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WEIGHTED ENERGY-DISSIPATION PRINCIPLE FOR
GRADIENT FLOWS IN METRIC SPACES

RICCARDA ROSSI, GIUSEPPE SAVARE, ANTONIO SEGATTI, AND ULISSE STEFANELLI

ABSTRACT. This paper develops the so-called Weighted Energy-Dissipation (WED) variational
approach for the analysis of gradient flows in metric spaces. This focuses on the minimization
of the parameter-dependent global-in-time functional of trajectories

zpi) = [" el (FPO + Zot) a

featuring the weighted sum of energetic and dissipative terms. As the parameter € is sent
to 0, the minimizers us of such functionals converge, up to subsequences, to curves of maximal
slope driven by the functional ¢. This delivers a new and general variational approximation
procedure, hence a new existence proof, for metric gradient flows. In addition, it provides a
novel perspective towards relaxation.

1. INTRODUCTION

The study of gradient flows has attracted remarkable attention since the late ’60s, starting from
the pioneering works [Kom67, CP69, CLT71, Bré71, Bré73], where existence and approximation
results have been established, in the Hilbert framework, for convex or A-convex driving energy
functionals. The extension of the existence theory, still in Hilbert spaces, to highly nonconvex
(as dominated concave perturbations of convex) energies, see [RS06], hinges on the variational
approach to gradient flow evolution which in fact dates back to the seminal work by E. DE
G1oRral and coworkers [DGMT80a, MST89, DG93] on the theory of Minimizing Movements and
Curves of Maximal Slope. This approach is indeed at the heart of the theory of gradient flows
in metric spaces [Amb95, AGS08]. In turn, this theory provides the basis for the interpretation
a la OTTo [JKO98, Ott01] of a wide class of evolution equations and systems as gradient flows
in the Wasserstein spaces of probability measures, in close connection with the theory of Optimal
Transport [Vil09].

The focus of this paper is on gradient flows in metric spaces, but the motivation stems from the
Hilbert theory. By detailing the results announced in [RSSS11, Segl3], we extend to the metric
framework the analysis carried out, in the context of a Hilbert space H, in [MS11]. Therein, the
(Cauchy problem for the) gradient flow

u'(t) + 0p(u(t)) 20 in H, for a.a.t € (0,7,

2(0) = o (1.1)

driven by a (proper) lower semicontinuous and A-convex energy functional ¢ : H — (—o0, 0],
with 0¢ : H = H the subdifferential of ¢ in the sense of convex analysis, was studied from a novel
perspective. Namely, the authors considered the functional of trajectories u € H'(0,T; H) —
(—00, 0] defined by

T
T.rlu) = /O o7i/e <%|u’(t)|2+ éqb(u(t))) dt, (1.2)
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which features both the energy and the (quadratic) dissipation terms, with an exponential weight,
and is thus referred to as WED (Weighted Energy-Dissipation) functional. In [MS11] it was shown
that: (i) for every € > 0 there exists a unique curve u. minimizing the latter functional over all
trajectories starting from a given datum z; (i) the minimizers u. converge as ¢ | 0 to the unique
solution of (1.1).

This convergence result resides on the observation that minimizers u. of Z. 1 solve the Euler-
Lagrange equation

—eul(t) +ul(t) + 0p(us(t)) 20 in H, for a.a. t € (0,T). (1.3)

This is nothing but an elliptic-in-time regularization of the gradient flow problem (1.1), which is
formally recovered by taking the limit ¢ — 0. Besides providing an alternative method for proving
existence results for (1.1), constructing solutions as (limits of) minimizers of functionals on entire
trajectories paves the way to relazation. Indeed, the convergence result in [MS11] is extended to
sequences of approzrimate minimizers, which shows that, in the case ¢ is neither \-convex nor lower
semicontinuous, one may consider the relaxation of Z. (provided it is itself the WED functional
for a suitable lower semicontinuous and A-convex energy).

The idea of regularizing evolution problems by singular elliptic perturbations in time has been
pioneered by L10NSs [Lio63, Lio63b, Lio65] and used by KOHN & NIRENBERG [KN65] and OLEINIK
[Ole64] as a tool to inspect regularity. An account of these techniques in the linear case can be
found in the book by LioNs & MAGENES [LM72].

The variational view to such elliptic regularization via WED functionals has to be traced back
at least to ILMANEN [Ilm94], whose proof of existence and partial regularity of the Brakke mean-
curvature flow of varifolds is based on this variational technique. An occurrence of WED func-
tionals in the proof of existence of periodic solutions to gradient flows is due to HIRANO [Hir94],
and this variational approach is mentioned in the classical textbook by EVANS [Eva98, Problem
3, p. 487].

The WED approach to gradient flows has been initiated by ConT1 & ORrTIZ [CO08], who
presented two examples of relaxation related with micro-structure evolution. As mentioned, the
corresponding theoretical analysis in [MS11] and one can find an early application to the case of
mean-curvature evolution of Cartesian surfaces is in [SS11]. An extension of the abstract theory to
nonpotential perturbations of gradient flows is by MELCHIONNA [Mel16], while A-convex energies
are treated in [AS16]. BOGELEIN, DUZAAR, & MARCELLINI [BDM14, BDMS17] recently used
this variational approach to prove the existence of variational solutions to the equation

us — V- f(z,u, Vu) + 0y f(z,u, Vu) =0

where the field f is convex in (u, Vu), see also Sec. 8.1.

Doubly nonlinear evolution equations have also been tackled by WED methods. In the case
of rate-independent processes, the abstract theory is developed by MIELKE & ORTIZ [MOO0S],
see also the subsequent [MS11], and an application to crack-front propagation in brittle materials
has been presented by LARSEN, ORTIZ, & RICHARDSON [LOR09]. The rate-dependent case is
in turn addressed by the series of contributions [AM17, AS10, AS11, AS14, AMS17]. The reader
is additionally referred to LIERO & MELCHIONNA [LM17] for a stability result via I'-convergence
and to MELCHIONNA [Mell7] for an application to the study of qualitative properties of solutions.

The WED variational approach can be applied to certain classes of hyperbolic problems as well.
Indeed, DE GIORGI conjectured this possibility in the setting of semilinear waves [DG96]. Such
conjecture has been positively checked in [Stell] for the finite-time case and by SERRA & TILLI
[ST12] for the original, infinite-time case. Extensions to mixed hyperbolic-parabolic semilinear
equations [LS13al, to different classes of nonlinear energies [LS13b, ST16], and to nonhomogeneous
equations [TT17] are also available.

The WED approach fits into the general class of global-in-time variational methods for evolution
equations, see [MS11] for some survey. Among the many options, we shall minimally mention the
celebrated BREZIS-EKELAND-NAYROLES principle [BE76, BE76b, Nay76], its generalization in the
frame of self-dual Lagrangian theory [Gho09], and its extensions to doubly nonlinear [Ste08, Vis11],
maximal-monotone [Vis08, Vis13], and pseudo-monotone flows [Vis15].
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In this paper we aim to extend the result from [MS11] to gradient flows set in a
complete metric space (X, d).

We will thus prove, for a reasonably wide class of driving energy functionals ¢, that WED mini-
mizers u. of the functional

L= [ e (SuRe + o)) a, (1.4)
/0 (2 €

among a natural class of absolutely continuous curves u : [0,00) — X satisfying a given initial
condition u(0) = x, converge (up to subsequences) to curves of mazimal slope for ¢, characterized
by

—(pou)(t) = %IU’IQ(U + %I%IQ(U(U) = |u'[*(t) = 06 (u(t)) ~ fora.a.t€(0,00). (1.5)

In (1.5), the metric derivative |u'|(t) has to be understood as the metric surrogate of the norm
|’ (t)], and it indeed replaces the latter in the associated WED functional (1.4); |0¢| denotes the
metric slope of the energy ¢; (1.5) is the differential characterization of Curves of Maximal Slope
when |0¢| is a strong upper gradient.

In this way, we show that the WED approach shares the same features of the well-known
Minimizing Movement scheme [AGS08], which relies on a recursive minimization of a functional
combining distance and energy. Notice that in a metric space an underlying linear structure is
missing, as well as the Euler equation (1.3). Moreover, the dissipation term provided by the metric
velocity |u/|? is not required to be a quadratic form on a linear tangent space, so that even in a
linear framework (e.g. in a Banach space) the resulting evolution equation is doubly nonlinear.

One of the basic feature of the WED approach is that it does not directly involve the distance
d but it relies on the notion of length (and quadratic action) of a curve. We thus hope that our
metric strategy could be extended to more general cases of length structures, where the length of
a curve may be strongly affected by the geometry of the sublevels of the functional ¢.

In what follows, we briefly recapitulate the challenges attached to this analysis, and the main
ideas underlying the proof of our main result. This discussion will also make apparent how big
the leap is between the Hilbert and the metric theory.

The analysis in Hilbert vs. metric spaces. The starting point in the proof of [MS11, Thm.
1.1] in a Hilbert space H is the observation that, by the the direct method of calculus of variations
and the A-convexity of ¢, the WED functional Z, 1 (1.2) admits a unique minimizer u. : [0,7] — H
among all trajectories starting from a given initial datum = € H. A suitable smoothing argument
allows the authors to show that u. fulfills the Euler-Lagrange equation (1.3), supplemented with
the initial condition u.(0) = = and the additional Neumann boundary condition eul(T) = 0 at
the final time 7'. In fact, (1.3) is the elliptic (in time) regularization of the original gradient flow
(1.1). Its role is twofold: first of all, from (1.3) it is possible to deduce the key estimate

1/2

5||Ug||L2(0,T;H) +e€ ||uz/s||L°°(O,T;H) + ||U.f;||L2(o,T;H) + 1€l 20,7y < C,

with & a selection in O¢(u.) satisfying (1.3). Secondly, it is in (1.3) that, exploiting the above
estimates, it is possible to pass to the limit as € | 0, proving the convergence of the curves (uc)e
to the (unique) solution of (1.1).

The arguments in [MS11] clearly rely on two structural properties available in Hilbert spaces:
the linear setting and the quadratic norm. It is far from obvious how to replicate them in the
metric context, where the gradient flow equation (1.1) is formulated by means of the notion of
Curve of Maximal Slope (1.5).

In our metric setup, once that the existence of minimizers for (1.4) (among all curves starting
from a given initial datum x € X') has been proved, a nontrivial challenge is to provide new metric
insights, taking the place of the Euler-Lagrange equation (1.3).

A first piece of information can be obtained by taking inner variations with respect to time
(namely, perturbations by time rescalings) of a minimizer u. for Z., which lead (cf. Proposition
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3.7) to the metric inner variation equation

5 (Bue) — SLPO) = L) i D(0,00). (16)

However, even in a finite dimensional framework it is clear that equation (1.6) is much weaker
than the former (1.3) and does not contain enough information to characterize the evolution.

We will borrow the second crucial idea from the theory of Optimal control and Hamilton-Jacobi
equations, cf. e.g. [BCDI7]. In this direction, the key step will be to work with the value functional
associated with the minimum problem for 7., namely

V() = (L.7)

min e
u€AC([0,00);X), u(0)=x

Variational properties of the value function and its gradient flow. From the WED point
of view, the value function V plays a crucial role, which can be compared to the importance of
the Yosida approximation

6u(a) 1= mi (3-¢(a.0) + 00)) (1)
in the Minimizing Movement approach. In order to illustrate the main ideas in a simpler situation,
in the following lines we will keep to the finite-dimensional framework X = R"™ and consider a
smooth energy ¢ : R™ — R. In this setting, a classical result from the theory of Optimal Control
(cf., e.g., [BCDI7, Chap. III, Prop. 2.5]), ensures that the value function for the infinite-horizon

minimum problem complies with the Dynamic Programming Principle. Namely, there holds

T
_ : —t/e 1 l 2 l —T/e
Ve(z) = erc0 R 0 (/0 e’ (2|u O + E<25(U(1t))) dt + Vz(u(T))e ) (1.9)

for all T > 0, and every minimizer u, for (1.4) is also a minimizer for the minimum problem (1.9),
whence

T
Ve(z) = /0 e~t/e (%|u'5(t)|2 + §¢(u€(t))) dt 4+ V(ue(T)))e~ T/ for all T > 0. (1.10)

We recall the interpretation of formula (1.9) provided in [BCD97], viz. that, to achieve the mini-
mum cost it is necessary and sufficient to:

(1) let the system evolve in an arbitrary finite interval [0, 7], along an arbitrary trajectory u

(2) pay the corresponding cost, i.e. fOT e /e (W () + Lo(u(t)) dt

(3) pay what remains to pay in a optimal way, i.e. V. (u(T)))e"7/¢

(4) minimize over all possible trajectories.

As we will see now, the Dynamic Programming Principle (1.9) is the milestone of our analysis.

Indeed, from (1.10) one deduces that for every 0 < s <t

/s e/ (%WE(TW + éfi’(us(?“))) dr = Ve (uc(s))e™** = Va(uc(t)))e "/

= [t (et ) ar

:—/S %(Vs(us(’l”)))e_r/sdT—l—/ LV, (s ()

S

Rearranging terms and using the Lebesgue Theorem we then conclude the Fundamental identity

d 1 1 1

- EVE(ua(t)) = §|u;(t)|2 + g¢(u€(t)) - ng(ug(t)) for a.a.t € (0,00). (1.11)
In fact, (1.11) can be combined with another consequence of the Dynamic Programming Principle
(cf. [BCD97, Chap. ITI, Thm. 2.12]), i.e.. that the value function V. fulfills the Hamilton-Jacobi

equation

éVE(x) + H(z,DV.(z)) =0 in R", (1.12)
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where the Hamiltonian H : R” x R™ — R is defined by

v 2
W) = sup (0= 10— o)) = Jiof - Loto).

veR™ 2 € 2
Hence, (1.12) yields

1 1 1
SIDV.@) = Zo(e) = <Va()  mR", (113)
Combining (1.11) and (1.13) we thus arrive at the crucial relation
d 1 1
= Velue(t) = 5|u;(t)|2 +5 IDV.(uc(t))]>  for a.a.t € (0,00), (1.14)

i.e. we conclude that any WED minimizer ue fulfills the gradient flow equation driven by the value
function V.. Since the latter can be thought as an approximation of the energy functional ¢ as
€ | 0 (as in the case of the Yosida regularization (1.8)), this argument suggests that a possible
way to prove the convergence of the WED minimizers to a solution of gradient flow for ¢, is to
pass to the limit directly in (1.14). We will follow this idea in the metric setting.

Main results. In the metric framework we will suppose that the energy functional ¢ complies

with the lower semicontinuity-coercivity-compactness (LSCC) conditions, by now standard in the

variational approach to metric gradient flows, cf. [AGS08, Chap. II], namely

Lower Semicontinuity: ¢ is sequentially lower semicontinuous;

Compactness: Every d-bounded set contained in a sublevel of ¢ is relatively sequentially com-
pact;

Coercivity: There exists u. € X and constants A,B > 0 such that ¢(u) > —Bd*(u, u.) — A for
allu € X.

In fact, throughout the paper we will work with a generalized version of the above conditions,

featuring an interplay between the topology induced by the metric d and a second topology o, cf.

LSCC Property 2.5 ahead.

Our first result, Theorem 3.2, ensures that, under the LSCC Property 2.5 there exists a
minimizer for the WED functional Z. among all trajectories starting from a given datum x € D(¢).
Its proof relies on an integral compactness criterion, Theorem 2.6 ahead, which establishes suitable
compactness properties for any sequence (up)n C ACioc([0,00); X) such that

sup/J lul |?(t)dt < C, sup/JqS(un(t))dt <C, (1.15)

for every compact interval J C [0,00). Observe that (1.15) are indeed the estimates that can be
deduced from sup,, ¢y Zc[un] < C.

It can be shown that the Dynamic Programming Principle also holds for the metric value
function (1.7). Then, the calculations leading to (1.11) carry over to the metric setting, allowing
us to conclude the metric analogue of (1.11) for any WED minimizer u., cf. Proposition 4.3.
Namely, there holds

_ 4
dt

Relation (1.16) is a cornerstone in the proof of our main result, Theorem 3.6, here recalled
in a slightly simplified form, and without specifying the topology involved in the definition of the
lower semicontinuous relaxation |0~ | of the local slope |0

Vo (ue(t)) = %|u'5|2(t) + §¢(u€(t)) _ é%(ug(t)) for aa.t € (0,50). (1.16)

Theorem 1.1. Assume the LSCC Property 2.5 and that the relaxed slope |0~ ¢| is an upper
gradient for ¢. Let i € D(¢) and (ue)e be a family of curves minimizing Z. among all trajectories
starting from .

Then, for any vanishing sequence () the curves (ue, )r pointwise converge on [0,00), up to a
subsequence, to a curve of mazimal slope for ¢ (with respect to |0~ ¢@|).

Let us highlight that the convergence of WED minimizers holds under the very same conditions
ensuring the existence of curves of maximal slope for ¢, cf. [AGS08].
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We now briefly comment on the main ideas underlying the proof of Theorem 1.1: It is in (1.16)
that we shall pass to the limit, as k — oo, to show that any limit curve u of the sequence (u., )
is a curve of maximal slope. The basic ingredients for taking the limit in an integrated version of
(1.16) will be the lower estimates

liminf V;, (ue, (1)) > é(u(t)) for all t € [0, 00),

k—o0

and

liminf/o 1 (P(ue, (8))=Ve, (ug, (5))) ds > /0 %|8¢|2(u(s))ds for all ¢ € [0, 00).

k— o0 €k

Finally, observe that relation (1.16) does contain the information that any WED minimizer u.
is a curve of maximal slope for the value function V;: this is shown in Theorem 4.6, revealing

¢_VE
e 0

What is more, if in addition ¢ is A-geodesically convez, it can be shown (Theorem 7.1) that the
following Hamilton-Jacobi identity holds

see also Thm. A.6 in the Appendix.

the upper gradient properties of the quantity Ge = 1/2

1 1 =
g<;5(u) - gvs(u) = |0V:|*(u) for all u € D(¢) (1.17)
(with |8V.| a slightly modified version of the local slope of V.). Hence, (1.16) reads

SV(uelt) = SR + LAV (e(0)  foraact e (0,00)

and the analogy with (1.14) in the Banach framework is complete.

