)), which simplifies
the analysis considerably. As the replica computation is still quite involved, we defer a detailed
description to the Appendix, and report here the obtained final expressions.

We remind that the main parameters of the setting we analyze are the noise variance ∆ and the
label fraction ρ, the number of samples per dimension α = M/N and the student-sparsity level η.
Specializing Eq. (9) to our study case we get:

Φ =
1

N
lim
n,ñ→0

∂n

〈
lim
β̃→∞

lim
β→∞

∫ ñ∏
c=1

dw̃ce−
βλ̃
2
‖w̃c‖22

∫ ñ∏
c=1

db̃c
∏
µ,c

e
− β̃

2
`

(
yµ,σ

(∑N
i=1

w̃ci x
µ
i√
N

+b̃c
))

×
∫ n∏

a=1

dwae−
βλ
2
‖wa‖22

∫ n∏
a=1

dba
∏
µ,a

e
−β

2
`′
(
yµ,σ

(∑N
i=1

w̃1
i x
µ
i√
N

+b̃1
)
,σ

(∑N
i=1

wai x
µ
i√
N

+ba
)
,χ

)〉
{xµ,yµ}

,

(15)
where b, b̃ are the biases, and λ, λ̃ the strength of the regularization of the student and teacher.

In order to perform disorder average and remove the dependency on the specific realization of
the Gaussian mixture dataset, one can first isolate teacher and student preactivations by introducing
the associated Dirac’s δ-functions. Then, it becomes possible to factorize over the samples and the
input components and take the expectation over xµi . Finally, one can discard the o(N−1) terms
and obtain the effective interaction between the various replicas, mediated by a set of overlap order
parameters.

Thus, in the replica symmetric assumption, the only relevant quantities that fully characterize
the studied model are:

• The overlap between teacher w̃ and student w weight configurations with the signal v denoted
m̃ = w̃·v

N , m = w·v
N .

• The norms q̃ = w̃·w̃
N and q = w·w

N .

• The teacher-student overlap S = w·w̃
N .

• The vanishing variances δq̃, δq and δS (see Appendix A for a detailed definition), opportunely
rescaled in the β̃, β →∞ limit.

and their associated conjugate variables, denoted with a hat symbol in the following. Then, after
some calculations, one can express the free-entropy as an extremum operation:

Φ = extr
b,m,q,δq,S,δS,m̂,q̂,δq̂,Ŝ,δŜ

−
(
m̂m+

1

2
(q̂δq − δq̂q) +

(
ŜδS + δŜS

))
+ η gs + α ge, (16)

where we introduced the entropic and energetic contributions:

gs =
1

2

(
m̂+ ˆ̃m δŜ

λ̃+δ ˆ̃q

)2
+ q̂ + 2 δŜŜ

λ̃+δ ˆ̃q
+

ˆ̃qδŜ2

(λ̃+δ ˆ̃q)
2

λ+ δq̂
(17)

ge =

〈∫
Dz
∫
Dz̃ M?

E

〉
y

(18)
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with Dz and Dz̃ denoting independent normalized Gaussian measures and the average 〈·〉y taken
over the distribution of the cluster labels. The argument of Eq. (18) is obtained from a one-dimensional
optimization problem:

M?
E = max

u

{
−1

2
u2 − 1

2
`′
(
y, σ

(
h̃ (ũ?)

)
, σ (h (u, ũ?)) , χ

)}
(19)

where h̃ and h represent the teacher’s and student’s output pre-activations, given respectively by:

h̃ (ũ) =
√

∆δq̃ũ+
√

∆q̃z̃ + (2y − 1) m̃+ b̃ (20)

h (u, ũ) =
√

∆δqu+

√
∆

(
q − S2

q̃

)
z +
√

∆
δS√
δq̃
ũ+
√

∆
S√
q̃
z̃ + (2y − 1) m+ b (21)

ũ? = argmaxũ

{
−1

2
ũ2 − 1

2
`
[
y, σ

(
h̃ (ũ)

)]}
. (22)

Note that the 2-level structure of Knowledge Distillation clearly appears in the concatenated opti-
mization entailed in Eqs. (19) and (22).

Since the teacher measure does not depend on the student, the value of the associated order pa-
rameters can be determined independently by optimizing a simpler free-entropy. The corresponding
fixed-point equations are reported in Appendix A (and are equivalent to those presented in Mignacco
et al. (2020)).

Once the saddle-point values for the order parameters of the models are evaluated for a given set
of parameters {α,∆, ρ, η, λ̃, λ, χ}, the corresponding generalization can be obtained via Eq. (12).

In the present work we do not seek a rigorous proof of the replica predictions (e.g., following
a similar Gordon Minimax approach as in Mignacco et al. (2020)). We will, however, provide
numerical confirmation of the consistency of the analysis in the next section.

5. Main Results

In this section we will consider a series of learning settings encompassed in the analytic framework
in order to investigate the effectiveness and properties of knowledge distillation.

The external parameters of the studied model are the dataset size to input dimension ratio α,
the cluster spread ∆, the relative size of the two clusters ρ, and the sparsity level of the student
η. In the following we will focus on a representative case, with normal Gaussian noise ∆ = 1,
unbalanced clusters ρ = 0.2 and a half-sparse student η = 0.5, and explore various ranges of α
(some experiments in the balanced case are reported in Appendix D). Note that different choices
for the external parameters do not affect any qualitative result presented in the following, but the
present setting was conveniently chosen to induce a sizable performance gap between the dense
teacher model and the sparse student.

We will also adjust the L2 regularization intensity in the teacher and student losses, λ̃ and λ,
and the KD mixing parameter, χ (see Eq. (4)), in order to evaluate the variation in the student
generalization performance.
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5.1. Inheriting the regularization

In the first experiment, we study whether learning from the outputs produced by the teacher in-
stead of the true labels can indirectly regularize the student network and improve its generalization
performance.
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Figure 2: Comparison between the replica prediction for the generalization performance of a η =
0.5 sparse student (full curves) and the corresponding ridge regularized teacher (dashed
curves), in a pure distillation setting (ρ = 0.2, ∆ = 1, χ = 1), as a function of α. The
data points with error bars represent the results of numerical experiments at N = 4000
(10 samples per point).

In Fig. 2, we compare the test error of an unregularized student learning from the true labels
(grey curve) with the test error obtained by learning from the outputs of an L2-regularized teacher
(with different intensity levels, blue and red curves). We call this a “pure distillation” setting, with
χ = 1 and λ = 0. In black we show the Bayes optimal lower bounds for teacher and student. The
corresponding performance of the teacher is displayed with dashed lines.

The first observation we can make is that, indeed, there is a transfer of the regularization prop-
erties from the teacher to the student. In a typical logistic regression setting, the shape of the
cross-entropy encourages a large student norm, since the produced outputs can match the ground-
truth binary labels only when the magnitude of the student goes to infinity. Instead, the soft outputs
of the teacher inform the student against overfitting the training set and growing the norm of the
weights disproportionately. The second observation is that better teacher regularization induces
better student regularization. In particular, we can see that in the large α regime, a better student
performance is attained at the value of λ̃ which also optimizes the teacher performance. The student
is thus able to inherit the fine-tuning done at the level of the teacher, even though it does not belong
to the same model class. Note however that the KD student test error is still far from the displayed
Bayes optimal bound.
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In this plot we avoided showing the generalization behavior in the low α regime, which will be
described in detail in section 6. Moreover, a more thorough analysis of the location of the optimal
teacher regularization and the corresponding student performance can be found in Appendix B.

5.2. Limits of KD

Now that we have seen that KD can indirectly regularize the student, we continue by studying
whether it can outperform direct regularization methods.

