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Abstract. We illustrate some novel contraction and regularizing properties of

the Heat flow in metric-measure spaces that emphasize an interplay between
Hellinger-Kakutani, Kantorovich-Wasserstein and Hellinger-Kantorovich dis-

tances. Contraction properties of Hellinger-Kakutani distances and general

Csiszár divergences hold in arbitrary metric-measure spaces and do not require
assumptions on the linearity of the flow.

When weaker transport distances are involved, we will show that contrac-

tion and regularizing effects rely on the dual formulations of the distances and
are strictly related to lower Ricci curvature bounds in the setting of RCD(K,∞)

metric measure spaces. As a byproduct, when K ≥ 0 we will also find new
estimates for the asymptotic decay of the solution.
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1. Introduction. The study of contraction properties of Lp norms and more gen-
eral convex entropy functionals with respect to the action of Markov semigroups
is a very classic subject (see e.g. [9]). More recently, the role of the Kantorovich-
Rubinstein-Wasserstein metric W2 for second order diffusion equations in the space
of probability measures has been deeply investigated, starting from the pioneer-
ing contribution by F. Otto [35]. Many investigations have clarified the relations
between analytic estimates depending on the structure of the generating differ-
ential operator and geometric properties of the underlying spaces, with an in-
creasing level of generality. An incomplete list of contributions includes the con-
traction of a general class of evolution equations combining diffusion, interaction
and drift [13], the gradient-flow structure and the geodesic convexity in Euclidean
spaces [25, 35, 2], the Heat flow in Riemannian manifolds and the Ricci curvature
[36, 37, 41, 17, 19, 42], Hilbert geometry [7], the duality with gradient estimates
and the Alexandrov spaces [30, 21], the RCD metric measure spaces and the Bakry-

Émery condition [3, 4, 5, 10, 20, 6].
In one of the most general formulations, we will deal with a metric-measure

space (X, d,m) given by a complete and separable metric space (X, d) endowed
with a Borel positive measure m with full support satisfying the growth condition

∃o ∈ X, κ ≥ 0 : m({x : d(x, o) < r}) ≤ eκr
2

. (1)

We introduce the Cheeger energy functional Ch : L2(X,m)→ [0,+∞]

Ch(f) := inf
{

lim inf
n→∞

1

2

∫
X

|Dfn|2 dm, fn ∈ Lipb(X), fn → f in L2(X,m)
}

(2)

where

|Df |(x) := lim sup
y→x

|f(y)− f(x)|
d(x, y)

; |Df |(x) := 0 if x is isolated. (3)

Ch is a convex, 2-homogeneous and lower semicontinuous functional whose proper
domain D(Ch) = {f ∈ L2(X,m) : Ch(f) < ∞} provides one of the equivalent
characterization of the metric Sobolev space W1,2(X, d,m) (see also [22, 28, 39, 11,
23]). A local weak gradient |Df |w ∈ L2(X,m) can be associated to each function
f ∈W1,2(X, d,m) so that the Cheeger energy admits the integral representation

Ch(f) =
1

2

∫
X

|Df |2w(x) dm(x).

The L2 subdifferential of Ch (whose minimal selection will be denoted by −∆) gen-
erates a continuous semigroup of order preserving contractions (Pt)t≥0 in L2(X,m),
which is canonically attached to the metric-measure structure (X, d,m).

Even if in general the operators Pt are not linear, one can prove [3] that the
semigroup is contractive with respect to all the Lp norms, p ∈ [1,+∞],

‖Ptf − Ptg‖Lp(X,m) ≤ ‖f − g‖Lp(X,m) for every f, g ∈ L2 ∩ Lp(X,m), (4)
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and all the integral functionals with convex integrand φ : R→ [0,+∞)∫
X

φ(Ptf) dm ≤
∫
X

φ(f) dm for every f ∈ L2(X,m). (5)

A first important result we will prove in Section 4 is the extension of (4)-(5) to
arbitrary convex integral functionals on evolving pairs:∫

X

E(Ptf,Ptg) dm ≤
∫
X

E(f, g) dm for every f, g ∈ L2(X,m), (6)

whenever E : R2 → [0,+∞] is a lower semicontinuous convex integrand with
E(0, 0) = 0. As a byproduct, we obtain that the action of (Pt)t≥0 on nonnega-
tive functions f, g ∈ L1(X,m) is a contraction with respect to arbitrary Csiszár
divergences (see [16, 33] and Section 2), as the Kullback-Leibler entropy functional
[29] associated to E(r, s) = r ln(r/s) − r + s if r, s > 0, yielding (since Pt is mass
preserving) ∫

Ptg>0

ln
(
Ptf/Ptg

)
Ptf dm ≤

∫
g>0

ln
(
f/g

)
f dm,

or the Hellinger-Kakutani distances [24, 26]∫
X

|(Ptf)1/p − (Ptg)1/p|p dm ≤
∫
X

|f1/p − g1/p|p dm p ∈ [1,+∞),

associated to E(r, s) = |r1/p − s1/p|p, r, s ≥ 0
The most relevant connections with optimal transport metrics occur when Ch is

also a quadratic form, i.e. it satisfies the parallelogram rule

Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g), for every f, g ∈ D(Ch). (7)

In this case −∆ is a linear positive selfadjoint operator in L2(X,m) and (Pt)t≥0 is
a linear Markov semigroup associated to a strongly local symmetric Dirichlet form
E on L2(X,m), admitting Carré du Champ Γ : D(Ch) ×D(Ch) → L1(X,m) which
provides a bilinear extension of the weak gradient, since

Γ(f, f) = |Df |2w for every f ∈W1,2(X, d,m).

If every bounded function f ∈ W1,2(X, d,m) with |Df |w ≤ 1 m-a.e. admits a d-
continuous representative (still denoted by f) which satisfies the 1-Lipschitz condi-
tion

|f(y)− f(x)| ≤ d(x, y) for every x, y ∈ X
then ∆ satisfies (a suitable weak formulation of) the Bakry-Émery condition BE(K,∞),
K ∈ R,

Γ2(f) =
1

2
∆Γ(f, f)− Γ(f,∆f) ≥ K Γ(f) (8)

if and only if (Pt)t≥0 admits a (unique) extension (P∗t )t≥0 to the space of finite Borel
measures M(X) and satisfies the contraction property (see [5])

W2(P∗tµ0,P
∗
tµ1) ≤ e−KtW2(µ0, µ1) for every µ0, µ1 ∈ P2(X); (9)

here W2 denotes the 2-Kantorovich-Wasserstein distance between probability mea-
sures of P2(X) with finite quadratic moments

W2
2(µ0, µ1) := min

{∫
X×X

d2(x0, x1) dµ(x0, x1) : µ ∈ P(X ×X),

π0
]µ = µ0, π

1
]µ = µ1

}
, πi(x0, x1) := xi, i = 0, 1.
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In fact, this property is deeply related with the synthetic theory of CD(K,∞) metric-
measure spaces with Ricci curvature bounded from below developed by Lott-Villani
[34] and Sturm [40]. The combination of the Lott-Sturm-Villani condition CD(K,∞)
with the quadratic property of the Cheeger energy (7) provides one of the equiva-
lent characterizations of the so-called RCD(K,∞) metric-measure space [4], which

turned out to be equivalent with the Bakry-Émery functional-analytic approach we
have adopted here [5].

The link between (8) and (9) becomes more apparent if we consider that (8) is

in fact equivalent to the Bakry-Émery commutation estimate

|DPtf |2 ≤ e−2KtPt
(
|Df |2

)
for every f ∈ Lipb(X), (10)

combined with the duality formula expressing the distance W2 in terms of regular
subsolutions ζ ∈ C1([0, 1]; Lipb(X)) to the Hamilton-Jacobi equation [36, 3, 1]

1

2
W2

2(µ0, µ1) = sup
{∫

X

ζ1 dµ1 −
∫
X

ζ0 dµ0 : ∂tζt +
1

2
|Dζt|2 ≤ 0

}
, (11)

thanks to the dual representation formula for P∗t :∫
X

f d(P∗tµ) =

∫
X

Ptf dµ for every f ∈ Cb(X), µ ∈M(X). (12)

(10) shows in fact that (Pt)t≥0 preserves (up to an exponential factor) subsolutions
to the Hamilton-Jacobi equation (11).