We will show that (1.17) holds pointwise; it would be interesting to study its formulation in
other contexts, e.g. in connection with the recently developed theory of wviscosity solutions to
Hamilton-Jacobi equations in metric spaces, cf. [AF14, GS15, GHN15]. Notice however that when
(X,d) is not locally compact (as it mostly happens for infinite-dimensional dynamics), the LSCC
assumptions prevent the continuity of the driving energy ¢ and of the value function V.. This
gives rise to technical issues in the viscosity approach.

Remark 1.2. All the results of the present paper could be easily extended to more general
dissipation terms, induced by p-powers, 1 < p < oo, or by superlinear convex functions i :
[0,00) — [0,00) as in [RMS08, Sect. 2.4]; they correspond to WED functionals of the form

* 1
2= [ e (w(10) + Lotulo)) at
0
and to the metric gradient flow

—(¢ou)(t) =¢(lu|(t) + ¥*(10¢|(u(t)))  for a.a.t € (0,00).

However, in order to keep the presentation simpler, we will only focus on the case p = 2, (v) =
1,2
5’[} .

Plan of the paper. In Section 2, after recalling some basic notions on metric gradient flows,
we fix the metric-topological setup of our results, precisely state our assumptions on the energy
functional ¢, and prove some preliminary results, among which the compactness criterion in Thm.
2.6.

Section 3 is devoted to the minimization of the WED functional Z.: the existence of minimizers
is shown in Thm. 3.2, and the metric inner variation equation established in Prop. 3.7.

A thorough analysis of the properties of the value function V. is carried out throughout
Section 4, where in particular we prove that any WED minimizer is a curve of maximal slope
for V..

In Section 5 we finally pass to the limit as € | 0 in the gradient flow equation for V., and
conclude the proof of Theorem 3.6.

Under the additional A-geodesic convexity of ¢, in Section 6 we prove finer results on WED
minimizers u.: in particular, we show that, for every fixed ¢ > 0, the mapping ¢t — ¢(u(t))
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enjoys continuity, monotonicity, and convexity properties akin to those holding for the function
t — ¢(u(t)) whenever u is a curve of maximal slope for ¢.

Keeping the A\-convexity assumption, in Section 7 we establish the Hamilton-Jacobi identity
(1.17) in Thm. 7.1.

Section 8 shows some applications of our results to gradient flows of nonconvex functonals in
Hilbert and Banach spaces (Sec. 8.1), and to a class of curves of maximal slope in Wasserstein
spaces of probability measures (Sec. 8.2).

Finally, in Appendix A we introduce a Finsler-type metric on X, induced by ¢, which will
provide further insight into the properties of V.

Notation 1.3 (General notation). Throughout the paper, we shall use the symbols ¢, ¢/, C, C’,
etc., whose meaning may vary even within the same line, to denote various positive constants
depending only on known quantities. Furthermore, the symbols I;, ¢ = 0,1, ..., will be used as
place-holders for several integral terms (or sums of integral terms) involved in the various estimates:
we warn the reader that we will not be self-consistent with the numbering, so that, for instance,
the symbol I; will occur several times with different meanings.

2. SETUP AND PRELIMINARY RESULTS

In this section, in order to make the paper as self-contained as possible, we first collect some
basic definitions and results from the theory of gradient flows in metric spaces in Sec. 2.1, referring
to [AGSO08] for all details, as well as some auxiliary results on the reparameterization of curves
(Sec. 2.2). In Sec. 2.3 we then state the basic lower semicontinuity/coercivity assumptions on
the energy ¢ under which we shall prove the main results in this paper, also relying on the
compactness criterion provided by Theorem 2.6 (Sec. 2.4). We conclude by fixing some results on
the exponential measure

He = le—t/a.:gl’
€
and the induced weighted Sobolev spaces, that will turn out to be useful in order to study the
properties of the WED functional Z. (1.4), cf. Sec. 2.5.
Throughout the paper we will assume that

(X,d) is a complete metric space.

2.1. Recaps on gradient flows in metric spaces.
Absolutely continuous curves and metric derivative. Let I be an interval of R. We say
that a curve u : I — X belongs to ACP(I; X), p € [1, 0], if there exists m € LP(I) such that

d(u(s),u(t)) < /tm(r) dr foralls,tel, s<t. (2.1)

For p = 1, we simply write AC(I; X) and speak of absolutely continuous curves. The case p = 00
corresponds to Lipschitz curves. As usual, ACY (I;X) will denote the set of curves u : [ — X

which belong to ACP(J; X) for every compact interval J C I.
It can be proved (see e.g. [AGSO08, Sec. 1.1]) that for all w € ACP(I; X), the limit

nepy g du(s), u(t))
[w'[(t) = lim T

exists for a.a. ¢t € I. We will refer to it as the metric derivative of u at t. The map ¢t — |u’|(t)
belongs to LP(I) and it is minimal within the class of functions m € LP(I) fulfilling (2.1).

A distinguished class of Lipschitz curves in AC™([0,1]; X) is provided by minimal, constant-
speed, geodesics (for short, geodesics): they are curves v : [0,1] — X satisfying

d(v(s),7(t)) = [t — s]d(7(0),7(1)) for every s,t € [0, 1]; (2.2)
in particular a geodesic v satisfies |7'|(¢) = d(7(0),v(1)) for every ¢ € (0, 1).
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Local (descending) slope and moderated upper gradient of a l.s.c. functional. Let

¢: X — (—00,00] be lower semicontinuous with proper domain
D(¢) :={ueX : ¢(u) <oo} #0.
The local (descending) slope (see [DGMT80b, AGS08]) of ¢ at u € D(¢) is defined by

|0¢|(u) := lim sup M

v—u (u7 'U)

As already mentioned in the Introduction, we will also consider on the space X a second (Haus-
dorff) topology o, suitably compatible with that induced by the metric d (cf. (2.18) ahead).
Accordingly, we will work with the sequentially o-lower semicontinuous envelope of the local slope
|0¢| along d-bounded sequences with bounded energy, namely the relazed slope

|07 ¢|(u) = inf { lirr_1>inf 100](un) : un > u, sup(d(un,u), (u,)) < oo} for w € D(¢). (2.3)

We recall (cf. [HK98, Che99], [AGS08, Def. 1.2.1]) that a function g : X — [0, 00] is a (strong)
upper gradient for the functional ¢ if, for every curve u € AC(I; X) the function g ow is Borel and
there holds

lo(u(t)) — d(u(s))| < / glu(r)u'|(r)dr for all 0 < s < t. (2.4)

We now now introduce a slightly weaker notion of upper gradient which is well adapted to
gradient flows of functionals that can assume the value co. Let p € [1,00]: We say that a
function g : X — [0, 00] is an LP-moderated upper gradient for the functional ¢ if for every curve
u € AC(I; X) such that, in addition,

pouc LP(I; |u/'|.LY), goue LYNI;|W|L") (2.5)

we still have (2.4). Observe that, whenever g is a strong, or a LP-moderated, upper gradient, we
have that ¢ ou € AC(I;R) and

[(pou)(t) < gul®)|u|(t) fora.a. tel.

Curves of Maximal Slope. Let g : X — [0,00] be an L*-moderated upper gradient for ¢ and
let T = [0,00). We recall (see [AGS08, Def. 1.3.2, p.32], following [DGMT80b, Amb95]), that a
curve u € ACY ([0,00); X) is said to be a curve of mazimal slope for the functional ¢ with respect
to g if ¢ o u is locally bounded and

—(pou)(t) = [W|A(t) = ¢*(u(t))  for a.a. t € (0,00). (2.6)

In particular, ¢ o u is locally absolutely continuous in [0,00), g ou € L ([0,00)), and the energy
identity

%/S |u'|2(r) dr + %/S gz(u(r))dr + o(u(t)) = o(u(s)) for all 0 < s <'t, (2.7)

directly follows. It is interesting that curves of maximal slope w.r.t. g can be characterized by an
integral condition: in fact, if a curve u € ACL ([0, 00); X) with u(0) € D(¢) satisfies

loc

I I

5/ |u'[2(r) dr + 5/ g (u(r))dr + é(u(t)) < ¢(u(0)) forallt >0 (2.8)
0 0

then u fulfills (2.6). Notice that, for any reasonable definition of gradient flow local boundedness of

¢owu is not a restrictive a priori assumption: this justifies the restriction to the class of moderated

upper gradients in the above definition of curve of maximal slope.
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Geodesically A-convex functionals. A remarkable case in which the local slope is a (strong)
upper gradient occurs when (cf. [AGS08, Thm. 2.4.9]) the functional ¢ is geodesically A-convex
for some A € R, i.e.

for all vy, v1 € D(¢) there exists a geodesic y : [0,1] — X  with v(0) = vo, 7(1) =v1, and
A
o(v(t)) < (1 —t)p(vg) + tp(vy) — §t(1 —t)d*(vo,v1) forall0 <t <1. (2.9)
The following result subsumes [AGS08, Cor. 2.4.10, Lemma 2.4.13, Thm. 2.4.9].

Proposition 2.1. Let ¢ : X — (—o0, 00| be d-lower semicontinuous and \-geodesically convex for
some X € R. Then, the local slope |0¢| is lower semicontinuous and admits the representation

= su M é u, v : or atl u
|6¢|(u)—v7£( )t d )) for all u € D(9). (2.10)

Furthermore, |0¢| is a (strong) upper gradient, and therefore an LP-moderated upper gradient for
every p € [1,00].

2.2. Length and energy reparameterization. We recall here a few standard results on repa-
rameterization of curves, from which we will also derive a useful criterion for a functional to be
an upper gradient. Lemma 2.2 below shall be also used in the proof of Lemma A.2 ahead.

Lemma 2.2 (Length and Energy reparameterization). Let g : X — [0, 00) be a Borel function and
let ¥ € AC([a,b]; X) be a curve with f: |0'|(t) dt = L. The reparameterized curve 9 : [0, L] — X

I(r) :=9(k(r)) with k(r) := inf {t € [a,b] : / [¥'|(s) ds = T} for all r €10, L], (2.11)

is 1-Lipschitz, r : [0,L] — [0,1] is continuous, nondecreasing and surjective (so that O has the
same support as ¥ with the same initial and final points), and

[0'|(r) =1 for L -a.e. 7 €0,L],
K(ry) 1 5 (212)
/ g(I(E) Y| (¢) dt = / g(d(r)) dr for all0 <ry <r; < L.

K(r0) 0

Similarly, if S := [, b

a

mhﬂ(lﬁ) dt < oo, the reparametrized curve 9y : [0,S5] = X

Da(s) i= Dsg ), o) = int {t € [a]: [ gwl(t»

belongs to AC([0,5]; X), has the same support as ¥ with the same initial and final points, and
satisfies

19'|(r) dr = s}, sef0,S], (2.13)

8(V4(s)) = |051(s) a.e. in [0,5]. (2.14)
In particular, if f:g(ﬁ(t))|19’|(t) dt < 0o we have ¥4 € AC*([0, S); X) and

1

S S S
/0 02 (9g(s)) ds = / 19412 (s) ds = / 0(05(s)) 19,1(s) ds = / a(0(t) [9'](t) At (2.15)

Proof. The first part of the statement is a direct application of the 1-dimensional area formula,
see e.g. [AT00, Rem. 4.2.2].

In order to prove the second part, based on the construction (2.11) of the curve 15, let us define
s:[0,L] — [0,00) by

r 1 K(r) 1 , B
r) ._/O g(é(z))dz_/o a0t S = (D) (2.16)
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Since g o9 < oo a.e. in (0,L) by (2.12), we have s/(r) = m > 0 for almost all » € (0, L),

so that the map s is strictly increasing hence invertible, with inverse r : [0, 5] — [0, L] satisfying
a(5) = K(r(s)) and Dy (s) = D(g(s)) = D(x(r(s))) = D(r(5)). Since

i) = LZEED

we get (2.14); a further application of the change of variable formula yields (2.15). O

=g(0(r(s)) = 9(Vy(s))  for aa. s € (0,9),

As a first application of the previous Lemma we have the following criterion that will be applied
in Section 4.2 to prove that a certain quantity is a moderated upper gradient for the value function
associated with the WED functional, cf. Theorem 4.6 ahead.

Corollary 2.3 (A criterion for upper gradients). Let ¢ : X — (—o00,00] be a l.s.c. functional and
let g: X — [0,00] be a Borel map such that for every curve 9 € AC?([a,b]; X) with ¢pov € L?*(a,b)
there holds

1 b
600) - o) < 5 [ (0P +90(0)) at. (2.17)
Then g is a LP-moderated upper gradient for ¢.

Proof. In order to prove that ¢ is an upper gradient, it is not restrictive to check condition (2.4)
in the case when I = [0,1] and s = 0 ¢ = 1. We also assume p < 00, as the modifications in the
case p = oo are obvious.

Let us fix a curve 9 € AC([0, 1]; X) such that ¢odd € LP(0, 1; [¢'|-£") and godd € L*(0, 1; [¢|-£).
Setting g-(z) = g(x) + (1 V |¢(x)|)P, we can apply the second part of Lemma 2.2 to find a
reparametrized curve 9, := 9, € AC?([0, S]; X) corresponding to g. such that

Se Se Se 1
2 s = "1%(s) ds = (Ve(s "1(s) ds = e ! .
|y as= [ TR as= [T enioie ds= [ e i a
Applying (2.17) to the curve 9. (notice that po. € L?P(0, S.) since |¢p(J:)|P < g-(J:)), we obtain
Se
60(1)=00(0)] = 6(0-(5.)) = 6000 < 5 [ (102P(5) + 9(0-())) ds
0

IN

%/055 (|19§|2(8) +ga(z9a(s))) ds = /0198(19(16))|19’|(t)dt
1

- / g(O(E)|9'|(t)dt + ¢ / (v o(0(1)?19 (1)t

Passing to the limit as € | 0 we conclude the desired estimate (2.4). O

2.3. A general metric-topological framework for gradient flows. Throughout the paper,
we will always assume that (X,d) is a complete metric space endowed with an auxiliary Hausdorff
topology o on X, that satisfies the following compatibility conditions:

(MT1) d is sequentially lower semicontinuous w.r.t. the product topology induced by ¢ on X x X:
(Un,vn) 2 (u,v) = liminfd(u,,v,) > d(u,v); (2.18a)
n—oo

(MT2) for every o-open set U and every x € U
there exist a o-open neighborhood V' of x and § > 0 such that d(y,V) <d = yeU. (2.18b)

We call (X,d, o) a compatible metric-topological space. Notice that (MT2) in particular shows
that o is weaker than the topology induced by the distance d. The possibility to work with two
possibly different topologies allows for a wider applicability of the theory, as the following examples
show.

Remark 2.4 (Examples of compatibile metric-topological structures).

(E1) The above condition is obviously satisfied in the simplest case in which o coincides with the
topology induced by d.
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(E2) Another interesting example is provided by a topology ¢ induced by another distance d’
satisfying d'(z,y) < Cd(z,y) for every z,y € X: this is the typical situation when X is a
Banach space continuously imbedded in a Banach space Y and d,d’ are the distances induced
by the norms of X and Y respectively.

(E3) In the previous example, Y could also be a Fréchet space: consider e.g. the case when
X = LP(Q), Q open subset of some Euclidean space R™, and o is the topology of L{, (),
induced by the distance

d'(£,9) = 327" (IF = gl A1),
n=1

where K,, € 2 is a nondecreasing sequence of compact subsets invading €.

(E4) As a further example, one can consider the weak topology in a Banach space X, when d is
the distance induced by its norm. This example also highlights that it is interesting to deal
with possibly non-metrizable topologies.

(E5) Transport distances provide another important example: we can consider X = Z2,(X)
endowed with the p-Wasserstein distance W), p € [1,00), and the topology ¢ of weak con-
vergence of probability measures, cf. e.g. [AGS08, Chap. 7].

Property 2.5 (Standard lower semicontinuity-coercivity-compactness (LSCC) assumptions). We
say that the proper functional ¢ : X — (—o00, 00| satisfies the standard assumptions if the following
properties hold:

Lower Semicontinuity: ¢ is o-sequentially lower semicontinuous on d-bounded sets:

sup d(Un, Um) < 00, Up = u = liminf ¢(u,) > d(u); (2.19a)
n,m n—oo

Compactness: Every d-bounded set contained in a sublevel of ¢ is relatively o-sequentially com-
pact:
if (un)n C X with sup @¢(uy,) < 00, supd(Un, Um) < 00,
" mm (2.19b)

then (up)n admits a o-convergent subsequence.

Coercivity: There exists u, € X and constants A,B > 0 such that
d(u) > —Bd?*(u,v) — Q(v), where Q(v) := Bd*(v,u.) +A for every u,v € X. (2.19¢)
Notice that if ¢ satisfies
d(u) > —a —bd*(u,u.) for every u € X, (2.20)

for some a,b > 0 then (2.19¢) holds with A :=a and B := 2b.

The simplest situation in which Property 2.5 holds is provided by a functional ¢ whose sublevels
{ve X :¢(v) <c} are compact in (X, d); in this case we can choose o to be the topology induced
by d.

2.4. An integral compactness criterion. In this section we adapt to our setting a compactness
result for sequences of absolutely continuous curves drawn from [RS03, Rmk. Extension 1, Thm.
4.12]. First and foremost, we shall apply it to show with Theorem 3.2 the existence of minimizers
for the WED functional, relying on a pointwise equicontinuity estimate. Since we have it at our
disposal, we can provide a simpler and more direct proof of Thm. 2.6 than that in [RS03].

