
The Annals of Statistics
2015, Vol. 43, No. 4, 1463–1470
DOI: 10.1214/15-AOS1270REJ
Main article DOI: 10.1214/14-AOS1270
© Institute of Mathematical Statistics, 2015

REJOINDER TO DISCUSSIONS OF “FREQUENTIST COVERAGE
OF ADAPTIVE NONPARAMETRIC BAYESIAN CREDIBLE SETS”

BY BOTOND SZABÓ, A. W. VAN DER VAART AND J. H. VAN ZANTEN

TU Eindhoven, Leiden University and University of Amsterdam

We thank the discussants for their supportive comments and interesting obser-
vations. Many questions are still open and not all methodological or philosophical
questions may have an answer. Our reply addresses only a subset of questions and
is organized by topic. A final section reviews recent work.

1. Hierarchical Bayes credible sets. Our paper considers empirical Bayes
tuning of the posterior distribution, whereas many Bayesians might prefer to use
a hierarchical Bayes approach. Ghosal and Rousseau ask whether, or conjecture
that, the hierarchical Bayes procedure behaves similarly as the likelihood based
empirical Bayes procedure. Indeed, we can show exactly the same coverage of
hierarchical Bayes credible sets for polished tail truths. A counterexample showing
that hierarchical Bayes credible sets also do not cover without some restriction was
already given in [14], while the size of such sets follows from [7]. Thus, within the
context of our paper there is no difference between the two schemes.

In the hierarchical Bayes approach we endow the regularity hyperparameter α

with a hyperprior distribution λ, and then apply an ordinary Bayes method with
the overall prior, for some upper bound A (possibly dependent on n),

�(·) =
∫ A

0
�α(·)λ(α)dα.

For �(·|X(n)) the posterior distribution relative to this prior, a hierarchical Bayes
credible ball centered at the posterior mean θ̂n is defined by its radius r̂n,γ :

�
(
θ :‖θ − θ̂n‖2 ≤ r̂n,γ |X(n)) = 1 − γ.(1.1)

We blow this up a bit, and for L > 0 consider

Ĉn(L) = {
θ ∈ �2 :‖θ − θ̂n‖2 ≤ Lr̂n,γ

}
.(1.2)

Under a mild regularity condition on λ, similar to that in [7], these sets cover polish
tail truths.

THEOREM 1.1. Suppose that there exist c1, c2 ≥ 0, c3 and c4, c5 > 0, with
c3 > 1 if c2 = 0, such that c−1

4 α−c3 exp(−c2α) ≤ λ(α) ≤ c4α
−c3 exp(−c2α), for
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all α > c1 and λ(α) ≥ c5 for all 0 < α ≤ c1. Then for any positive A,L0,N0 there
exists a constant L such that

inf
θ0∈�pt (L0)

Pθ0

(
θ0 ∈ Ĉn(L)

) → 1.(1.3)

Furthermore, for A = An ≤ √
logn/(4

√
logρ ∨ e) this is true with a slowly vary-

ing sequence [L := Ln � (3ρ3(1+2p))An works].

PROOF. The probability of interest Pθ0(‖θ̂n −θ0‖2 ≤ Lr̂n,γ ) is bounded below
by

Pθ0

(‖θ0 − Eθ0 θ̂n,αn
‖2 + ‖θ̂n,αn

− Eθ0 θ̂n,αn
‖2 + ‖θ̂n − θ̂n,αn

‖2 ≤ Lr̂n,γ

)
.

Therefore, the theorem follows from Theorem 5.1 of [16], if

‖θ0 − Eθ0 θ̂n,αn
‖2 � n−αn/(1+2αn+2p),

Pθ0

(‖θ̂n,αn
− Eθ0 θ̂n,αn

‖2 ≤ C1n
−αn/(1+2αn+2p)) → 1,

Pθ0

(‖θ̂n − θ̂n,αn
‖2 ≤ C2n

−αn/(1+2αn+2p)) → 1,(1.4)

Pθ0

(
r̂n,γ ≥ C3n

−αn/(1+2αn+2p)) → 1.(1.5)

The first two assertions follow immediately from (5.8) and (5.9) of [16].
For the proof of (1.5), we first note that, for any given C3 > 0,

�
(
θ :‖θ − θ̂n‖2 < C3n

−αn/(1+2αn+2p)|X(n))

=
∫ αn

αn

�α

(
θ :‖θ − θ̂n‖2 < C3n

−αn/(1+2αn+2p)|X(n))λ(
α|X(n))dα

+ oPθ0
(1).