First, we compare the generalization curves obtained in the pure distillation setting described
above (χ = 1, learning only from the teacher outputs) with the effect of a simple L2 penalty directly
at the level of the student loss (χ = 0, learning only from the true labels). In the top plot of Fig. 3,
we display the test error in the two cases (full lines for χ = 1, dashed lines for χ = 0) at two
dataset sizes α = 1.5 (red) and α = 4.5 (blue). The horizontal dashed lines highlight the best
direct regularization performance. The black horizontal lines, instead, show the Bayes optimal
bound (top α = 1.5, bottom α = 4.5). One can see that the two curves differ the most in the low
α regime, where the direct regularization is outperforming KD (this will be clarified in Sec. 6). At
higher values of α, instead, the effects of regularizing the teacher or directly regularizing the student
and the associated generalization performances become almost indistinguishable. This is a positive
result: with no fine-tuning at the level of the student loss (i.e., without the usual hyper-parameter
optimization), a better teacher directly yields a better student performance. However, it is clear that
in this case pure distillation is not leading to any improvements over simple ridge regularization.

We thus consider a second setting, where we add a direct L2 regularization of intensity λ also on
the student weights (in the KD loss), and then vary the mixing parameter χ in order to balance the
total amount of regularization. Note that, since the student is sparse, the associated optimal amount
of regularization will in general differ from the intensity λ̃ that yields the best performance for the
dense teacher. In the bottom plot of Fig. 3, we fix α = 4.5 and λ̃ = 0.1 (optimal regularization
regime for the teacher) and explore three values of λ for the student: over-regularized case (λ =
0.5), properly regularized case (λ = 0.2) and under-regularized case (λ = 0.1). These three regimes
were identified a posteriori from extensive simulations at varying regularization levels. Again, the
dashed horizontal line and the black horizontal line respectively mark the best performance achieved
with perfect fine-tuning of the ridge regularization (at χ = 0) and the Bayes optimal performance.
We observe the following: in the over-regularized regime, adding even more regularization through
KD is not beneficial and the best value of the mixing parameter is thus χ = 0 (the minimum of
the generalization is sub-optimal with respect to the grey line); in the other settings, instead, one
finds an optimal value of χ at which the performance associated with optimal direct regularization
is matched.

Overall these two experiments show a clear limitation of KD in the studied model: its effect is
at best equal to that of a fine-tuned direct regularization scheme, and thus the student performance
is still inferior with respect to the Bayes optimal one. In Appendix B we provide further details
and take into account also a different setting, where the regularization scheme is based on the in-
troduction of soft-labels: we can report here that also in that case the direct regularization and the
inherited KD regularization induce the same generalization performance. It, of course, remains to
be seen whether this above limitation of KD extends beyond the studied model.
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Figure 3: Top plot: Comparison between the replica prediction for the test error of a student learning
from a regularized teacher (full curves) with χ = 1, and a directly regularized student
(dashed curves) with χ = 0, at fixed values of α and at ρ = 0.2, ∆ = 1, T = 1 and η =
0.5. Bottom plot: variation in the test error induced by tuning the mixing parameter χ,
at α = 4.5, in correspondence of three regularization regimes in the student loss (under-
regularized, properly regularized, over-regularized). (Horizontal dashed lines) Test error
achieved by setting the optimalL2 regularization intensity (at χ = 0). (Black lines) Bayes
optimal performance. The data points with error bars represent the results of numerical
experiments at N = 4000 (10 samples per point).

5.3. Learning from a Bayes Optimal teacher

We finally consider a case where the teacher is not trained through an explicit regularization method:
since in this setting it is not possible to regularize directly the student in a similar way, a transfer

12
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learning strategy becomes necessary. This construction is meant to mimic more closely the behavior
of knowledge distillation in usual deep learning settings, where learning algorithms play an implicit
role in regularizing the network and their effectiveness may be dependent on the architecture.

In our framework, we study the performance of a student distilling the knowledge of a Bayes
optimal teacher. As mentioned before, in the GM model there exists a point estimator that achieves
the Bayes optimal generalization performance Eq. (13), which is characterized by an overlap with
the signal v, a norm and a bias respectively equal to:

m̃ =
v ·wBO

N
= 1, q̃ =

‖wBO‖2

N
= 1 + ∆/α, b̃ =

∆(1 + ∆/α)

2
log(

ρ

1− ρ
). (23)

In order to obtain an analytical characterization of this special distillation setting, instead of taking
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Figure 4: Replica prediction for the generalization performance of a η = 0.5 sparse student in a GM
setting (ρ = 0.2, ∆ = 1). (Black curve) Performance bound, given by the generalization
of the sparsified plug-in estimator. (Grey curve) Unregularized case. (Red curve) Student
learning with a direct L2 regularization of optimal intensity. (Blue curve) Pure distillation
student (χ = 1) learning from an optimal teacher (e.g. BO point estimator). The blue data
points represent the results of simulations with a teacher produced according to Eq. 24.
The cyan data points are instead obtained with wBO (Eq. 13) as a teacher. All numerical
experiments were run at N = 4000 (10 samples per point).

the Hebbian estimator of Eq. (13) directly (carrying non-trivial correlations with the noise terms in
the training data-points), we consider a teacher with the same bias and weights distributed as:

w̃ = v +

√
∆

α
z, (24)

where each component of z is i.i.d. Gaussian distributed with unit variance. A typical realization of
this teacher will achieve exactly the Bayes optimal generalization performance, so we can use it as
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a proxy for studying the distillation setting with the Hebbian estimator as a teacher. The details of
the associated analytical calculation are reported in Appendix A.

In Fig. 4 we compare the generalization performance in three different learning settings: (grey
line) an unregularized student, (red line) a student with direct L2 regularization set at the optimal
intensity and learning from the ground truth labels, and (blue line) a pure distillation student (χ = 1)
learning from a Bayes optimal teacher (according to the above definition). These results are again
compared with the Bayes optimal performance bound (black line) relevant for the student.

When the transferred outputs are produced by an optimal teacher, we observe a clear improve-
ment in the distillation test error with respect to a direct L2 regularization: the gap with the optimal
generalization bound is nearly closed (especially at large values of α). This result clearly shows the
potential of knowledge distillation: through transfer learning the student can reach performances
that are seemingly not achievable with direct regularization schemes, inheriting also the“implicit”
regularization of the teacher (similar to what is observed in deep learning experiments (Frankle and
Carbin (2019))).

6. Double descent in the KD framework

In this final section we will focus on the low α regime, i.e. number of samples small or comparable
to the dimensionality, and the limit of zero direct regularization either in the student or in the teacher
losses.

Note that, in the considered model, when the L2 regularization term is completely switched
off, the minimization of non-regularized logistic loss becomes equivalent to maximum likelihood
estimation (MLE). In the GMM, with high probability the generated binary data will be linearly
separable up until some threshold αS(ρ,∆, η), and in this regime the ML estimator is ill-defined
(Sur and Candès (2019)). Since we are not interested in addressing this issue in the present work,
in the following we will consider a baseline regularization intensity of λ = 0.00001 as a proxy for
the unregularized limit.

Let’s first consider taking an unregularized teacher and a pure distillation student (χ = 0,
λ̃, λ → 0). The teacher training problem is perfectly separable below the separability threshold
α̃S : without an explicit regularization its norm will thus diverge, due to the shape of the cross-
entropy loss. Therefore, the outputs produced by the teacher will be quasi-binary (since the sigmoid
activation will be completely saturated), and the student learning problem will look exactly like the
usual logistic regression with binary labels. If we focus on the generalization behavior of the stu-
dent, we thus expect a peak (and the corresponding double-descent behavior) at the student’s linear
separability threshold αS (Mignacco et al. (2020)). Note that in general αS 6= α̃S , since we take
η < 1.