In Section 5 we improve (9) in two directions. First of all, we will show that after
a strictly positive time Pt exhibits a regularizing effect, providing a control of the
stronger 2-Hellinger distance

He2
2(µ0, µ1) :=

∫
X

(√
%1 −

√
%0

)2

dµ, µi = %iµ,

in terms of the weaker Wasserstein distance between the initial measures:

He2(P∗tµ0,P
∗
tµ1) ≤ 1

2
√
RK(t)

W2(µ0, µ1) for every µ0, µ1 ∈ P2(X) (13)

where

RK(t) :=


e2Kt − 1

K
if K 6= 0

2t if K = 0.
(14)

Notice that when m ∈ P2(X) and K ≥ 0 we obtain the asymptotic estimate

He2(P∗tµ0,m) ≤ 1

2
√
RK(t)

W2(µ0,m),

proving in particular Hellinger convergence of Ptµ0 to m as t→∞, with exponential
rate if K > 0.

A second and more refined estimate involves the recently introduced family of
Hellinger-Kantorovich distances HKα, α > 0, [15, 14, 27, 31, 32], which can be
defined in terms of an Optimal Entropy–Transport problem [31, 32]

HK2
α(µ0, µ1) := min

γ∈M(X×X)
KL(γ0|µ0) + KL(γ1|µ1) +

∫
X×X

`α(d(x0, x1)) dγ,

where γ0, γ1 are the marginals of γ, KL is the Kullback-Leibler divergence

KL(γ|µ) :=

∫
X

(
% log %− %+ 1

)
dµ, γ = %µ� µ,
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and `α is the cost function

`α(r) :=

{
log
(

1 + tan2
(
r/
√
α
)

if d(x0, x1) <
√
απ/2,

+∞ otherwise.
(15)

It turns out that HKα (corresponding to HKα,4 in the more general notation of
[31, 32]) admits a dual dynamic representation formula [32]

HK2
α(µ0, µ1) = sup

{∫
ζ1 dµ1 −

∫
ζ0 dµ0 : ∂tζt +

α

4
|Dζt|2 + ζ2

t ≤ 0
}
,

so that when the Bakry-Émery condition BE(0,∞) holds one has [32]

HKα(Ptµ0,Ptµ1) ≤ HKα(µ0, µ1) for every µ0, µ1 ∈M(X).

Actually, the stronger Hellinger distance at time t > 0 can be estimated in terms
of the weaker Hellinger-Kantorovich one: for every t > 0

He2(P∗tµ0,P
∗
tµ1) ≤ HKα(t)(µ0, µ1) where α(t) = 4RK(t). (16)

Differently from other well known properties, the estimates (13) and (16) cannot
be deduced by a regularization effect on a single initial datum, since He2, W2 and
HKα are not translation invariant. In this respect, the dual dynamic approach plays
a crucial role.

Plan of the paper. The paper is organized as follows: in Section 2 we will collect
a few preliminary results on Csiszár divergences, Hellinger-Kakutani, Kantorovich-
Wasserstein and Hellinger-Kantorovich metrics.

Section 3 is devoted to a short review of the main tools of calculus in metric-
measure spaces, which are used throughout the work. A brief description of the
main properties of RCD(K,∞) metric measures spaces is also presented.

The last two sections contain novel results. Section 4 is dedicated to the proof
of (6) in general metric measure spaces. Section 5 discusses the regularization
estimates (13) and (16).

2. Distances and entropies on the space of finite measures.

2.1. Csiszár divergences/Relative entropies. We first recall a few basic facts
on convex and 1-homogeneous functionals of positive measures.

Let (Ω,B) be a measurable space. We will denote the space of finite nonnegative
measures on (Ω,B) by M(Ω). If µ0, µ1 ∈M(Ω), we say that λ ∈M(Ω) is a common
dominating measure if µi � λ, i = 0, 1. Such a λ always exists, for instance we
may take λ = µ0 + µ1. We will also often consider the Lebesgue decomposition of
µ0 w.r.t. µ1 given by

µ0 = %µ1 + µ⊥0 , µ⊥⊥µ1, % :=
dµ0

dµ1
. (17)

We consider the class of Csiszàr density functions

F : [0,∞)→ [0,+∞] l.s.c. and convex, F (1) = 0, (18a)

with recession constant defined by

F ′(∞) := lim
r→∞

F (r)

r
= sup

r>0

F (r)

r − 1
,
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and the corresponding class of homogeneous perspective functions

H : [0,∞)× [0,∞)→ [0,+∞] l.s.c., convex, and positively 1-homogeneous,

H(θr, θs) = θH(r, s), H(r, r) = 0 for every r, s, θ ≥ 0.

(18b)
There is a one-to-one correspondence between the two classes given by the formula

F (r) = H(r, 1), H(r, s) =

{
sF (r/s) if s > 0,

F ′(∞) if s = 0
(18c)

Definition 2.1. Let F,H be as in (18a,b) and let µ0, µ1 ∈ M(Ω) with Lebesgue
decomposition µ0 = %µ1 +µ⊥0 as in (17). The Csiszár divergence associated with F
is defined as

F (µ0 | µ1) :=

∫
Ω

F (%) dµ1 + F ′(∞)µ⊥0 (Ω). (19)

The H -perspective functional is defined as

H (µ0 | µ1) :=

∫
Ω

H(%0, %1) dλ (20)

where µi = %iλ� λ, i = 0, 1, and λ is any common dominating measure.
If F and H are related by (18c) then

F (µ0 | µ1) = H (µ0 | µ1) for every µ0, µ1 ∈M(Ω). (21)

Notice that (20) does not depend on the choice of the dominating measure λ,
since the function H is positively 1-homogeneous.

(21) can be easily checked by observing that λ := µ1 + µ⊥0 is a dominating
measure for the couple µ0, µ1; if B0, B1 are measurable subsets of Ω such that

B0 ∩B1 = ∅, Ω = B0 ∪B1, µ⊥0 (B1) = 0, µ1(B0) = 0,

we can easily calculate the densities %0, %1 by

%0(x) :=

{
1 if x ∈ B0

%(x) if x ∈ B1

, %1(x) :=

{
0 if x ∈ B0

1 if x ∈ B1

so that∫
Ω

H(%0, %1) dλ =

∫
B0

H(%0, %1) dλ+

∫
B1

H(%0, %1) dλ

=

∫
B0

H(1, 0) dµ⊥0 +

∫
B1

H(%, 1) dµ1 = F ′(∞)µ⊥0 (B0) +

∫
B1

F (%) dµ1

= F ′(∞)µ⊥0 (Ω) +

∫
Ω

F (%) dµ1 = F (µ0 | µ1).

An important class of entropy functions is provided by the power like functions
which have the following explicit formulas

Ep(s) :=


1

p(p−1) (rp − p(r − 1)− 1) if p 6= 0, 1

r log r − r + 1 if p = 1

r − 1− log r if p = 0.

For p = 1, the entropy function E1(r) = r log r − r + 1 generates the well known
Kullback-Leibler divergence, often referred to as relative logarithmic entropy. Notice
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that E1 is superlinear, so that E′1(∞) = +∞ and its corresponding perspective
function is

HKL(r0, r1) :=


r0(ln r0 − ln r1) + r1 − r0 if r0, r1 > 0,

r1 if r0 = 0

+∞ if r0 > 0, r1 = 0.

(22)

Definition 2.2 (Kullback-Leibler divergence (relative logarithmic entropy)). Let
µ0 and µ1 be two finite nonnegative measures. The logarithmic entropy of µ0 with
respect to µ1 is given by the Csiszàr functional associated to E1(r) := r log r−(r−1):

KL(µ0 | µ1) =


∫

Ω

(
% log %− %+ 1

)
dµ1 if µ0 = %µ1

+∞ otherwise.
(23a)

=

∫
Ω

HKL(%0, %1) dµ, µi = %iµ� µ, (23b)

The functionals F ,H admit a useful dual representation. Let us denote by
Bb(Ω) the set of bounded Borel functions on Ω and by F ∗ : R → (−∞,+∞] the
Legendre conjugate function of F , given by

F ∗(φ) = sup
s≥0

(
sφ− F (s)

)
.

We introduce the closed convex subsets F,H of R2 given by

F := {(φ, ψ) ∈ R2 : ψ ≤ −F ∗(φ)} = {(φ, ψ) ∈ R2 : rφ+ ψ ≤ F (r) ∀r > 0}
H := {(φ, ψ) ∈ R2 : rφ+ sψ ≤ H(r, s) ∀ r, s > 0}.

Since F is lower semicontinuous, it can be recovered from F ∗ and F by the Fenchel-
Moreau formula [32]

F (r) = sup
φ∈R

(rφ− F ∗(φ)) = sup
(φ,ψ)∈F

rφ+ ψ.

