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Abstract: We study the properties of the dual Sobolev space H4(X) = (H"”(X))" on a complete
extended metric-topological measure space X = (X, 7,d, m) for p € (1, c0). We will show that a crucial
role is played by the strong closure H;dl “I(X) of LY(X, m) in the dual H~"4(X), which can be identified
with the predual of H'*(X). We will show that positive functionals in H~'9(X) can be represented as a
positive Radon measure and we will charaterize their dual norm in terms of a suitable energy functional
on nonparametric dynamic plans. As a byproduct, we will show that for every Radon measure u
with finite dual Sobolev energy, Cap ,-negligible sets are also u-negligible and good representatives of
Sobolev functions belong to L'(X, u). We eventually show that the Newtonian-Sobolev capacity Cap »
admits a natural dual representation in terms of such a class of Radon measures.

Keywords: metric Sobolev spaces; capacity; modulus of a family of rectifiable curves; dynamic
transport plans; dual Cheeger energy; capacitary measures

Dedicated to Sandro Salsa on the occasion of his 70th birthday.
1. Introduction

In this paper we investigate the properties of the duals of the metric Sobolev spaces H'?(X), where
X = (X, 7,d, m) is an extended metric-topological measure space and p € (1, +o0).
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In the simpler case when (X, d) is a complete and separable metric space, 7 is the topology induced
by the metric and m is a positive and finite Borel (thus Radon) measure on X, H'*(X) can be defined
as the natural domain of the L”(X, m)-relaxation of the pre-Cheeger energy form

pCE,(f) = f (lip f(x))"dm(x),  f € Lip,(X),
X

initially defined only for bounded Lipschitz functions. Here lip f(x) defines the asymptotic Lipschitz

constant
) — f(2)
d(v,2)

VZoX

V#:

lip f(x) = lim sup

For every function f € H'”(X) one can define the Cheeger energy
CE,(f) := {lirn inf pCE ,(f,) : fu € Lip,(X), f, — f strongly in L7(X, m)}

and the Sobolev norm
I lertrce == (1AL, + CEL(M)'7,

thus obtaining a Banach space. It is therefore quite natural to study its dual, which we will denote by
H(X).

In such a general situation, however, when we do not assume any doubling and/or Poincaré
assupmptions, H'7(X) may fail to be reflexive or separable and it is not known if the generating class
of bounded Lipschitz functions is strongly dense.

As a first contribution, we will show that it could be more convenient to consider the smaller
subspace H;dl “4(X) of H™19(X) obtained by taking the strong closure of L9(X, m). Linear functionals in
H;dl “I(X) are characterized by their behaviour on Lip,(X) (or on even smaller generating subalgebras)
and their dual norm can also be computed by the formula

Lllzr-1ace) = sup {(L, f) = f € Lip,(X), pCE,(f) +IIfI}, < 1}, (1.1)

which is well adapted to be applied to general Borel measures p on X.
In Sections 3 and 4 we will show that H;dl “/(X) has three important properties:

(a) it can be identified with the predual of H'”(X) (thus showing in particular that H'"(X) is the dual
of a separable Banach space);

(b) every positive Borel measure y satisfying

[ rau] < clpoe ) +11)" forevery £ € Lip, )
X

can be extended in a unique way to a functional L, € H;d] 1(X);

(c) every positive functional on Lip,(X) such that the supremum in (1.1) is finite can be represented
by a positive Radon measure.
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This last property relies on a representation formula of the dual of the Cheeger energy by
(nonparametric) dynamic plans (Theorem 4.6) which is interesting by itself. As a further important
application of this result, in the final section 5 we will show that negligible sets in E with respect to
the Newtonian capacity Cap, are also u-negligible for every positive Borel measure with finite dual
energy. As a byproduct, we can express the duality of x4 with a function f in H'*(X) in the integral
form

(us ) = fxfdu,

where f is any good representative of f in the Newtonian space N'(X).
Our last application concerns the variational representation of the Newtonian capacity of a closed
set FCc X

(Cap,(F)""" = sup {u(F) : st € Mo(X), (X \ F) = 0, |Lyllg-acry < 1)-

Main notation

(X, 1) Hausdorff topological space

(X,7,d) Extended metric-topological (e.m.t.) space, see §2.2 and Definition 2.2

X =(X,1,d,m) Extended metric-topological measure (e.m.t.m.) space, see §2.2

M, (X) Positive and finite Radon measures on a Hausdorft topological space X, § 2.1
AB(X) Borel subsets of X

fint Push forward of u € M(X) by a (Lusin y-measurable) map f: X — Y, (2.1)
Cuy(X,7), Cp(X) 7-continuous and bounded real functions on X

Lip,(X, 7,d) Bounded, 7-continuous and d-Lipschitz real functions on X, (2.2)

lip f(x) Asymptotic Lipschitz constant of f at a point x, (2.4)

of Compatible unital sub-algebra of Lip, (X, 7, d), Definition 2.3

LU o) g-Entropy functionals on Radon measures, (4.2)

C(0,1]; (X, 7)) T-continuous curves defined in [0, 1] with values in X, § 2.4

Tc, dc Compact open topology and extended distance on C([0, 1]; X), § 2.4
BVC([0,1];X) Continuous curves with d-bounded variation, § 2.4

RA(X) Continuous and rectifiable arcs, § 2.4

e(-,1),e:(-),e[-] Evaluation maps along curves and arcs, § 2.4

Ta, da Quotient topology and extended distance on RA(X), § 2.4

R, Arc-length reparametrization of a rectifiable arc vy, § 2.4

fy f Integral of a function f along a rectifiable curve (or arc) y, § 2.4

{(y) length of y, § 2.4

vy Radon measure in M, (X) induced by integration along a rectifiable arc vy, (2.9)
pCE,, CE,, CE, . (pre)Cheeger energy, Definition 3.1

H'""(X) Metric Sobolev space induced by the Cheeger energy, Definition 3.1

D« Minimal p-relaxed gradient, (3.1)-(3.2)

Bar,(mr) g-barycentric entropy of a dynamic plan, Definition 4.2

B,(RA(X)) Plans with barycenter in L7(X, m), Definition 4.2

Do, 1) Dual dynamic cost, (4.5)

Mod,(I') p-Modulus of a collection I' ¢ RA(X), Definition 5.1

N'P(X) Newtonian space, Definition 5.3
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Cap, Newtonian capacity, (5.2)

2. Preliminary results

2.1. Topological and measure theoretic notions

Let (Y, 7y) be a Hausdorft topological space. We will denote by C,(Y, 7y) the space of Ty-continuous
and bounded real functions defined on Y; Z(Y, ty) is the collection of the Borel subsets of Y; we will
often omit the explicit indication of the topology 7y, when it will be clear from the context.

Definition 2.1 (Radon measures [22, Chap. I, Sect. 2]). A finite Radon measure u : B(Y, ty) — [0, +00)
is a Borel nonnegative o-additive finite measure satisfying the following inner regularity property:

VBe B(Y,ty): uB)=sup{u(K): K c B, K compact}.
We will denote by M, (Y) the collection of all the finite positive Radon measures on'Y.

It is worth mentioning that every Borel measure in a Polish, Lusin, Souslin, or locally compact
space with a countable base of open sets is Radon [22, Ch. II, Sect. 3]. In particular the notation of
M, (Y) is consistent with the standard one adopted e.g., in [4, 6,24], where Polish or second countable
locally compact spaces are considered.