Theorem 2.6. Let I be an interval of R and let us assume that ¢ : X — (—o00,00] satisfies the
standard LSCC Property 2.5. If (u,)n, C ACL (I; X) is a sequence satisfying

sup/ lul |?(t) dt < oo, sup/ d(un(t)) dt < oo for every compact interval J C I,  (2.21)
n J n J

and (Un(to))n is bounded for some to € I, then there exists a limit function u € ACy,.(I; X) and
a subsequence k — ny, such that

Un, (t) 5 u(t) for every t € I as k1 oo, (2.22)
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luy, | = v in Li.(I) asktoo, v>|u| L-ae inl, (2.23)
timint [ ofu, (0)¢(0) at > [ o(u(®)C(r) a (2:21)

for every nonnegative ¢ € C(I) and every compact interval J C 1.

Proof. By a standard diagonal argument, it is not restrictive to assume that I = [a, b] is a compact
interval. Since the sequence (uy(t)), is uniformly bounded, we can assume that there exists a
constant C' > 0 such that

b b
/ lul |2(t) dt < C,  sup d(un(t),us.) < C, / Puy(t)) dt < C for every n € N, (2.25)
a t€la,b] a

where
Y(w) := ¢p(w) + Bd? (w, us) + A > 0, we X, (2.26)
and u,, A, B are given by (2.19¢). The first integral bound of (2.25) also yields

t
d(un(t),un(s)) < / lun,|(r) dr < \/C|t —s| for every s,tel, s<t, neN. (2.27)

Up to extracting a suitable subsequence, it is not restrictive to assume that |ul,| = v as n — oo
in L%(a,b).

Let J,,, m € N, be a countable basis of open sets in (a,b). We want to find a family of sequences
indexed by m € N, that we represent by a map (m, k) — n(m, k) € N, and points t,, € J,, with
tm # tme if m # m/, such that

e for every m € N the sequence k — n(m+1, k) is an increasing subsequence of k — n(m, k)
® k= Up(m,k)(tm) is converging to some wy, € X w.r.t. o as k — oc.

We argue by induction w.r.t. m. When m = 0 we simply set n(0,%k) := k. Assuming that the
sequence k — n(m, k) is given for some m € N, Fatou’s lemma yields

b
/ lim inf 9 (tp, (1) (t)) dt < C
o k—oo ’

so that Iminf_ e 1 (Un(m k) (t)) < oo for L1-a.e. t € [a,b]. In particular, since £ (Jpq1) > 0,
there exists a point t,,11 € Jmq1 \ {t1, -+ ,tm} such that Iiminfy o0 ¥ (k) (tm+1)) < 00 and
therefore by (2.19b) we can find a subsequence k — n(m + 1, k) of k — n(m, k) and a limit point
W1 € X such that wy,mp1,0) (Emr1) 2 Wyt

By a Cantor diagonal argument, we conclude that the sequence k — ny := n(k, k) satisfies
Un,, (tm) = Wy, for every m € N. Since J,, is a countable basis of open intervals in (a,b), the set
D = {t,, : m € N} is countable and dense in [a,b]: we can then define a function v : D — X by
setting u(tm,) := Wy,

Now we can argue as in [AGS08, Prop. 3.3.1] to conclude, by a careful use of the compatibility
conditions (2.18a) and (2.18b) between d and o. In fact, passing to the limit in (2.27) thanks to
(2.18a) we get

¢
d(u(t),u(s)) < / v(r)dr < /C|t —s| for every s,te€ D, s<t. (2.28)

By (2.28) and the completeness of X, we can extend u to a curve (still denoted by u) defined on
I and still satisfying estimate (2.28) for every s,t € I. In particular u € AC*(I; X) and |u/| < v,
so that (2.23) is proved.

In order to prove convergence (2.22), we pick an arbitrary point ¢ € I and a o-neighborhood
U of u(t). Let then § > 0 and V be as in the compatibility assumption (MT2) (with = = u(t)).
Since wu is d-continuous (and therefore also o-continuous) we can then find a point s € D such
that C|t — s| < 6% and u(s) € V. Since uy, (s) = u(s) as k 1 oo we can also find k sufficiently big
such that u,, (s) € V for every k > k. Since d(un, (), un, (t)) < /CJt — s| < § for every k € N by
(2.27), we deduce by (2.18b) that u,, (t) € U for every k > k.
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The lower estimate (2.24) then follows by Fatou’s Lemma and the fact that ¢ o u, is uni-
formly bounded from below by a constant. The latter boundedness ensues from the d-uniform
boundedness of u,, given by (2.25), combined with (2.19¢). O

We can refine the pointwise convergence in (2.22) by showing that the sequence (uy, )i is in
fact converging in the compact-open topology induced by o¢. When o is metrizable, this implies
the locally uniform convergence of (uy, )r. In fact, this is a general property of any sequence of
d-equicontinuous functions that pointwise converge in the o-topology.

Lemma 2.7. Let (ug)reny C C(I; X) be a sequence of locally d-equicontinuous functions pointwise
converging to u pointwise in the o-topology as k 1 0o. Then (ug)r converges to u in the compact-
open topology induced by o.

Proof. Let us consider an arbitrary open neighborhood U of u in the compact-open topology:
this corresponds to a finite collection of compact sets K,, C I and corresponding o-open sets
Uy, C X such that u(K,,) C Up, m € M :={1,2,--- ,m}. For every t € K,, let V(t) be a o-open
neighborhood of u(t) and §(¢) > 0 satisfying (2.18b) for z = u(t) and U = Up,.

We then find 7(t) > 0 with

d(ug(r),uk(s)) <6(t)/2 for every r,s € Uy, K,, with |s —r| <n(t) and k € N,
and we set
W(t) :=u" (V)N B(t,n(t)) N K,,, where B(t,n):={s€1:|s—t| <n}.

Since {W(t) : t € K,,,} is an open covering of K,,, we can find a finite subcovering {W(t) : t € Jp,, }
corresponding to a finite set Jp, = {tm 1, - ,tmﬁ(m)} of points in K,,,. We define 6, p, := 3(tm, 1),
NDm,h := N(tm,n) and consider the new collection of compact sets K, p := W (tm.p) C I and points
tm.h € Kpm,n indexed by integers in N := {(m,h) € NxN:m < m, h < h(m)} with the property
that

U  Kon=Kn: Kunn CBltmh, ),

1<h<h(m) (2.29)
w(Km.p) C V(tm,n) for every (m,h) € N.

The neighborhood U can then be represented as the set of o-continuous curves w : I — X with
wW(Km,n) C Uy, for every (m,h) € N.

Arguing as in the proof of the Theorem 2.6, we can find k sufficiently big such that ug(t,,.n) €
V(tm,n) for every k > k and (m,h) € N. Since K. C B(tm hyMm,n), the equicontinuity estimate

(2.27) and (2.18b) yield ug(Km,n) C Un, thus ux € U for every k > k, which concludes the proof
of the convergence of (uy)y. O

2.5. The exponential measure and weighted Sobolev spaces. In this section we quickly
recall a few basic properties of the Sobolev spaces W12(0,00; ue) induced by the probability
measure

eft/s

pei= e [T an = [

3

e~

t/e
dt. 2.30
- (2.30)

We say that w € WHP(0, 00; 1), p € [1,00), if w € WEP((0,00)) and

/OOO (|w(t)|p + |w’(t)|p) dpe () < oo. (2.31)

Denoting by @ the continuous representative of the function v, we easily check that & € ACY ([0, 00); R)

loc

and for v, w € W12(0, 00; 1) the following integration by parts formula holds

b b
/ evw’ due = / (—ev'+v)w dpe +e"Y55(b)w(b)—e~ V=5 (a)b(a) for all 0 < a < b < co. (2.32)
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Lemma 2.8. If w € ACioc([0,00); R) with [ |w'(¢)|dps(t) < oo then w € W1(0,00; ) and

T T
w(0) + 8/0 w' (t) dpe (t) = w(T)e~T/¢ +/ w(t)dpe(t)  for every T > 0, (2.33)

w(0) + ¢ /OOO t) dpe (t / t) dpee (¢ (2.34)

In particular, if u € WH9(0,00; pe) and v € WHP(0,00; pe) for a couple of conjugate exponents
p,q € [1,00], then

@z

/ euv’ dpe = / (—eu’ + u)v dpe. (2.35)
0

Proof. Formula (2.33) follows from (2.32) for v = 1. Setting W (¢ fo |w’(r)| dr, (2.33) yields
for every T'> 0

/ ' (O] dpia(t) = & / W (1) dpee(r / W) () + o TFWT).  (2.36)
Passing to the limit as T' 1 oo we get W € L*(0, oo; pie) and, since
lw(t)] < [w(0)] + W(t), (2.37)

we deduce that w € L'(0,00; p1.). Since e */W () has finite integral, its limit set as ¢ — oo should
contain 0. Therefore, from (2.37) we gather lim; o, e */*W (t) = lim;_, o, e"*/*w(t) = 0. Passing
to the limit as 7' 1 oo in (2.33) we get (2.34).

Finally, (2.35) follows by applying (2.34) to w := wv. O

Starting from (2.35) it is easy to check that a function w € L (0, co) belongs to VVlicl(O, o0) if
and only if there exists g € L], (0, 00) such that

/OO w(—e& + &) du. = /OO eg&due for every £ € C2°(0, 00), (2.38)
0 0

and in this case w’ = ¢ in the distributional sense.

In Lemma 2.9 below we compute the sharp constant for the Poincaré inequality for real functions
in W12(0, oo; 1) that vanish at 0: it will play a crucial role in the next section in order to derive
suitable bounds on infimizing sequences for the WED functional.

Lemma 2.9. For every function w € AC:L.([0,00);R) with w(0) = 0, every ¢ > 0 and every

T € (0,00] we have
T 1 /7 )
/ |w'(t ’ dpe(t) > 4 2/ lw(t)|” dpe(t). (2.39)
0 5

In particular, if A\ € (—o0,1/4¢2) and (wy), C ACL.([0,00); R) is a sequence satisfying w, (0) = 0
and -
sup/ (‘w;(t)|2 - )\|wn(t)|2) dpe(t) < C < oo for everyn € N, (2.40)
neNJo
then there exists an increasing subsequence k +— ny such that, as k — 00, (wn, )i converges to

w € ACE_([0,00);:R) locally uniformly, w,, — w' weakly in L*(0,00;uc), and for every n €
(—00,1/4¢?]

o > 2 < 2

hkmmf/ (\w;k(t)\ —77|wnk(t)|2)dlu5(t)2/ (yw/(t)] —77|w(t)|2)dlu5(t). (2.41)

Proof. Let us first prove (2.39). For every «, 8 > 0 we have

/OT}aw'—ﬁw!2dua=/(JT (o? () + pw Q)dua—cw/ Y

T
_ a2/0 ! dpee + (82 - %)/0 wdp - Le AT, (242)
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. Choosing @ = 1, 8 = L we get

where the second equality follows from applying (2.33) to w 5c
(2.39) for finite T > 0; passing to the limit as T 1 oo in (2.42) and arguing as in the previous
Lemma we obtain

/ !W'\2dua=(1—a2)/ \w’\2dua+(a—6—ﬁ2>/ w2du€+/ |low' — Bw|® due. (2.43)
0 0 0 0

€

2

Choosing o < 1 and 3 > 0 with af8/e — 32 > A, (2.40) yields that (wy,), is uniformly bounded in
W12(0, 00; 1 ). By standard weak compactness we obtain a subsequence (wp, ) weakly converging
to some limit w in W'2(0,00; ), so that w,, — w and w], — w’ weakly in L?(0,00; 1c) as
k — oo. The lower estimate (2.41) then follows from (2.43) by choosing a« = 1 and 3/e—3%? =n. O

Remark 2.10. The optimality of the constant é on the right-hand side of the inequality (2.39)

can be easily checked by considering the sequence w, (t) = (1 A (n — [t — n|) vV 0)e™ /2.

3. THE WED FUNCTIONAL, ITS MINIMIZATION, AND THE MAIN CONVERGENCE RESULT

Let us introduce the functional £, : X x [0,00) = R
€
{e(u,0) 1= 507 + o). (3.1)
In this section we will investigate the following variational problem.

Problem 3.1 (The e-WED variational problem). Given ¢ > 0 and @ € X, minimize the weighted
energy-dissipation functional

L= [ ectuto. ) auete) = [ (SR04 o) e, G2)

over all trajectories u in

6-(u) := {u € ACY([0,00); X) : u(0) =1, / [/ [2(t) dpe(t) < oo} (3.3)
0
We will denote by M.(@) the (possibly empty) set of minimizers of (3.2) in €-(u).

Even though we will mainly focus on the WED formulation in (0, 00), it will also be useful
to consider a localized version of Problem 3.1: we fix a time T > 0 and we simply restrict the
functional Z. to curves which are constant in [T, 00); we thus introduce

Cer(0) = {u € ACE ([0,00); X) : w(0) =a, wu(t)=u(T) in [T,oo)}, (3.4)
which is a closed subset of €.(u) and could also be identified with AC?([0,T]; X); we have the
obvious inclusions

Cer, () C Cemy () C 62(0) = Cr00(t) whenever 0< Ty <Tp < 0. (3.5)
Notice that

T
Lfu) = [ (0. [0](0) diele) + ¢ Vo 0(u(D) it u € G (3.6)
0
We will denote by M. (@) the set of minimizers of Z. in €. r(u).

3.1. Well-posedness and existence of minimizers of Problem 3.1. First of all, in the metric-
topological framework of Section 2.3, for € > 0 sufficiently small (depending on the constant B in
(2.19¢)), we address the well-posedness of Problem 3.1 and the existence of minimizers by assuming
that Problem 3.1 is feasible, i.e. that there exists a curve u € 6.(u) such that Z.[u] < co. This is
always the case when @ € D(¢): in fact,

the constant curve u € 6. (u), defined by w(t)=a ¢ >0, satisfies Z.u] < ¢(a). (3.7)
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Theorem 3.2. Let us suppose that ¢ satisfies the standard LSCC' Property 2.5 and that

1
— 3.8
16e — (38)
Then the integral in (3.2) is well defined (possibly taking the value oo) for every t € X and every

u € 6:(a).

Moreover, if Problem 3.1 is feasible (in particular when @ € D(¢)) then it admits at least one
solution. In this case all the sets M. r(u), T € (0,00], are compact in 6.(u) endowed with the
compact-open topology induced by o.

We divide the proof of Theorem 3.2 in a few steps, starting from an immediate application of
Lemma 2.9. Notice that it is sufficient to consider the case T = co.

Lemma 3.3. Let u € AC}([0,00); X), L(t) := f(f [w/|(r) dr, e > 0, and T € (0,00]. Then

T T T
/0 WP (0)dpe(t) > 1 / L2(1)de(t) > 105 / Eu),u(0)du-(t).  (3.9)

In particular, for ¢ > 0 sufficiently small (cf. (3.8)), the integral defining Ic[u] in (3.2) is well
defined for every u € 6-(u).

As a further consequence of Lemma 3.3 we provide separate estimates for fooo |u/|* dpe and
15~ (o ) du. for any u € ¢.(u) such that Z.[u] < oo (recall that (z) :=z Vv 0). Observe that
this in fact requires absorbing the term — [ d*(u(t), u(0)) dpue (), which bounds [ ¢(u(t)) dpe (t)
from below (cf. (2.19¢)), into £|u'[*dpe. It is at this level that (3.9) comes into play

Lemma 3.4. If ¢ satisfies the standard LSCC Property 2.5 and (3.8) holds, then for every u €
ACE ([0,00); X) there holds

/000 @uq? + (¢(u(t)))+) dpe(t) < Ze[u] + Qu(0))  with Q(w) := Bd?(w,u.) + A, (3.10)

Proof. Setting L(t fo || (r) dr we write Z. as
i =5 [ (0P~ ) duet [ 6 - Q). (3.1)
where
P(t) = ¢(u(t)) + %LQ( )+ Q(u(0)). (3.12)

Since 1) is nonnegative thanks to (2.19¢) and (3.8), we have ¥(t) > (¢(u(t)))™. On the other hand,
we have

OO 1 e 1
E/ (|L/|2__L2> dMa: E/ (|L1|2 L2) dM€+E/ (|L1|2__L2> dMa
2 0 852 4 0 4 0 852 (3 13)
e [ 1 e [ '
> | —L*dp.+ - L'?d
2 4/0 32 He + 4/0 IL'[” de,
where the second estimate follows from (3.9). Then, (3.10) follows. O

Corollary 3.5 (Lower semicontinuity and compactness of the functional Z.). Let (u,), be a
sequence in ACE_([0,00); X) such that

(un(0))n, is bounded, supZ|u,] < C < 0. (3.14)
neN

Then there exists an increasing subsequence k v+ ny, and a limit function u € ACL ([0, 00); X)
such that the conclusions (2.22), (2.23) and (2.24) of Theorem 2.6 hold with I = [0,00), and
moreover Z.[u] < C.
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Proof. We can apply Theorem 2.6 thanks to estimate (3.10) combined with (3.14). In order to
prove that Z[u] < C' we use the splitting in (3.11) by choosing

= [ ) dre b (0) = o) + LA+ Q. Q= supQun (0),

and writing

T [u,) = f/ (|L;1|2 - —QLi dpe +/ Uy, dpe — Q. (3.15)
2 Jo 8¢ 0
Denoting by L fo ) dr (where v is defined by (2.23)), we observe that (L, ) is pointwise
converging to L 6 ACIOC(O 00; ]R) with |L/| > |u/| £ -a.e. and
1
0(0) 2= liminf v, (1) > G(u(t)) + = L3(1) + Q. (3.16)

Combining (2.41), Fatou’s Lemma (which applies since ¢, > 0), and (3.16) we get

Czliminfls[unk]zif (|L|2 L2 dus / b dpe — Q > T [ul.
k—oc0 2 0
O

The proof of Theorem 3.2 now follows by a simple application of the Direct method of Calculus
of Variations.

We conclude this section by stating the main result of the paper on the convergence of se-
quences of WED minimizers. Its proof is postponed to Section 5.3.