Similarly, we have
H(r, s) = sup

(φ,ψ)∈H
rφ+ sψ,

and F = H if (18c) holds.

Theorem 2.3. For every µ0, µ1 ∈M(Ω) we have

F (µ0 | µ1) = sup
{∫

Ω

φ dµ0 +

∫
Ω

ψ dµ1 : φ, ψ ∈ Bb(Ω), (φ(x), ψ(x)) ∈ F ∀x ∈ Ω
}
,

H (µ0 | µ1) = sup
{∫

Ω

φ dµ0 +

∫
Ω

ψ dµ1 : φ, ψ ∈ Bb(Ω), (φ(x), ψ(x)) ∈ H ∀x ∈ Ω
}
.

Proof. [32, Th. 2.7]

2.2. Hellinger distances. We consider a specific example of perspective function-
als H , which gives raise to the Hellinger distances.

Definition 2.4. For µ0, µ1 ∈ M(Ω) and p ∈ [1,+∞) the p-Hellinger distance is
defined by

Hepp(µ0, µ1) := ‖%1/p
0 − %1/p

1 ‖
p
Lp(Ω,λ) =

∫
Ω

∣∣∣%1/p
0 − %1/p

1

∣∣∣p dλ (24)

where µi = %iλ� λ, i = 0, 1, and λ is an arbitrary dominating measure.
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Notice that the above definition corresponds to (20), (19) for the choices

Hp(r, s) :=
∣∣∣r1/p − s1/p

∣∣∣p , Fp(r) =
∣∣∣r1/p − 1

∣∣∣p . (25)

An immediate consequence of the above definition, choosing λ = µ0 + µ1 is the
uniform bound

Hep(µ0, µ1) ≤ µ0(X) + µ1(X).

For p = 1 the definition above gives the usual total variation distance, which we
will still denote by He1. The total variation distance and the Lp-Hellinger distance
Hep induce the same topology on the space M(Ω) and the following relation holds.

Theorem 2.5. Let q ∈ (1,∞] be the conjugate exponent of p. For every p > 1 and
arbitrary nonnegative finite measures µ0 and µ1 in M(Ω),

Hepp(µ0, µ1) ≤ He1(µ0, µ1) ≤ cp
(
µ0(Ω)1/q + µ1(Ω)1/q

)
Hep(µ0, µ1), (26)

where cp := max(p/2, 1).

Proof. The first part of (26) follows immediately by the representation (24) and the
elementary inequality∣∣∣a1/p − b1/p

∣∣∣p ≤ |a− b| for every a, b ≥ 0.

The second inequality of (26) is a consequence of

|ap − bp| ≤ cp |a− b| (ap−1 + bp−1), a, b ≥ 0, (27)

which can be easily obtained by integration (without loss of generality we can
assume a ≤ b)

bp − ap = p(b− a)

∫ 1

0

((1− t)a+ tb)p−1 dt = p(b− a)I

where

I =

∫ 1

0

((1−t)a+tb)p−1 dt ≤

{∫ 1

0
(1− t)ap−1 + tbp−1 dt = 1

2 (ap−1 + bp−1) if p ≥ 2,∫ 1

0

(
(1− t)p−1ap−1 + tp−1bp−1

)
dt ≤ 1

p (ap−1 + bp−1) if p ≤ 2.

(27) with the choices a = %
1/p
0 and b = %

1/p
1 , combined with Hölder inequality, yields

He1(µ0, µ1) =

∫
Ω

|%0 − %1| dλ ≤ cp
∫

Ω

∣∣∣(%1/p
0 − %1/p

1

)(
%

1/q
0 + %

1/q
1

)∣∣∣ dλ

≤ cp‖%1/p
0 − %1/p

1 ‖Lp(Ω,λ)‖%
1/q
0 + %

1/q
1 ‖Lq(Ω,λ)

≤ cp‖%1/p
0 − %1/p

1 ‖Lp(Ω,λ)

(
‖%1/q

0 ‖Lq(Ω,λ) + ‖%1/q
1 ‖Lq(Ω,λ)

)
= cpHep(µ0, µ1)(µ0(Ω)1/q + µ1(Ω)1/q).

An interesting characterization of He2 in terms of KL is provided by the following
property [32]:

Proposition 2.6. For any two measures µ0 and µ1 in M(Ω)

He2
2(µ0, µ1) = min

µ∈M(Ω)
KL(µ, µ0) + KL(µ, µ1). (28)

In particular

He2
2(µ0, µ1) ≤ KL(µ0 | µ1). (29)
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Proof. Recalling (22) and (23b), (28) follows by the simple calculation

min
r≥0

HKL(r, r0) +HKL(r, r1) = r0 + r1 − 2
√
r0r1 = H2

2 (r0, r1),

attained at r =
√
r0r1.

We now look at the Hellinger distance in its dual formulation. We focus on a
‘static-dual’ formulation first and then we proceed to the dynamic dual formulation
in terms of subsolution of the equation ∂ζs + (p − 1)ζqs = 0. This expression will
play a crucial role in the contraction result of Proposition 5.1 and the regularizing
estimates of Theorems 5.2 and 5.4. In the next computation we adopt the convention
to write

xa :=


xa if x > 0,

0 if x = 0,

−(−x)a if x < 0,

for every x ∈ R, a > 0.

Corollary 2.7. Let p ∈ (1,∞) and q be the conjugate of p. The Hellinger distance
admits the following dual formulation:

Hepp(µ0, µ1) = sup
{∫

Ω

ψ1 dµ1 +

∫
Ω

ψ0 dµ0 : ψ0, ψ1 ∈ Bb(Ω)

ψ0, ψ1 < 1, (1− ψq−1
0 )(1− ψq−1

1 ) ≥ 1
}
.

(30)

Proof. The result is a consequence of Theorem 2.3 and the computation of the
convex set Fp associated to the perspective function Fp of (25); it is sufficient to
prove that

Fp = {(ψ0, ψ1) ∈ R2 : ψi < 1, (1− ψq−1
0 )(1− ψq−1

1 ) ≥ 1}. (31)

In order to show (31) we first compute the Legendre transform of Fp, obtaining

F ∗p (ψ) = sup
r>0

rψ − |r1/p − 1|p = sup
s>0

spψ − |s− 1|p =


ψ

(1− ψq−1)p−1
if ψ < 1,

+∞ if ψ ≥ 1.

Recalling that (q − 1)(p − 1) = 1, the inequality −ψ1 ≥ F ∗p (ψ0) for ψ0, ψ1 ∈ R is
equivalent to

ψ0 < 1 and − ψq−1
1 (1− ψq−1

0 ) ≥ ψq−1
o = 1− (1− ψq−1

0 ).

We then obtain

(ψ0, ψ1) ∈ Fp ⇔ ψ1 ≤ −F ∗p (ψ0)

⇔ ψ0 < 1, ψ1 < 1, (1− ψq−1
0 )(1− ψq−1

1 ) ≥ 1,

which yields (31).

The dynamic counterpart of the dual formulation is outlined in the proposition
below.

Proposition 2.8. Let p ∈ (1,+∞) and let q be the conjugate of p. For every µ0,
µ1 in M(Ω),

Hepp(µ0, µ1) = sup
{∫

Ω

ζ1 dµ1 −
∫

Ω

ζ0 dµ0 :

ζ ∈ C1([0, 1],Bb(Ω)), ∂tζt + (p− 1)ζqt ≤ 0
}
.

(32)
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Proof. First of all we manipulate the formulation (32) so that we can maximize with
respect to one function only. We first observe that replacing, e.g. ψi by ψi,ε := ψi−ε,
ε > 0, the couple (ψ0,ε, ψ1,ε) is still admissible and∑

i

∫
Ω

ψi dµi = lim
ε↓0

∑
i

∫
Ω

ψi,ε dµi,

so that it is not restrictive to assume supψi < 1 in (30).
It is clear from the proof of Corollary 2.7 that for every choice of ψ0 ∈ Bb(Ω)

satisfying supψ0 < 1 the best selection of ψ1 in order to maximize
∑
i

∫
Ω
ψi dµi is

given by

ψ1 = −F ∗p (ψ0) =
−ψ0(

1− ψq−1
0

)p−1 .

Setting ζ0 := −ψ0 we obtain the formula

Hepp(µ0, µ1) = sup
ζ0∈Bb(Ω), ζ0>−1

(∫
Ω

ζ0(
1 + ζq−1

0

)p−1 dµ1 −
∫

Ω

ζ0 dµ0

)
.