Now, let’s consider instead the case of a regularized teacher. In this case, even below α̃S , the
teacher norm will remain finite and the produced outputs will be continuously distributed in the
range [0, 1]. In this case, the pure distillation student will try to interpolate a set of non-binary
outputs: as long as the number of linear constraints will be lower than the number of trainable
weights α < η, the student will be able to exactly reproduce the teacher outputs. However, just like
in a normal regression scenario (Mignacco et al. (2020)), this will give rise to an interpolation peak
at α = η (and the associated double-descent).

In Fig. 5, we can see the two types of peak (blue and red curves respectively). Note that the devi-
ation of the experimental points from the theoretical predictions, at low α in the first regime, is due
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Figure 5: Generalization performance of a η = 0.5 sparse student in a pure distillation setting
(ρ = 0.2, ∆ = 1, χ = 1). (Black curve) Performance bound, given by the Bayes Optimal
generalization. (Blue curve) Distillation curve when both teacher and student are not L2

regularized. (Red curve) Distillation performance when only the teacher is regularized.
αI , α̃S and αS respectively denote the student interpolation threshold and the teacher and
student separability thresholds. The data points with error bars represent the results of
numerical experiments at N = 4000 (10 samples per point).

to the non convergence of the gradient descent simulations before the cutoff of 2000 optimization
epochs.

In Appendix C, we also provide an in-depth analysis of teacher and student training losses and
the mean squared error between teacher and student activations/preactivations around αI and αS , in
order to further clarify the described phenomena.

7. Conclusions

In this work we developed a statistical physics framework for analysing knowledge distillation in
high-dimensional models solvable with the replica method. The framework yields a deterministic
description of the typical properties of the studied model, via a set of fixed point equations that track
the behavior of the relevant order parameters.

We applied our framework to a prototypical case of knowledge distillation in the presence of
mismatch between teacher and student networks. In particular, we considered two linear classifiers
with different support (a stronger teacher network and a weaker student network) trained over a
binary classification problem with data generated according to a Gaussian mixture.

We were able to highlight the inheritance properties of KD, showing that learning from properly
regularized teachers can effectively transfer the good generalization properties to the student, with
little fine-tuning at the level of the distillation loss. In our model, we also showed that, by distilling
the knowledge of an optimal teacher, a model-agnostic KD student can approach the Bayes-optimal
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generalization bound (relative to its sparsity level), whereas usual regularized logistic regression re-
mains clearly sub-optimal. In order to validate the theoretical predictions, we offered a comparison
with the results of finite size numerical experiments.

Finally, we analyzed the peculiar double-descent phenomenology that can appear in a KD set-
ting, hybridizing between the interpolation peaks in regression problems and the separability thresh-
old peak in classification problems.

The presented analytic results were obtained through the non-rigorous (yet exact) replica method,
but the convex nature of the studied optimization problems suggests the possibility of an inde-
pendent rigorous derivation via the Gordon minimax theorem (Gordon (1985)), along the lines of
Mignacco et al. (2020). We leave this technical goal for future work.

Another natural but challenging research direction is to consider the case of more realistic data
generative models (e.g, Goldt et al. (2019); Gerace et al. (2020)) and, more importantly, more
complex neural network architectures (e.g., a random features Mei and Montanari (2019), or one
hidden-layer networks Aubin et al. (2018)) that could allow for a more realistic mismatch between
teacher and student models.
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Appendix A. Replica Computations

A.1. Typical learning in the GMM

We are interested in evaluating the following average free-entropy:

Φ = lim
β→∞

1

βN

〈
log

∫
dwe−

βλ
2
‖w‖22

∫
db
∏
µ

e
−β `

(
yµ,σ

(∑N
i=1

wix
µ
i√
N

+b

))〉
{xµ,yµ}

(25)

where `(·) is the cross-entropy loss and the training data {xµ, yµ} is distributed according to a
Gaussian Mixture model:

xµ = (2yµ − 1)
v√
N

+ z (26)

with vi, zi ∼ N (0,∆) and yµ ∼ ρ δ (yµ − 1) + (1 − ρ) δ (yµ). Note that, because of the isotropy
of the data model, instead of integrating over the possible realizations for the signal vector v it is
possible to fix the gauge v = (1, 1, ..., 1)T (e.g., as in Engel and Van den Broeck (2001)).

In the β → ∞ limit, the statistical measure on the weights and the bias {w, b} focuses over
the minimizer of the training loss, which yields the logistic regression optimization problem we
want to characterize through this calculation. In order to evaluate the quenched average appearing
in Eq. (25), we resort to the non-rigorous Replica Method, introduced in the context of Disordered
Systems Mézard et al. (1987) and based on the identity:

log(x) = lim
n→0

xn − 1

n
. (27)

So, instead of evaluating the average of the free-energy directly, we introduce n interacting replicas
of the original system and in the end we will recover the original expression by extrapolating the
limit n→ 0.

We can thus focus on the calculation of the replicated volume:

Ωn =

∫ ∏
a

dwae−
βλ
2
‖w‖22
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dba
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〈
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(28)

=

∫ ∏
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(29)

where in the second line we isolated the dependency on each training data point xµ, yµ by introduc-
ing the preactivation variables λaµ via Dirac’s δ functions, allowing us to take the disorder average:

Exµe
−i
∑
a λ̂

µ
a

xµ·wa√
N = e−i(2y

µ−1)
∑
a λ̂

µ
a

∑
wai vi
N e−

∆
2

∑
ab λ̂

µ
a λ̂

µ
b

∑
i w

a
i w

b
i

N +O(N−3/2). (30)

Now, we can introduce the overlap order parameters:

• ma =
∑
wai vi
N , representing the magnetization, i.e. the overlap between the learned weight

configuration and the true signal v.
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• qab =
∑
i w

a
i w

b
i

N , representing the overlap between two configurations sampled from the mea-
sure Eq. (25).

Then, we can rewrite the replicated volume as:

Ωn =

∫ ∏
a

dmadm̂a

2π/N

∫ ∏
ab

dqabdq̂ab

2π/N

∫ ∏
dbaGI (GS)N (GE)αN (31)

where we separated the action in three different contributions: an interaction term, containing a
trace over the order parameters and their conjugates

GI = exp

(
−N

(∑
a

m̂ama +
∑
ab

q̂abqab

))
, (32)

an entropic term, factorized over the components of the weight vector and containing the informa-
tion about the regularization term in the loss function

GS =

∫ ∏
a

dwae−
βλ
2

(wa)2
exp

(∑
a

m̂awa +
∑
ab

q̂abwawb

)
, (33)

and an energetic term, factorized over the training data points and containing the cross-entropy term:

GE =

∫ ∏
a

(
dλadλ̂a
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eiλ
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y

. (34)

A.1.1. REPLICA SYMMETRIC ANSATZ

In order to proceed in the computation, we have to make an assumption on the structure of the order
parameters and the geometric organization of the n replicas of the original system. Because of the
convexity of the optimization problem we are considering we are justified in adopting the simplest
possible assumption, the so-called Replica Symmetric ansatz, posing:

• ma = m for all a = 1, ..., n, and same for their conjugates.

• qab = q for all a > b, qab = Q for all a = b, and same for their conjugates.

• ba = b for all a = 1, ..., n.