Theorem 3.6. Assume Property 2.5. Let (U)e, 4 € D(¢) fulfill

[og

e = U, supd(fe,t) < oo, ¢(t:)— ¢(a) aselO. (3.17)

For every e > 0, let u. € M (c).
Then, for any sequence (ex)y with € | 0, there exist a (not relabeled) subsequence and u €
ACE ([0,00); X), with u(0) = @, such that
ue, (t) 2 u(t) Vtelo,00), (3.18)

u(0) =@, and u fulfills

[ (G + glomouo)) s+ ou@) <o) foratiezo. (319

Therefore, if in addition |0~ | is a (L°°-moderated) upper gradient for the functional ¢, u is a
curve of maximal slope for ¢ w.r.t. |0~ ¢|.

As already mentioned in the Introduction, a crucial step in the proof of Thm. 3.6 will be to
show that WED minimizers are, in a suitable sense discussed at length in Sections 4 and 7, metric
gradient flows for the value functional V. (1.7). In turn, a key ingredient for this is the metric
inner variation equation (3.20), proved in Section 3.2 below.

3.2. The metric inner variation equation. By taking inner variations of a minimizer of the

functional Z. we now derive a useful equation.

Proposition 3.7. Let T € (0,00] and let u be a minimizer of I, in M. r(@). Then the map
t— p(u(t)) — 5|u'[*(t) belongs to W1(0,T) (VVlicl([O, 00)) when T = o0) and it fulfills

= (otult) — SWPW) = ~WP@) i D(0.T). (3.20)
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Proof. Following [GH96, Chap. III], we consider perturbations of u obtained by time rescalings,
which we devise by means of the family of smooth diffeomorphisms of (0, o)

S-(t):=t+7E(1), €€ CX(0,T). (3.21)

Observe that for every 7 € R the map ¢ — S,(t) is in C*°(R) with smooth inverse T, = S-!
whenever |7] - maxg |{'| < 1; moreover S;(t) = ¢ outside the compact support of £ in (0,7") and
S-((0,7)) = (0,T). We then define

ur 1 [0,00) = X by ur(s) = u(Tr(s)) = u(S;1(s)
Hence, u(t) = u.(S-(t)). Notice that

[ul|(s) = |u'|(T-(s))TL(s) = % for a.a.s € (0, 00).

We can compute Z.[u,| by applying a standard change of variables

Tlu,] = /O e (éw;ﬁ(s) n }b(uT(s))) ds /0 T ese (%(Mf T }b(uT(s))) ds

S7(Tx(s))
_ Ooe— e (LIWP®) 1 " /
_/0 5 <2—S4(t) + g¢( (t))ST(t)> dt

and we recover the metric inner variation equation (3.20) by taking the derivative of Z.[u,] w.r.t. 7
at the minimum point 7 = 0. We have

Afu) = [Teso (<1 2s.0) (3 + Toumsio ) a

€
< 1 |u']2(t) 1 0
S-(t)/e [ _ - Yo
+/0 e ( SXCADIE + E(b(u(t)) BTST(t) dt
Setting 7 = 0 and taking into account that
0 0
So(t)=t, Si(t)=1+7E{t), +-8-(t)=£&(), =-5.() =),
or or

we conclude that

d B (1, 1 e, )
o_dTIa[uTHT:O— /0 (2|u| +E¢ou)§dua+/0 ( 2|u| +¢ou)§du€

o 1
= [ |Fwres (<5l oou) (¢ - 2¢)| ane
0 2 e
Since £ € C°(0,T) is arbitrary, an integration by parts as stated in (2.38) yields (3.20). O

Corollary 3.8. Let uer € M. (@), T € (0,00], and let us denote by V. r the absolutely contin-
uous representative of t — ¢(ucr(t)) — 5lul p|*(t) in the interval [0,T] (we simply write u. and
V. when T = o0). Then we have

T [uel =V (0) if T = o0, (3.22)
and

To[uer] = Ver(0) + e 7/ (¢(u87T(T)) - VE,T(T)) if T < . (3.23)

Proof. Inthe case T' = oo the inner variation equation (3.20) gives that the distributional derivative
of V. fulfills LV, (t) = —|ul|*(t) € L'(0,00; ). Hence, V. € WH1(0, 00; ) so that the identity

O(uc(t), |ul](t)) = Vo(t) —eV.(t) a.e.in (0,00)
yields, by the integration by parts formula (2.32), that

Tfu] = /Oooz(ug, il ) dpse = /OOO (V=) — eV2(0) e (1) = V2(0).

A similar argument leads to (3.23). O
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4. The value function and its properties

As we mentioned in the Introduction, Problem 3.1 can be interpreted in the framework of
optimal control theory, as the simplest infinite-horizon problem, cf. [BCD97, Chap. III]. In this
connection, the associated value function V. : X — [0, 0]

.— 3 . 3 !/
Ve(x) = uel(gngf(w)ls[u] = uelcgf(m)/o le(u, |u']) dpe, =€ X, (4.1)
will play a crucial role. As usual, we will always suppose that ¢ satisfies the standard LSCC
Property 2.5 and 1= > B; we also set D(V2) := {z € X : V.(z) < oo}.

It will also be useful to deal with the corresponding functional associated with the finite-horizon
functional from (3.6), namely:

T
Ver(z):= inf Z.ju]= inf / Ce(u, [0']) dpe + e T2 p(u(T)), =€ X, (4.2)
UEC:, () UEC:, T () 0

In this section, we first address some general properties of V.. Then, we use the Dynamic
Programming Principle (cf. Proposition 4.2 below) to derive a fundamental equation satisfied by
V. evaluated along any minimizer u for (4.1), cf. (4.11) below. Then, with the aid of Theorem 4.6
ahead, we will read from (4.11) that WED-minimizers are curves of maximal slope of the value
function V,, in a suitable sense (cf. Corollary 4.7).

Our first result guarantees that the functional V. is quadratically bounded from below and
lower semicontinuous with respect to the o-topology, at least on bounded subsets of X.

Lemma 4.1. Let us suppose that ¢ satisfies the standard LSCC Property 2.5 and that ﬁ > B.
Then the infimum in (4.1) is attained for every x € D(V:) and V. itself satisfies the standard
LSCC Property 2.5; in particular, V. is sequential o-lower semicontinuous on d-bounded sets of
X, and

é(x) > Vo(r) > —Q(z) = —A — Bd*(z,u.) for every x € X. (4.3)

Proof. The first two statements are immediate consequences of Theorem 3.2 and Corollary 3.5.
Estimate (4.3) follows from (3.7), the representation formula (3.11) for Z. and the positivity of
the first two integral terms in (3.11), cf. also (3.13). O

4.1. The Dynamic Programming Principle and its consequences. Interpreting the WED
minimum problem (4.1) in the light of the theory of optimal control provides the following key
result.

Proposition 4.2 (Dynamic Programming Principle). If ¢ satisfies the standard LSCC Property

2.5, 7= > B, and x € D(V.) then

T
Vi) = min ( / t.(u, |u’|>dua+va<u<T>>eT/€> for every T>0.  (4.4)
u (T 0

In particular, every ue € Mc(x) is a minimizer for the minimum problem on the right-hand side
of (4.4), it satisfies

T
Vi) = [ vl e + Vel D) for all T > 0, (45)

and for every T > 0 the curve we r(t) == us(t +T) fulfills
Wer € Mc(ue(T)). (4.6)

Proof. Formula (4.4) can be proved arguing along the very same lines as in the proof of [BCD97,
Prop. 2.5,Chap. III].
We now prove (4.5). First of all we show that, if u € €.(z) and T > 0, then

T
V() S/0 Ce(u, |u'[) dpe + Ve(u(T))e ™75, (4.7)
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It is not restrictive to assume that V;(u(T)) < oco: we can then choose w € M. (u(T)) so that
oo oo
Ve(u(T)) = / le(w, [w']) dpe = eT/E/ be(w(t = T), [w'|(t = T)) due(t), (4.8)
0

T
and we consider the new curve v € % (z) defined by

~u) if ¢ €1[0,7],
vlt) = {w(t -T) ift>T.

By the very definition of the value function we have

oo

T
Vilz) < Tlo] = / 0o, o) dpe + /T (o(w(t — T), ||t — T)) dpee (1)

which yields (4.7) thanks to (4.8).
On the other hand, choosing u. € M.(x) and defining w. r(t) := us(t + T), since w. p €
%.(ue(T)) we get

T e’}
Vi) = / (e, ) dpse + e~ T/° / 0o (ult + T), [/t + T)) dpee (1)
(4.9)

T T
N / Ce(ue, ul]) dpe + "/ Tlw. 7] > / Ce(ues [ul]) dpe +e™7/% Vo (ue(T));
0 0

by (4.7) the previous (4.9) is in fact an equality, which shows that u. satisfies (4.5), is a minimizer
of (4.4) and satisfies Z[we 7] = Ve(us(T)), which yields (4.6). O

Relation (4.5) has a simple but important differential version, which will be the starting point
for our asymptotic analysis when ¢ | 0. In order to highlight its structure, we introduce the
function

o) — V()
G.(x) =2 if 2 € D(Ve), (4.10)
00 otherwise

which, in the next sections, will be shown to suitably approximate the (relaxed) slope of ¢.
Proposition 4.3 (Fundamental identity). Let us suppose that ¢ satisfies the standard LSCC

Property 2.5 and = > B. If x € D(V.) and u. € Mc(z), the map t — Vo(u(t)) is absolutely
continuous, and it fulfills

S Vae(t)) = L) + So(me(t)) — Valwa(0) .
= %|u;|2(t) + %G?(us(t)) for a.a.t € (0, 00),
Vo (ue(t)) = plus(t)) — §|u;|2(t) for a.a.t € (0, 00). (4.12)

Proof. Tt follows from the Dynamic Programming Principle (4.4) that for any u. € M. (@) and for
all 0 < s < ¢t there holds

e~V (ue(5)) — e~ VVe (ue(t)) = / (G110 + Zo(utr))e e dr, (413)

which shows that the map t — e~ %/°V.(u.(t)) is absolutely continuous. The Lebesgue Theorem
then yields that

e/ (LVelualt) — Vel () = e (SILI(E + Z6(ue(t)) for aa. t € (0,00),

and therefore (4.11).
In order to get (4.12) we denote by V. the absolutely continuous representative of the function
t— d(us(t))—5|ul|?(t) on (0,00). The inner variation equation (3.20) gives that the distributional
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derivative of V. fulfills LV.(t) = —[ul|?(t) € L'(0,00;u.). Hence, V. € W1(0,00; ) so that
the identity

Cuc(t), |ul](t)) = V(t) —eV.(t) a.e.in (0,00)
yields by the integration by parts formula (2.38) that

Vetuelt) = [ Bt il mane(r) = [T (Ve ) = Vi) duetr) = vt
for every t > 0. O

As a consequence of (4.12), we deduce some integral estimates on ¢(u:) and |u.| uniformly with
respect to € > 0.

Corollary 4.4. Let us suppose that ¢ satisfies the standard LSCC Property 2.5 and 1_%55 > B.
Then, every u. € M.(@) fulfills the following energy identity

Ve (ue(t)) + /t [ul2(r)dr = Ve(us(s)) for all0 < s <t < oco. (4.14)

Furthermore the following esti:nates hold
/OT lul |2(t)dt < 2(1/5(11) + Q(a)) BT, (4.15a)
/0 " buc()dt < Te(a) +  (V-(3) + Q@) ) e (4.15b)

for all’T >0 and all € > 0.

Proof. Combining (4.12) and the metric inner variation equation (3.20) we obtain

%V}(ug(lﬁ)) + [ul]?(t) = 0 for a.a. t € (0, 00), (4.16)
yielding (4.14).
We now introduce the function
We(z) = V() +2Q(z), satistying 0 < max (vs(a:), Q(x)) < W.(z) for every z € X, (4.17)
(with Q from (2.19¢)), and we set we(t) := We(ues(t)). Then, w. is an absolutely continuous

function satisfying the differential inequality

d
Ve < —|ul? + 4Bd(ue, us)|ul| < 4B%d? (ue, uy) < 4BQ(ue) < 2Bw, (4.18)

where we have used (4.16) and, for the second inequality, the elementary estimate zy < 22 + iyz,
so that

Q(ue(t)) < we(t) < we(0)e?® = (Vs(a) + 2Q(a))e23t. (4.19)
We then have that
T
A|¢Fa:m@—%%awsm@+@%aws4%@+Q@ym, (4.20)

where the first estimate follows from (4.3) and the last one from (4.19). This yields (4.15a).
It follows from (4.3) and (4.12) that

dus(t)) < ¢(a) + §|u'5|2(t) for all £ € [0, 00).

Hence, a further integration over (0,7') gives (4.15b). O
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4.2. Gradient flow of the value function. In this section we will show that any minimizer u.
of the WED functional Z. of Problem 3.1 is a curve of maximal slope for the value function V;
with respect to its L'-moderated upper gradient

o(x) — Ve(x)
Ge(z) = c
00 otherwise.

if 2 € D(V2),

In the forthcoming Theorem 4.6 we will show that G is an L'-moderated upper gradient (in
the sense specified in (2.5)) of V.. We also refer to Appendix A ahead for further results in this
connection. We first state a useful Lemma.

Lemma 4.5. Let u € AC*([0,T]; X) with ¢ ou € LY(0,T). Then for every 0 < r < s < T we
have

eV (u(r)) — e/ Vi(u(s)) < / (%Iu’l2 + é(b(u))e‘t“ dt, (4.21)
SV, (u(s)) — "/ Vo(u(r)) < /S (%|u’|2 + éqﬁ(u))et/s dt. (4.22)

Proof. Let us fix r < s € [0,T7], let us choose w € M.(u(s)) and let us consider the curve
o(t) = u(r+t) %ngtgs—r,
w(t—(s—r)) ft>s—r
so that
—(t—r)/e
Vlu(r) < Zlo] = [ (e 0) S dt eV ()

Multiplying the previous inequality by e~"/¢ we get (4.21). Applying the same argument inverting
the order of time we infer (4.22). O

Theorem 4.6. Under the standard LSCC Property 2.5, for every € > 0 and for every u €
AC?*([0,T); X) such that V. ou € L*(0,T) and G, ou € L*(0,T) we have that

the map t — V. (u(t)) s absolutely continuous on [0, T]; (4.23)
d 1 1
‘a%(u(t))‘ < §G§(u(t)) + §|u’|2(t) for a.a.t € (0,T). (4.24)

In particular G, is an L'-moderated upper gradient of V..

Proof. Let u € AC?([0,T); X) be fixed according to the assumptions of the theorem. Since ¢ =
%Gg + V. by the definition of G., we get ¢ o u € L*(0,T). Setting z(t) := e~ */*V.(u(t)), H.(t) :=
Sy Gl + Loy (u))dr, (4.21) yields

z(r) —z(s) < He(s) — He(r) f0<r<s<T.

It follows that the map t — z(t) — H.(t) is nondecreasing; since it is integrable, z and V; o u are
locally bounded in (0,7): let us set S(I) := L sup; [V ou| where I C (0,T) is a compact interval.

/¢ we obtain

Multiplying inequality (4.21) by e
Ve(u(r) = Ve(u(s)) < (e =1)Ve(u(s)) + He(s) — He(r).

We then estimate the first term on the right-hand side by resorting to the elementary inequality
0<1-—e*<xfor x>0, which yields

Ve(u(r)) — Ve(u(s)) < S(I)(s —r) + He(s) — He(r) r<s, r,sel. (4.25)

Multiplying (4.22) by e~%/¢ and arguing in the very same way we obtain (4.25) with the order of
r and s interchanged. We thus get

[Ve(u(r)) = Ve(u(s))] < SU)[s —r[ + |H(s) = H(r)|  rsel, (4.26)

which shows that V o w is locally absolutely continuous.
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Let us fix now a time r € (0,7) which is a differentiability point for V. ou and a Lebesgue point
for the integrand in (4.22). Dividing this inequality by s — r and passing to the limit as s | 0 we
obtain

A (Ve ow) (r) + T Va(u(r) < (G P ) + Zo(ur)) )l (1.27)
which shows ) )
(Vzou) (r) < 3l P(r) + 5Gee(r). (1.25)

A similar argument applied to (4.21) yields the opposite inequality, thus leading to (4.24) and the
absolute continuity of Vz ou in (0,7).

Since V. ow is also lower semicontinuous, passing to the limit as s | 0 in (4.22) written for » = 0
yields the continuity of V. o u at r = 0. A similar argument applied to (4.21) at s = T yields the
continuity of V. owu at T'.

We conclude the proof that G. is an L!-moderated upper gradient by integrating (4.24) from
0 to T and applying Corollary 2.3. (|

Corollary 4.7. Every u. € M(u) is a curve of mazimal slope for V. with respect to the (L'-
moderated) upper gradient G-.
5. PASSAGE TO THE LIMIT AS € — 0 AND PROOF OF THEOREM 3.6

The proof of Theorem 3.6 is carried out in Section 5.3 and relies on a series of intermediate results
on the asymptotic properties of the functionals (V). as € | 0, proved in Sec. 5.1. As usual, we
will always assume that the functional ¢ satisfies the standard LSCC Property 2.5.

5.1. Comparison and asymptotic properties of the functionals (V). as ¢ | 0.

Lemma 5.1. Let us suppose that the standard LSCC Property 2.5 holds. Then,

(1) For every u € X the map € — V(1) is non increasing, i.e.