On the other hand we observe that the function ζ1 := ζ0(
1+ζq−1

0

)p−1 corresponds to

the solution at time t = 1 of{
∂tζ(t, x) + (p− 1)ζq(t, x) = 0 in [0, 1]× Ω,

ζ(0, x) = ζ0(x) in Ω.
(33)

and by the comparison theorem for ordinary differential equation, any subsolution
to (33) will satisfy ζ(1, x) ≤ ζ1(x).

2.3. Kantorovich-Wasserstein and Hellinger-Kantorovich distances.

Kantorovich-Wasserstein distance. The standard definition of the Kantorovich -
Wasserstein distance arises in a natural way in the frame of optimal transport.
Here we recall the definition only and we refer to [2, 42] for further details.

We will deal with a complete and separable metric space (X, d); we denote by
B(X) its Borel σ-algebra and by P(X) the space of Borel probability measures on
X. For p ≥ 1 we set

Pp(X) :=
{
µ ∈ P(X) :

∫
X

dp(x, o) dµ(x) < +∞
}
,

where o is an arbitrary point of X (the definition is independent of the choice of o).
If t : X → Y is a Borel map between two metric spaces, we denote by t] :

P(X)→ P(Y ) the corresponding push-forward operation, defined by

t]µ(B) := µ(t−1(B)) for every B ∈ B(Y ).

In particular, when we consider the canonical cartesian projections πi : X×X → X
defined by πi(x0, x1) := xi, i = 0, 1, and a general measure (also called transport
plan) µ ∈ P(X ×X), the measures µi = πi]µ are the marginals of µ.

Definition 2.9. Let p ∈ [1,∞). For any µ0, µ1 ∈ Pp(X) the p-Kantorovich-
Wasserstein distance is defined by

Wp
p(µ0, µ1) := min

{∫
dp(x0, x1) dµ(x0, x1) : µ ∈ P(X ×X), πi]µ = µi

}
.
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As we will see, a key ingredient we will extensively use in our arguments is
given by the dynamic dual formulation of the Wasserstein distance, in terms of
the subsolutions of the Hamilton-Jacobi equation. Such a result, which has been
formulated in different form by [36, 3, 6, 1], holds if (X, d) is a length space, i.e. if for
every x0, x1 ∈ X and every θ > 1/2 there exists an approximate mid-point xθ ∈ X
such that

max
(
d(x0, xθ), d(xθ, x1)

)
≤ θd(x0, x1).

We denote by Lipb(X) the Banach space of bounded Lipschitz functions f : X → R
endowed with the norm

‖f‖Lipb
:= sup

x∈X
|f |+ Lip(f,X), Lip(f,X) := sup

x,y∈X, x 6=y

|f(x)− f(y)|
d(x, y)

.

Proposition 2.10. If (X, d) is a length space then for every µ0, µ1 ∈ Pp(X)

1

p
Wp
p(µ0, µ1) = sup

{∫
X

ζ1 dµ1 −
∫
X

ζ0 dµ0 :

ζ ∈ C1([0, 1],Lipb(X)) s.t. ∂tζt +
1

q
|Dζt|q ≤ 0

}
,

(34)

where q is the conjugate of p.

Proof. Let µ0, µ1 ∈ Pp(X); since (X, d) is a length space, also (Pp(X),Wp) is a
length space, so that for every a > 1 we can find a Lipschitz curve µ : [0, 1]→ Pp(X)
such that

|µ̇t|Wp
:= lim sup

h→0

Wp(µt, µt+h)

|h|
≤ aWp(µ0, µ1) for every t ∈ [0, 1]. (35)

It follows that for every curve ζ ∈ C1([0, 1],Lipb(X)) the map t 7→
∫
X
ζt dµt is

Lipschitz continuous and by [6, Lemma 6.4, Theorem 6.6]∫
X

ζ1 dµ1 −
∫
X

ζ2 dµ2 ≤
∫ 1

0

∫
X

(
∂tζt +

1

q
|Dζt|q(X)

)
dµt dt+

1

p

∫ 1

0

|µ̇t|pWp
dt;

if ζ is also a subsolution to the Hamilton-Jacobi equation

∂tζ +
1

q
|Dζ|q ≤ 0 in [0, 1]×X, (36)

then the previous inequality, the bound (35) on the metric velocity |µ̇t|Wp
and the

arbitrariness of a > 1 yield∫
X

ζ1 dµ1 −
∫
X

ζ2 dµ2 ≤
1

p
Wp
p(µ0, µ1) for every ζ ∈ C1([0, 1]; Lipb(X)) as in (36).

On the other hand, for every a < 1 we can use the Hopf-Lax semigroup

Qtζ(x) := inf
y∈X

1

qtq−1
dq(x, y) + ζ(y)

and Kantorovich duality for the Wasserstein distance to find ζ0 ∈ Lipb(X) such that∫
X

Q1ζ0 dµ1 −
∫
X

ζ0 dµ0 ≥
a

p
Wp
p(µ0, µ1).

Using the refined estimate on the Hopf-Lax semigroup of [3] we can show that
ζt := Qtζ0 is uniformly bounded in Lipb(X), is Lipschitz continuous with values in
Cb(X) and satisfies

∂+
t ζ +

1

q
|Dζ|q ≤ 0 in [0, 1)×X, ∂+

t ζt(x) = lim
h↓0

h−1
(
ζt+h(x)− ζt(x)

)
.
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By using a rescaling argument of [1] and the smoothing technique of the proof of
[32, Theorem 8.12] we conclude.

Hellinger-Kantorovich distance. After Hellinger-Kakutani and Kantorovich-Wasserstein
distances, we recall the definition of a third distance between probability measures,
that plays a role in the main contributions of this work.

Let (X, d) be a separable complete metric space. The Hellinger-Kantorovich
distances are defined on the space of finite nonnegative Borel measures M(X) and
they do not require measures to have the same mass. As in the previous cases of
Hep or Wp, the Hellinger-Kantorovich distances admit different formulations that
we summarize below. Here we focus on the family of distances HKα depending on a
tuning parameter α > 0; they correspond to the case HKα,β of [31] with the choice
β := 4. In the even more specific case α = 1, HK1 coincides with the distance HK
which has been extensively studied in [32]. The general case α 6= 1 can be reduced
to the case α = 1 by rescaling the distance d by a factor α−1/2.

The first formulation comes from the Logarithmic-Entropy-Transport problem,
where the constraints on the marginals typical of optimal transport problems (2.9)
are relaxed by the introduction of two penalizing functionals. The primal formula-
tion of the Hellinger-Kantorovich distance is the following:

Definition 2.11. For any µ0 µ1 ∈M(X),

HK2
α(µ0, µ1) := min

{∑
i

KL(γi|µi) +

∫
`α(d(x0, x1)) dγ :

γ ∈M(X ×X), πi]γ = γi � µi, i = 0, 1
}
,

where `α : [0,+∞[→ [0,+∞] is the cost function defined by (15).

A direct comparison with (28) by restricting γ to plans of the form γ := ι]µ
where µ ∈M(X) is an arbitrary measure dominating µi and ι : X → X ×X is the
diagonal identity map ι(x) := (x, x), immediately yields

HKα(µ0, µ1) ≤ He2(µ0, µ1) for every µ0, µ1 ∈M(X) and α > 0. (37)

[32, Theorem 7.22] also shows that

lim
α↓0

HKα(µ0, µ1) = He2(µ0, µ1).

[32, Proposition 7.23, Theorem 7.24] provide two further useful bounds of HKα in
terms of W2, when µ0, µ1 ∈ P2(X):

√
αHKα(µ0, µ1) ≤W2(µ0, µ1), lim

α↑+∞

√
αHKα(µ0, µ1) = W2(µ0, µ1). (38)

The HKα distance admits an equivalent dual formulation in terms of subsolutions
to a suitable version of the Hamilton-Jacobi equation, which can be compared with
(32) and (34): in fact, it is possible to show [32, Section 8.4] that

HK2
α(µ0, µ1) = sup

{∫
X

ζ1 dµ1−
∫
X

ζ0 dµ0 : ζ ∈ C1([0, 1],Lipb(X)) s.t.

∂tζt +
α

4
|Dζt|2 + ζ2

t ≤ 0 in [0, 1]×X
}
.