If (Y, ty) is completely regular, the weak (or narrow) topology 7y, on M, (Y) can be defined as the
coarsest topology for which all maps

T fhd,u from M_,(Y) into R
Y

are continuous as 4 : Y — R varies in C,(Y, 7y) [22, p. 370, 371].

Recall that a set A C Y is u-measurable, u € M, (Y), if there exist Borel sets By, B, € A(Y,1y)
such that By C A C B, and u(B, \ By) = 0. A set is called universally (Radon) measurable if it is
p-measurable for every Radon measure y € M, (Y).

Let (Z, 72) be another Hausdorft topological space. A map f : Y — Z is Borel (resp. u-measurable)
if for every B € B(Z) f~'(B) € B(Y) (resp. f~'(B) is u-measurable). f is Lusin y-measurable if for
every € > ( there exists a compact set K, C Y such that u(Y \ K,) < € and the restriction of f to K, is
continuous. A map f : Y — Zis called universally Lusin measurable if it is Lusin y-measurable for
every Radon measure u € M, (Y).

Every Lusin u-measurable map is also u-measurable. Whenever f is Lusin y-measurable, its push-
forward

fit € M (Z),  fun(B) := u(f~'(B)) for every Borel subset B C %(Z) (2.1)

induces a Radon measure in Z.
Given a power p € (1,0) and a Radon measure u in (Y, 7y) we will denote by LP(Y, ) the usual
Lebesgue space of class of p-summable y-measurable functions defined up to u-negligible sets.

2.2. Extended metric-topological (measure) spaces

Let (X, 7) be a Hausdorff topological space. An extended distance is a symmetric mapd : X X X —
[0, oo] satisfying the triangle inequality and the property d(x,y) = 0 iff x = y in X: we call (X, d) an
extended metric space. We will omit the adjective “extended” if d takes real values.

Mathematics in Engineering Volume 3, Issue 1, 1-31.



Let d be an extended distance on X. For every f : X — R and A C X we set
Lip(f, A) := inf {L € [0,00] : [f(y) - f(2)| < Ld(y.2) foreveryy,z € A}.

We adopt the convention to omit the set A when A = X. We consider the class of T-continuous and
d-Lipschitz functions
Lip,(X,7.d) := {f € C,(X.7) : Lip(f) < o, 2.2)

and for every « > 0 we will also consider the subsets
Lip, (X, 7.d) := {f € C,(X,7) : Lip(f) < }.

A particular role will be played by Lip,, (X, ,d). It is easy to check that Lip,(X, 7,d) is a real and
commutative sub-algebras of C,(X, ) with unit. According to [2, Definition 4.1], an extended metric-
topological space (e.m.t. space) (X, 7,d) is characterized by a Hausdorff topology 7 and an extended
distance d satisfying a suitable compatibility condition.

Definition 2.2 (Extended metric-topological spaces). Let (X,d) be an extended metric space, let T be
a Hausdorff topology in X. We say that (X, 1,d) is an extended metric-topological (e.m.t.) space if:

(X1) the topology T is generated by the family of functions Lip,(X, 7,d);

(X2) the distance d can be recovered by the functions in Lip,, (X, 7,d) through the formula

d(x,y) = sup lf(x)— f(y)| foreveryx,y € X. 2.3)

feLip, (X,7,d)

We will say that (X, T,d) is complete if d-Cauchy sequences are d-convergent. All the other topological
properties usually refer to (X, 7).

The previous assumptions guarantee that (X, 7) is completely regular. When an e.m.t. space (X, 7, d)
is provided by a positive Radon measure m € M, (X, 7) we will say that

the system X = (X, 7,d, m) is an extended metric-topological measure (e.m.t.m.) space.
Definition 2.2 yields two important properties linking d and 7: first of all
dis T X T-lower semicontinuous in X X X,

since it is the supremum of a family of continuous maps by (2.3). On the other hand, every
d-converging net (x;) ;; indexed by a directed set J is also T-convergent:

limd(x;,x) =0 = limx;=x wrtT.
jeJ jeJ

It is sufficient to observe that 7 is the initial topology generated by Lip, (X, 7,d) so that a net (x;) is
convergent to a point x if and only if

lirglf(xj) = f(x) forevery f € Lip,(X, 7,d).
JE

In many situations it could be useful to consider smaller subalgebras which are however sufficiently
rich to recover the metric properties of an extended metric topological space (X, 7, d).
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Definition 2.3 (Compatible algebras of Lipschitz functions). Let </ be a unital subalgebra of
Lip,(X, 7,d) and let us set <, := &/ N Lip,, (X, 7,d).
We say that <7 is compatible with the metric-topological structure (X, t,d) if

d(x,y) = jgugr; |f(x) = fOWI forevery x,y € X.

In particular, <7 separates the points of X.

It is not difficult to show that any compatible algebra o7 is dense in L”(X, m) [21, Lemma 2.27]. If
we do not make a different explicit choice, we will always assume that an e.m.t.m. space X is endowed
with the canonical algebra <7 (X) := Lip,(X, 7, d).

2.3. The asymptotic Lipschitz constant

For every f : X — R and x € X, denoting by %, the directed set of all the T-neighborhoods of x, we
set

lip f(x) := zIJIJE Lip(f,U) = l}gg Lip(f,U) xe€X.

Notice that Lip(f, {x}) = 0 and therefore lip f(x) = 0 if x is an isolated point of X. We can also define
lip f as

lip f(x) = lim sup %,

Y#Z

(2.4)
where the convergence of y, z to x in (2.4) is intended with respect to the topology 7. In particular,

lip £(x) = IDfI(x) 1= lim sup L) =/l

y—ox d(x’ y) (25)

It is not difficult to check that x — lip f(x) is a T-upper semicontinuous map and f is locally d-Lipschitz
in X iff lip f(x) < oo for every x € X. When (X, d) is a length space, lip f coincides with the upper
7-semicontinuous envelope of the local Lipschitz constant (2.5).

We collect in the next useful lemma the basic calculus properties of lip f.

Lemma 2.4. For every f, g, x € C,(X) with X(X) C [0, 1] we have

lip(af +pBg) <la| lipf +|B| lipg foreverya,B€R,
lip(fg) < |fllip g + |g|lip f,
lip((1 =x)f +xg) <1 -x)lip f +xlipg + lipX|f — gl

Moreover, whenever ¢ € C!(R)

lip(¢ o f) =1¢" o fllip f .
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2.4. Continuous curves and rectifiable arcs

We briefly recap some useful results concerning the extended metric-topological structure of the
space of rectifiable arcs in an e.m.t. space (X, 7, d). We refer to [21, § 3] for a more detailed discussion
and for the related proofs.

Forevery y : [0,1] —» X and ¢ € [0, 1] we set

N
Vo) :=sup{ Y d(y(t), y(ti-) 1 0=tg <ty < - <ty =1}, L) :=Vy(l).