The right side becomes bigger if we replace θ̂n by θ̂n,α , as the latter is the center of
the Gaussian distribution �α(·|X(n)), and again bigger if we replace αn in the rate
inside the probability by α. From the proof of (5.7) of [16], it follows that there
exists a constant C3, such that for every α,

�α

(
θ :‖θ − θ̂n,α‖2 ≤ C3n

−α/(1+2α+2p)|X(n)) ≤ 1 − 2γ.

Then the integral in the preceding display is asymptotically smaller than 1 − 2γ ,
whence (1.5) follows by the definition of r̂n,γ .

To prove (1.4), we proceed similarly to the proof of (4.4) of [14]. By Jensen’s
inequality,

‖θ̂n − θ̂n,αn
‖2

2 ≤
∫

‖θ̂n,α − θ̂n,αn
‖2

2λ
(
α|X(n))dα

≤ sup
α∈[αn,αn]

‖θ̂n,αn
− θ̂n,α‖2

2(1.6)

+ sup
α/∈[αn,αn]

‖θ̂n,αn
− θ̂n,α‖2

2

∫
α/∈[αn,αn]

λ
(
α|X(n))dα.
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We separately bound the two terms on the right side. First, as αn ∈ [αn,αn], by
several applications of the triangle inequality,

sup
α∈[αn,αn]

‖θ̂n,α − θ̂n,αn
‖2

≤ 2 sup
α∈[αn,αn]

‖Eθ0 θ̂n,α − θ0‖2 + 2 sup
α∈[αn,αn]

‖θ̂n,α − Eθ0 θ̂n,α‖2.

As a consequence of (5.8) and (5.9) of [16], this is bounded above by a multiple
of n−αn/(1+2αn+2p), with Pθ0 -probability tending to one. For the second term, we
first note that similar to the preceding display, with Pθ0 -probability tending to one,

sup
α

‖θ̂n,α − θ̂n,αn
‖2 ≤ 2 sup

α
‖Eθ0 θ̂n,α − θ0‖2 + 2 sup

α
‖θ̂n,α − Eθ0 θ̂n,α‖2.

As a consequence of (5.10) and (5.11) of [16], this is uniformly bounded by a
constant times ‖θ0‖2

2 + 1 � 1, with Pθ0 -probability tending to one. Furthermore, in
view of Section 7 of [7],

Eθ0

∫
α/∈[αn,αn]

λ
(
α|X(n))dα ≤ 2e−(C4n

1/(1+2αn+2p))/(1+2αn+2p)(logn)C5eC6e
√

logn/3

≤ 2e−(C4n
1/(1+2αn+2p))/(2(1+2αn+2p))

� n−(2αn)/(1+2αn+2p).

Therefore, by Markov’s inequality, the second term on the right-hand side of (1.6)

is bounded above by a multiple of n−(2αn)/(1+2αn+2p), which is smaller than the
same rate at αn, with Pθ0 -probability tending to one. �

For the adaptive size we note that similar to the proof of assertion (4.5) of [14],
it can be shown that there exists a positive constant C7 such that

Pθ0

(
r̂n,γ ≤ C7n

−αn/(1+2αn+2p)) → 1.

Then following [16], we get the rate adaptive size for Sobolev balls, hyperrectan-
gles, analytic balls, . . . etc.

2. Shape of the credible sets: Bands versus balls. All discussants pointed
out that L2-confidence sets are harder to visualize than confidence bands, that is,
L∞-balls. We fully agree. See our remarks on plotting below.

We chose to consider L2-balls because they fit naturally in our inverse problem
setup and can be studied theoretically with reasonable ease. At the same time, we
believe that they provide an accurate (or at least not misleading) rendering of the
general phenomena surrounding adaptive credible sets. We fully agree that it is of
interest to work out similar results for other norms and other situations.
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One of the theoretical difficulties to handle credible bands is to describe the
L∞-norm in terms of quantities that are controllable under the prior and posterior.
Several authors (starting with [4]) have recently obtained contraction rates in this
norm, and their work may well be extendible to adaptive credible sets.

Ghosal proves a rate of contraction for the uniform norm, for parameters such
that

∑
i i

α|θi | < ∞ and a prior that depends on α. He next argues heuristically
that the resulting credible sets with an adaptive choice of α will cover relative to
the uniform norm. This is possible, but the particular empirical Bayes α̂ from our
paper may for many true parameters not estimate Ghosal’s α, but a different value.