(39)

3. Metric measure spaces with curvature bounds. This section is dedicated
to a brief review of a few notions related to calculus and Sobolev spaces in metric
measure spaces. We refer to [3] and [4] for a complete treatment of the topic.
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3.1. Calculus in metric measure spaces: basic notions. Let (X, d) be a com-
plete and separable metric space, endowed with a Borel positive measure m satis-
fying the growth condition (1) and supp(m) = X. As we already mentioned in the
Introduction, on this class of metric measure space it is possible to introduce an
effective metric counterpart of the classic Dirichlet energy form in Euclidean spaces
and of the corresponding Sobolev spaces. In the following, we will recall the basic
notions only, which are strictly necessary to understand the main results of the
work, by adopting the Cheeger point of view.

Definition 3.1. A function G ∈ L2(X,m) is a relaxed gradient of f ∈ L2(X,m) if
there exist Borel d-Lipschitz functions fn ∈ L2(X,m) such that:

a) fn → f in L2(X,m) and |Dfn| weakly converge to G̃ in L2(X,m);

b) G̃ ≤ G m-a.e. in X.

We say that G is the minimal relaxed gradient of f if its L2(X,m) norm is minimal
among relaxed gradients. We shall denote by |Df |w the minimal relaxed gradient.

The minimal relaxed gradient is used to give an integral formulation of the Cheeger
energy (2), which can be represented as

Ch(f) =
1

2

∫
X

|Df |2w dm if f has a L2 relaxed gradient,

and set equal to +∞ if f has no relaxed gradients. The Cheeger energy is a convex,
2-homogeneous lower semicontinuous functional on L2(X,m) with dense domain
D(Ch) [3, Th. 4.5]. From the lower semicontinuity of Ch it follows that the domain
D(Ch) endowed with the norm

‖f‖W1,2 :=

√
‖f‖22 + ‖|Df |w‖

2
2

is a Banach space, which is called W1,2(X, d,m). In general it is not a Hilbert space
and this causes the potential non linearity of the heat flow. The following proposi-
tion summaries some useful properties of the minimal relaxed gradient, which will
be helpful for our purposes.

Proposition 3.2. Let f ∈ L2(X,m). Then the following properties hold:

a) |Df |w = |Dg|w m-a.e. on {f−g = c} for all constants c ∈ R and g ∈ L2(X,m)
with Ch(g) < +∞;

b) φ(f) ∈ D(Ch) and |Dφ(f)|w ≤ |φ′(f)| |Df |w for any Lipschitz function φ on
an interval I containing the image of f ; the inequality refines to the equality
|Dφ(f)|w = |φ′(f)| |Df |w if in addition φ is nondecreasing;

c) if f, g ∈ D(Ch) and φ : R→ R is a nondecreasing contraction, then

|D(f + φ(g − f))|2w + |D(g − φ(g − f))|2w ≤ |Df |
2
w + |Dg|2w m-a.e. in X.

Proof. [3, Prop. 4.8]

3.2. Gradient flow of the Cheeger energy in metric-measure spaces. The
metric-measure counterpart of the Laplacian operator can be defined in terms of the
element of minimal L2-norm in the subdifferential ∂Ch of Ch. ∂Ch is the multivalued
operator in L2(X,m) defined for all f ∈ D(Ch) by the following relation:

l ∈ ∂Ch(f) ⇐⇒
∫
X

l(g − f) dm ≤ Ch(g)− Ch(f) ∀ g ∈ L2(X,m).
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Definition 3.3 (Metric-measure Laplacian). The metric-measure Laplacian ∆f of
f ∈ L2(X,m) is defined for any f such that ∂Ch(f) 6= ∅. For those f , −∆f is the
element of minimal L2(X,m) norm in ∂Ch(f).

The domain of ∆ is denoted by D(∆) and is a dense subset of D(Ch). The metric-
measure heat flow can be obtained by applying the classic theory of gradient flows
in Hilbert spaces [12] and it enjoys further properties which have been studied in
[3]. More refined contraction properties will be proved in Section 4.

Theorem 3.4 (Gradient flow of Ch in L2(X,m)). For any f ∈ L2(X,m) there
exists a unique locally absolutely continuous curve (0,∞) 3 t → Ptf ∈ L2(X,m)
such that Ptf → f in L2(X,m) as t→ 0 and

d

dt
Ptf ∈ −∂Ch(Ptf) for a.e. t > 0.

The following properties hold:

(1) The curve t 7→ Ptf is locally Lipschitz, Ptf ∈ D(∆) for any t > 0 and it holds

d+

dt
Ptf = ∆Ptf ∀t > 0.

(2) The curve t→ Ch(Ptf) is locally Lipschitz in (0,+∞), infinitesimal at +∞ and
continuous in 0 if f ∈ D(Ch). Its right derivative is given by −‖∆Ptf‖2L2 for
every t > 0.

(3) The family of maps (Pt)t≥0 is a strongly continuous semigroup of contractions
in L2(X,m) which can be extended in a unique way to a strongly continuous
semigroup of contractions in every Lp(X,m), 1 ≤ p < ∞ (still denoted by
(Pt)t≥0) thus satisfying

‖Ptf − Ptg‖Lp(X,m) ≤ ‖f − g‖Lp(X,m) for every f, g ∈ Lp(X,m). (40)

3.3. RCD(K,∞) metric measure spaces. In this subsection we briefly recall the
definition and some properties of a class of metric measure spaces which generalize
the notion of Riemannian manifolds with Ricci curvature bounded from below. This
will be the general setting of the regularization result that we propose in Section 5,
where, indeed, the bound on the curvature plays a direct role.
On a general metric measure space, the Cheeger energy is not a quadratic form and
this translates into a potential lack of linearity of its L2-gradient flow (Pt)t≥0. If we
require the Cheeger energy to be quadratic, and hence the heat flow to be linear,
we restrict the choice of the underlying metric domain to class of metric measure
spaces which can be considered a nonsmooth generalization of Riemannian mani-
folds: among them, the so called Bakry-Émery curvature condition can be used to
select the class of RCD(K,∞) metric measure spaces (we refer to [3, 4] for a com-
plete discussion and the other important equivalent characterization we mentioned
in the Introduction). As in the previous section, (X, d,m) will denote a complete
and separable metric measure space satisfying the volume growth condition (1).

Definition 3.5 (The RCD(K,∞)-condition). (X, d,m) is a RCD(K,∞) metric
measure space if the Cheeger energy is quadratic (7), every function f ∈ D(Ch) ∩
L∞(X,m) with |Df |w ≤ 1 admits a 1-Lipschitz representative (still denoted by f)
and

|D(Ptf)|2w ≤ e−2KtPt(|Df |2w) m-a.e. in X. (41)
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Equation (41) is one of the equivalent formulation of the celebrated Bakry-Émery
condition [8], [5]. Notice that the RCD(K,∞) condition implies in particular that
every bounded function f ∈ D(Ch) with |Df |w ∈ L∞(X,m) has a Lipschitz contin-
uous representative (identified with f) satisfying

sup
X
|Df | = Lip(f,X) ≤

∥∥ |Df |w ∥∥L∞(X,m)
.

On RCD(K,∞) spaces, an even stronger version of (41) holds true, together with
crucial regularization properties which we collect in the next statement.

Theorem 3.6. Let (X, d,m) be a RCD(K,∞) space.

(1) For every f ∈ L∞(X,m) and t > 0 the function Ptf has a unique continuous

representative P̃tf ∈ Lipb(X) (in the following, with a slight abuse of notation,

we will identify Ptf with P̃tf , whenever f ∈ L∞(X,m)).
(2) For every f ∈ D(Ch) with f, |Df |w ∈ L∞(X,m) and t > 0

|DPtf | = |DPtf |w m-a.e. in X, |DPtf | ≤ e−KtPt |Df |w in X. (42)

(3) For every f ∈ L∞(X,m) and t > 0

RK(t)|DPtf |2 ≤ Pt(f
2)− (Ptf)2 in X, (43)

where Rk has been defined in (14). In particular√
RK(t)Lip(Ptf,X) ≤ ‖f‖L∞(X,m) .

Proof. Property (1) is a consequence of [5, Corollary 4.18]. The first identity of
(42) is stated in [5, Theorem 3.17]; the second one is stated in [38, Corollary 4.3].
(23b) is a consequence of the above properties and the estimate of [5, Corollary
2.3(iv)].