=

BVC([0, 1]; X) will denote the space of d-continuous maps y : [0, 1] — X such that £(y) < oo; notice
that if £(y) = O then 7y is constant. We will also consider the set of curves with constant velocity

BVC.([0, 1]; X) := {y e BVC([0, 1]; X) : V,(t) = {(y)t}. (2.6)

Notice that for every y € BVC([0, 1]; X) the map V,, : [0,1] — [0, £(y)] is continuous and surjective
and whenever €(y) > 0

there exists a unique £(y)-Lipschitz map R, € BVC.([0, 1]; X) such that

» 2.7)
y(@) = R,(((y)" " V,(1)) foreveryt e [0,1],

with |[R)|(s) = {(y) a.e.; when {(y) = O then R,(r) = y(?) is constant. We can use R, to define the
integral of a bounded or nonnegative Borel function f : X — R along y:

1 1
f f= fo FR,(SNIR(s) ds = () fo F(R,(5)) ds. 2.8)
Y

We also notice that (2.8) yields
ff = ffdv7 where v, := f(’)/)(R),)ﬁ(gl L [0, 1]). (2.9)
y X

We will endow BVC([0, 1]; X) with the compact-open topology 7¢ induced by 7. By definition, a
subbasis generating 7¢ is given by the collection of sets

S(K.V):={y € C(10,1]:X) : ¥(K) € V}, K c[0,1] compact, V 7-open in X.

By [19, §46, Thm. 46.8, 46.10] if the topology 7 is induced by a distance 9, then the topology 7¢ is
induced by the uniform distance 6c(y,y’) := Sup,cp, 0(¥(1), ¥’ (1)) and convergence w.r.t. the compact-
open topology coincides with the uniform convergence w.r.t. . If moreover 7 is separable then also 7¢
is separable [14, 4.2.18].

We will denote by e : BVC([0, 1]; X) X [0, 1] — X the evaluation map, which is defined by e,(y) =
e(y,t) := y(t) for every t € [0, 1]; e is continuous. We will also adopt the notation e[y] := e({y} X
[0,1]) = {y(¢) : t € [0, 1]} for the image of y in X.

The extended distance d : X X X — [0, co] induces the extended distance dc in BVC([0, 1]; X) by

dc(y1,7y2) := sup d(y1(0), y2(1))
t€la,b]
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and (C([0, 1]; X), 7c, dc) is an extended metric-topological space [21, Prop. 3.2].
Let us denote by X the set of continuous, nondecreasing and surjective maps o : [0, 1] — [0, 1]. On
BVC([O0, 1]; X) we introduce the relation

yi~7y, if do;€eX: yioo =y,00,,
and the function

da(y1,72) 1= inf de(y1 0 01,2 0 02) - for every y; € BVC([0, 1]; X).
It is possible to prove that ~ is an equivalence relation [21, § 3.2, Cor. 3.5] and d, satisfies

da(y1,72) = daRy, Ry,) = inf de(yr,y200) = inf de(y1,7))-

o injective

In particular d, satisfies the triangle inequality, is invariant with respect to ~ and y ~ vy’ if and only if
da(y,y’) = 0. We collect a list of useful properties [21, § 3.2]:

Lemma 2.5. (a) The space RA(X) := BVC([0, 1]; X)/ ~ endowed with the quotient topology Tx is
an Hausdorff space. We will denote by q : BVC([0, 1]; X) — RA(X) the quotient map.

(b) If the topology 7 is induced by the distance 6 then the quotient topology T is induced by o
(considered as a distance between equivalence classes of curves).

(c) (RA(X),Ta,dn) is an extended metric-topological space.

(d) Foreveryy,y € BVC([0, 1]; X) we have
y~yY & R,=R,,

and all the curves y' equivalent to 'y can be described as y’ = R, o o for some o € X. Moreover,

ify ~ythen
) =4y, Ry=R, ff=ff,
Y Y

so that the functions R, {, the evaluation maps €y,€,, and the integral L f are invariant
w.r.t. reparametrizations. We will still denote them by the same symbols.

(e) £ : RA(X) — [0, +00] is Ta-lower semicontinuous and €y, e; : RA(X) — X are continuous. If
f: X = [0, +o0] is lower semicontinuous then the map y — fy [ is lower semicontinuous w.r.t. T
in RA(X).

We conclude this section with a list of useful properties concerning the compactness in RA(X) and
the measurability of some importants maps, see [21, Thm. 3.13].

Theorem 2.6. (a) Ify,, i € I, is a converging net in RA(X) with y = lim,e; y; and lim;; £(y;) = {(y)
then
hI}lR%. =R, wrt 7,
IS
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and for every bounded and continuous function f € Cy(X, 7) we have
im [ £~ [ 7
< Jy y

limv,, =v, weaklyin M,(X).

iel

In particular, we have

(b) The map y = v, from RA(X) to M.(X) is universally Lusin measurable.

(¢) The map y = R, is universally Lusin measurable from RA(X) to BVC.([0, 1]; X) endowed with
the topology t¢c and it is also Borel if (X, T) is Souslin.

(d) If f : X = Ris a bounded Borel function (or f : X — [0, +oo] Borel) the map y — fyf is Borel.
In particular the family of measures {vy},era(x) is Borel.

(e) If (X, 1) is compact and I' C RA(X) satisfies SUp,cr {(y) < +oo then I is relatively compact in
RA(X) w.r.t. the T4 topology.

() If (X, d) is complete and I' ¢ RA(X) satisfies the following conditions:
1) sup,er €(y) < +o0;
2) there exists a T-compact set K C X such that e[y] N K # 0 for everyy € I';

3) {vy : ¥y €'} is equally tight, i.e. for every & > 0 there exists a T-compact set K, C X such that
v, (X' \ K;) < g foreveryy €1,

then I is relatively compact in RA(X) w.r.t. the T topology.
Notice that the third condition in the statement (f) of Theorem 2.6 implies the second one whenever
inf,er €(y) > 0.

3. Metric Sobolev spaces and their duals

In this section we will always assume that X = (X, 7,d, m) is a complete e.m.t.m. space and </ is a
compatible sub-algebra of Lip, (X, 7,d). We also fix a summability exponent p € (1, co) with conjugate

qg=pl(p-1).
3.1. The Cheeger energy
Let us first define the notion of Cheeger energy CE, associated to X, [3,5,6,10,21].

Definition 3.1 (Cheeger energy). For every k > 0 and p € (1, 00) we define the “pre-Cheeger” energy
functionals

PCE,(f) := f(lip £(x))? dm, forevery f € Lip (X, 7,d),
X

with pCE ,(f) = +oo if f € LP(X) \ Lip,(X, 7,d). The LP-lower semicontinuous envelope of pCE , is the
“strong” Cheeger energy

CE,(f) = inf{liminff(lipfn)’7 dm: f, € Lip,(X,7,d), f, = fin LP(X, m)}.
n—ee Jx
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For every k > 0 and f € LP(X, m) we also set

BCE,,,(f) = POE,(f) + KW ,xnys  CEpu(f) = CEL() + KA -
We denote by H'*(X) the subset of L?(X, m) whose elements f have finite Cheeger energy CE ,(f) < co:

.. . 1/p
it is a Banach space with norm || fl|g.rx) := (CEp,l(f)) .

Remark 3.2 (The notation CE and H'?). We used the symbol CE instead of Ch (introduced by [6]) in
the previous definition to stress three differences:

e the dependence on the strongest lip f instead of |Df],
e the factor 1 instead of 1/p in front of the energy integral.

In this paper we will mainly adopt the “strong” approach to metric Sobolev spaces and we will use the
notation H'7(X) to stress this fact. We refer to [5, 6] for the equivalent weak definition of W!?(X) by
test plan. In the final section 5 we will also use a few properties related to the intermediate (but still
equivalent) Newtonian point of view, see [8, 17].