Then, one can substitute the RS ansatz in the interaction term and easily obtain:

logGI
nN

= gI = −

(
m̂m+

Q̂Q

2
− q̂q

2

)
(35)

In the entropic term, after the substitutions one gets:
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where in the second line a Hubbard-Stratonovich transformation, introducing the auxiliary variable
z0 ∼ N (0, 1), allowed factorization over the replica index. Now we can take the logarithm in the
n→ 0 limit, obtaining:

logGS
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Similarly, one can obtain the RS energetic contribution:
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2

(λ+
√

∆qz0)2

∆(Q−q) e−β `(y,σ(λ+(2y−1)m+b))

}n
(40)

= Ey
∫
Dz0

{∫
Dλe−β `

(
y,σ
(√

∆(Q−q)λ+
√

∆qz0+(2y−1)m+b
))}n

(41)

so taking the logarithm:

logGE
n

= gE = Ey
∫
Dz0 log

∫
Dλe−β `

(
y,σ
(√

∆(Q−q)λ+
√

∆qz0+(2y−1)m+b
))
. (42)

A.1.2. ZERO TEMPERATURE LIMIT

Now we can focus on the β →∞ limit, in which we recover the origin empirical risk minimization
problem. Because of convexity, as we lower the temperature the overlap q between two different
configurations sampled from the statistical measure will approach the typical norm Q, suggesting
the scaling:

(Q− q) = δq/β (43)

Moreover, the conjugate parameters also need to be properly rescaled:(
Q̂− q̂

)
= −βδq̂, q̂ ∼ β2q̂, m̂ ∼ βm̂. (44)

which gives, for the interaction term:

gi = −β
(
m̂m+

1

2
(q̂δq − δq̂q)

)
(45)

In the entropic term one gets an integration over a one-dimensional optimization problem:

gs = β

∫
Dz0 max

w

(
−λ+ δq̂

2
w2 +

(
m̂+

√
q̂z0

)
w

)
(46)

where the maximum is located at:

w? =

(
m̂+

√
q̂z0

)
(λ+ δq̂)

(47)
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and the expresssion can be evaluated analytically, giving:

gs = β
m̂2 + q̂

2 (λ+ δq̂)
. (48)

Finally, in the energetic contribution we get:

gE = Ey
∫
DzME (49)

ME = max
u
−u

2

2
− `
(
y, σ

(√
∆δqu+

√
∆qz + (2y − 1) m+ b

))
(50)

and one obtains the free-entropy:

Φ = −
(
m̂m+

1

2
(q̂δq − δq̂q)

)
+ gS + αgE . (51)

The fixed-point equation that characterize the logistic regression problem in the high dimen-
sional limit are obtained by extremizing the free-entropy with respect to the order parameters and
their conjugates, which is nothing but a saddle-point condition for the action in the Statistical
Physics framework.
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Figure 6: Classification in the GM model with ρ = 0.2 and ∆ = 1. Colored lines: linear classi-
fier trained with logistic regression and ridge regularization. Dashed black line: plug-in
estimator achieving the Bayes optimal performance.

In Fig. 6 we compare the generalization performance for a model trained with L2-regularized
logistic regression with the Bayes-optimal performance, in the ρ = 0.2, ∆ = 1 setting. This will
represent the baseline teacher model in the study of the distillation process. Note that the optimal
value for the regularization parameter is of order λ ∼ 1e− 1 and that higher values will hinder the
generalization performance.
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A.2. Distillation in the GMM

We will now present the derivation of the free energy expression for the distillation framework
analyzed in the main text. In the following, all the parameters that refer to the teacher linear classifier
will be denoted with an additional tilde.

As mentioned, in order to avoid the trivial scenario where the student converges exactly to the
weight configuration of the teacher, we will consider a weaker “student” model, with a 0 < η <
1 fraction of weights set to zero throughout the learning process. Thus, we aim to evaluate the
expected value (in high dimensions) of the following free-entropy:

Φ = lim
β→∞

1

βN

〈〈
log

∫ ηN∏
i=1

dwie
−βλ

2
‖w‖22

∫
db
∏
µ

e
−β

2
`
(
σ
(

w̃·xµ√
N

+b̃
)
,σ
(

w·xµ√
N

+b
))〉

w̃

〉
{xµ,yµ}

(52)
where the internal brackets represent an average over the teacher {w̃, b̃} measure.

In order to evaluate the internal average we will use a different version of the replica trick, based
on the following identity:

〈f(w̃)〉w̃ =

∫
dµ(w̃)f(w̃)∫
dµ(w̃)

= lim
ñ→0

∫ ñ∏
c=0

dµ(w̃c)f(w̃1) (53)

introducing ñ replicas of the teacher configuration but coupling only the first one to the student
system. In this way, in the ñ → 0 limit we can recover the expectation over the teacher measure.
This type of formalism is closely related to the seminal work Franz and Parisi (1997) and was more
recently applied for example in Huang et al. (2013); Baldassi et al. (2016, 2018).

As in the previous computation, the quenched disorder average can be taken only by replacing
the logarithm in the definition of the free-entropy with the n→ 0 limit of the replicated system, so
we will focus on the evaluation of:

1

N
lim
n,ñ→0

∂n

〈
lim
β̃→∞

lim
β→∞

∫ ñ∏
c=1

dw̃ce−
βλ̃
2
‖w̃c‖22

∫ ñ∏
c=1

db̃c
∏
µ,c

e
− β̃

2
`

(
yµ,σ

(∑N
i=1

w̃ci x
µ
i√
N

+b̃c
))

×
∫ n∏

a=1

dwae−
βλ
2
‖wa‖22

∫ n∏
a=1

dba
∏
µ,a

e
−β

2
`

(
σ

(∑N
i=1

w̃1
i x
µ
i√
N

+b̃1
)
,σ

(∑N
i=1

wai x
µ
i√
N

+ba
))〉

{xµ,yµ}

.

(54)
Following the same steps as above, we introduce the Dirac’s δ (integral representation) for teacher
and student preactivations, but in this case we will also separate the first η components of the teacher
(where the student weights are non-zero) from the rest:

1 =

∫ ∏
µ,c

dũcµdˆ̃ucµ
2π

e
iˆ̃ucµ

(
ũcµ−

∑N
i=ηN+1

w̃ci x
µ
i√
N

) ∫ ∏
µ,c

dλ̃cµd
ˆ̃
λcµ

2π
e
i
ˆ̃
λcµ

(
λcµ−

∑ηN
i=1

w̃ci x
µ
i√
N

)
×

∫ ∏
µ,a

dλaµdλ̂
a
µ

2π
e
iλ̂aµ

(
λaµ−

∑ηN
i=1

wai x
µ
i√
N

)
. (55)
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Now we separately take the disorder average over the non-zeros components:

ηN∏
i=1

Exµi e
−i
(∑

c
ˆ̃
λµc

w̃ci√
N

+
∑
a λ̂

µ
a
wai√
N

)
xµi

= (56)

= e
−i(2yµ−1)

(∑
c

ˆ̃
λµc

∑ηN
i=1

w̃ci vi
N

+
∑
a λ̂

µ
a

∑ηN
i=1

wai vi
N

)
× (57)

e
−∆

2

(∑
cd

ˆ̃
λµc

ˆ̃
λµd

∑ηN
i=1

w̃ci w̃
d
i

N
+
∑
ab λ̂

µ
a λ̂

µ
b

∑ηN
i=1

wai w
b
i

N
+2
∑
ac λ̂

µ
a

ˆ̃
λµc

∑ηN
i=1

wai w̃
c
i

N

)
, (58)

and the zeros components:

N∏
i=ηN+1

Exµi e
−i
(∑

c
ˆ̃uµc

w̃ci√
N

)
xi

= (59)

= e
−i(2yµ−1)

(∑
c

ˆ̃uµc

∑N
i=ηN+1 w̃

c
i vi

N

)
−∆

2

∑
cd

ˆ̃uµc ˆ̃uµd

∑N
i=ηN+1 w̃

c
i w̃
d
i

N

. (60)

Finally, we introduce the overlap parameters:

• m̃c =
∑ηN
i=1 w̃

c
i vi

N and m̃c
0 =

∑N
i=ηN+1 w̃

c
i vi

N , representing the magnetization of the teacher in
the direction of the true signal v.