Ve, (@) < Ve, (1) forallu e X and all €1 > €o; (5.1)
(2) For every u € X there holds
Vi(a) 1 6(@) as <1 0; (5.2)
(8) Every family (4c)eso C X satisfies the T-liminf inequality
a. > 1, lirralisoupd(ag,ﬂ) <oo = ¢u) < lirg/%nf%(ag). (5.3)

Proof. The monotonicity property (5.1) is a consequence of the equivalent representation of V. as
_ . “ (1 _
viw = min [ (S0 + st e ar. (5.4

Convergence (5.2) immediately follows from (5.1) and (5.3). In order to prove the latter property,
it is not restrictive to assume that V.(i.) < V < oo for sufficiently small e: then, Problem
3.1 is feasible, M.(@i.) # @ by Thm. 3.2, and we can choose u. € Mc(4.) as in (3.11) we set

Ye(t) == Plue(t)) + %%(fot |u’5|d7°)2 + Q, where Q > limsup, | Q(), so that

o0 e—t/g oo
V() > / . Pe(t)dt —Q = / e e (es)ds — Q. (5.5)
0 0
Observe now that the uniform estimate (4.15a) yields
€S 1/2
d(uc(es). 72) < (e / utf2ae) " < Vaes (V@) + Q)
0

so that  limd(uc(es),u:) =0,
el0
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so that for every s > 0

liﬁ)l u:(es) = 4 in the o-topology, limfonf Ye(e8) > ¢(a) + Q.
E. 1>

Eventually, an application of Fatou’s lemma to (5.5) yields liminf. o Vz(t:) > ¢(a). O

The next result provides a lower bound of V; in terms of the Yosida regularization of ¢, defined
as

o) = int (a4 o) wE X, e (5.7)
Notice that .
or(z) > —Q(=) if % > B, (5.8)

and ¢, is uniformly bounded from below if ¢ is bounded from below. Let us mention in advance
that the upcoming (5.9) will be used for establishing a key inequality between the local slope |09
and limsup, |, Ge.

Theorem 5.2. For every x € X and T > 0 such that ﬁ > B we have

T
Ve(z) > / by () dpc (t) — 2Q(z)e™ T/ for every T > 0; (5.9)
0
in particular, there holds
Vi) = [ aul)duato (5.10)
0
Proof. For every u € €.-(x) we introduce the energy functional
t
E(t) := / [u'[(s) ds. (5.11)
0
Formula (2.33) yields
Te o 1 e T/e
| SuP@dnt = [ JE@ )+ S—E@), (5.12)
, 2 o 2 2
so that
r 1 1 —T/e
Tl > [ (GE) + 6u(0) o) + (FB) + Ve(u(r))o 7 (513)
On the other hand
t 2 2
B0 2 1 [ Wioas) > HUD v ) > -2 - 8Rwr)e) (519)
0
so that, taking into account that B < %, we find
T
Tl = [ (5 (o)) + 0(u(t)) due(t) ~ 2Q(a)e” 7% (515)
0
(5.10) immediately follows from (5.9). O

5.2. The WED slope and its relaxation. Let us now introduce the functional

¢(x) = Ve(z)

|Ow@|(z) := limsup G (x) = limsup /2 for all x € D(¢), (5.16)

0 eJl0

which shall be referred to as the WED slope of ¢; as usual we set |0y ¢|(z) = oo if & D(¢). We
also introduce its lower semicontinuous relaxation with respect to the o-topology, along d-bounded
sequences with bounded energy, viz.

|05 é|(x) := inf {lirr%inf |Owd| () : Tp %o, sup(d(zn, ), ¢(x,)) < oo} . (5.17)

We shall refer to |0, ¢| as the relazed WED slope of ¢.
In Proposition 5.3 below we prove that |Ow¢| is dominated by the local slope of ¢.
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Proposition 5.3. If ¢ satisfies (2.19¢). then
0w o|(x) < |0¢](z)  for every x € D(6). (5.18)
Proof. We recall the duality formula for the local slope [AGS08, Lemma 3.1.5]

¢(z) — ¢u(x)

; for every x € D(¢). (5.19)

1
§|8¢|2(x) = lim sup
10

It is not restrictive to suppose |9¢|(z) < oo so that by (5.8) there exists a constant C' > |0¢|(z)

such that
ogwgc if0<t<%. (5.20)
Choosing T so that 0 < T < 4, by (5.9) we get
¢(x) — Ve(2) T o(x) — ¢u(x) e Te
2 < [P A S gy 1)+ (ota) + 20))
T/e _ ~T/e
- /0 9(@) = Per() - f“(x) te~"dt + —— (9(x) +2Q())

< [ (e ) a2 ot 200),

where the last inequality follows from (5.20). Since the last integrand is uniformly bounded,
Fatou’s Lemma yields

%|8W¢|2(:v) < /000 lim sup (C/\(M)) te”tdt

el0
g/ %|8¢|2(x)te_tdt=%|8¢|2(:v). O
0

With our next result we provide the converse estimate of (5.18), cf. (5.23), in terms of the
relazed slopes |0~ ¢| and |0, ¢|. Indeed, we shall derive it from estimate (5.22), which will play a
key role in the proof of Theorem 3.6. It involves |0~ ¢| and the lower semicontinuous relaxation
of G, itself, with respect to the o-topology, along d-bounded sequences with bounded energy, and
along vanishing sequences (n)n, 1.e.

4~ (z) := inf {hrr%inf G, (zn) : end 0, 0 5z, sup(d(zn,z), d(zn)) < oo} . (5.21)
Proposition 5.4. Assume Property 2.5. Then, for every @ € D(¢) there holds

G (u) = |07 ¢l(u), (5.22)

|05, ¢l(w) = |07 ¢|(w) . (5.23)

Proof. Let us fix a vanishing sequence (&, ),, and a sequence @,, = @ with sup,, (d(tn, @), ¢(i)) <
C < oo. From the definition of V; we have

1, _ 1 o[>~ 1 [®et/en |
(@0 Ver (1) > = [ (0l =00, ) e, (0= = [ Gl PO ae (529

En En

for every we,, € 6., (4y). In order to show that

timinf - (6(7:) V-, (52)) > 210" 6(@), (5.25)

n—o0o &£,

we pick w,, such that, additionally, it fulfills for every n € N

/ (%m;n (s) + 5107 6P (s, (s))) ds + ¢(w., (£)) < S, (0)) = d(@n) forall ¢t >0 (526)
0
and such that

sp (o, 00+ [ ., (545 < ) (5.27)

neN, te[0,00)
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where we have used the place holder H., (s) := $|w’. |?(s) + £|0~ ¢|?(we, (s)). In fact it has been
shown in [AGS08, Thm. 2.3.1, Lemma 3.2.2] that, under Property 2.5, for every n € N there exists
We, € G, (Uy) complying with (5.26)—(5.27).

In the following lines, we derive some finer estimates for the sequence (we, ). Indeed, for almost
all t € (0,00)

__d2(w€n (t), we, (0)) < d(we(t), we, (O))|w;n (t) <

for every § > 0. Hence, upon integrating along the interval

G0, (1)1, (0)) < 8 (8, (0)) = bl () + 5 | 5, (9.0, (0)ds

‘1
—d2(wan (8),1y,)ds

< 04 B, (1), ) + 5Q() + 5 [
5 ) 2

where the first inequality follows from estimate (5.27), and the last one from the coercivity con-
dition (2.19¢) for ¢. Choosing § = 1/(8B) and taking into account the bounds on the sequence
(@n)n, we then conclude

t
d?(we, (1), 4,) < C (1 +/ d*(we, (S),ﬁn)ds) ,
0
whence, by the Gronwall Lemma,

sup d? (we, (1), an) < C.
neN, te[0,00)

Combining this estimate with (2.20) we infer
3C >0 VneNVte[0,00) @ |p(we, ()] <C,
whence by (5.27)

t
/ He, (s)ds < C forallt € [0,00), n€N. (5.28)
0

Therefore, we have

1 oo - 1 oo t
L[ - stwn a0 = = [T ([ 0as) a0

en Jo
1

= — e e, (t)dt
en Jo

(5.29)

where the second equality follows from the integration by parts formula (2.34), taking into account

(5.28). Plugging (5.29) into (5.24), the term i o "7;/5" |wl |?(t) dt cancels out, and we conclude
that
1 — — 1 > 2 1 > —s 2
= (0(an)=Ve, (@n)) 2 5 | 100 (we, (1)) dpe, (t) = 5 | e7°|0¢]" (we,, (€ns))ds,  (5.30)
n 0 0

where again we have used the change of variables in (5.4). Since for all s € [0, 00) we have

d(we, (£n5), we,, (0)) < (en5)'/? sp [w? |l20.) < Clens)?, (5.31)
te|0,00

(the latter estimate due to (5.27)) and w., (0) = 4,, = @ as n — oo, we conclude that w,, (£,5) > @
as n — oo for all s € [0,00). Also, observe that for all s € [0, 00) sup,,cyd(we, (en5),u) < C due
to the bounds on (@), and (5.31), and that sup, ¢(we, (€,5)) < C by (5.27). Therefore,

lim inf |06|? (w., (€,5)) > |0~ ¢|*(a) for all s € [0, 00).
n—oo
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Ultimately, from (5.30) and Fatou’s Lemma we find

lim inf — (B(tn) Ve, (Wn)) > 1/OO e *liminf |9¢|? (w., (€,5)) ds
0

n—co &, 2 n—00
1 > —S19— 412(5 Lo 2(5
[ el ormas = SlooP @),

0

whence (5.25). Since the sequences (), and (g5,), are arbitrary, we conclude (5.22).
Finally, let us check that

Y

|05 ¢l(a) > 9 () for all w € D(¢), (5.32)
whence (5.23) immediately follows. With this aim, let us fix 7 > 0 and pick a sequence (@, ),, with
Uy 2 @, and sup,, (d(iin, @), ¢(ti,)) < oo such that

lim inf lim sup G (@) < |04 &|(@) + 7.

n—oo E\LO
Up to an extraction, we may replace liminf,,_, ., by lim, ... Hence,

IneNVn>n: limsupG.(a,) = 1nf sup Ge(ay,) < |04 é|(a) + 2n.
€l0 ae(Or)

Therefore, there exists a vanishing sequence (r,), such that, for n sufficiently big, G, (4,) <
|05, #|(@) + 2n. This ensures that

¢~ (u) < liminf Gy, (un) < 105 ¢|(u) + 3n,
n—oo
which concludes the proof of (5.32), since n > 0 is arbitrary. ]

Combining Propositions 5.3 and 5.4 we conclude the following result, specifying in which sense
the quantities (G.). approximate the relaxed slope |0~ ¢|.

Corollary 5.5. Under the LSCC' Property 2.5 there holds
|0y, @|(a) = |0~ ¢|(a) for every w € D(¢). (5.33)

In particular, if the local slope |0¢| is o-lower semicontinuous along d-bounded sequences with
bounded energy, then |0, ¢|(a) = |0¢|(a) for all @ € D(¢).

5.3. Proof of Theorem 3.6. It follows from Corollary 4.4 and the fact that sup, ¢(@.) < C that

s)ds <
3C>0 Ve>0Vtel0,00) : folugl s <C,
fo dS<O

Moreover, observing that d(us(t), @) < fot |uL|(s) ds and taking into account (3.17), we conclude
that for every T'> 0

IC=C(T)>0 Ve>0 Vte[0,T] : d(u(t),n) < C(T). (5.34)

We now apply Theorem 2.6 and conclude that, for every vanishing (ex)r there exist a (not
relabeled) subsequence (ue,)r and u € ACioc([0,00); X) such that the pointwise convergence
(3.18) holds, as well as (2.23) and (2.24).

We are now in a position to pass to the limit as € | 0 in identity (4.11), which we integrate on
any interval (0,t) C (0, 00):

t
1 _
5 [ P st [ L ) e o) a5 4 Ve ) = Ve ). 639
Assumption (3.17), estimate (4.3), and the lim inf-inequality (5.3) yield that
o(u) < likrn inf V;, (@, ) <limsup V, (4, ) < limsup ¢(te, ) = ¢(a). (5.36)
—+o0 k— o0

k—o00

As for the left-hand side of (5.35), we observe that
limﬂglf Ver (ug, (8)) > @(u(t))) for all ¢t € [0, 00) (5.37)
€k



28 RICCARDA ROSSI, GIUSEPPE SAVARE, ANTONIO SEGATTI, AND ULISSE STEFANELLI

thanks to (5.3) and (3.18), and
liminf/ lul, |°(s)ds > / lu'|?(s (5.38)
erd0

by (2.23). In order to conclude (3.19), it remains to show that

A b1

hrnlnf/ — (p(ue, (5))=Ve, (ue, (5))) ds > / =0 ¢|2(u(s))ds. (5.39)

er40 0 €k 0 2
With this aim, we use that, for any ¢ > 0

N ¢ 1 P ! ¢(u€k (S))_Vik (u5k (S))
hg:jgf = (@(ue, (5))=Ve, (ue, (5))) ds > llggjgf ( - + dp(ue, (s))) ds

—i—hmlnf( / o(ue, (s ) =NL+1.

¢
I = —5limsup/ d(ue, (s))ds > —=6C
Ek$0 0

for a constant independent of e, where the latter inequality ensues from estimate (4.15b) and
condition (3.17). As for I, we may apply the Fatou Lemma since the function

D1 (5)~Ver (44 (5)) | 500, ()

€k
is bounded from below by a constant independent of e;: indeed, the first summand is positive,
and the second one is bounded from below in view of the coercivity (2.19¢) and estimate (5.34)

above. Therefore,
t
1z [t (el g, (5 ) 0
0 erd0 €k

Now,

S —

Now, for any fixed s € (0,¢) out of a negligible set, let us extract a further subsequence (&},),
possibly depending on s, such that

(LD Valealo) gy, () +00(us (5))

€k
Observe that, along this subsequence there holds supy, ¢(uc; (s)) < 0o, as well as estimate (5.34)
and convergence (3.18). Therefore, we are in the position to apply the I'-lim inf inequality (5.22)
from Lemma 5.4. We ultimately conclude that

<¢(“5k(5>>_v5k (uen(s) | 56 (ue, (s))) > %|87¢|2(u(5)) +o(uls)) for a.a.s € (0,).

€k

lim inf
Eklo

<¢(ua; (8))— Ve (ug (s))

!
€k

lim inf
Ek$0

All in all, we deduce that
t
limjglf/ Ei((b(usk(s))—vsk (ue, (5))) ds > / ~107 6% (u(s))ds —|—5/ d(u(s))ds — C9.
Ek 0 k

Since 4 is arbitrary, we infer (5.39).
Combining (5.36)—(5.39) we pass to the limit in (5.35) and thus conclude the proof of the
integral inequality (3.19). O

6. FINER RESULTS FOR A-GEODESICALLY CONVEX ENERGIES
Throughout this section, we shall further assume that
¢ is A-geodesically convex on X for some A € R, (6.1)

cf. (2.9). Under this condition, first of all we shall prove the continuity of the value function
with respect to the metric d. The following result complements Lemma 4.1, where we showed the
sequential o-lower semicontinuity of V. on d-bounded sets, as well as Theorem A.6 in Appendix
A ahead.
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Lemma 6.1. Assume Property 2.5 and (6.1). Then, V. is continuous on sublevels of the energy
¢, namely

n

(ﬂn — 4 and sup ¢(uy) < oo) = Ve(un) = Ve(a). (6.2)

Proof. Let u. € %:(4) be a minimizer for Z. (observe that it exists since @ € D(¢)). We construct
a sequence of curves (uy), with u, € €.(4,) for every n € N, fulfilling

lim sup V; (4y,) < limsup Z; [u,] < Z.[uc] = Ve(a@) (6.3)
n—00

n—00

and combine this with the previously proved lower semicontinuity of V. with respect to the topology
o, cf. Lemma 4.1. To construct (u, ), we argue in this way: for every n € N we set 7, := d(ty,, @),
and consider the constant-speed geodesic 7, : [0,7,] = X connecting @, to @, such that

d(n(t), ¥ ()
t—s
Hence |v,,|(t) =1 for almost all ¢ € (0,7,). We define u, : [0,00) — X setting

un(t) = {%(t) te0,ml,

ue(t) t € [rp,0).

=1 forall s,t € 0,7, (6.4)

Then,

o0

L] = | "t )+ [0, @) a1+ T

Since I converges to Z.[ue] as n — oo, to conclude (6.3) it remains to show that lim, . I; = 0.
Now, by (6.4) and the A-convexity (6.1) we have

L= /O ot/ (% + égb(”yn(t))) dt

A T n — 1)t
< <1 — ) (o) 6@} - e/ - S [ ety
0 Tn
and we refer to the last integral as Is. We have lim, ., I3 = 0, hence the right-hand side in the
above inequality converges to 0 as n — oo, which concludes the proof. ([l

In the following two sections we are going to provide a series of finer properties, and estimates,
for the family (u.). of WED-minimizers. We shall prove them under the A-convexity condition
(6.1), distinguishing the cases A = 0, handled in the upcoming Section 6.1, and A < 0, see Sec.
6.2. The starting point for all calculations will be the following relation

d? /1 d1 d? d1 )

~e s (GIPO) + PO = ~ 6t~ 53O < -AuP) in (0.0, (63)

holding for all A < 0.
Remark 6.2. In the Euclidean case X = R", for ¢ smooth, we can formally derive (6.5) by testing

by u. the Euler-Lagrange equation satisfied by WED-minimizers, i.e. —eu.” 4+ u. + Dp(u.) = 0,
and differentiating the relation thus obtained. Therefore,

ed o d o o d /
—§@|Ua(f)| + E|ua(t)| = —E(<D¢(Ua(f))aua(t)>)
= (D (1)), 10 (1) — (D (1)) (. (1), 1)
< el (O + 3 < () — A ()P
< 5l OF ~ Nl

where for the first inequality we have used that —D¢(us) = —eu.” + u. by the Euler-Lagrange
equation, and that ¢ A\-convex implies D?¢ > ). Therefore we conclude (6.5).



30 RICCARDA ROSSI, GIUSEPPE SAVARE, ANTONIO SEGATTI, AND ULISSE STEFANELLI

In both Section 6.1 and Sec. 6.2, we will devote some effort to the proof of inequality (6.5) in
the present metric context, where the above arguments are not available. Then, from (6.5) we
shall deduce the additional properties of the WED-minimizers (u)e.

The basic result underlying (6.5) is the following Lemma, which holds both for A = 0 and A < 0
and is thus anticipated here.