It is not difficult to check that CE,, : LP(X, m) — [0, +o0] is a convex, lower semicontinuous and p-
homogeneous functional; it is the greatest L/-lower semicontinuous functional “dominated” by pCE ,.
Notice that when m has not full support, two different elements f;, f> € Lip,(X, 7,d) may give rise to
the same equivalence class in L”(X, m). In this case, CE, can be equivalently defined starting from the
functional

pCE, (/) := inf {pCE (/) : f € Lip,(X,7,d), [ = f m-ae.,
defined on the quotient space Lip, (X, 7,d)/ ~.
Whenever CE,(f) < oo one can show [5, 6] that the closed convex set

S,(f) :={G € L(X.m) : f, € Lip,(X,7.d) : f, > . lip f, = G in L"(X, m)} 3.1)

admits a unique element of minimal norm, the minimal relaxed gradient denoted by |Dfl,. |Df]. is
also minimal in S ,(f) with respect to the natural order structure, i.e.,

Dfl. € S,(f), IDfl« <G forevery G €S ,(f). (3.2)

The Cheeger energy CE,, admits an integral representation in terms of the minimal relaxed gradient:

CE,(f) = fIDfIZ(x) dm(x) forevery f € H""(X),
X

and enjoys the following strong approximation result (see [5, 6] in the case of bounded Lipschitz
functions, [7] for the “metric” algebra generated by truncated distance functions and [21, Thm. 12.1]
for the general case):

Theorem 3.3 (Density in energy of compatible algebras). Let </ be a compatible sub-algebra of
Lip,(X,1,d) and let I be a closed (possibly unbounded) interval of R. For every f € H"P(X) taking
values in I there exists a sequence (f,) C </ with values in I such that

fi— f, lipf, — IDflx stronglyin LP(X, m).
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We collect a list of useful properties [6] of the minimal p-relaxed gradient.
Theorem 3.4. For every f,g € H'""(X) we have
(a) (Pointwise sublinearity) For |D(af + Bg)|x < |Df|x + BIDg|x.
(b) (Leibniz rule) For every f,g € H"P(X) N L*(X, m) we have fg € H"*(X) and

ID(flx < [f1Dglx + lglIDf4. (3.3)
(¢c) (Locality) For any Borel set N C R with Z'(N) = 0 we have
IDfl, =0 m-a.e. on f~'(N).
In particular for every constant c € R
IDflx = IDglx m-a.e. on{f — g = c}.
(d) (Chain rule) If ¢ € Lip(R) then ¢ o f € H"P(X) with

ID(¢ © s <18"(NIID Sl (3.4)
Equality holds in (3.4) if ¢ is monotone or C'.

3.2. Legendpre transform of the Cheeger energy and the dual of the Sobolev space H'"(X)

Let us now study a few important properties of the Legendre transform of the p-Cheeger energy
and its relation with the dual of the Sobolev space H'"”(X) when p € (1, c0); recall that we denote by
q = p’ = p/(p—1) the conjugate exponent of p. Let us first recall a simple property of p-homogeneous
convex functionals (see e.g., [21, Lemma A.7].

Lemma 3.5 (Dual of positively p-homogeneous functionals). Let C be a convex cone of some vector
space V, p> 1, and ¢,y : C — [0, c0] with ¢ = ¢'/P, ¢ = yP. We have the following properties:

(a) ¢ is convex and positively p-homogeneous (i.e., p(kv) = k?d(v) for every k > 0andv € C) in C
if and only if W is convex and positively 1-homogeneous on C (a seminorm, if C is a vector space
and y is finite and even).

(b) Under one of the above equivalent assumptions, setting for every linear functional z : V — R

1 1
JF @ =) - 40 ()= sup {(z,v) : v € C, y(v) < 1}, (3.5)

veC

we have

Y.(@) =inf{c 2 0: (z,v) Scy(v) foreveryveCl, ¢'(2) = .Y,

where in the first infimum we adopt the convention inf A = +oo if A is empty.

(c) An element v € C attains the first supremum in (3.5) if and only if
(V) = W) = YO)".
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We want to study the dual functionals related to CE, and pCE , . The simplest situation is provided
by L? — Li-duality:

uel?

1 1
—-CE, (W) :=sup fwu dm - —CE,(u) forevery w € LY(X, m),
q X P

1 1
—pCE, (W) :=  sup fwu dm - —pCE, (u) forevery w € LI(X, m).
q ’ X 4 '

ueLip,(X,7,d)

By Fenchel-Moreau duality Theorem (see e.g., [9, Theorem 1.11], [13, Chap. IV]) it is immediate to
check that

pCE, (W) = CE, (W) for every w € LY(X, m),

1 1

—CE,«(u) = sup fuw dm - —pCE ,(w) for every u € LP(X, m). (3.6)
p weLd(X,m) JX q ’

The situation is more complicated if one wants to study the dual of CE, with respect to the Sobolev
duality. Just to clarify all the possibilities we consider three normed vector spaces:

e The separable and reflexive Banach space V := LP(X, m);

1/p

e The vector space <7, associated to a compatible algebra & endowed with the norm pCEp L

e The Banach space W = H'7(X) with the norm CE;/ f .

Notice that we do not know any information concerning the separability and the reflexivity of the
Banach space H'”(X) nor the (strong) density of .7 in W. Since both .« and W = H'"(X) are dense
in V = LP(X, m), if we identify V" with L7(X, m) we clearly have

L/(X,m)=V' c(«,), LYX,m)=V cW withcontinuous inclusions.

On the other hand, every element L € W’ can be considered as a bounded linear functional on .7, and
thus induces an element Ly, of (27,)" just by restriction, but it may happen that this identification map
is not injective. Finally, since pCE, | may be strictly greater than CE,; on &/, in general not all the
bounded linear functionals on .27, may admit an extension to W.

Taking all these facts into account, now we want to address the question of the unique extension of
a given bounded linear functional L on .27, to an element of the dual Sobolev space W’. We begin with
a precise definition.

Definition 3.6 (The spaces H (X)), H;dl “4(X) and %’). We define:
o H'(X) as the dual W' of H""(X);

° H;dl “I(X) as the subset of H'4(X) whose elements L satisfy the following condition: for every
choice of f, f, € H*"*(X), n € N, and every constant C > 0

CE,(f) < € lim [Ify = fllroemy =0 = lim (L, £,) = (L, f). (3.7
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e </ as the set of linear functionals L on </ satisfying the following two conditions: there exists a
constant D > 0 such that

(L. )| < D(pCE,1(F)) " for every f € o, (3.8a)

and for every sequence f, € o/ and every constant C > 0

pCE,(f) < C. lim [Ifillyrewy =0 = liminf (L, £,)

When o/ = «/(X) = Lip,(X, 7,d) we will write 7] = <7/(X).

=0. (3.8b)

It would not be difficult to check that if H'”(X) is reflexive then < is strongly dense in H'*(X)

and H (X) = H;dl X)) = ,@/q’. In the general case, only a partial result holds and we will show that

H'"?(X) can be identified with the dual of H;dl 1(X), i.e., H;dl “(X) is a predual of H'(X) (this property
justifies the index .4 in the notation). Let us start with a first identification:

Proposition 3.7 (&7, ~ H;d] “(X)). The following properties hold:

(a) & is a closed subspace of (#7,)': in particular, it is a Banach space with the norm

1Ll = (pCE;, (D) " = sup{(L. ) : f € o, pCE,,(f) < 1)

(b) A linear functional L on < belongs to <7, if and only if for every & > O there exists a constant
k > 0 such that

KL, )" < epCE,(f) +KIIfIl}, forevery f € o . (3.9)

In this case (3.8b) holds in the stronger form where liminf is replaced by lim sup.