• ma =
∑ηN
i=1 w

a
i vi

N , representing the magnetization of the student in the direction of v.

• q̃cd =
∑ηN
i=1 w̃

c
i w̃

d
i

N and q̃cd0 =
∑N
i=ηN+1 w̃

c
i w̃

d
i

N , representing the typical overlap between different
teacher configurations.

• qab =
∑N
i=1 w

a
i w

b
i

N =
∑ηN
i=1 w

a
i w

b
i

N , representing the typical overlap between different student
configurations.

• Sac =
∑ηN
i=1 w

a
i w̃

c
i

N , representing the typical overlap between teacher and student.

We can now rewrite the replicated volume as:

Ωn = lim
ñ→0

∫ ∏
c

db̃c
∫ ∏

a

dba
∫ ∏

c

dm̃cd ˆ̃mc

2π/N

∫ ∏
c

dm̃c
0d

ˆ̃mc
0

2π/N

∫ ∏
a

dmadm̂a

2π/N

∫ ∏
cd

dq̃cddˆ̃qcd

2π/N
×

×
∫ ∏

cd

dq̃cd0 d
ˆ̃qcd0

2π/N

∫ ∏
ab

dqabdq̂ab

2π/N

∫ ∏
ac

dSacdŜac

2π/N
GI (GS)ηN (GS0)(1−η)N (GE)αN (61)

with the definitions for the interaction term:

GI = exp

(
−N

(∑
c

(
ˆ̃mcm̃c + ˆ̃mc

0m̃
c
0

)
+
∑
a

m̂ama +
∑
cd

(
ˆ̃qcdq̃cd + ˆ̃qcd0 q̃

cd
0

)
+
∑
ab

q̂abqab +
∑
ca

ŜcaSca
))
(62)
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the two entropic terms:

GS =

∫ ∏
c

dw̃ce−
1
2
β̃λ̃(w̃c)2

∫ ∏
a

dwae−
1
2
βλ(wa)2×

× exp

(∑
c

ˆ̃mcw̃c +
∑
a

m̂awa +
∑
cd

ˆ̃qcdw̃cw̃d +
∑
ab

q̂abwawb +
∑
ca

Ŝcawaw̃c

)
, (63)

GS0 =

∫ ∏
c

dw̃ce−
1
2
β̃λ̃(w̃c)2

exp

(∑
c

ˆ̃mc
0w̃

c +
∑
cd

ˆ̃qcd0 w̃
cw̃d

)
, (64)

and the energetic term:

GE = Ey
∫ ∏

c

dũcdˆ̃uc

2π
ei

ˆ̃ucũc
∫ ∏

c

dλ̃cd
ˆ̃
λc

2π
ei

ˆ̃
λcλ̃c

∫ ∏
a

dλadλ̂a

2π
eiλ

aλ̂a×

×e−
∆
2

(∑
cd

ˆ̃uc ˆ̃udq̃
cd
0 +

∑
cd

ˆ̃
λc

ˆ̃
λdq̃

cd+
∑
ab λ̂aλ̂bq

ab+2
∑
ac λ̂a

ˆ̃
λcSac

)
×

×
∏
c

e−
β̃
2
`(y,ũc+λ̃c+(2y−1)(m̃c0+m̃c)+b̃c)

∏
a

e−
β
2
`(ũ1+λ̃1+(2y−1)(m̃1

0+m̃1)+b̃1,λa+(2y−1)ma+ba) (65)

A.2.1. REPLICA SYMMETRIC ANSATZ

Since also the student learning problem entails a convex optimization, we can safely assume Replica
Symmetry to be realized also at the level of its order parameters. Moreover, as in the previous
calculation, we should average over the realizations of the Gaussian signal v but we can also exploit
the isotropy and fix the gauge v = 1T . The two magnetizations characterizing the overlap between
the teacher vector and the signal, m̃ and m̃0 (along the first ηN components and the complementary
(1− η)N components), will typically give m̃/m̃0 = η/(1− η). Thus we can pose:

• For the teacher magnetizations m̃c = η m̃, m̃c
0 = (1 − η) m̃. We can also set the conjugates

to be equal: ˆ̃mc = ˆ̃mc
0 = ˆ̃m.

• Similarly, q̃cd = η q̃, q̃cd0 = (1− η) q̃ for c 6= d; and q̃cd = η Q̃, q̃cd0 = (1− η) Q̃ for c = d.

• For the student magnetization and self overlap ma = m, qab = q for a 6= b; qab = Q for
a = b.

• Since the student is coupled only to the first replica of the teacher, in general we will have
two distinct teacher-strudent overlaps: Sca = S for c = 1, Sca = S̃ for c 6= 1.

It is easy to see that the order parameters referred to the teacher are determined by the same
saddle point-equations obtained in the previous section, since at finite ñ we can send n → 0 and
the O(1) term corresponds to the action Eq. (51). In order to get the fixed point equations that
charachterize the student, instead, we can substitute the ñ → 0 limit explicitly and keep the O(n)
terms in the series expansion at small n of the action in (61).
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In this limit, the normalized logarithm of the interaction term yields:

gI = −

(
m̂m+

Q̂Q

2
− 1

2
q̂q + ŜS − ˆ̃SS̃

)
. (66)

In the η̃ → 0 limit, the entropic term GS0 does not contribute to the saddle-point, so it will
be ignored in the following. The calculations for GS , instead, are a bit more involved than in the
previous case because of the double average characterizing the distillation framework. After some
manipulation and three separate Hubbard-Stratonovich, introducing the Gaussian variables x, z and
z̃, one gets:

gS =
1

n
lim
ñ→0

log

∫
Dx
∫
Dz
∫
Dz̃ × (67)

×
∫ ∏

c

dw̃c exp

(
1

2

(
ˆ̃Q− ˆ̃q − λ̃

)∑
c

(w̃c)2 +

(
ˆ̃m+

√
ˆ̃Sx+

√
ˆ̃q − ˆ̃Sz̃

)∑
c

w̃c

)
(68)

×
∫ ∏

a

dwa exp

(
1

2

(
Q̂− q̂ − λ

)∑
a

(wa)2 +

(
m̂+

√
ˆ̃Sx+

(
Ŝ − ˆ̃S

)
w1 +

√
q̂ − ˆ̃Sz

)∑
a

wa
)
(69)

=

∫
Dx
∫
Dz
∫
Dz̃

∫
dw̃ exp

(
Ã
)

log
(∫
dw exp (A)

)
∫
dw̃ exp

(
Ã
) (70)

where by sending ñ → 0 we reestablished the expectation appearing in Eq. (52) and where we
defined:

Ã =
1

2

(
ˆ̃Q− ˆ̃q − λ̃

)
(w̃)2 +

(
ˆ̃m+

√
ˆ̃Sx+

√
ˆ̃q − ˆ̃Sz̃

)
w̃ (71)

A =
1

2

(
Q̂− q̂ − λ

)
(w)2 +

(
m̂+

√
ˆ̃Sx+

(
Ŝ − ˆ̃S

)
w1 +

√
q̂ − ˆ̃Sz

)
w. (72)

After a couple rotations between the introduced Gaussian variables, it is possible to perform the∫
Dx integral analytically and obtain:

gs/n =

∫
Dz
∫
Dz̃

∫
dw̃ exp

(
Ã
)

log
(∫
dw exp (A)

)
∫
dw̃ exp

(
Ã
) (73)

with:

Ã′ =
1

2

(
ˆ̃Q− ˆ̃q − λ̃

)
(w̃)2 +

(
ˆ̃m+

√
ˆ̃qz̃

)
w̃ (74)