4. Contraction properties for the Heat flow in metric measure spaces.
This section is devoted to some fairly general contraction properties of the heat
flow in the metric-measure setting. Our main result concerns the behaviour of the
functional

E (f, g) :=

∫
X

E(f, g) dm, f, g ∈ L2(X,m) (44a)

where

E : R2 → R ∪ {+∞} is a proper, l.s.c. and convex function. (44b)

Since E is bounded from below by an affine map, when m(X) < ∞ the integral of
(44a) is always well defined (possibly taking the value +∞). In the general case, in
order to avoid integrability issues, we will also assume that

E is nonnegative, E(0, 0) = 0 if m(X) = +∞. (44c)

Theorem 4.1. Let (X, d,m) be a metric measure space with the Heat semigroup
(Pt)t≥0 generated by the Cheeger energy Ch in L2(X,m), and let E be defined as in
(44a,b,c). Then, for f, g ∈ L2(X,m)

E (Ptf,Ptg) ≤ E (f, g) for every t ≥ 0.

We prove some useful lemmas first. The first one shows a generalization of part c)
in Proposition 3.2 and is the core of the proof of the main theorem.
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Lemma 4.2. Let (X, d) be a metric space, let E : R2 → R be a C2 convex function
with 1-Lipschitz (w.r.t the Euclidean norm) gradient ∇E : R2 → R2, and let J :
R2 → R2 be the map J := Id−∇E. For every bounded Lipschitz map f := (f1, f2) :
R2 → R2, the function g = (g1, g2) := J ◦ f satisfies

|Dg1|2(x) + |Dg2|2(x) ≤ |Df1|2 (x) + |Df2|2 (x) for every x ∈ X. (45)

Proof. Since ∇2E is positive definite and J is 1-Lipschitz, we observe that A :=
DJ = I −∇2E satisfies

0 ≤ zTA(w)z ≤ |z|2 for every w, z ∈ R2. (46)

For every x, y ∈ X, x 6= y, and f : X → R we set

R(f, x, y) :=
|f(x)− f(y)|

d(x, y)
so that |Df |(x) = lim sup

y→x
R(f, x, y).

Let us now fix x ∈ X; it is possible to find two sequences of points (xni )n∈N, i = 1, 2,
such that

lim
n→+∞

R(gi, x, x
n
i ) = |Dgi|(x). (47)

Taking a linear combination of the difference quotients R(gi, x, x
n
i ) with the positive

coefficients vi := |Dgi|(x) it holds

lim
n→+∞

∑
i

viR(gi, x, x
n
i ) =

∑
i

|Dgi|2(x).

Now, gi(x) = Ji(f1(x), f2(x)) and hence

lim
n→+∞

viR(gi, x, x
n
i ) = lim

n→+∞
vi
|Ji(f1(x), f2(x))− Ji(f1(xni ), f2(xni ))|

d(x, xni )
.

Since J is C1, a first order expansion at z = f(x) with zni := f(xni ) and the
Lipschitz character of f yield

J(zni )− J(z) = A(z)(zni − z) + o(|zn − z|)
= ∂1J(f(x))(f1(xni )− f1(x)) + ∂2J(f(x))(f2(xni )− f2(x)) + o(d(xni , x)).

Estimating the first component J1 of J along the sequence (xn1 )n and the second
component J2 of J along (xn2 )n we get for i = 1, 2

lim
n→+∞

|Ji(f1(x), f2(x))− Ji(f1(xni ), f2(xni ))|
d(x, xni )

= lim
n→∞

∣∣∣∂1Ji(f1(x), f2(x))R(f1, x, x
n
i ) + ∂2Ji(f1(x), f2(x))R(f2, x, x

n
i )
∣∣∣

≤ |∂1Ji(f1(x), f2(x))| lim sup
n→∞

R(f1, x, x
n
i ) + |∂2Ji(f1(x), f2(x))| lim sup

n→∞
R(f2, x, x

n
i )

≤ |∂1Ji(f1(x), f2(x))||Df1|(x) + |∂2Ji(f1(x), f2(x))||Df2|(x).

Recalling (47), since the coefficients v1, v2 are nonnegative, we get∑
i

|Dgi|2(x) ≤
∑
i,j

Âj,i(f1(x), f2(x))|Dfj |(x)vi,

where for every w ∈ R2 Â(w) is the symmetric matrix defined by

Âi,j(w) := |Ai,j(w)|.
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(46) and the next elementary Lemma yield∑
i

|Dgi|2(x) ≤
(∑

i

|vi|2
)1/2(∑

i

|Dfi|2(x)
)1/2

thus obtaining (45).

Lemma 4.3. Let A ∈ R2×2 be a symmetric matrix and let Â ∈ R2×2 be defined by
Âij := |Aij |, i, j = 1, 2. If

0 ≤ zTAz ≤ |z|2 for every z ∈ R2, (48)

then also Â satisfies

0 ≤ zT Âz ≤ |z|2 and zT Âw ≤ |z| |w| for every z,w ∈ R2. (49)

Proof. It is easy to check that a symmetric matrix A satisfies 0 ≤ zTAz ≤ |z|2 for
every z ∈ R2 (48) if and only if

0 ≤ A11 ≤ 1, 0 ≤ A22 ≤ 1, A2
12 ≤ A11A22, A2

12 ≤ 1 +A11A22 −A11 −A22,
(50)

and it is clear that (50) is preserved if we replace the coefficients Aij by |Aij |.
The second inequality of (49) follows immediately by the first one and the Cauchy-
Schwartz inequality, since

zT Âw ≤
(
zT Âz

)1/2(
wT Âw

)1/2 ≤ |z| |w|.
Lemma 4.4. Let E : R2 → R be a C1,1 convex function as in (44b) and (44c) with
1-Lipschitz (w.r.t the Euclidean norm) gradient ∇E : R2 → R2, and let J : R2 → R2

be the map J := Id − ∇E. For every couple bounded Lipschitz map f := (f1, f2)
with fi ∈ W1,2(X, d,m), the components gi of g := J ◦ f belong to W1,2(X, d,m)
and satisfy

|Dg1|2w(x) + |Dg2|2w(x) ≤ |Df1|2w (x) + |Df2|2w (x) for m-a.e. x ∈ X. (51)

Proof. Let us consider the case when m(X) = +∞ (the case of a finite measure
is simper, and it follows by obvious modifications of the arguments below): notice
that (44c) yields ∇E(0, 0) = 0.

Let us first notice that |J(f)| ≤ 2|f | so that for every fi ∈ L2(X, d,m) the
functions gi belong to L2(X, d,m) as well.

Let us first prove that

|Dg1|2w(x) + |Dg2|2w(x) ≤ |Df1|2 (x) + |Df2|2 (x) for m-a.e. x ∈ X, (52)

whenever f1, f2 are bounded and Lipschitz and E is of class C1,1. To this aim, it
is sufficient to regularize ∇E e.g. by convolution with a family of smooth kernels
κn : R2 → [0,+∞[, n ∈ N satisfying

κ ∈ C∞c (R2), κ ≥ 0, κ(−z) = κ(z),

∫
R2

κdx = 1, κn(z) := n2κ(nz) z ∈ R2.

We then set

En(x) :=

∫
R2

(
E(x− z)− x · ∇E(−z)

)
κn(z) dz,

∇En(x) =

∫
R2

(
∇E(x− z)−∇E(−z)

)
κn(z) dz,

Jn(x) := x−∇En(x), gn := Jn ◦ f .

(53)
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Applying Lemma 4.2 we get

|Dgn,1|2(x) + |Dgn,2|2(x) ≤ |Df1|2(x) + |Df2|2(x).

Since

|Jn(x)− J(x)| ≤ |∇En(x)−∇E(x)|

≤
∫
R2

(∣∣∇E(x− z)−∇E(x)
∣∣+
∣∣∇E(0)−∇E(−z)

∣∣)κn(z) dz

≤ 2

∫
R2

|z|κn(z) dz =
2

n

∫
R2

|z|κ(z) dz,

passing to the limit as n→∞ we have gn,i → gi in L2(X,m); up to the extraction
of a suitable subsequence (not relabelled) we can also assume that

|Dgn,1|⇀ G1, |Dgn,2|⇀ G2 weakly in L2(X,m) as n→∞.

We claim that

G2
1 +G2

2 ≤ |Df1|2 + |Df2|2 m-a.e. in X. (54)

In fact, for an arbitrary measurable set A ⊂ X we have∫
A

(
G2

1 +G2
2

)
dm = lim

n→∞

∫
A

(
|Dgn,1|G1 + |Dgn,2|G2

)
dm

≤
(∫

A

|Df1|2 + |Df2|2 dm
)1/2(∫

A

(
G2

1 +G2
2

)
dm
)1/2

so that for every measurable set A ⊂ X∫
A

(
G2

1 +G2
2

)
dm ≤

∫
A

(
|Df1|2 + |Df2|2

)
dm.