(¢) Every linear functional L € <7, admits a unique extension Lin H;dl “UX). The map L — Lis a
surjective isometry between 7, and H;d] “I(X), which is therefore a closed subspace of H™'(X).

In particular, if L, L’ € H;dl “(X) coincide on </ then L = L.
Proof. (a) It is sufficient to prove that yfq’ is closed in the Banach space («,)". Let L be an element

of the closure and for every € > 0 choose elements L, € szq’ such that ||L — L[,y < &. For every
sequence f, € &/ as in (3.8b) we have

liminf (L, f,) < Ce.

< lim sup |(L =L, fu)

+ liminf [(L,. f,)

Since & > 0 is arbitrary we obtain that L € &7

(b) If L satisfies (3.9) and f, € 7 is a sequence as in (3.8b) we have

” < limsup (8 pCE ,(f,) + K||fn||i,,) <&eC;

limsup [(L, f,,)

n—oo

since ¢ is arbitrary we deduce that limsup,,_, |(L, fl =0, thus (3.8b) in the stronger form.
In order to prove the converse implication, we argue by contradiction by assuming that there exists
& > 0 and a sequence f, € .o/ such that

KL. f2)

"> epCE,,(f,) + nllf;lI7, > 0.
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By possibly replacing f, with f,(pCE,, ( f,z))_l/ P it is not restrictive to assume that pCE, (f.) = 1; by
(3.8a) we have forn > &
"<Dr

& < epCE,(f) + nllfull}, < L. £u)
s0 that lim, e [|fyllz» = O but liminf, .. [(L, £,)| > &7 > 0.

(¢) In order to define L we fix f € H"?(X) and any sequence f, € 7 such that f, — f in LP(X, m) with
E? := sup pCE (/) < o0. By (3.9), for every & > 0 there exists « > 0 such that

KL, f, = fudl < 26YPE + &MP|| f, = fullir

which shows that the sequence n — (L, f,) satisfies the Cauchy condition and thus admits a limit which
we denote by (L, f). This notation is justified by the fact that the limit does not depend on the sequence
fat in fact, if £, 1s another sequence converging to f in L”(X, m) with equibounded energy, (3.7) shows
that lim,,o (L, f, — f,) = 0. It is also easy to check that the map H LP(X) 5 f - (L, f) is a linear
functional.

In order to show that L is bounded, for every f € H"P(X) we select an optimal sequence f, such
that CE,(f) = lim, . pCE,,(f,): by construction

~ . . 1/p 1/p

(L. )| = lim [(L, £,)] < Timsup ILll; (PCE, 1 (f,) " = ILlly (CE,a ()

so that ||Z]| Hla) < ||L||%r. On the other hand for every f € < with pCEp( f) < 1 by choosing the
constant sequence f, = f we get

~ ~ 1/p ~
(Lo fy = (Lo f) = 1 Dlaan(CEpa (D) < Mlla-tace

since CE,(f) < pCE,(f) < 1. It follows that ||L]|; < ||Z||H*l,q(x) so that the extension map ¢ : L — L is
an isometry.

It remains to prove that the image of ¢ coincides with H;dl “(X). Since it is clear that H;dl X)) c
u«7,), it is sufficient to show the converse inclusion, i.e., that every element L = «(L) satisfies (3.7). By
linearity, it is not restrictive to check (3.7) for f = 0. If f, € H"?(X) has equibounded Cheeger energy
and lim,_,, [|f]lz» = 0, by the very definition of the Cheeger energy and the definition of L we can find
another sequence g, € <7 such that

1 1 - 1
PCE ,(8:) < CE,(f) + = ligw = fullur < = KL, gy =<L, fi)] < —.
Since L € ,Q{q’ and lim,,_, ||g./lz» = 0 we have lim,_,« (L, g,) = 0 so that lim,_, (L, f,) = 0. |

Let us now express the dual functionals by a infimal convolution.

Lemma 3.8. For every L € H-"4(X) and every a > 0, 8 > 0 we have

| 1
Logr (= sup (L.g)— ~CE,u(e)- gl
q geHP(X) p p
1 | (3.10)
— s _ * _ q
= min - CEpalL= )+
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Proof. (3.10) is a particular case of the duality formula for the sum of two convex functions ¢, :
W - (_009 +OO]
(@+¢)(L) = ?ni“rll O (L— f)+y*(f) forevery Le W’
€

which holds in every Banach space W whenever there exists a point wy € W such that ¢(wy) < co and
Y is finite and continuous at w, by Fenchel-Rockafellar Theorem ( [20], see also [9, Theorem 1.12]).

Here W = H'7(X), ¢(g) := 1CE,(9), ¥(g) := L8], 0

We collect in the next proposition a further list of useful properties. We will denote by
J, 1 LP(X, m) — L(X, m) the duality map

Jpu)(x) = 0" u(x), fquu dm = [[ull}, = [1T,ullf,,
X

and by A, : H LP(X) — P(H (X)) the subdifferential of the Cheeger energy with respect to the
Sobolev duality

1 1
LeAu & ueH""X), (Lv-u)<—CE,(v)——CE,(u) foreveryve H"”(X). (3.11)
p p

Since CE,, is continuous in H'?(X), Au # 0 for every u € H'”(X) [13, Chap. 1, Prop. 5.3] (notice that
A, is different from the subdifferential of CE,, w.r.t. the L”-L? duality pair). The sum

1
Qpx :=A, +«J, isthe subdifferential in H LP(X) of —CE P
p

Proposition 3.9. We have the following properties

(a) Forevery L € H;d]’q(X) and every k > 0 we have

1 1
—CE;K(L) = Sup <L, f> - _CEp,K(f)
q 4

feHP(X)
1
= sup (L, f) - —CE,«(f) (3.12)
feod p
1 1
= sup (L, f)— —pCE, (f) = —pCE, (D). (3.13)
fedd p q

(b) H;dl “(X) coincides with the (strong) closure of V' = L4(X,m) in W = H 4(X).

(c) For every L € Hgdl “(X) and k > O there exists a unique solution u, = Q;,L(L) € H'""(X) of the

problem
1
min —CE, (v) — (L, u) (3.14)
ueH'"»(X) p
which satisfies
Qputhe = Apu + kI pu, 3 L, CE, (L) = CE, (u) = (L, u). (3.15)
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(d) For every L € H"(X) and k > 0 there exists a unique function f, := R.(L) solving the minimum
problem
. 1 o
-CE, (L)= min —CE (L-f)+——I|lfll (3.16)
q

feLa(xm g qKq/p

The map R, : H"(X) — L4(Z,m) is strongly continuous. Moreover, if L € H;dl’q(X) then
fe=R(L) = klpu, =«l, 0 Q[‘,’IK(L).

(e) For every L € H™"4(X) we have

CE (L) = 1}{51 CE, (L) = supCE, (L).

x>0

Proof. (a) (3.13) (which implies (3.12)) follows by an easy approximation argument combining the
definition of CE, and the continuity property (3.7) and it follows by the same argument at the end of
the proof of claim (c) of Proposition 3.7.