A′ =
1

2

(
Q̂− q̂ − λ

)
(w)2 +

m̂+
(
Ŝ − ˆ̃S

)
w1 +

ˆ̃S√
ˆ̃q
z̃ +

√√√√
q̂ −

ˆ̃S2

ˆ̃q
z

w. (75)

The calculation follows the same lines also for the energetic term, where after the introduction
of four x, z̃, ẑ and z, one can factorize over the replica indices and send ñ→ 0, yielding:
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gE = Ey
∫
Dx
∫
Dz̃
∫
Dẑ
∫
Dz×

∫
dũd ˆ̃u
2π

∫
dλ̃d

ˆ̃
λ

2π
eB̃0+B̃− β̃

2
`(y,σ(ũ+λ̃+(2y−1)m̃+b̃)) log

∫
dλdλ̂
2π

eB−
β
2
`(σ(ũ+λ̃+(2y−1)m̃+b̃),σ(λ+(2y−1)m+b))∫

dũd ˆ̃u
2π

∫
dλ̃d

ˆ̃
λ

2π
eB̃0+B̃− β̃

2
`(y,σ(ũ+λ̃+(2y−1)m̃+b̃))

(76)

where we defined:

B̃0 = −∆

2
(1− η)

(
Q̃− q̃

)
ˆ̃u2 + iˆ̃u

(
ũ+

√
∆ (1− η) q̃ẑ

)
(77)

B̃ = −∆

2
η
(
Q̃− q̃

)(
ˆ̃
λ
)2

+ i
ˆ̃
λ

(
λ̃+

√
∆S̃x+

√
∆
(
ηq̃ − S̃

)
z̃

)
(78)

B = −∆

2
(Q− q) λ̂2 + iλ̂

(
λ+

√
∆S̃x+

√
∆
(
q − S̃

)
z + i∆

(
S − S̃

)
ˆ̃
λ

)
(79)

In order to disentangle the Gaussian integrations and allow us to land on an expression where

we can explicitly perform a few of them we start by shifting z′ = z + i
ˆ̃
λ

∆(S−S̃)√
∆(q−S̃)

. Now, we can

proceed and simplify the dλ̂, dˆ̃
λ, dˆ̃u integrals and get, after shifting and rescaling dλ, dλ̃, dũ:

gE = Ey
∫
Dx
∫
Dz̃
∫
Dẑ
∫
Dz
∫
Dũ
∫
Dλ̃e−

β̃
2
`(y,σ(h̃′)) log

∫
Dλe−

β
2
`(σ(h̃′),σ(h))∫

Dũ
∫
Dλ̃e−

β̃
2
`(y,σ(h̃))

, (80)

with:

h̃′ =

√
∆ (1 − η)

(
Q̃− q̃

)
ũ−

√
∆ (1 − η) q̃ẑ +

√√√√√√∆

η (Q̃− q̃
)
−

(
S − S̃

)2

q − S̃

λ̃+

−

√∆S̃x+

√
∆
(
ηq̃ − S̃

)
z̃ +

∆
(
S − S̃

)
√

∆
(
q − S̃

)z
+ (2y − 1) m̃+ b̃, (81)

h̃ =

√
∆ (1 − η)

(
Q̃− q̃

)
ũ−

√
∆ (1 − η) q̃ẑ +

√
∆η
(
Q̃− q̃

)
λ̃−

(√
∆S̃x+

√
∆
(
ηq̃ − S̃

)
z̃

)
+ (2y − 1) m̃+ b̃

(82)

h =
√

∆ (Q− q)λ−

(√
∆S̃x+

√
∆
(
q − S̃

)
z

)
+ (2y − 1) m+ b. (83)

After a few rotations between λ̃, ũ, z, ẑ, z̃ and x, one can perform the Dũ,Dẑ,Dx integrals and
get the final expression:

gE/n =

〈∫
Dz
∫
Dz̃
∫
Dλ̃e−

β̃
2
`(y,σ(h̃)) log

∫
Dλe−

β
2
`(σ(h̃),σ(h))∫

Dλ̃e−
β̃
2
`(y,σ(h̃))

〉
y

(84)
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with the definitions:

h̃ =

√
∆
(
Q̃− q̃

)
λ̃+

√
∆q̃z̃ + (2y − 1) m̃+ b̃, (85)

h =
√

∆ (Q− q)λ+
∆
(
S − S̃

)
λ̃√

∆
(
Q̃− q̃

)+

√
∆S̃z̃√
q̃

+

√√√√√√∆

q − S̃2

q̃
−

(
S − S̃

)2(
Q̃− q̃

)
z+(2y − 1) m+b.

(86)

A.2.2. ZERO TEMPERATURE LIMIT

Finally, we can recover the nested optimization characterizing the distillation framework by suc-
cessively taking the two limits β̃ → ∞ and β → ∞. As in the previous calculation, we have to
introduced rescaled overlap order parameters:(

Q̃− q̃
)

= δq̃/β̃, (Q− q) = δq/β, S − S̃ = δS/β̃ (87)

and rescale also all the conjugate parameters:

• ˆ̃Q→ β̃2 ˆ̃q +O
(
β̃
)

, ˆ̃q → β̃2 ˆ̃q, ( ˆ̃Q− ˆ̃q)→ −β̃δ ˆ̃q, ˆ̃m→ β̃ ˆ̃m,

• Q̂→ β2q̂ +O (β), q̂ → β2q̂, (Q̂− q̂)→ −βδq̂, m̂→ βm̂,

• Ŝ → β̃βŜ +O (β), ˆ̃S → β̃βŜ, (Ŝ − ˆ̃S)→ βδŜ.

With these scalings, the interaction term reads:

gI = −β
(
m̂m+

1

2
(q̂δq − δq̂q) +

(
ŜδS + δŜS̃

))
+O (1) . (88)

In the entropic term, in the zero-temperature limit the integrals over the teacher and student weights
become extremum operations:

gS = lim
β→∞

β

∫
Dz
∫
Dz̃ M?

s (89)

where:

M?
s = maxw

−1

2
(λ+ δq̂)w2 +

m̂+ δŜw̃? +
Ŝ√

ˆ̃q
z̃ +

√
ˆ̃qq̂ − Ŝ2

ˆ̃q
z

w



=
1

2

(
m̂+ δŜw̃? + Ŝ√

ˆ̃q
z̃ +

√
ˆ̃qq̂−Ŝ2

ˆ̃q
z

)2

λ+ δq̂
(90)
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and where the teacher weight configuration, as in Eq. (47), maximizes the action:

w̃? = argmaxw̃

{
−1

2
(λ̃+ δ ˆ̃q)w̃2 + ( ˆ̃m+

√
ˆ̃qz̃)w̃

}
=

ˆ̃m+

√
ˆ̃qz̃

λ̃+ δ ˆ̃q
. (91)

With an analytic expression for the maxima, the
∫
Dz
∫
Dz̃ integrations can be carried out, giving:

gS =
β

2

(
m̂+ ˆ̃m δŜ

λ̃+δ ˆ̃q

)2
+

(
Ŝ√

ˆ̃q
+ δŜ
√

ˆ̃q

λ̃+δ ˆ̃q

)2

+
ˆ̃qq̂−Ŝ2

ˆ̃q

λ+ δq̂
. (92)

Lastly, in the β̃, β →∞, also theDλ,Dλ̃ integrals in the energetic term become one-dimensional
extremum operations, and we have:

gE = βEy
∫
Dz
∫
Dz̃ M?

E (93)

where:

M?
E = max

λ

{
−1

2

λ2

∆ δq
− 1

2
`
(
σ
(
h̃ (λ?)