We have encountered similar phenomena when deriving contraction rates and
credible intervals for (not necessarily continuous) linear functionals of the param-
eter; see [13]. Since point evaluations are linear functionals, such credible intervals
can be glued together into L∞-credible bands, where due to the Gaussianity one
would expect at most a logarithmic factor to be necessary to pass from pointwise
to simultaneous intervals. A difficulty is that Sobolev regularity is not the most
useful concept when estimating a function at a point; one would like to employ
a Hölder norm. As a worst case one loses a 1/2 when passing from Sobolev to
Hölder, and this loss was seen to be real for the minimax contraction rate in [7,
8]. The likelihood-based empirical Bayes method seems to “estimate” the Sobolev
regularity of the truth. In [13] we have shown that coverage can be retained by
subtracting 1/2 from the estimate, thus under-smoothing the empirical Bayes pos-
terior distribution. In forthcoming work with Sniekers, we note that the ordinary
empirical Bayes procedure may still give good coverage for many true parameters,
the loss of 1/2 being really a worst case comparison of the two norms and coverage
being connected to more subtle properties of the true parameter.

3. Simulation and plotting. We included some pictures in the paper, and we
feel that they nicely illustrate the limitations and strengths of adaptive Bayesian
credible sets. The pictures consist of individual plots of all curves in the 95% out
of 2000 curves simulated from the posterior distribution that are closest to the
posterior mean. Within the resolution of the pictures these curves form a ragged
grey band and it is tempting to view this as a confidence band.

We may have mislead the reader to think that the pictures show the L2-credible
set that we study theoretically in the paper. However, as already noted, L2-balls
are difficult to plot. To relate our plots to these balls, it seems one would have to
“visually compute” the L2-distance of the plotted curves to the center of the band
(the posterior mean), take the maximum distance, and compare this to the L2-
distance of a tentative function to this center, in order to see whether this function
is in the ball. This is hard to do. The pictures are not formal credible bands either.
Still, they manage to give an impression of where the posterior distribution puts its
mass.

Low and Ma describe this difficulty very accurately. In particular, our choice
of making exactly 2000 draws was rather arbitrary and, indeed, at other places we
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have also produced pictures showing just 20 draws (without rejecting any). All
these pictures seem to illustrate the effect of the bias–variance trade-off, and its
possible failure, on credible sets reasonably well.

Low and Ma also suggest a method for constructing L∞-confidence bands from
the L2-credible balls and apply it to the adaptive posterior distribution. Bayesians
will be delighted to see that the empirical Bayes method performs satisfactorily in
their simulation study. The new concept of coverage introduced by these authors,
together with Cai, is interesting.

Castillo also addresses the discrepancy between our analytic definition of a cred-
ible ball and our small simulation study. He points out that the radius can be sim-
ulated more precisely. He also suggests that simulating curves from distributions
that are rougher than the posterior might be useful to fill out the gap between
the support of the posterior and the ball. This is an interesting suggestion, but we
would be reluctant to simulate from other distributions than the posterior distribu-
tion. We imagine that this could be queried in many ways, for example, to produce
bands, intervals for specific functionals or perhaps even of qualitative aspects of
parameters, but we would support the Bayesian view that the posterior distribution
gives a full report of the analysis.

Nickl and Castillo [3] have introduced an approach toward credible sets based
on a nonparametric Bernstein–von Mises theorem. Nickl writes to be “unsure to
which extent �2-credible balls are applied in current practice as claimed in the in-
troduction of (our paper),” and next suggests that “Practitioners may prefer (. . .) to
compute credible balls in H-spaces.” Castillo wonders about our opinion that “no
method that avoids dealing with the bias–variance trade-off will properly quan-
tify the uncertainty.” We do not believe we have claimed that �2-balls are routine
in practice; if we did, then we retract that claim here. We do claim that posterior
distributions are routinely used for uncertainty quantification, often by simulating
from it. Then a main finding of 50 years of nonparametric statistics, theory and
practice, is that the bias–variance trade-off drives everything, setting it apart from
classical, parametric statistics, which deals mostly with variance, as bias is negligi-
ble, particularly in the large-sample limit. The �2-setting of our paper incorporates
the bias–variance trade-off, and hence we believe that our theoretical results are
relevant. It appears that Nickl and Castillo’s “Bernstein–von Mises theorem in H-
space” removes bias, essentially by parameterizing the function as a collection of
smooth functionals that can be estimated as the parameters in classical parametric
models, with neglect of bias. Their work is very intriguing and pretty. However, as
it explains away bias, we found it difficult to believe that it solves the nonparamet-
ric problem. It is still more intriguing that pictures by Ray in [9], which are based
on the H-spaces of [3], look similar to ours. Possibly that is because these pictures
do not show their suggested set, just as our pictures are deficient in this sense. This
deserves further investigation.
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4. Other priors. The discussants pose the question whether our results extend
to other priors than the N(0, i−1−2α)-priors in our paper. We believe the answer is
affirmative: it appears that the polished tail condition is not linked to the form of
the priors.