(b) Since H;dl “I(X) is a closed subspace of H(X) and clearly contains L7(X,m), it is sufficient to

*

prove that L7(X, m) is dense in H;dl “(X). For every n € N we consider the functional G,, := ol

and we want to show that
lim sup G,(L) = 0; (3.17)

nloeo

by using (3.10) (with @ := 1,8 := n”), (3.17) is in fact equivalent to the density of L(X, m) in H;dl 1(X).
By the first formula of (3.10), for every & > 0 we can find g, € H'*(X) such that

1 1 n?
_Gn(L) < (L’ gn> - _CEp,l(gn) - _”gnHip + &. (318)
q p p

Since
q/p

2 . 1
(L,gn) < TCEPJ(L) + ZCEp,l(gn)
and G,(L) > 0, we obtain

q/p

1 n 2 .
_CEp,l(gn) + _”gn” <&+ _CEp,l(L)
2p P q

so that CE, i(g,) is uniformly bounded and ||g,ll,» — 0 as n — oco. By (3.7) we conclude that
lim, .« (L, g,) = 0 and therefore (3.18) yields limsup,_,., G,(L) < €. Since &€ > 0 is arbitrary, we
obtain (3.17).

(¢) The existence of a solution u, € H'""(X) to (3.14) follows by (3.7) and the Direct method of the
Calculus of Variations. Let us take a minimizing sequence f, € H'”(X) such that

1 1
lim —CE,(fu) = (L. fu) = M := inf —CE,(fa) = (L, fu). (3.19)
n—oo p feH!"P(X) p
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Since f, is uniformly bounded in H'”(X), up to extracting a suitable subsequence (still denoted by f;),
it is not restrictive to assume that f;, is converging to a function f € H'*(X) weakly in L(X, m) and

S = lim Il = Jim [ 20 + (L. ) = ~CE,(£)| " (3.20)

K
We prove that f, is a Cauchy sequence: by the uniform convexity of the L”(X, m)-norm, for every € > 0

there exist S’ < § < §” such that for every hy, h, € LP(X, m)

hy + hy

nmmsWAwmsy:‘

>SS = |hh-n|<e (3.21)

Lr

By (3.20) we can find i1 € N such that for every n > 71 and
" 1 K ’
fallr <87, M - ;CEp(fn) +(L, fu) 2 1—)(5 ).

For every m,n > i1 we thus get

1 1 1
Msgwwguﬁﬁ»—;aﬁ+m>

1,1 1 K| fu+ [P
siﬁp@u»—@¢»+?thrwnm»+;—7;—U
<M= Kty s K| LI
P plt 2
and therefore
an + Jfm ,
2 L

so that (3.21) yields || f,— fullL» < € for every n,m > in. We deduce that lim,,_,, ||/, — fll.» = O; since f,, is
uniformly bounded in H'*(X), (3.7) yields lim,_,., (L, f,) = (L, f) and the lower semicontinuity of the
Cheeger energy yields CE,(f) < liminf,_,., CE,(f,). By (3.19) we conclude that iCEp,K(f) —(L, f) =
M so that f is the unique minimizer of (3.14).

(d) (3.16) is an immediate consequence of (3.10) with @ = 0 and g8 = «.

In order to prove the continuity of R, let L, € H~(X) be a sequence strongly converging to L and
let f, = R((L,) € LY(X, m). Since CE;’K(L,,) is uniformly bounded, we obviously get a uniform bound
for CE;,K(L,, — fu and |[f,lle. Let f € L9(X, m) be any weak L7 limit point of f,, e.g., attained along a
subsequence fy;. Since lim,_., CE, ,(L,) = CE, (L) and

lim inf CE5,(Lugy = fop) 2 CE, (L= ), liminf ISl = A1,

Jj—oo

we deduce that .

qKq/p

CE, (L) > CE, (L—-f)+

A1

so that f = R,(L). Since R,(L) is the unique weak limit point of the sequence f, in L?, we conclude
that f, — R,(L) in L9(X, m). The same variational argument also shows that lim sup, _,  [|fullze < [If]lLe
so that the convergence is strong.
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Finally, if L € H;dl “(X), f, is the (unique) minimizer of (3.10) and u, is the (unique) minimizer of
(3.14), we get

1 1
C_]CEP(L - fK) + ;CE[)(MK) <L fKa MK> + ||f;<|| ||MK||p <f;<a uK> =0

which yields
Apue =L~ f,  fo=kKl,u.

(e) Since the map « — CE} (L) is nonincreasing, we have lim, o CE, (L) = sup,., CE, (L) < CE, (L)
On the other hand, for every f € H'"”(X) and & > 0, choosing x > 0 sufficiently small so that X || bill o <
we get

1 1 1
(L, f) = =CE,(f) —&e <(L, f) - —CE,(f) - fllfllip = (L, f) = —CE,.(f)
p p p P

e 1 ‘
< 5CEP’K(L) < —supCE,, (L)

>0

Since the inequality holds for every & > 0 and every f € H'"(X), we obtain the converse inequality
CE,(L) < sup,., CE,, (L). i

Proposition 3.9 yields the following interesting duality result, which is also related to the theory of
derivations discussed in [12].

Corollary 3.10 (H'*(X) is the dual of a Banach space). H'*(X) can be isometrically identified with
the dual of H;dl ““(X). In particular, if LY(X, m) is a separable space, H'"P(X) is the dual of a separable
Banach space.

Proof. Let z be a bounded linear functional on H;dl “4(X). Since LI(X, m) is continuously and densely
imbedded in H;dl “4(X), for every f € LYX,m) (z, f) < ||zl il flla, so that there exists a unique
pd
u = 1({) € LP(X, m) such that
(z, )= fuf dm for every f € LI(X, m).
X

) N
By (3.6) and the strong density of L/(X, m) in Hp P 1X)

1 1
SCEn0 = sup f ufdm—;CE;J(f): sup (. f) - IIfIIqu(X)

feLa(X,m) feLi(X,m)
= sup (z,f)- —IIfIIq ey = —|| II” L
feb ) @) @y”

It follows that ¢ is an isometry from the dual of H;dl “(X) and H'"*(X). Since ¢ is clearly surjective, we
conclude. O
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Remark 3.11 (H'”(X) as Gagliardo completion [16]). Recall that if (A, || -||4) is a normed vector space

continuously imbedded in a Banach space (V, || -||v), the Gagliardo completion A¥* is the Banach space
defined by
W:={veV:a,), CA, lim [la, - vlly = 0, supla,lls < oo}

n
with norm
[Vllw := inf{liminfllanllA ta, €A, lim||a, —V|ly = 0}.
n—0oo n—00

When supp(m) = X, we can identify o with a vector space A with the norm induced by pCE , imbedded
in V := LP(X, m); it is immediate to check that H'”(X) coincides with the Gagliardo completion of A
in V. When A (and therefore W) is strongly dense in V, we can identify the dual V’ of V as a subset of
the dual W’ of W and we can define the set W, as the closure of V* in W’. If V is uniformly convex,
the same statements and characterizations given in Propositions 3.7 and 3.9 hold in this more abstract
setting. In particular, W can be isometrically identified with the dual of W{)’d.