)
, σ (h (λ))

)}
(94)

with:
h̃
(
λ̃
)

= λ̃+ (2y − 1) m̃+ b̃+
√

∆q̃z̃ (95)

h (λ) = λ+ (2y − 1) m+ b+
δS

δq̃
λ̃+
√

∆
S√
q̃
z̃ +

√
∆

(
q − S2

q̃
+O

(
1

β̃

))
z (96)

and

λ̃? = argmaxλ̃ −
1

2

λ̃2

∆ δq̃
− 1

2
`
(
y, σ

(
h̃
(
λ̃
)))

. (97)

The free-entropy of Eq. (16) is thus recovered after dividing the various contributions by β:

Φ = −
(
m̂m+

1

2
(q̂δq − δq̂q) +

(
ŜδS + δŜS

))
+ η gS + α gE (98)

A.3. Distillation with optimal teacher

The replica calculation for the distillation setting with optimal teacher is very similar to the one
presented in the first section of the Appendix (for the typical logistic regression framework), since
we make an explicit assumption on the statistical measure for the teacher weight vector and the
double average (as in the previous section) is not needed.

As described in the main text, we assume the teacher to be represented by a noisy version of the

signal w = v +
√

∆
αh, where each component of the noise is independent and normal distributed

hi ∼ N (0, 1). This choice induces an average magnetization m̃ = 1 + O(N−1/2) and a norm
q̃ = 1 + ∆

α , same as in the case of the optimal plug-in estimator of Eq. (13). When the bias is set
to b̃ = ∆ (1+∆/α)

2 log( ρ
1−ρ) the teacher achieves a generalization performance matching the Bayes

optimal generalization, and this justifies our modeling choice for characterizing distillation from an
optimal teacher.
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We thus want to evaluate the free-entropy for an η-sparse student learning from the outputs
produced by this optimal teacher:

Φ = lim
β→∞

1

βN

〈
log

∫
dwηe

−λ
2
‖w‖2η

∫
db
∏
µ

e
−β `

(
σ

(
(v+h

√
∆/α)·xµ
√
N

+
∆(1+∆/α)

2
log

ρ
1−ρ

)
,σ
(

w·xµ√
N

+b
))〉

{xµ,yµ,v,h}

.

(99)
As usual, instead of actually averaging over v we will set v = 1T . We can isolate the dependency
over the training set by introducing the preactivation variables lµ (for the teacher) and λµa (for the
student) via Dirac’s delta functions and then perform the disorder average:

Exµe
−i
∑
a λ̂

µ
a

xµ·wa√
N
−il̂µ

(vi+hi
√

∆/α)·xµ
√
N = (100)
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µ
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√
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N
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× (101)

×e
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,

which leads us to introducing the overlap order parameters:

ma =

∑
wai
N

, Sa =

∑
wai hi
N

, qab =

∑
iw

a
i w

b
i

N
. (102)

On the other hand, we know that for a Gaussian i.i.d. normal vector h the magnetization in the
direction of the signal and the norm will be m̃ =

∑
hi
N = 0 and q̃ =

∑
h2
i

N = 1.
The replicated volume thus reads:

Ωn =

∫ ∏
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dS̃ad ˆ̃Sa

2π/N
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2π/N
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dqabdq̂ab
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with the definitions:

GI = exp

(
−N

(∑
a
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∑
a
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∑
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(104)
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∫
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a

dµ (wa) exp

(∑
a
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∑
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∑
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(105)

and (after a little algebra):
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(106)
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A.3.1. RS ANSATZ AND ZERO TEMPERATURE LIMIT

The rest of the computation is basically identical to that presented in the first section of the Ap-
pendix, so we will only report the final expressions for the free-entropy:

Φ = gI + η gS + α gE . (107)

with the following definitions for the interaction, entropic and energetic terms:

gI = −
(
m̂m+ ŜS +

1

2
(q̂δq − δq̂q)

)
, (108)

gS =
m̂2 + Ŝ2 + q̂

2 (λ+ δq̂)
, (109)

gE = Ey
∫
Dz̃
∫
Dz ME , (110)

where:

ME = max
u
−u

2

2
− `
(
σ(h̃(z̃)), σ(h(u, z, z̃))

)
, (111)

and:
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2
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ρ

1− ρ
+
√

∆ (1−∆/α)z̃, (112)

h(u, z, z̃) =
√

∆δqu+

√√√√√√∆
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√
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)2
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√
∆

(1 + ∆/α)

(
m+

√
∆/αS

)
z̃ + (2y − 1) m+ b.

(113)

Appendix B. On the inheritance of the teacher regularization

B.1. Direct and inherited student regularization

We here show additional experiments on the different effects of direct and indirect (inherited through
KD) L2 regularization on the student generalization performance.

In Fig. 7, we display the distillation generalization curves (full lines) and the direct regulariza-
tion curves (dashed lines) at fixed values of the regularizer intensity. It is evident that the optimal
regularization for the student (with sparsity η = 0.5) is of the same order of the optimal value for
the teacher λ ' 0.1 (cfr. Fig. 6). If we look at the low α regime, it is also clear that only a direct
ridge regularization on the student can grant him a good generalization performance (in the pure
distillation setting we see the αI and αS interpolation peaks). This observation strongly motivates
a mixed approach, where the distillation student is also regularized with an L2 penalty (we will
consider this setting in the following). However, in the large α regime we observe an interesting
advantage of distillation: in the case of an overshoot in the regularization intensity (λ ' 1), the dis-
tillation student performance is less hindered than the directly regularized student. This provides an
indication that the knowledge distillation process may require less fine-tuning than usual empirical
risk minimization with cross-entropy loss.

32



MODELS OF KNOWLEDGE DISTILLATION

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0  2  4  6  8  10

ε
g

α

BO
λ
~=1e−5

λ
~=0.1
λ=0.1

λ
~=1.
λ=1.

Figure 7: Comparison between the pure distillation generalization curves (blue full curves), as in
Fig. 3, and the performance of a ridge regularized student learning from the labels (red
dashed curves), at ρ = 0.2, ∆ = 1. (Grey curve) Optimal generalization, achieved with
the sparsified plug-in estimator. The data points with error bars represent the results of
numerical experiments at N = 4000 (10 samples per point).

B.2. On the KD mixing parameter

We here show some more details on the effect of the mixing parameter χ in the distillation loss.
In Fig. 8 we fix λ̃, λ = 0.15 and vary the value of the mixing parameter χ. As expected from

the results reported in the previous paragraphs, we can see that in the low α regime it is better not
to rely upon the teacher outputs in order to avoid the interpolation cusp (around α = η): lower
values of χ (red, pink curves) yield better generalization. As α increases, an appropriate value of
the mixing parameter can increase the overall regularization felt by the student up to the optimal
amount, guaranteeing an improved performance (purple curve). Interestingly, through the tuning
of χ KD can be made to match the performance achieved with optimal regularization, however a
reduction in the performance gap with respect to the plug-in estimator bound is never observed.

B.3. Regularization through uniform label smoothing

We consider a different type of regularization scheme called uniform label smoothing Szegedy et al.
(2016); Müller et al. (2019). We introducing a smoothing parameter ε and replacing the ”hard”
ground truth labels with their softer counterpart y → y (1− ε) + (1− y) ε at training. This type of
regularization strategy is known to be effective in preventing overconfidence of the trained model,
especially in the case of noisy data.

In Fig. 9, we compare two different scenarios: in the first case, the student learns from the
smoothened labels directly (full colored lines); in the second case, we consider pure distillation from
a teacher that learned the smoothened labels (black dots). In both settings the ridge regularization is
fixed at the baseline level λ, λ̃ = 1e−5 in order to isolate the regularization effect of the softer labels.
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Figure 8: Generalization performance achieved by a regularized distillation student (η = 0.5, λ =
1e − 1, T = 2) learning from a optimally regularized teacher (λ̃ = 0.15), at varying
values of the mixing parameter χ and with ρ = 0.2, ∆ = 1. (Dashed black curve)
Generalization bound, achieved by the sparsified plug-in estimator. The data points with
error bars represent the results of numerical experiments at N = 4000 (10 samples per
point).