Lemma 6.3. Assume Property 2.5 and the A-convexity (6.1) with A € R. Set

t
1
U:(t) = /0 B ul|?(s)ds (6.6)
and for every 0 < a < b < oo consider the family of linear functions
t—a
lop(t) := . 6.7
o) = g (67)

Then, for every [a,b] C [0,00) we have

b
/ (¢(us(t)) + us(t)) dpe (t) §(¢(u5(a)) + us(a)) (ia,b - ea,b) + (¢(us(b)) + us(b))oa,b

A

— §d2(u‘E (a),uec(b))Tap,

where 0,1, = f; lap(t)dpe(t), iap = pe([a,b]) and Tyyp = f; la,p(8) (1 — 1o p(2)) dpe ().
Proof. Let us take a < b in (0, 00) such that ¢(us(a)) < oo and @(u.(b)) < oo and consider the

d(ue(a),us (b))
b—a :

(6.8)

geodesic v : [a,b] — X connecting u.(a) and u.(b) with constant speed |¥'|(t) =
Let us consider the curve ¢ defined by

B(t) = u(t) te(0,a)orte (boo),
() teab]
By construction, ¢ € €;(u), hence Z.[uc] < Z.[o], which implies

e

/a b (51t P(t) + olue(t))) due(t) < / b (SR +0r(1)) et (6.9)

Now, since ¢ is geodesically convex, there holds that

o(y(1) < (1—|a,b(f))¢(ua(a))+|a,b(t)¢(ua(b))—5(1—|a,b(t))|a,b(t)d2(ua(a)aua(b)) for all ¢ € [a, b].

2
(6.10)
Moreover, we can estimate the speed of the geodesic v by
d?(ue(a), ue (b)) I U= (b) — U(a)
"PP(t) = S0 < / Pydt < 27— 11
R0 = SEE < e [P < 27— (611)
Now, we introduce the function
ety = |4 t € (0,a) or t € (b,00),
N (1 = lap(t)Ue(a) + o p(t)U (D) t € [a,b],

which coincides with U, when ¢ = a,b and satisfies 5|v/|?(t) < %Zflgvb(t) for all t € (a,b). We
have

b b
: / Sl (0)dpa(t) = / U)o (1) + [ 2 (1)) (6.12)
b

b b
1 d ~ ~ _ ~ a,b b
: / SR PO dua(t) < < / S dpa (1) = / a0 dpe(t) + [ (613)
by the integration by parts formula (2.33), where the inequality in (6.13) is due to (6.11). Thus,
recalling that U%°(t) = U.(t) for t = a,b, and combining (6.12)—(6.13) with (6.9) and (6.10), we
deduce (6.8). O
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We conclude this section by fixing an identity that can be checked with direct calculations, and
that will have a crucial role in the following proofs:

£2 = a2(1— Loy (1)) + bla () — (b— @)% (1 — lap(t))las(t) for all t € [a,b] and all 0 < a < b. (6.14)

6.1. Finer properties of WED minimizers in the A-convex case, A = (0. The main result
of this section, Theorem 6.4 below, shows that, for every fixed € > 0, along WED minimizers u.
the energy ¢ is nonincreasing and convex. Moreover, we also prove that the map ¢ — ¢(uc(t)) is
continuous on [0, 00), i.e. it enjoys the same continuity as u.. Observe that these are the properties
of ¢ along a curve of maximal slope, i.e. a solution of the gradient flow in the limit as € | 0, cf.
[Bré73, Thm. 3.2, page 57] for the Hilbertian case, and [AGS08, Thm. 2.4.15] in the metric context.
Interestingly, and somewhat surprisingly, these properties hold also at the level ¢ > 0, provided
that the energy is geodesically convex.

Theorem 6.4. Assume Property 2.5, (6.1) with A =0, and let u. € M (@). Then,

1)t LW |2(t) admits a locally Lipschitz continuous pointwise representative on (0,00);
2 Ue

(2) t— |ul](t) and t — @(uc(t)) are nonincreasing,

(3) t— P(uc(t)) is conver,

(4) (6.5) holds with A =0, i.e.

e /1, a1, ,., & d1, ., ,

— e (S0 + PO = —So(el) - SHPO <0 in D(0,00). (6.15)
Hence, the function t — ¢(u.(t)) is continuous on (0,00) and right-continuous at t = 0.

For the proof of Theorem 6.4 we need a series of auxiliary results. The first one will allow us
to deduce from estimate (6.8) (with A = 0) in Lemma 6.3 that the function ¢ — ¢(ue(t)) + U (¢),
with U, from (6.6), is convex.

Lemma 6.5. Let ( € C1([0,00)) be strictly positive and let 1 be lower semicontinuous in (0,00).

If

b
/U@«muswmmwwwnw@%bwm{%w—ﬁamw@m

lap = f: ¢(t)dt, (6.16)

then 1 is convexr.

Proof. We preliminarily prove that for any ¢ € (0,0)
¥(t) = liminf (t). (6.17)
t—t

Indeed, for any fixed ¢ the lower semicontinuity of ¢ gives ¥(f) < liminf, ;¢ (t) =: L. Then,
consider a sequence t,, | ¢ for which ¥(¢t,) — L as n — oco. Now, denoting by n the measure
n = ((t)L, we have

tn
liminf_;/ Y(t)dn(t) > L and
t

R D
) 1 17 . B 1m 1 [2% L _ l
Jin ey L e 000 = i s [T b, @) = ;

(recall the notation Iz, (t) = ti;ft) Thus, dividing both sides of (6.16) (written on the interval
(t,tn)), by p([t,t,]) and letting n — oo, we get

1 1
< Z -
L 21/1(1%)—}— 2L

which, together with ¢ (#) < L, implies L = (¢). The same argument works with a sequence
tn T t, and we conclude (6.17).

Now, in order to conclude the proof we argue by contradiction. Thus, assume that 1 is not
convex. Then, there exist o < t < 3 such that

P(t) > (1—lap(@)v(a) + la,s(B)d(B). (6.18)
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Denote by A, g the open set defined as Ay g := {t:(6.18) holds for e, B}. Let (a,b) be the
connected component of A, g containing ¢. Thanks to (6.17) and to the lower semicontinuity of
1), we have

P(a) = liminf(t) > (1 —la,p(a))P(@) +la,p(a)d(8) = ¢(a),

t—a

which gives ¥(a) = (1 — lyp(a))(a) + lo,g(a)(8). The same argument also gives ¥ (b) =
(1 —1la,8(0))(c) + la,5(b)1(B). Therefore, we can conclude that

W) > (1 —lgp(t))(a) + lap(t)(b) for allt € (a,b).

Now, integrating the above inequality with respect to the measure p, we contradict (6.16). (|

We now derive a bound on the energy ¢ evaluated along u. in terms of the initial energy.
Lemma 6.6. Let u. € M.(a), then
P(us(t)) < ¢(w) forallt > 0. (6.19)

Proof. By contradiction, assume that there exists a point ¢ for which ¢(uc(f)) > ¢(@). Since ¢
is lower semicontinuous, the set A := {t € (0,00) : ¢p(ucs(t)) > ¢(@)} is open. Let (a,b) denote
the connected component of A containing #: then, (a,b) is a bounded (open) interval of (0, 00).
First of all @ > 0. Moreover, b is finite. In fact, assuming the opposite, we would have ¢(u.(t)) >
¢(u) > ¢(a) for all t € (a,00), and thus, setting

we would have Z.[u.] > Z.[u], against the fact that w. is a minimizer for Z.. Thus, b < co and

¢(uc (b)) < H(@).
Now, let us consider a geodesic ¥ : [0,1] — X connecting u.(a) with wu.(b) with unit speed.
The convexity of ¢ implies that

¢(7(s)) < max{d(uc(a)), p(uc(b))} < ¢(a),

where we have also used that ¢(uc(b)) < ¢(u). We reparametrize the geodesic 4 on [a,d] to a
curve v, with v(t) := (s(t)), fulfilling |7'|(¢¥) = |u.|(t) on [a,b]. To obtain this, we consider the
parametrization ¢ — s(t) such that

s'(t) = |ul|(t) and s(t) = min{/at |u;|(r)dr,1}.

As a consequence, the curve

satisfies
’ € 12 ’ € 12
| Gl + o) dut = [ (5170 +o00) ducto)
b
< [ (5P o) + otue(0) dueto
which contradicts the minimality of u. for Z.. Hence, (6.19) holds. O

We now have all the ingredients for checking Theorem 6.4.
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Proof of Theorem 6.4. We split the proof in some steps.
> (6.15): First of all, Lemma 6.5 and inequality (6.8) give that ¢ — ¢(ue(t)) +U:(t) is convex and
thus

d? d? d1 .
A O0(0) +U) = o) + L2 0 D) (6:20)
Then, we rewrite the metric inner variation equation (3.20) as
d 1 d1 1 .
g u=(t) + §|Ula|2(f) =€qa ug|*(t) — > ug[*(t)  in D'(0,00) (6.21)
which, together with (6.20), gives (6.15).
> ¢ +— |ul|?(t) is nonincreasing: To this end, we set w.(t) := %|u.|*(t). The above discussion
immediately gives that w. verifies
—ew!/+w. <0  inD'(0,00), (6.22)
which we rewrite as d
— set/Ea(e_t/aw;) <0 in D’'(0, c0). (6.23)

In fact, it follows from (6.23) that the distributional derivative w. of w, is locally bounded, so
that w. admits a locally Lipschitz pointwise representative, which will be still denoted by the same
symbol. Moreover, the second distributional derivative w is also locally bounded from above, so
that w, is semiconcave, and thus admits left and right derivatives at every point. We will use the
right derivative (w)’, in the following argument to show that w. is nonincreasing.

Indeed, suppose by contradiction that for some £ we had (w.)’, (£) > ¢ > 0. Since t — e™V/¢(w.)/,
is a nondecreasing function by (6.23), for all ¢ > f we would have e™*/%(w. ), (t) > e~/*(w. ), (f) >
e~t/¢¢, which would imply w.(t) > w.(f) 4+ e&(e®*="/¢ —1). This clearly contradicts the integra-
bility of w.(t) = 3|ul|?(t) on (0,00) (cf. (4.15a)). Thus, we have obtained that t — |ul|?(t) is
nonincreasing.
> t > ¢(uc(t)) is convex: It follows from (6.15) and from the monotonicity of ¢ — |ul|?(t) that
—;—;qﬁ(ua(t)) < 0in D’'(0,00), which yields the thesis.
> continuity of ¢ — ¢(uc(t)): it follows from the previously proved convexity that ¢ — ¢(us(t)) is
continuous on (0,00). In order to check that ¢ o u. is right-continuous at ¢ = 0, we observe that,
by (6.19),

imsup (s (1) < 60 (0)) = () (6.24)
Since by (2.19a) we also have liminf; o ¢(u:(t)) > ¢(us(0)), we conclude that limy g ¢p(us(t)) =
().
> t — ¢(ue(t)) is nonincreasing: This follows from Lemma 6.6 and from the convexity of ¢ —

P(uc(t)). |

6.2. Finer properties of WED minimizers in the A-convex case, A < 0. The main result
of this section is the analogue of Theorem 6.4 for A < 0. Observe that, along Hilbert and metric
gradient flows (cf. the aforementioned [Bré73, Thm. 3.2, page 57], [AGS08, Thm. 2.4.15]), the map
¢ o u is nonincreasing and, if the energy ¢ is A(-geodesically) convex, t — e=2* ¢(u(t)) is convex
(A~ denoting the negative part of \), and t — e?*|v/|?() is nonincreasing. Likewise, in Theorem
6.7 below we show that, at the level € > 0, along any WED minimizer wu. the functions ¢ o u. and
|u’| have these properties, with suitable correction terms.

Theorem 6.7. Assume the LSCC Property 2.5, (6.1) with A < 0, and let u. € M (@). Then,
(1) the function t — ¢(us(t)) is locally Lipschitz on (0,00) and right-continuous at t = 0;
(2) t — F|uL|*(t) admits a locally Lipschitz representative on (0,00),
(8) (6.5) holds;
(4) t — ¢(u:(t)) is nonincreasing;
(5) for every [a,b] C (0,00) there exists Cop > 0 such that t — ¢(ue(t)) +U(t) (with Ue from
(6.6)) is ACqy p-convex on [a,b].
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Moreover, for every N < X there exists €' > 0 such that for all0 < e < &'

(6) the function t — *)'t|u’|2(t) is nonincreasing.

We split the proof in several results, and start by checking the continuity of ¢ — ¢(uc(t)) on
(0,00), in Corollary 6.9 ahead, as a consequence of the result below, which establishes a suitable
convexity-type property of the mapping ¢ o u..

Lemma 6.8. Assume the LSCC Property 2.5, (6.1) with A < 0, and let uc € Mc(a). Let us
introduce the function

t
() ::/ i | () dr-
0
Then, there holds

P(ue(t)) < (1-L(a, b; t))¢(ua(a))+L(a,b;t)¢(u€(b))—g(1—L(a,b; t))L(a, b;t)(L(b)—L(a))* (6.25)
for all t € [a,b] and all [a.b] C (0,00), where we have used the short-hand notation, cf. (6.7),
L(t) — L(a)

L(b) — L(a)

Therefore, the function t — ¢(u.(t)) — 5L2(t) is convez on (0,00).

L(a,b;t) == lpa), Loy (L(t) =

Proof. Preliminarily, we introduce the polynomial function

Pls) = ofuc(a) + (5 L) =P 4 oo 20,

which satisfies P(L(a)) = ¢(us(a)) and P(L(b)) = ¢(u.(b)) and P”(s) = —A. A direct calculation
shows that

P(L() =(1 - L, 5 1) P(L(@)) + L(e, B ) P(L(5))
— 20 B ) L(as B )(L(5) L ())?or all 6] € (0, 00)

(6.26)

In particular,
P(L(1)) = (1 = L(a, b;1))$(uc(a)) + L(a, b; 1) p(uc (b)) — %(14-(@7 bi t))L(a, b )(L(b)—L(a))?,
so that (6.25) reads
C(t) == d(us(t)) — P(L(t)) <0 forallt € [a,b] for all [a,d] C (0,00) (6.27)

Let us prove (6.27) by contradiction. Suppose that there exist [a,b] C (0,00) and ¢ € (a,b)
(we may suppose that ¢ is in the interior of [a, b] by a lower semicontinuity argument), such that
¢(t) > 0. Denote by A, the subset of [a, b] where ( is strictly positive, and by [«, 8] the connected
component of A, ; containing ¢, so that

¢(t) >0 forallte (o,f), ¢(a) =¢(B) =0. (6.28)

Arguing as in the proof of Lemma 6.3, we now choose a suitable competitor for the curve u. €
M. (@): we consider the geodesic 7 : [L(a), L(f)] — X connecting u. () to u-(8) with unit speed,
and define the curve

3(t) = {ug(t) ift e (0,a) ort € (8,00),
VL) ift e o, fl,
so that
91(t) = WI(L@)L () = |ucl(t)  for a.a.t € (o, B).
From Z.[uc] < Z.[0] we then conclude (cf. (6.9)) that

B B
/ (e (1)) dpe (1) < / S(V(L(1))) dpie (8): (6.20)
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In turn,

/ H(3(L(1))) dpac (1)

s/’u—L</&»¢w4m>+umﬁwww4m>—gu—umﬂw»umﬂwxum—Lm»%mxw

@ / P(L(t)) dpe (1)
(6.30)

where (1) follows from the A-geodesic convexity of ¢ and the fact that v(L(«)) = u.(«) and
Y(L(B)) = us(B), while (2) ensues from the fact that ¢(u.(«)) = P(L(«)) and ¢(u.(8)) = P(L(B)),
cf. (6.28), combined with (6.26). From (6.29) and (6.30) we thus arrive at a contradiction with
(6.28). This concludes the proof of (6.25).

The final assertion follows by combining (6.25) with the identity
L%(t) = (1—L(a,b;t))L?*(a) +L(a,b;t)L*(b) — (1—L(a, b; t))L(a, b;t)(L(b)—L(a))?* for all t € [a,b],
which follows from (6.14). O

Corollary 6.9. Assume the LSCC Property 2.5, (6.1) with A < 0, and let u. € M.(a). Then,
the functions t — ¢(u.(t)) is continuous on (0,00), while t — |ul|(t) is locally bounded.

Proof. The assertion for ¢ o u. follows from the continuity of the function t — ¢(u<(t)) — 3L2(2).
Since the mapping ¢ — ¢(uc(t)) — 5luL]*(t) is in W10, 00)), we conclude that ¢ — |u’|?(t) has
a continuous representative, whence the thesis. O

We are now in a position to prove inequality (6.5), along with some of the other claims in the
statement of Theorem 6.7, in the case A\ < 0.

Lemma 6.10. Assume the LSCC Property 2.5, (6.1) with A <0, and let u. € Mc(u). Then, u.
enjoys properties (2), (3) and (5) from the statement of Theorem 6.7. In particular, the function
t — P(ue(t)) is locally Lipschitz on (0,00).

Proof. Claim 1: For every [a,b] C [0,00), let Cqp = supye(, p) [utl?(t). Then,
t = d(ue(t)) + U (t) is ACyp — convex on [a, b]. (6.31)
Indeed, from inequality (6.8) we deduce that

b
/<wum+%ww%w
b
(1 —lap(t)) dpc(t) + (p(ue(b)) + U:(b)) / la s () dpie (£)
b b
_ /\C;“’b(b — a)2 (/a (1- Imb(t))dug(t)) /a la,5(t) dpe ().

We combine this with identity (6.14) to conclude that

/(wam+%w—

b
s@wwm+%m»/

< (Qb(us(a)) +U:(a) -

b
) [0 a0 ane) + (6000 40~ 2F22) [0

Therefore, applying Lemma 6.5 we conclude that the function ¥(t) := ¢(uc(t)) + U (t) — %tQ
is convex, whence the desired (6.31).
Claim 2: there holds

a2 (1, ,, a1, ,., d2 d1 ,
N 4z = . < N\Cyy i Jb). (6.32
o (F1PO) + 3P0 =~ $50(e) - 5310 < -XCap in Da,b). (632
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It follows from (6.31) that
d2
ar?

and thus, rewriting the metric inner variation equation (3.20) in the form (6.21) and rearranging

the terms, we have (6.32).