Since |Dgi|w ≤ Gi, (54) yields (52).
(51) then follows by (52) by a similar argument: we select optimal sequences

(fi,n)n of bounded Lipschitz functions converging to fi in L2(X,m) such that

|Dfi,n| → |Dfi|w in L2(X,m), i = 1, 2,

and we consider the corresponding sequences gn = J ◦ fn, converging to g = J ◦ f
in L2(X,m). We then pass to the limit in the inequality

|Dg1,n|2w(x) + |Dg2,n|2w(x) ≤ |Df1,n|2 (x) + |Df2,n|2 (x) for m-a.e. x ∈ X.

Next lemma focuses on a useful property of the metric Laplacian which relies on
the estimate that we have just proved.

Lemma 4.5. If f, g ∈ D(∆) and E : R2 → R is a C1,1 convex function satisfying
(44c), then ∫

X

(∂1E(f, g)∆f + ∂2E(f, g)∆g) dm ≤ 0. (55)

Proof. It is not restrictive to assume that E is 1-Lipschitz. As we observed in the
proof of Lemma 4.4, we also note that ∂iE(f, g) belongs to L2(X,m), since when
m(X) = +∞ (44c) yields ∂iE(0, 0); therefore the integral in (55) is well defined.
Recall that

l ∈ ∂Ch(ϕ) ⇐⇒
∫
X

l(ψ − ϕ) dm ≤ Ch(ψ)− Ch(ϕ) for every ψ ∈ L2(X,m)
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and that −∆ϕ ∈ ∂Ch(ϕ). Hence taking in our case ϕ = f and ψ = f − ∂1E(f, g)
we get∫

X

∂1E(f, g)∆f dm =

∫
X

−∆f(ψ − ϕ) dm ≤ Ch(ψ)− Ch(ϕ)

= Ch(f − ∂1E(f, g))− Ch(f),

and similarly ∫
X

∂2E(f, g)∆g dm ≤ Ch(g − ∂2E(f, g))− Ch(g).

By definition of the Cheeger functional and Lemma 4.4 we obtain (55).

With the previously developed tools we can conclude the proof of Theorem 4.1.

Proof. Let us set ft = Ptf and gt = Ptg. Assume first that E is C1,1 with Lipschitz
gradient ∇E, so that E has at most quadratic growth. Recalling that t 7→ ft, gt are
differentiable as L2-valued maps, we get

d

dt
E (ft, gt) =

∫
X

d

dt
E(ft, gt) dm =

(∫
X

∂1E(ft, gt)∆d,mft + ∂2E(ft, gt)∆d,mgt

)
dm

=

∫
X

(
∂1E(ft, gt)∆d,mft + ∂2E(ft, gt)∆d,mgt

)
dm ≤ 0

thanks to (55). We thus obtain

E (Ptf,Ptg) ≤ E (f, g) for every t ≥ 0. (56)

In the general case, we apply (56) to the functional Eλ associated to the Yosida
approximation Eλ of E,

Eλ(r, s) := inf
(r′,s′)∈R2

1

2λ

(
(r′ − r)2 + (s′ − s)2

)
+E(r′, s′) (r, s) ∈ R2, λ > 0. (57)

It is well known [12] that Eλ is convex of class C1,1 with Lipschitz gradient ∇Eλ;
moreover, if (44c) holds, then also Eλ is nonnegative and it is immediate to check
from (57) that Eλ(0, 0) = 0. Since Eλ ≤ E, (56) then yields

Eλ(Ptf,Ptg) ≤ Eλ(f, g) ≤ E (f, g) for every t ≥ 0, λ > 0.

We can eventually pass to the limit as λ ↓ 0 and applying Beppo Levi monotone
convergence theorem, since Eλ(r, s) ↑ E(r, s) as λ ↓ 0 for every r, s ∈ R2.

A few particular cases follow as corollaries of the main result. The first one states
the contraction in the Hellinger metric for measures which are absolutely continuous
w.r.t. m: with a slight abuse of notation, for every f, g ∈ L1(X,m), f, g ≥ 0, we will
set

Hepp(f, g) := Hep(fm, gm) =

∫
X

∣∣∣f1/p − g1/p
∣∣∣p dm.

Corollary 4.6. For every nonnegative f, g ∈ L1(X,m) we have

Hep(Ptf,Ptg) ≤ Hep(f, g) for every t ≥ 0. (58)

Proof. It is sufficient to prove (58) for every couple of nonnegative functions f, g ∈
L1 ∩L2(X,m) and then argue by approximation using (40) for p = 1. We can then
apply Theorem 4.1 with the function E : R2 → R ∪ {+∞} given by

E(r, s) :=

{∣∣r1/p − s1/p
∣∣p if r, s ≥ 0,

+∞ otherwise.
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More generally, the same contraction result holds true for any Csiszàr divergence;
recalling the discussion of Section 2.1 and keeping the same notation of (18a), (18b),
(18c) and Definition 2.1, we first set

F (f |g) := F (fm | gm) =

∫
X

H(f, g) dm for every nonnegative f, g ∈ L1(X,m).

Corollary 4.7. Let F be a Csiszàr divergence as in Definition 2.1. Then, for every
nonnegative f, g ∈ L1(X,m),

F (Ptf | Ptg) ≤ F (f | g).

Proof. Recalling (21), it is sufficient to apply Theorem 4.1 to the integral functional
associated to the function H of (18b), extended to +∞ if r < 0 or s < 0.

5. Regularizing properties of the Heat flow in RCD metric measure spaces.
In the previous section we have shown contraction results involving convex func-
tionals and metric heat flows in metric measure spaces, thus covering the case of
nonlinear flows in Finsler-like geometries.

In the linear case, the Hellinger contraction (58) can also be proved by a different
approach, based on the dual dynamic formulation of the Hellinger distance that
we have discussed in 2.8. We first explain this technique in the simple case of a
submarkovian operator P on the set of bounded measurable functions and we will
then show how to extend this approach to prove new regularization results for the
Heat semigroup in RCD metric measure spaces.

5.1. Hellinger contraction for submarkovian operators. Let (Ω,B) be a
measurable space and let P : Bb(Ω) → Bb(Ω) be a linear submarkovian opera-
tor [18, Chap. IX, Sect. 1]: this means that for every bounded measurable maps
f, fn ∈ Bb(Ω)

0 ≤ f ≤ 1 ⇒ 0 ≤ Pf ≤ 1, (59a)

fn ≥ 0, fn ↓ 0 as n→∞ ⇒ Pfn ↓ 0, (59b)

where convergence in (59b) has to be intended pointwise everywhere. Notice that
for every x, y ∈ Ω

0 ≤ P
(

(f − Pf(y))2
)

(x) = Pf2(x)− 2Pf(y)Pf(x) + (Pf(y))2P1

≤ Pf2(x)−
(
Pf(x)

)2
+
(
Pf(x)− Pf(y)

)2
so that choosing x = y we get the Jensen’s inequality

(Pf)2 ≤ Pf2. (60)

We can define the adjoint operator P∗ acting on M(Ω) by the formula∫
Ω

f dP∗µ :=

∫
Ω

Pf dµ for every f ∈ Bb(Ω).

The next result could also be derived by a more refined Jensen inequality for sub-
markovian operator. Here we want to highlight the role of the dual dynamic point
of view.
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Proposition 5.1. Let (Ω,B) be a measure space and let P be a linear submarkovian
operator in Bb(Ω). Then, for any µ0, µ1 ∈M(Ω)

He2(P∗µ0,P
∗µ1) ≤ He2(µ0, µ1). (61)

Proof. Let us consider (ζs)s∈[0,1] ∈ C1([0, 1],Bb(Ω)) a solution of

∂sζs + ζ2
s ≤ 0 in Ω× [0, 1]. (62)

We apply the map P to this solution; since the linear map P is continuous with
respect to the supremum norm in Bb(Ω), (Pζs)s ∈ C1([0, 1],Bb(Ω)). Moreover,
from (60) applied to ζs it follows that s→ Pζs is also a subsolution to (62):

∂sPζs + (Pζs)
2 ≤ P∂sζs + P(ζ2

s ) = P(∂sζs + ζ2
s ) ≤ 0,

since P is positivity preserving. Then, recalling the formulation (32) of the Hellinger
distance, we have∫

Ω

ζ1 d(P∗µ1)−
∫

Ω

ζ0 d(P∗µ0) =

∫
Ω

Pζ1 dµ1 −
∫

Ω

Pζ0 dµ0 ≤ He2(µ0, µ1).