One reason to believe this are preliminary results, of ourselves and in a forth-
coming thesis of Sniekers at Leiden University, about priors of the form

�τ =
∞∏
i=1

N
(
0, τ 2i−1−2α)

,

where α is fixed, but τ is adapted to the data, by either an empirical or hierarchical
Bayes method. For empirical Bayes we plug the marginal maximum likelihood
estimator τ̂n of τ into the posterior distributions for fixed τ , and construct adaptive
credible sets of the form

Ĉn(L) = {
θ ∈ �2 :

∥∥θ − θ̂n(τ̂n)
∥∥

2 ≤ Lrn,γ (τ̂n)
}
,(4.1)

where θ̂n(τ ) is the posterior mean and rn,γ (τ ) satisfies

�
(
θ :

∥∥θ − θ̂n(τ )
∥∥

2 ≤ rn,γ (τ )|X(n)) = 1 − γ.(4.2)

THEOREM 4.1. For any A,L0,N0 there exists a constant L such that

inf
θ0∈�pt (L0)

Pθ0

(
θ0 ∈ Ĉn(L)

) → 1.

Hierarchical Bayes credible sets will similarly cover. However, these sets
have the disadvantage that they may be unnecessarily big. In our paper [15] we
proved that the corresponding posterior distributions contract at the minimax rate
over Sobolev balls of regularity β < α + 1/2, but only at the suboptimal rate
n−(1+2α)/(4+4α) if β > α + 1/2. The latter suboptimal rate is partially due to the
variance of the posterior distribution, and hence, in the case that β > α + 1/2, the
radius of the credible balls will be suboptimal as well.

5. Choice of basis. Rousseau and Castillo point out that the polished tail con-
dition is dependent on the chosen basis, whereas one might hope or expect the set
of “good behaving” true parameters not to depend on the basis.

In inverse problems the eigenbasis of the operator K∗K plays, implicitly or
explicitly, an important role to describe the problem [1, 6, 8, 10] and, hence, it is
natural to assume the polished tail condition with respect to this basis. Other bases
were explored in recent work [5], but a good link between the operator and the
prior seems always needed.

In “direct problems” one can consider any basis. This then determines both the
prior and the polished tail condition. The prior, or rather collection of priors, will be
chosen to model a scale of models that is thought to capture the true parameter. In
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our situation these were Sobolev spaces, which are naturally described in a basis.
That the polished tail condition will adopt the same basis seems not unnatural.
After all, “good-behaving” is not an absolute property of a parameter, but is relative
to a method, which is the one induced by the prior in this case.

There is a good scope for extensions to other models and priors. In our case the
coefficients could be modeled differently than independent and Gaussian, although
both seem natural. We imagine that similar results as in our paper can easily be
written down for double-indexed bases, as wavelets, thus moving closer to the
earliest works on self-similarity. More challenging will be priors such as Dirichlet
mixtures, which are known to adapt to the bandwidth in the (normal) kernel. What
can be said about their coverage?

6. Further references. The paper [9] derives an adaptive and nonparametric
version of the Bernstein–von Mises theorem, using techniques developed in [3]
and [7], under a self-similarity restriction, and next applies this result to construct
adaptive credible sets. The same paper also considers spike and slab priors and
L∞-credible bands. The author of [2] investigates credible sets from an oracle per-
spective. He considers truncated (finite dimensional) Gaussian priors and shows
that the empirical Bayes approach chooses the optimal truncation level under a
(slightly) extended version of the polished tail condition. This family of priors
is relatively wide and contains a member that attains the minimax posterior con-
traction rate for every regularity class Sβ . The authors of [12] have followed up
their work with investigating adaptive pointwise credible sets using rescaled (inte-
grated) Brownian motion as a prior in the nonparametric regression model. Ran-
dom smoothing spline priors with Gaussian weights on the spline coefficients are
shown in [11] to give honest credible sets in the nonparametric regression problem
under the self-similarity condition.
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