Claim 3: the function t — $|uL|*(t) admits a locally Lipschitz representative.

We again use the notation w(t) = $|u/[*(t). From (6.32) we deduce that w. fulfills —ew! 4+ w. <

—ACqp in D'(a,b) which, setting v := —ACy p, we rewrite as

(#lu-(0) +U(1)) = ACup i D'(a,1). (6.33)

d
el S (ool 1)) < 0in D'(a,h). (6.3

Now, let us set L(t) = w.(t) — vt. It follows from (6.34) that the distributional derivative of £
is locally bounded, so that £ admits a locally Lipschitz representative, whence the claim for we.
From now on, we will identify ¢ — £|u’|*(¢) with its locally Lipschitz representative.

Claim 4: the function t — ¢(u.(t)) is locally Lipschitz on (0,00).  Since the function ¢ —
Llul[?(t) is locally bounded, its primitive U is locally Lipschitz on (0,00). In turn, by Claim 1
the mapping ¢ — ¢(u.(t)) + U:(t) is locally Lipschitz on [a,b] for every [a,b] C (0,00). The claim
follows.

Claim 5: (6.5) holds. Let f be the density of the distributional derivative —S—; (¢(u;._-(t))—|—ljlE (t)) .

It follows from (6.33) that

f(t) < =X sup |ul|*(s) for a.a.t € (a,b), for all [a,b] C (0, 00).
s€la,b]

Let t € (0,00), out of a negligible set, be a Lebesgue point for f. Then,

1 t+r
f(t) = lim — f(s)ds <lim [ —A su ul|2(s) | = =Aull?(t),
0 =tm [ ) wo( Se[tﬁﬂum) (1)
whence (6.5).
This concludes the proof. (Il

We are now in a position to conclude the

Proof of Theorem 6.7. In view of Lemma 6.10, it remains to prove properties (4) and (6), as well
the right-continuity of ¢ — ¢(u.(t)) at t = 0. We split the proof in several claims.
Claim 1: there exists a family (z5)e C (0,00) such that x5 | —2X ase€ ] 0 and

e_m5t|u'5|2 is nonincreasing. (6.35)

Then, (1) in Theorem 6.7 follows upon choosing, for every prescribed X < A, ¢’ > 0 such that for
all € € (0,¢’) there holds with —3a5 > X.
We combine (6.5) with the metric inner variation equation, cf. (6.21), and deduce that (cf. (6.22))

—ew! +w. +2 w. <0  in D'(0,00), (6.36)

where again we have used the place-holder w, := %|u§__.|2 Let us introduce the negative distributions
ve and h. by

he =" andu = —ew! + wl + 2 w,.
€
Hence,
1 2\
w‘/gl - —w; — —we = —he in DI(Ov 0). (6'37)
€ €

The general solution of (6.37) has the form

we(t) = Ae™1! + Be®2t 4 / E(t — s)(—he(s))ds,
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where z§ and z§ are the two (real) roots of the characteristic equation and E' is the fundamental
solution with support in (—oo,0]. We have that

_ 1+V1i+8e . 1—-y1+8x
Ty = T, Ty = T (638)

Note that (at least for sufficiently small ) x5 and z§ are positive. Consequently,

/ Bt — 5)(—h.(s))ds, (6.39)

since w, must be integrable on (0,00). The function F is the fundamental solution with support
in (—00,0) and can be found by solving the following Cauchy problem

v'(t) — Lo'(t) — Zo(t) =0,
v(0) =0 (6.40)
v'(0) = —1.

Denoting with H(-) the Heaviside function, we have that

1 v1+ 8\

E®t) = —Eet/(%) sinh(6(¢))H (—t) with the place-holder 6 := % (6.41)
Therefore, from (6.39) we gather that w.(t) = 3 [, he(s)e"=*)/(2) sinh(6(t — s)) ds, which we
rewrite as

ez;t 00
we(t) = 7 / he(s)e™ /% f(t,s)ds (6.42)
t

where ft,s) := 3(e*?’e™% — ). Now, differentiating with respect to ¢ we find

x5t oo

Wl (t) = 25we(t) + 92 (—hg(t)e_t/% ft,t) + / he(s)e™ /%0, f(t, s)ds) :
¢
Thus,
wL(t) < z5w(t)  in D'(0,00) (6.43)

since f(t,t) = 0 and he < 0 by construction while, in turn, 9;f(¢,s) > 0. As a consequence, we

have 4

E(eﬂ”;tws(t)) <0  inD'(0,00) (6.44)
whence (6.35).
Claim 2: the function ¢ o u. is nonincreasing.

Indeed, from (6.21) we gather that

d
dt(¢ ou.) =ew. — 2w, < (ex5 —2)w. <0 in D'(0,00) (6.45)

where the first inequality holds in view of (6.43). The second one is true for a sufficiently small ¢,
since x5 converges to —2\.

Finally, The continuity of t — ¢(u(t)) at t = 0 follows from its previously proved monotonicity,
arguing in the very same way as in the proof of Thm. 6.4, cf. (6.24).

This concludes the proof of Thm. 6.7. O

7. THE METRIC HAMILTON-JACOBI EQUATION AND THE GRADIENT FLOW OF V,

In this section we get further insight into the interpretation of WED minimizers as curves of
maximal slope with respect to V.. Our starting point will again be the fundamental identity (4.11)
satisfied by any WED minimizer u., viz.

d 1 o 1 1
—&V};(ug(t)) = §|u8| (t) + gqﬁ(ua(t)) — EVS(ug(t)) for a.a.t € (0, 00),

but we shall adopt a different viewpoint in comparison to Theorem 4.6. Indeed, here we will com-
bine (4.11) with the metric analogue of identity (1.13), which in turn derived from the Hamilton-
Jacobi equation (1.12). That is why, we may refer to (7.1) below, relating the functional 1 (¢— V)
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with (a suitable version of ) the local slope of V, cf. (7.1) ahead, as a (metric) Hamilton-Jacobi
identity. Let us mention in advance that the proof of (7.1) relies on the A-geodesic convexity of
¢, for some A € R. From this we will deduce in Corollary 7.4 that u. is a curve of maximal slope
for V, albeit with respect to this suitably modified notion of slope.

We set

2 — +
BVil() =  limsup L= = Ve(®)
v—=u, ¢(v)—¢(u) d(u,v)

and refer to |dV.| as the ¢-conditioned (local) slope of V. at u, to highlight that, in its definition
we restrict to sequences converging to u with converging ¢-energy. Clearly, we have

|OV|(u) < |OVL|(u) for all u € X.

forue X (7.1)

With the main result of this section we establish the Hamilton-Jacobi identity for the value
functional.

Theorem 7.1. Under the LSCC Property 2.5 and (6.1) for some A € R, there holds
p(u) — Ve(u)

3

2 =G.(u) =|0V:|(v) for all u € D(¢).

We split the proof in the two following lemmas.
Lemma 7.2. Under the LSCC Property 2.5 and (6.1), there holds

G.(a) < |OV.|(@) for all @€ D(¢) (7.2)
holds.

Proof. Let us € M.(@) and § > 0. We have
(Velow) = Velue@))T o (Velw) = Velwe @)™, (Velw) = Ve(ue(@))”
d(ue(9),u) Jy luLl(s)ds 51/2 (f(f |u;.|2(s)ds)l/2
R GRucs))ds
- 5 1/2
51/2 ( I Gg(ua(s))ds>

where the latter identity follows from the fact that u. is a curve of maximal slope for V. w.r.t. G,
cf. Corollary 4.7, so that |u.| = G.(u.) a.e. in (0,00). Therefore,

1/2
Ge(u) < 11m1nf< / G?(ue(s ) < limsup( () =

3

5
A
\_//—\
(=]
~—
~—
~—

+

§—0 d(us

(2) — +
< lim sup (Velw) = Ve(v))

= |0V |(u).
v—=u p(v)—p(u) d(’U, u) :

Indeed, (1) follows from the lower semicontinuity of the mapping t — G2 (uc(t)) on [0, 00), which is
in turn guaranteed by the lower semicontinuity of ¢t — ¢(u.(t)) and the continuity of ¢ — V. (u.(t))
thanks to Lemma 6.1: the latter result applies since supcg, o) ¢(ue(t)) < ¢(w) by Theorems 6.4
and 6.7. Further, (2) is due to the fact that ¢(us(d)) — ¢(u) as & — 0, since ¢ o u. is right-
continuous at ¢ = 0 (cf. Theorems 6.4 and 6.7). O

In fact, in the proof of Lemma 7.2 the A-geodesic convexity (6.1) has been used only in that it
guarantees that the map ¢ — ¢(u.(t)) is bounded on [0, 00) and right-continuous at ¢ = 0. Instead,
in the proof of Lemma 7.3 below, (6.1) is used more explicitly.

Lemma 7.3. Under Property 2.5 and (6.1), there holds D(¢) € D(|dV.|) and
Go(u) > |0Ve|(u)  for all u € D(¢). (7.3)
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Proof. Let us fix v € D(¢) and fix r > 0. We set § = M. Let us denote by 7 the constant-speed

geodesic

d(u,v)
1

Furthermore, let v. € M.(v) and, finally, let us consider the curve ¢ : [§,00) — X given by
¢(t) = ve(t — §). Hence ¢(§) = v:(0) = v, and the curve @ : [0,00) — X defined by

() = {v(f) t€[0,9],

v :[0,8] = X such that v(0) =u, v(6) = v, [¥|(t) = =r fora.a.te(0,9).

¢(t) teld o0)

is absolutely continuous, fulfils @(0) = u, and can thus be chosen as a competitor in the minimum
problem which defines V.. Hence,

mws/:oes(t,u() (1)) dt
) (o)
:/ Co(t, (1), |~/|())dt+/ <t C(), [¢'[(t) dt
/zm 1) dt+e—5/a/ A RAORCAI

where the last integral equals V. (v). Therefore,

8 2 u, v
Vi) - e o) < [ e (35 L)) ar

Using that ¢ is A-geodesically-convex, we conclude that

1d? 1
Vo(u) —e " V.(v) < 2%/0 e”!/7dt + - max{g(u }/ “tear
)\dz(u,’u) —t/e

2 u,v 2 u,v g
=e(1—e7%) <% + émax{(b(u),(b(v)}) - %/O e t/E(6 — t)tdt.

We now add to both sides of the equality the term V. (v), and divide by d(u, v), thus obtaining
Ve(u) = Ve(v)

d(u,v)
1d2(u7v) ) 1—676/5 5 1—676/5
< =
200 d(uv) J N d(u,v) ) max{¢(u), (v)}
§ 1—e9/¢ )\d2(u v) 5 .
STy S St A —tfe(s _.
d(u,v) 5 Ve (v) 252 /0 e (0 —t)tdt =: Ay + Ao + Az + Ay

Then, we take the limsup as v — w, with ¢(v) = ¢(u), of the above inequality. Notice that, we
may suppose that V.(v) < V.(u). As v — u, we have that 6 — 0, and

limsup(Aq) < l
v—U 2
. 11
lim sup(Ag) < —=¢(u)
v—=u ETr
. § 1—ede 11
llrgljblp(A3) — lim inf MTV(U) <——-V(w),

where the second limit follows from the fact that ¢(v) — @(u), and for the third limit we have
used that V; is lower semicontinuous. We also have limsup,_,,,(A4) = 0. In conclusion, we find

N Vo(u) — V. 1 1/1 1
|OVe|(u) = lim sup Velw) ~ Vev) <zr+- (—¢(u) - —Va(u)) for all r > 0.
v, B)—d(w), Ve(@)<Ve(w) AW, v) 2 r\e £
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Therefore,
12 ~ 1, 1
SIOVe|"(u) = sup { [OVe|(u)r — o7 | < —¢(u) — =V(u),
2 r>0 2 €

whence (7.3). O

1
€

As a straightforward consequence of the (metric) Hamilton-Jacobi equation (7.1) and of Corollary
4.7, we have
Corollary 7.4. Assume Property 2.5 and (6.1). Then, for every fized € > 0 the curve u. fulfils
d 1 1~
SV(uelt) =~ 3l P(0) — SOVP(uelt) for aact € (0,7), (7.4)

i.e. ue is a curve of maximal slope for V., with respect to the (L'-moderated) upper gradient |(§VE|

We conclude this Section getting further insight into the relationship between |9V.| and |9¢|.
The following result is an immediate corollary of Prop. 5.3, Cor. 5.5, and Thm. 7.1.

Corollary 7.5. Assume Property 2.5 and (6.1). Then, for all u € D(¢)
|0~ | (u) < lini%nf |OVz|(u) < limsup [OV:|(u) < |0¢|(u). (7.5)
€ el0

8. APPLICATIONS

The aim of this section is to present some application of the abstract theory. In particular,
we comment on the framing of our main result Theorem 3.6 in two different variational settings,
namely in Banach spaces (Sec. 8.1) and in Wasserstein spaces of probability measures (Sec. 8.2).

8.1. Application to gradient flows in Banach spaces. We take as ambient space X a reflexive
and separable Banach space B, with norm || - || and corresponding duality mapping J : B = B*,
defined by

g€ J(v) ifandonlyif (& v)s=v|*= ¢l (8.1)
Given an energy functional ¢ : B — (—00, 00| we are interested in trajectories u : [0,00) — D(¢
solving

~

J(u'(t)) +0°¢(u(t)) 20 in B* for a.a.t € (0,00). (8.2)

Here, 0°¢ denotes the sets of elements of minimal norm (the minimal section) in the Fréchet
subdifferential of ¢, defined at u € D(¢) by

& € 0¢(u) if and only if ¢(v) — d(u) > (&, v —u)p +o(||lv —ul]) asv— u, (8.3)

so that 9¢ coincides with the subdifferential of convex analysis of ¢ (and is thus denoted by the
same symbol) as soon as ¢ is convex. Since for every u € D(9¢) the set d¢p(u) is convex and
weakly*-closed in B*, 0°¢(u) is well defined and satisfies

00](u) < [[E]l« V& € Ip(w). (8.4)
The next result (see [AGSO08]) provides a connection between (8.2) and curves of maximal slope.

Proposition 8.1. Assume Property 2.5 with respect to the strong topology of B and suppose that
the graph of the Fréchet subdifferential of ¢ is strongly-weakly closed, i.e.

Up € B, &, € B* with &, € 0é(uy,) for alln € N
Up = U, & — & asn — 00, sup d(u,) < 0o } = §€0¢(u). (85)
There holds
07 ¢[(u) = [0¢|(u) =[]« for every & € 0°¢(u). (8.6)

Furthermore, if |0¢| is a L -moderated upper gradient for ¢, then w is a curve of mazimal slope
w.r.t. |0¢| if and only if it is a solution of the gradient flow (8.2).
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Functionals of the Calculus of Variations. In our abstract framework we can consider the so-
called Functionals of the Calculus of Variations, cf. e.g. [Lio69, Chap. 2.5]. We limit our analysis
to one of the simplest examples, in the Banach space B = L¥(2), 1 < a < oo, where {2 is a
bounded Lipschitz open subset of R%. We consider a Carathéodory integrand f : @ x R x R = R
f(x,z,u), which is strictly convex with respect to z for every x € Q and u € R, of class C!
w.r.t. (z,u) for a.e. z € Q, and satisfies the following coercivity and growth conditions for some
p € [, 00) (for simplicity), with ¢ = p(1 — 1/a) and suitable positive constants M;:

[z, z,u) > My|zP — Ma

Vaf(z,z,u)| < Ma(1+ 2P~ + |uf~1) V(z,z,u) € A x R x R (8.7)

|fula, z,u)| < My(1+ [2]7 + |ul?)
(with f,, the derivative of f w.r.t. w and V,f its gradient w.r.t. z). We consider the integral
functional ¢ : L*(Q2) — (—o00, 00| defined via

/f z, Vu(z),u(z))dz if ue W),

otherwise.

(8.8)

Lemma 8.2. The Fréchet subdifferential O¢(u) of ¢, with respect to the topology of B = L*(f2),
is non-empty if and only if A(u) == —div(V.f(-, Vi, 1)) + fu(-, Vu,u) € L (), and in that case

it is given by

O¢(u) = {A(u)} -
Furthermore, 8¢ is strongly/weakly closed in L*(2) x L* (Q) along sequences with bounded energy,
and |0¢| is an L°°-moderated upper gradient for ¢.

Proof. In order to clarify the calculations, let us denote by V' the Banach space VVO1 P(Q); we have
V < B and B’ — V'’ with compact inclusions.

Let us first notice that the restriction of the functional ¢ to V is continuous; moreover, due
to the strict convexity with respect to the gradient variable and to the coercivity assumption, if
u, = win V and ¢(u,) — ¢(u) we deduce that u, — u strongly in V.

We consider the functional : V x V — R

D(v,u) = /Qf(x,Vv,u) dz with ¢(u) = ®(u,u),

and the corresponding continuous operators A; : VxV = V', Ay : V xV — B’
Ai(v,u) = —=div(Vyf(z,Vo,u)), As(v,u):= fulz, Vo,u), A(u) = Ar(u,u) + As(u,u).