3.3. Radon measures with finite (dual) energy

The following result provides a useful criterion to check if a linear functional on <7 belongs to <7
Let us first recall that a subset F C L'(X, m) is weakly relatively compact in L'(X, m) if and only if it
satisfies one of the following equivalent properties [13, Chap. VIII, Theorem 1.3]:

a) for all £ > 0 there exists m > 0 such that
f |[f(x)|dm(x) <& forevery f € F;
|f(0)l=m

b) (Equiintegrability) For all € > 0 there exists 6 > 0 such that for every Borel set B C X

flf(x)l dm(x) <& whenever f € F and m(B) < 6.
B

¢) (Uniform superlinear estimate) There exists a positive, increasing, l.s.c. and convex function O :
[0, 00) — [0, 00) such that lim,_,., ©(r)/r = +oc0 and

sup f O(lf(x)]) dm(x) < co.

feF Jx

Proposition 3.12. Let L be a linear functional on of satisfying (3.8a). If for every sequence f, € of
satisfying

-1<f, <1, lim|fillrxm =0, {(ip f,)’ : n € N} is equiintegrable (3.22)

one has liminf,_,. (L, f,)| = 0, then L € ,qu’.

Proof. We split the proof in two steps.
Claim 1: if L is a linear functional on <f satisfying (3.8a) and for every sequence (f;)pen C &/

lim || f,|l.» = 0 and {(lip f,,)? : n € N} equiintegrable = liminf [(L, f,)] = 0 (3.23)
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then L € <.
We argue by contradiction and we assume that there exists a sequence f, € .2/ such that

pCE, (f») <C, lim||fll» =0 and liminf KL, f,)| > 0.

By possibly changing the sign of f, it is not restrictive to assume that (L, f,) > ¢ > 0 for every
n € N. Applying Mazur Lemma we find coefficients @,,, > 0, n € N, 0 < m < M(n) such that
8n = ZZI:('(Z)) @ TP frim is strongly converging in L”(X, m). Thus n +— gh is strongly converging in
L'(X, m) and it is therefore equi-integrable.

We now consider ﬁ, = anﬁ'g @y fnim- By construction
~ M(n) ~
(L) = Y @l fuend 2 € >0, Tim fillr =0 (3.24)
m=0

and
M(n)

hpf:, < Z Ay hp fn+m = &n
m=0

so that (3.23) yields lim inf,,_,, (L, fn) = 0, which contradicts the first inequality of (3.24).

Claim 2: it is sufficient to prove the implication (3.23) for sequences taking values in [-1,1]. Let
Jo € & asin (3.23), m, := sup|ful, EP := sup, pCE,(f,) < oo, and let ¢ € C!(R) be an odd function
such that

o(ry=r if|r|<1/2, —-1<¢(r)<1, 0<¢'(r)<1 foreveryreR. (3.25)

Let us fix € > 0 and ¢ := &/3E so that EP¢6” < /3. For every choice of n € N we can find an odd
polynomial P, such that (see e.g., [21, Lemma 2.23])

-1<P,(r<1l, 0<P (<1, |P(r)—-¢' (<5 foreveryre[-m,m,],

We set
8n = P,o fna hn = fn —&n = Qn(fn) where Qn(r) =r- Pn(r);

notice that g, and h, belong to o7 as well. Since lipg, < lip f, and g, takes values in [—1, 1], by
assumption we have liminf,_, [(L, g,)| = 0. On the other hand, ||h,||l.» < ||fllze, liph, < lip f,, and
lip h,(x) < Q) (fu(x)) lip fu(x) < 6 lip f,(x) whenever |f,(x)| < 1/2. Since Chebichev inequality yields

m{|f,] = 1/2} < 21’||fn||Z(X’m)’ ,}gg m{f, > 1/2} =0,

we can choose ny sufficiently big so that for every n > n

f (lip f,)” dm < £7/3, flhnl" dm < £”/3,
{Iful=1/2} X
and

1 2
f (lip h,)? dm < &7 f (lip £,)” dm + f (lip £,)” dm < 6"E” + —&” < Zg.
X Ihl<1/2) Wh121/2) 3 3

(3.8a) then yields [(L, h,)| < De for n > ny and therefore liminf,_, [(L, f,)| < De. Since € > 0 is

arbitrary, we conclude. O
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Our last criterium concerns positive functionals, i.e., satisfying
(L, fy >0 whenever f € &7, f>0. (3.26)

We will see in Theorem 4.7 that they are always induced by a Radon measure.
Theorem 3.13. If L is a linear functional on o satisfying (3.8a) and (3.26), then L € 7.

Proof. We apply Proposition 3.12 and refine the last argument of its proof. Let f, € </ as in (3.22)
with E? := sup, CE,(f,) We select strictly positive parameters &,k > 0, 6 := &/3E, the odd function ¢

as in (3.25) with ¢,(r) := k¢(r/«), and odd polynomials P, . satisfying

-1<P, (<1, 0<P (nN<1l, |P(N-¢WI<s iflrl<

x| =

We also set Pk,s(r) = ka,s(r/K)’ QK,S(r) =r- PK,S(r)’ 8nk = Pk,s(fn)’ hn,K = fn — 8nx = ka(fn) By
(3.26) and observing that —« < g, < k and the constant function 1 € ./ has finite Cheeger energy, we
have

—k(L, 1y = —(L, k) < (L, gnx) < (L, k) = k({L, 1).

On the other hand, since 0 < Q0 < 1if |r| < 1 and |Q;, ()| < 6 if |r| < k/2, we have
il < 1fuls Nip by <Tip fo, lip hyye < Slip fur Af |ful < &/2.
Applying Chebychev inequality

p
217 l |f” LP(X,m)

||
mifl = k/2) < ——
K

b

we can find ny (depending on &, «) sufficiently big such that

flh,,,Kl” dm < g°/3, f (lip f,)P dm < €/3  for every n > ny,
X {fu=k/2}
so that

1 2
f (ip f,,)” dm < 67 f (ip £,)? dm + f (ip f£,)7 dm < 67EP + ~&” < 2.
X Wfal<x/2) Wlz1/2) 3 3

By (3.8a) it follows that
liminf KL, f,)| < liminf (KL, g, + KL, hy)l) < (L, 1) + De.

Since &, k are arbitrary, we get liminf,_, [(L, f,)] = 0. O

Definition 3.14 (Measure with finite dual energy). A Radon measure u € M, (X) has finite energy if
there exists a constant D > 0 such that

ffd,u < D(pCEp’l(f))l/p for every nonnegative f € Lip,(X, 7,d). (3.27)
X
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Corollary 3.15 (Measures with finite dual energy belong to <7 (X)). If u € M,(X) has finite energy
then the linear functional f +— fx fdu on o/ (X) = Lip,(X, 7,d) belongs to «7)(X) and can be uniquely
extended to a functional L, € H;dl “(X) satisfying

CE, (L, = pCE, (u) forevery k> 0. (3.28)

In particular there exists a unique element u, = QI‘,,L(LN) € H""(X) minimizing (3.14) with L = L,. u,
satisfies the variational inequality

ffd,u - Kpr(uK)f dm < %CEP(MK + f)— l—l)CE(uK) for every f € Lip,(X, 7,d). (3.29)
X X

Proof. We can apply Theorem 3.13 with &/ = Lip,(X, 7,d). Clearly (3.26) holds; by decomposing
f € Lip,(X,7,d) as the difference f = f, — f_ of its positive and negative part and recalling that
PCE,(f:) < pCE,(f), (3.27) yields (3.8a) with constant 2D. (3.29) follows by (3.15) and the definition
of A, givenin (3.11). m|

4. Dynamic representation of Radon measures with finite energy

4.1. Nonparametric dynamic plans and their barycentric entropy

Definition 4.1 ((Nonparametric) dynamic plans). A (nonparametric) dynamic plan is a Radon measure
m € M, (RAX)) on RA(X) such that

n(f) = f {(y)dn(y) < oco. “4.1)
RA(X)

Using the universally Lusin-measurable map R : RA(X) — BVC.([0, 1]; X) in (2.7) we can also
lift 7 to a Radon measure & = Ry on the subset BVC, ([0, 1]; X) of BVC([0, 1]; X) defined in (2.6).
Conversely, any Radon measure & on C([0, 1]; (X, 7)) concentrated on BVC([0, 1]; X) yields the Radon
measure 7 := g3 on RA(X). Notice that gy(Rymr) = 7.