Taking the supremum of the left hand side with respect to all the subsolutions of
(62) and applying (32) once more, we eventually get (61).

Remark 1. The same argument combined with the p-Jensen inequality for P yields

Hep(P
∗µ0,Pµ1) ≤ Hep(µ0, µ1),

for every p ∈ [1,+∞). The proof can also be extended to submarkovian operators
in L1(Ω,m) with respect to a given reference measure m ∈M(Ω), obtaining in this
case an Hellinger estimate for measures absolutely continuous w.r.t. m.

5.2. Regularization Wp- Hep for p ∈ (1, 2]. Let us now focus on the regulariza-
tion estimates for the particular class of Markovian operators provided by the heat
semigroup (Pt)t≥0 in a metric measure space (X, d,m) satisfying the RCD(K,∞)
condition. Since (Pt)t≥0 maps Cb(X) into Cb(X), we can use (12) to define the
adjoint heat semigroup (P∗t )t≥0 on arbitrary positive and finite measure of M(X)
(see [5, Section 3.2] for more details).

Theorem 5.2. Let (X, d,m) be a RCD(K,∞) metric measure space and p ∈ [1, 2].
Then, for every µ0, µ1 ∈ Pp(X)

Hep(P
∗
tµ0,P

∗
tµ1) ≤ 1

p(RK(t))1/2
Wp(µ0, µ1) for all t > 0, (63)

where RK has been defined in (14).

Proof. Let us set C 1(Bb) := C1([0, 1],Bb(X)) and C 1(Lipb) := C1([0, 1],Lipb(X))
to shorten the notation. From the dual dynamic formulations (32) and (34) (recall
that a RCD space is a length space) we know

Hepp(µ0, µ1) = sup
{∫

Ω

ζ1 dµ1 −
∫

Ω

ζ0 dµ0 : ζ ∈ C 1(Bb), ∂sζs +
ζqs
q − 1

≤ 0
}

and

1

p
Wp
p(µ0, µ1) = sup

{∫
X

ζ1 dµ1−
∫
X

ζ0 dµ0 : ζ ∈ C 1(Lipb), ∂sζs+
1

q
|Dζs|q ≤ 0

}
.
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A simple rescaling argument, replacing ζ by p
aζ, shows that for a > 0

1

a
Wp
p(µ0, µ1) = sup

{∫
X

ζ1 dµ1−
∫
X

ζ0 dµ0 : ζ ∈ C 1(Lipb), ∂sζs+
aq−1

q pq−1
|Dζs|q ≤ 0

}
.

(64)
Now, take ζ ∈ C1([0, 1],Bb(X)) such that ∂sζs + 1

q−1ζ
q
s ≤ 0. We apply the order

preserving semigroup (Pt)t≥0 to (ζs)s and we get

∂sPtζs +
1

q − 1
Ptζ

q
s ≤ 0. (65)

The Lipschitz regularization property stated in Theorem 3.6 ensures that Pt(ζs) ∈
Lipb(X) and that it satisfies the refined Bakry-Emery condition (43), where we
neglect the last negative term:

RK(t) |DPtζs|2 ≤ Ptζ
2
s in X. (66)

Since p ∈ (1, 2] , the conjugate q is in [2,+∞) and hence q/2 ≥ 1. Taking the power
q/2 in (66) and using Jensen’s inequality we obtain

(RK(t))
q
2 |DPtζs|q ≤

(
Pt(ζs)

)q/2 ≤ Pt(ζ
q
s ).

The combination of this inequality and (65) yields

∂sPtζs +
pq−1q(RK(t))

q
2

q − 1

|DPtζs|q

pq−1q
= ∂sPtζs + pq(RK(t))

q
2
|DPtζs|q

pq−1q
≤ 0

which shows that ζ̃s := Ptζs is a subsolution of the Hamilton-Jacobi equation as in
(64) with the time-and-curvature dependent weight

a(t) :=
(
pq(RK(t))

q
2

)1/q−1

= pp(RK(t))p/2. (67)

All these facts lead to∫
X

ζ1 d(P∗tµ1)−
∫
X

ζ0 d(P∗tµ0) =

∫
X

Ptζ1 dµ1 −
∫
X

Ptζ0 dµ0 ≤
1

a(t)
Wp
p(µ0, µ1).

Thus, taking the supremum over all the subsolutions to ∂sζs+
1
q−1ζ

q
s ≤ 0 we conclude

Hepp(P
∗
tµ0,P

∗
tµ1) ≤ 1

a(t)
Wp
p(µ0, µ1)

where a(t) as in (67), which yields (63).

As a byproduct, when K ≥ 0, we obtain an precise decay rate for the asymptotic
behaviour of P∗t .

Corollary 5.3. Let (X, d,m) be a RCD(K,∞) metric measure space with K ≥ 0
and let m ∈ Pp(X), p ∈ [1, 2]. For every µ0 ∈ Pp(X) we have

Hep(P
∗
tµ0,m) ≤ 1

p(RK(t))1/2
Wp(µ0,m) for every t > 0. (68)

In the case p = 2 and K > 0 it is interesting to compare (68) with the well known
exponential decay rates of the logarithmic entropy and of the Wasserstein distance

KL(P∗tµ0|m) ≤ e−2KtKL(µ0|m), W2(P∗tµ0,m) ≤ e−KtW2(µ0,m) (69)

which follow by the K-geodesic convexity of the KL functional in CD(K,∞) spaces.
In particular, recalling (29), the first estimate of (69) provides

He2(P∗tµ0|m) ≤ e−KtKL(µ0|m)
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which exhibits the same exponential behaviour of (68); however, (68) only requires
µ0 ∈ P2(X).

5.3. Regularization He2-HK. With a similar argument we prove that the Hellinger
distance at time t can be estimated from above by the weighted Hellinger-Kantorovich
distance HKα, in which the parameter α acts on the transport part of the distance
with a time-dependent factor and does not affect the reaction part. Note that this
embodies a natural combination of the Hellinger-Kantorovich estimate above and
the Hellinger contraction that we proved in Proposition 5.1.

Theorem 5.4. Let (X, d,m) be a RCD(K,∞) metric measure space. For every
µ0, µ1 ∈M(X)

He2(P∗tµ0,P
∗
tµ1) ≤ HKα(t)(µ0, µ1), α(t) = 4RK(t) as defined in (14). (70)

Proof. As in the previous proof, we set C 1(Bb) := C1([0, 1],Bb(Ω)) and C 1(Lipb) :=
C1([0, 1],Lipb(Ω)) and we recall that

He2
2(µ0, µ1) = sup

{∫
X

ζ1 dµ1 −
∫
X

ζ0 dµ0 : ζ ∈ C 1(Bb), ∂sζs + ζ2
s ≤ 0

}
.

and that (39)

HK2
α(µ0, µ1) = sup

{∫
X

ζ1 dµ1 −
∫
X

ζ0 dµ0 : ζ ∈ C 1(Lipb),

∂sζs(x) +
α

4
|DXζs|2(x) + ζ2

s ≤ 0
} (71)

We consider a solution ζ ∈ C 1(Bb) of ∂sζs+ζ2
s ≤ 0 and we apply the linear operator

Pt, t > 0, obtaining

∂sPtζs + Pt(ζs)
2 ≤ 0.

Theorem 3.6 ensures that Ptζs is Lipschitz and satisfies

RK(t) |DPtζs|2 + (Ptζs)
2 ≤ Pt(ζ

2
s )

so that

∂sPtζs +RK(t) |DPtζs|2 + (Ptζs)
2 ≤ 0;

this inequality corresponds to the subsolutions of Hamilton-Jacobi equation in (71)
weighted with α = 4RK(t) = α(t). Therefore∫

X

ζ1 d(P∗tµ1)−
∫
X

ζ0 d(P∗tµ0) =

∫
X

Ptζ1 dµ1 −
∫
X

Ptζ0 dµ0 ≤ HK2
α(t)(µ0, µ1),

and taking the supremum with respect to the subsolutions to ∂sζs + ζ2
s ≤ 0 we get

(70).

It is worth noticing that (70) yields the pure Hellinger contraction estimate (58)
thanks to (37). Similarly, choosing µ0, µ1 ∈ P2(X) and applying (38) one recovers
(63) in the case p = 2.
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