Surprisingly, the student generalization performance obtained in the two scenarios is practically
indistinguishable, implying that the KD process can perfectly transfer this type of regularization.
Note that, because of the simple nature of the GM generative model, we find it is very beneficial to
have learn with higher ε at smaller values of α.

B.4. Varying the Knowledge Distillation temperature

We consider again a pure distillation setting with χ = 1, but now explore the effect of changing the
distillation temperature T . In particular, in the cross-entropy term in the knowledge distillation loss,
the usual outputs will be replaced by σ(h)→ σ(h/T ), where T can increase (lower) the difference
between the probabilities of assigning each label.

The general idea behind the introduction of this temperature is that after training, in a multi-class
problem, the softmax output function will typically produce small probabilities in correspondence
of the incorrect categories and the difference in the assigned weight will be flattened because of
the Bolzmann-like form of the activation. Introducing a high temperature can instead reweight the
output probability distribution, accentuating the differences in probabilities assigned to incorrect
labels Hinton et al. (2015); Tang et al. (2020). Of course, this effect cannot be explored in the
simple binary classification setting. However, it is still possible to observe a positive effect of a high
T in the low α regime.

In Fig.10 we vary the distillation temperature in the small training set regime, considering an
unregularized student that learns from a teacher with ridge regularization intensity λ̃ = 0.15 (nearly
optimal setting). It is clear that raising the distillation temperature can mitigate the overfitting
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Figure 9: Comparison of the generalization performance at fixed values of α of a η = 0.5 sparse
student in two scenarios: either the student learns directly the smoothened labels (colored
lines), or it learns through pure distillation from a teacher trained on the same smoothened
labels (black dots). The data points with error bars represent the results of numerical
experiments in the second scenario at N = 4000 (10 samples per point).

phenomenon observed around the α = η interpolation peak. Note that, since the magnitude of the
learned preactivations is effectively decreased, the saturating regime of the σ(·) activation function is
avoided and this yields larger differences between the teacher outputs on different patterns, allowing
for a better transfer of knowledge.

Appendix C. On the Double-descent phenomena

We have seen in section 6 the appeareance of sharp interpolation peak at αI = η, when the number
of parameters of the student model equals the size of the training set. Moreover, note that the peak
becomes more pronounced when the teacher regularization is close to the optimal value λ̃ = 0.1.

While such a location for the interpolation peak is uncharacteristic of logistic regression, a
similar cusp is typically observed in the weak regularization regime when the classifier is trained
with a Mean Squared Error (MSE) loss function Hastie et al. (2019); Mignacco et al. (2020). What
one would expect in the case of logistic regression is instead a less pronounced peak, located in
correspondence of the separability threshold αS(ρ,∆) for the training dataset. Note that, in the
mismatched distillation framework, we expect two distinct separability thresholds of this type αS <
α̃S , one for the student and one for the teacher.

In order to understand the origin of the unusual interpolation peak at α = η, in Fig. 11, we
display the behavior of a series of relevant quantities: the average cross-entropy-per-pattern (top
left), the student norm (top right), the average MSE-distance between teacher and student outputs
(bottom left) and the average MSE between teacher and student preactivations. In all the plots
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Figure 10: Generalization performance in the low α regime of a pure distillation student (χ =
1) learning from a optimally regularized teacher (λ̃ = 0.15) with increasing values
of the distillation temperature, at ρ = 0.2, ∆ = 1, η = 0.5. (Dashed black curve)
Generalization bound for the student, achieved by the sparsified plug-in estimator. The
data points with error bars represent the results of numerical experiments at N = 4000
(10 samples per point).

we mark the three introduced thresholds, that in our parameter setting are located at αI = 0.5,
αS ' 1.75 and α̃S ' 4.75.

In the top left plot we can see that, when the student learns from a teacher with vanishing reg-
ularization (black curve), the optimal cross-entropy remains close to zero if the dataset is separable
α < αS , and jumps to finite values otherwise (similar to what usually happens in logistic regression:
indeed, the weakly regularized teacher replicates the original labels almost exactly while α < α̃S).
The associated generalization error peak (cfr. the grey curve in Fig. 2) is thus caused by the ex-
plosion of the student norm (as expected with unregularized logistic regression at the separability
threshold α = αS).

On the other hand, at finite regularizations (violet and red curves) the teacher outputs are no
longer binary and the minimum achievable cross-entropy becomes strictly greater zero, as can be
seen in top right plot. While the number of associated linear constraints is lower than the number
of parameters α < αI , the student is able to faithfully reproduce the non-polarized teacher outputs
(bottom left plot). However, by doing so the student overfits the noisy data and the increase in its
norm (top right plot) gives rise to a sharp generalization error peak. These observations seem to
be consistent with the scenario observed in Phuong and Lampert (2019), where it was shown that
below the interpolation threshold the student converges to the projection of the teacher’s weight
vector onto the data span and reproduces the teacher preactivations. Note that, when the teacher
is over-regularized λ̃ = 1, teacher and student maximum norms are lower, partially tempering the
generalization cusp.
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Figure 11: Top left plot: Typical student cross-entropy loss, averaged over the training set. Top right
plot: Typical student norm. Bottom left plot: Typical MSE-distance between student and
teacher outputs. Top right plot: Typical MSE-distance between student and teacher pre-
activations. All the results are collected in the pure distillation setting (ρ = 0.2, ∆ = 1,
χ = 1), at teacher regularizations λ̃ = 1e − 5 (black), λ̃ = 1e − 1 (violet), λ̃ = 1
(red). The data points with error bars represent the results of numerical experiments
at N = 4000 (10 samples per point). Due to the explosion of teacher and student
norms (around the interpolation peak and the separability thresholds) in several occa-
sions the employed numerical optimization routine (Adam optimizer Kingma and Ba
(2015)) couldn’t converge before the imposed hard cutoff of 2000 epochs. This can
explain the discrepancies with the theoretical predictions.

Finally, in the bottom right plot, we see the average MSE-distance between teacher and stu-
dent preactivations. When the teacher is weakly regularized (black curve) the deviation between
teacher and student preactivations sharply increases around the student interpolation threshold αS
(where the student norm is greater than the teacher’s) and around the teacher interpolation threshold
α̃S (where the teacher norms reaches its maximum). At higher regularization levels this behavior
disappears, since the cross-entropy minimization no longer induces great spikes in the student norm.
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Appendix D. Numerical results for the balanced case

We here report the results obtained in the pure distillation setting when the two datapoints clusters
are balanced ρ = 0.5. As mentioned (and reported in Mignacco et al. (2020)), in this special case
the ridge regularization is able to approach the Bayes optimal performance, in the λ→∞ limit.
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Figure 12: Balanced clusters setting (ρ = 0.5). (Black dashed line) Bayes optimal performance
(e.g., achieved by the sparsified plug-in estimator). (Colored dashed lines) Teacher gen-
eralization performance, after training with ridge regularized logistic regression (colors
indicate the regularizer intensity). (Full colored lines) Student generalization perfor-
mance, in the pure distillation setting (λ = 1e− 5, χ = 1, T = 1).

In Fig. 12, we display the teacher (dashed lines) and student (full lines) generalization perfor-
mances at varying ridge regularization intensity in the teacher loss, and compare them with the
Bayes optimal performance (dashed). Clearly, higher regularization induces better generalization
for the teacher and this property is directly inherited also by the student, when α is above the inter-
polation peak at α = η (more details in the main text).
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