By taking directional derivatives, it is immediate to check that 9¢(u) may contain just the element
A(u). Let us first check that if A(u) € B’ then it is the Fréchet subdifferential of ¢. Notice that
by the convexity of ® with respect to its first variable

o(v) = d(u) — (A(u),v — u) = ®(v,v) — ®(u, u) — (A(u),v —u)
=®(v,u) — P(u,u) — (A1 (u,u),v —u) + ®(v,v) — D(v,u) — (A2 (u,u),v — u)

1
Z/O /Q(A2(v,u+)\(v—u))—Ag(u,u))(v_u) da d)

1
> —[lo —ul[reo(v,u), o(v,u) r:/ [ A2 (v, u+ Av = u)) = Az (u, u)| Lor A
0

In order to check that A is the Fréchet subdifferential of ¢ it is not restrictive to assume that
v — w in B and ¢(v) — ¢(u), so that v — w in V. We then obtain that o(v,u) — 0 since Ay is
continuous from V x V to L (£2).
The closedness property (8.5) is a consequence of the fact that the operator A is pseudo-
monotone from V to V' [Lio69, Prop. 2.6] and that the inclusion L () — W~ (Q) is compact.
Finally, in order to check that |0¢| (which can now be identified with ||A(:)|| o ) is an L*°-
moderated upper gradient, it is sufficient to observe that the quantity o defined in the previous
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calculations is uniformly bounded on the sublevels of ¢. On each sublevel there exists a constant
C > 0 such that for every choice of v, u in the sublevel there holds

o(v) — d(u) > —(10|(w) + C)|lv — u|5
We can then argue as in [AGS08, Thm. 1.2.5, Lemma 1.2.6]. 0

Lemma 8.1 allows us to apply Proposition 8.1 and Lemma 8.2 and obtain that, given ug €
L*(€2), the WED minimizers converge to a solution u € H. ([0, 00); L¥(£)) of

Jo(Owu) — div(V f(x, Vu,u)) + fu(z, Vu,u) =0 in Q x (0, 00),
u=0 on 99 x (0, c0), (8.9)
u(-,0) = uo(-) in Q,
where J, : L*(Q) — L (Q) is the duality mapping J,(v) = |Jv]|22%[v|*~2w.
It is interesting to compare this result with those obtained in [BDM14] for an energy of the
type of ¢ in L?(Q). In [BDM14] the convexity of f is assumed. Our approach allows for some

nonconvexity of f and for doubly nonlinear equations, at the price of imposing suitable regularity,

coercivity and growth conditions. Of course, when o = 2, and there exists —A > 0 such that

(z,u) = f(z,z,u) — %uz is convex, growth conditions could be avoided also in our setting since

then the functional ¢ would be A-convex in L?((2).

Limiting subdifferential. When the Fréchet subdifferential does not satisfy the closedness prop-
erty (8.5), one can consider a relaxed formulation of (8.2) obtained by substituting d¢ with the
limiting subdifferential of ¢, cf., e.g., [Mor06]. At u € D(¢) the limiting subdifferential dp¢p(u) is
defined by

Ju, € B, &, € B* with &, € 0¢(uy,) for all n € N,

Up = U, § = asn — 0o, sup du,) < o0o.
n

£ € 0rd(u) & (8.10)

Since dy¢p(u) is not necessarily weakly* closed, we introduce the following notions
Degp(u) :=weak™ closure of 9p¢p(u),
107 8|« (w) :=min {[[¢]l : € € Dep(u)}, (8.11)
O o(w) = {€ € Duo(w), €Il = 1959l (w)}
and we are interested in trajectories u : [0,00) — D(¢) solving
J(W'(t)) + 07p(u(t)) 20 in B* fora.a.te (0,7T). (8.12)
for a functional ¢ satisfying the LSCC Property 2.5 of Section 2.
To start with, let us record that curves of maximal slope (w.r.t. the relaxed slope [0~ ¢| of ¢)

indeed solve equation (8.12). This is ensured by the following result, which is a slight adaptation
of [RSS11, Prop. 6.1, 6.2] and [RS06, Sect. 3.2], cf. also [AGS08, Prop. 1.4.1].

Proposition 8.3. Assume Property 2.5. There holds

10761 (w) < it { gl : € € Ardlu) } < [07¢l(w) for all ue D(04]).
Furthermore, if ¢ fulfills the chain rule w.r.t. Opp, namely:
uwe HY0,T,B), ¢ € L*([0,T],B%), € € d¢p(u) a.e. in (0,T)
d

= ¢ouec AC([0,T]), T

(pou) = (&) ae in (0,T), (8.13)

then

(1) the relazed slope |0~ ¢| is a strong upper gradient for ¢;
(2) every curve of maximal slope u w.r.t. |0~ @| is a solution of the gradient flow (8.12) and
fulfills the minimal section principle

— 9 o(u(t)) CJ(W' @), N07ll-(u(t)) =07 ¢l(u(t))  for a.a.t € (0,T). (8.14)
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This proposition paves the way to applying Theorem 3.6 and we have the following.

Corollary 8.4. Let ¢ : B — (—o00,00| comply with the LSCC Property 2.5 and, in addition,
with the condition of Proposition 8.3. Then, WED minimizers converge up to subsequences to a

solution u € H'(0,T;B) of (8.14).
Let us now present a classe of functionals to which Corollary 8.4 applies.

Dominated concave perturbations of convex functionals in Hilbert spaces. Let us now
focus on the case in which B is a Hilbert space. In this context, a class of energies that complies
with the hypotheses of Proposition 8.3 is given by functionals ¢ : D(¢) — (—o0, 00|, D(¢) C B,
admitting the decomposition

¢ =11 =12 in D(9), (8.15a)
Y1 : D(¢) = R convex and ls.c., (8.15b)
19 : D(¢) = R convex and ls.c. in D(¢), D(9v1) C D(9s). (8.15¢)

It has been shown in [RS06, Theorem 4] that, if, in addition, —t); is a dominated concave pertur-
bation of 11, namely

VM >0 3p < 1,4 >0 such that Yu € D(9%1) with max{¢(u),||ul|} < M

sup [|&2[| < pl| 01 (w)] + 7, (8.16)
E2€02(u)

then ¢ satisfies the chain rule (8.13) with respect to the limiting subdifferential dy¢. Consequently,
Proposition 8.3 applies.

If, in addition, ¢ complies with the LSCC properties, then Corollary 8.4 ensures that WED
minimizers converge to a solution of the nonconvex gradient flow (8.14). We refer to [RS06] for
further examples.

8.2. A class of gradient flows in Wasserstein spaces. Gradient flows in metric spaces clas-
sically arise as variational formulations of nonlinear parabolic PDEs is the space of probability
measures. By referring to [AGSO08] for all details, we consider here the nonlocal drift-diffusion
equation

L
Op — div (pVV + V%(p) + VIV p> =0 inR%x (0,00) (8.17)

where V : RY — R acts as confinement potential, L is defined as Lr(r) = rF'(r) — F(r) where
F :[0,00) = R is the internal-energy density, W : R? x R? — R is the interaction potential, and
the symbol * stands for classical convolution in R%.

Equation (8.17) can be formulated as a gradient flow in

X = P®) = e PR - / [P dp(z) < oo
R4
endowed with the Wasserstein metric d = Ws. The latter is classically given via

Wa(uapg) = _min [ o= yPdyfang) (8.15)
YET (11,p2) JRd xRd
where T'(p1, ) = {y € (R xR?) : 7y = pi, i = 1,2} and 7l stands for the push-forward
of the measure through the projection on the i-th component.
Let us consider the functional ¢ : Z5(R?) — (—o0, 00] given by the sum of the potential, the
internal, and the interaction energy, namely

1 ] e
o) = & e V(x)du(z) + g F(p(z))dz + 5 /R . Wz, y)d(p @ p)(z,t)  if du=pd

00 else

(8.19)
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(i.e., ¢(p) = oo is p is not absolutely continuous w.r.t. the Lebesgue measure). Define o to be the
topology of narrow convergence in %5(R?), namely p,, > p iff

fx)dpn(x) — / f(x)du(z) Vf € Cy(RY) (continuous and bounded).
Rd R4

While referring to [AGS08] for a full discussion on this setting, we assume here that

V :RY = R is A-convex, ‘ l‘im lz| 72V () = oo, (8.20)
T |—00

F :[0,00) — R is convex and differentiable with F(0) = 0,
lim F(r)/r =00, F(r)/r® is bounded below as r — 0+ for some o > d/(d + 2),

r—00
ACr>0V2,y>0: Flx+y) <Cr(1+ F(x)+ F(y)),
r = r?F(r~%) is convex and nonincreasing, (8.21)

W:RY x R - R is even, A-convex,differentiable, and
0w > 0Va, y eRY : W(z+y) < Cw(l+W(z)+W(y)) (8.22)

for some A < 0. Let us record that these assumptions include the two classical choices F'(r) = rlnr
and F(r) =™ for m > 1. By combining [AGS08, Thm. 11.1.3] and [RSS11, Prop. 7.4] one finds
that

(1) the functional ¢ is A-convex in P5(R%);
(2) equation (8.17) can be equivalently written as

v+ Owd(ue) 30 for a.a. t € (0,00) (8.23)

where the Borel velocity field vy = v(-,t) : R — R? ¢ € (0,00), is associated with
pe = p(-,t) by letting v, € L2(RY, ), i} = ||v(-, t)||2L2(Rd .y and requiring the continuity
equation

Opp + div(vp) =0

to hold in the sense of distributions in R% x (0, 00). The Wasserstein subdifferential Oy é()
in relation (8.23) at a measure p € D(9) is given by

—v€dwo(p) & —veLl*(RYpu) and

o(v) — B(u) > /

A .
y Rd(—v(:z:)) (y — x)dvo(z, y) + EWQQ(;L, v) for every v in ﬁg(Rd)
X

where 7, € T'(u, v) is the unique optimal plan attaining the minimum in (8.18).
(3) curves of maximal slope for ¢ from (8.19) solve (8.23) and are unique.

We are now in the position of presenting the application of our abstract Theorem 3.6 in this
setting.

Corollary 8.5. Assume (8.20)-(8.22). Then, the functional ¢ from (8.19) fulfills the LSCC
Property 2.5 and is \-geodesically convexr on Py. In particular, the local slope |0¢| coincides
with its relaxation |0~ @| and it is an upper gradient. Thus, minimizers of the WED functionals
converge to curves of mazimal slope for ¢ w.r.t. |0¢|.

Notice that in the previous statement the whole family of WED minimizers converge and there
is no need to extract subsequences: this fact depends on the uniqueness of curves of maximal slope
for ¢. Without entering into the details of the proof of Corollary 8.5, let us mention here that the
LSCC Property 2.5 and the geodesic convexity of ¢ have been checked in [AGS08]. In particular,
the slope |0¢| is a (L°°-moderated) upper gradient [AGS08, Cor. 2.4.10] and Theorem 3.6 applies.
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APPENDIX A. A FINSLER DISTANCE INDUCED BY THE ENERGY

In this section we will briefly introduce Finsler extended distances induced by a general function
f: X —[1,00] via

Definition A.1. The Finsler extended distance d; associated with § is defined by

ds(ug, u1) := inf {/ FO@)) () dt = 9 € AC([a,b]; X), Y(a) =ug, I(b) = ul} (A1)

where df(uo, u1) = oo if there are no absolutely continuous curves connecting ug to uq.

It is easy to check that dj is an extended distance (i.e. it satisfies all the usual axioms defining
a distance but it may assume the value 00), satisfying

ds(uo,u1) > d(ug, ur) for all ug, uy € X. (A.2)

By a linear change of variable, it is also possibile to fix [a,b] = [0,1] in (A.1).
In the following we assume that

f: X —[1,00] satisfies assumptions (2.19a) and (2.19b). (A.3)

Our main motivating examples are provided by the choices

f(z) :== (¢(z) v 1)1/2 f(z) = {1 if ¢(z) <,

oo otherwise.
Indeed, working with the distance induced by the latter functional would be helpful to force WED
minimizers with bounded energy. On the other hand, we will see that the Finsler distance

d, induced via (A.1) by = (¢ v 1)/ (A.5)

can be thought of as a natural metric in the context of WED minimization, cf. Theorem A.6
ahead.

(A4)

Lemma A.2. Let (un,vy) be a sequence o-converging to (u,v) and let ¥, € AC([an,by]; X) be a
sequence of curves connecting u, to v, and satisfying

bn
liminf/ §(9,) |00, dt < F < oc. (A.6)
n—oo an

Then there exists a curve 9 € AC([a,b]; X) connecting u to v and satisfying f; f(9)|9'| dt < F.

Proof. By the reparametrization technique stated in Lemma 2.2 it is not restrictive to suppose
that

n=0, ¥, =1 L'-ae. in (0,b,), b</ f(9,) ds < F. (A7)
Applying the compactness Theorem 2.6 (with f instead of ¢) and setting b := liminf,,_, b, we
find a suitable subsequence k — ny and a limit 1-Lipschitz curve o defined in [0, ] such that
O, (5) 2 9(s) for every s € [0,D), U, (bn,) = Un, — 9(b) = v,

b'Vl
/f |19'|ds</f ds<hm1nf/0 " H(0n,) ds < F. O

With our next result we examine the relationships between the properties of absolute continuity
w.r.t. d and dy, and the related metric derivatives. We hence use the notation |u/[q for the metric
derivative w.r.t. d, to distinguish it from the metric derivative w.r.t. dj.

Proposition A.3. If (A.3) holds, for every up,u; € X at finite ds-distance the inf in (A.1) is
attained, ds is lower semicontinuous in X x X with respect to the product topology induced by o,
and (X, ds) is a complete extended metric space. Moreover,

u € AC([a,b); (X,d;))  if and only if u € AC([a,b]; (X,d)) and (fou)|u'|ls € L*(a,b)

L , , (A.8)
with, in this case, |u'|g;(t) = F(u(t))|u'|a(t) for a.a.t € (0,T).
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Proof. The o-lower semicontinuity of ds and the existence of minimizers for (A.1) are immediate
consequences of the previous Lemma A.2. Then, d; is lower semicontinuous also with respect to
d: since (X,d) is complete and dj > d we obtain the completeness of (X, dj).

As for (A.8), clearly any absolutely continuous curve u on [a,b] with (fou)|u'|lq € L(a,b) is
absolutely continuous with respect to the distance dj. Conversely, for every v € AC([a, b]; (X, d;))
there holds

|, (t) > f(u(t))|u'|a(t) for a.a.t € (a,b). (A.9)
This can be shown by adapting the argument from the proof of [RMS08, Lemma 6.4]. From (A.9),
we infer that (fou)|u’lq € L'(a,b). The converse inequality of (A.9) can be trivially checked, and
(A.8) ensues. O

Corollary A.4. If (X,d,0) is a compatible metric-topological space in the sense of (2.18) and f
complies with (A.3), then also (X,ds,0) is a compatible metric-topological space.

We conclude this section with the following equivalent representation for ds.

Lemma A.5. For every ug,u; € X

171 1
dj(ug,u1) = inf{/ (5|19'|2 + §f2(19)> ds: ¥ € AC?([s0, 51]; X), V(si) = u} (A.10)
and the infimum is attained whenever it is finite.

Proof. By the Cauchy inequality it is immediate to check the inequality < in (A.10). In order
to prove the converse inequality let us suppose that dj(ug,u1) < co and let us choose an optimal
curve ¥ € AC([0,1]; (X,d)) connecting uy to ui; replacing ¥ with the reparametrized curve v;
provided by (2.15) from Lemma 2.2 we conclude. O

Properties of the value function with respect to the Finsler distance induced by the
energy. Our next result shows that the value function enjoys finer properties with respect to d
from (A.5). Namely, V. is indeed continuous w.r.t. dy under the sole LSCC Property 2.5, whereas
we have been able to prove its continuity w.r.t. d, along sequences with bounded energy, only
under the additional A-convexity condition (6.1). Furthermore, G. is a strong upper gradient, in
the standard sense of (2.4), w.r.t. dy, while G. is just an L'-moderated upper gradient (cf. (2.5))
w.r.t. the distance d.

Theorem A.6. Assume the LSCC Property 2.5. Then,

(1) for all (xn)n, v € X we have that dg(xn,z) — 0 as n — oo implies lim, o0 Ve(zy) =
Ve(z);
(2) for every curve u € AC([a,b]; (X,dy)) the map t — V. (u(t)) is absolutely continuous, and
there holds
d
‘&Vg(u(t))’ < G (u(t)|W|(t)  for a.a.t € (a,b). (A.11)
Proof. t> (1): In order to show the continuity of V., we argue as in the proof of Lemma 6.1. Namely,
for a given minimizer u. € 6. (x) for Z. (which exists since x € D(¢)), we exhibit a sequence ()
with u,, € €:(z,) for every n € N, fulfilling (6.3): in fact, observe that liminf, o Ve(x,) > Vz(2)
again follows from Lemma 4.1 as dg-convergence implies o-convergence via (A.2). To construct
(tn)n, for every n € N we consider an optimal curve 9, € AC([0, 1]; X) for dg(zy, ). We exploit

(2.15) from Lemma 2.2 to reparametrize the curves (d,), to curves ¥, : [0, 7,] — X such that

/ TP (s)ds = i "1V G(D(s))) ds = [ 10410060 ()2 dt = dofn, 1) 0. (12
0 0 0
Hence, we define u,, : [0,00) = X by

wnlt) = {0n(t) t e [0,7),

ue(t) t € [, 00),
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so that
.[un] :/ Eg(tﬁn(t),h;’u(t))dt—i—/ 0o (e (8), [l () At =: Iy + I
0 Tn
Now,
(™ e (L2 L, 3
5L = e S5 () + =9, (1)) | dt
0 2 5

< c/om (1942 + (1 v 6(0a (1)) ) At = Cdg(@n, @) — 0

as n — 0o. On the other hand, we clearly have that I converges to Z.[u.] as n — oo as 7, | 0.
All in all, we have shown that limsup,, . Zc[un] < Z.[uc] as desired.

> (2): Let u € AC([a,b];(X,dy)): then, 1V (¢ou) € L'(a,b). We again resort to (2.15) and
reparametrize u to a curve @ : [a,b] — X fulfilling (A.12), so that @ € AC%([a,b]; X) and o €
L'(a,b). Therefore, V. o4 € L*(a,b) and G. o @ € L*(a,b), so that we are in a position to apply
Thm. 4.6 and conclude that s — V. (4(s)) is absolutely continuous, with

d B 5 B s
‘gvs(u(s)) < Ge(a(s))|a'|(s) for a.a.s € (a,b),
which gives (A.11). This concludes the proof of (2). O
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