If 7t is a dynamic plan in M, (RA(X)), thanks to Theorem 2.6(e) and Fubini’s Theorem [11, Chap. II-
14], we can define the Borel measure yu, := Proj(ar) € M, (X) by the formula

f fdu, = f f fdn(y) for every bounded Borel function f : X — R.
Y

Uz 1s a Radon measure with total mass wr(€) given by (4.1) [21, § 8] and it can also be considered as the
integral w.r.t. 7t of the Borel family of measures v,, y € RA(X) [11, Chap. II-13], in the sense that

[ram= [ ([ ran)aom.
X RA(X) X

Recall that p, g € (1, ) is a fixed pair of conjugate exponents.

Definition 4.2. We say that 1 € M, (RA(X)) has barycenter in L1(X, m) if there exists h € L(X, m)
such that u, = hm, or, equivalently, if

f f fdn(y) = f fhdm for every bounded Borel function f : X — R,
y

and we call Bary(rr) := ||hl|ra(x,m) the barycentric g-entropy of n. We will denote by B, (RA(X)) the set
of all plans with barycenter in L1(X, m) and we will set Bar,(xr) := +oo if m ¢ B, (RA(X)).
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Bar, : M.(RA(X)) — [0, +oo] is a convex and positively 1-homogeneous functional, which is lower
semicontinuous w.r.t. the weak topology of M, (RA(X)), since it can also be characterized as the L?
entropy of the projected measure u, = Proj(r) with respect to m:

Bar!(m) = %, (txlm),

where for an arbitrary o € M, (X)

{f(d—“)qdm ifo<m,
Z(olm) = | Jx \dm 4.2)

+00 otherwise.

Notice that Bar,(7r) = 0 iff «r is concentrated on the set of constant arcs in RA(X).
For every uo, u; € M, (X) we will consider the (possibly empty) set

Mo, 1) 1= {m € ML(RAX)) © (@) = pu
and we define

Dypto- pr) := inf { Bard() : 7 € T(uo, 1)), (4.3)

with the usual convention Z,(ug, 1) = +o0 if Il(ug, 1) = 0. Clearly Z,(uo, p1) = +o0 if pp(X) #
H1(X).

Assuming that (X, d) is complete, it is possible to show ( [21, § 11]) that whenever Z,(uo, (1) < +00
the infimum in (4.3) is attained and the set of optimal plans I1,(u, 11) is a compact convex subset of
M, (RA(X)). Morever, for every optimal & € I1,(u, 1) the measure u, = Proj(sr) is independent of 7.

2, provides an important representation for the dual of the p-Cheeger energy.

Theorem 4.3 ( [21, Thm. 11.8]). For every ug, u; € M,(X) we have

Do, 1) = POES (Lo — ). (4.4)

Remark 4.4. Let u = yy — py with y; € M, (X) and let u,, - € M, (X) be mutually singular Radon
measures providing the Jordan decomposition of y as p, — - with g’ = g — py = g — p- € Mu(X).
(4.4) shows that

Dy(10, 1) = PCE, (o — 1) = PCE, (us — po) = Dy (s, po).

Denoting by ¢ : X — RA(X) the map that at every point x associates the constant curve taking values
x,if m, € I,(uy, u-) and o’ := cyut’, it is easy to check that o := 7, + 7" € I, (1o, 1).

4.2. Dynamic representation of the dual energy

Definition 4.5. For every nonparametric dynamic plan & € M, (RA(X)) and k > 0 we define
&) = Barl(z) + k7P L (€1 )gmm).
For every u € M, (X) we set

D) = inf &, () : 1 € ML(RAX)), (€0l = p. (4.5)
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Theorem 4.6. For every u € M, (X) we have

Dax ) = PCE, (1)
Moreover, if one of the above quantities is finite

(a) The infimum in (4.5) is attained and there exists a unique pair of functions f, g, € L1(X, m) such
that for every optimal plan &

gm = PI'Oj(ﬂ'), Mk = me = (el)ﬁﬂ, e HO(/'t’/’lK)‘

(b) There exists a unique solution u, = Q;’}((Lﬂ) of
Apu+kJ,us L,

and it satisfies
J,(IDuly) = ge,  Jpu = f (4.6)

(Ly, uy = CEp(u) = CE, (L) = pCE,, (1)

Moreover, setting p. := (U — p )z and (' := yu — py = p, — p—, we can always choose # = n, + n’
where it, € I,(uy, p-), " = ey, pPCE, (1 — ) = Bari(m) = Bar{(r,).

Proof. By Corollary 3.15 we can extend y to a functional L, € H;dl (X)) satisfying (3.28). We can then
apply Proposition 3.9 and find nonnegative f, € LY(X, m) and u, € LP(X, m) such that

CE;,K(LM) = CE;(L/J - ﬁ() + K_q/prK”Zq(X,m) = pCE;(/J - fkm) + K_q/pDZ](ﬂmlm)

and u, satisfies f, = «J,u, and (3.15) with L = L,. Setting p, := fom and selecting & € IL,(u, 1)
according to Remark 4.4, (4.4) yields

CE}, (L) = Bar!(m) + k9 Z,((€1)ymm) = &,u(70) = D).

On the other hand, it is easy to check that (1) > pCE, (w0, since for every plan & € M, (RA(X)) as
in (4.5) and every f € Lip,(X, 7,d)

ffdﬂﬁffd(eo)ﬁﬂ'_ffd(el)ﬁﬂ+ffd(el)ﬁ7f
X X X X

< [ [ tiprano) + Ui (Zenmim)
RAX) Jy
<|[1ip £, Bar,(x) + I £llo(ZyCe i) ™ < (0CE,, (1)) (&) ™.

Using now the fact that (L, — f,, u) = Bar{(m) = CE,(u,) we get

fxg,‘{ dm = fXIDuKI‘;7 dm = (L, — fi, ). 4.7)
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We can also select a sequence w, € Lip,(X,7,d) such that w, — u,, lipw, — |Du,l, strongly in
L?(X, m), so that

Ly = ot = lin (0 = frow) = T ( [end= [ o)

= tim ([ wateot) - wite () dn)
RA(X)

n—oo

< lim supf flip w, drr(y) = lim supfgk lipw, dm = fgleul* dm.
n—oo RA(X) y n—oo X X

Inserting this inquality in (4.7) we obtain the first identity of (4.6). O

Let us give a first important application of the above result to the representation of positive
functionals.

Theorem 4.7. Let </ be a compatible subalgebra of Lip,(X,t,d) and let L be functional on <
satisfying

KL, )l < D(pCEl’p(f))l/p forevery feof, (L,fy>=0 foreverypositive f € <.

Then L admits a unique extension L € H;dl “(X) and there exists a unique y € M, (X) representing L as

(L, f) = ffd,u for every f € of . (4.8)
X

Proof. By Theorem 3.13 and Proposition 3.7(c) we know that L is the restriction to <7 of a unique
functional L € H;; “9(X). It is easy to check that L is also positive on H'*(X) and applying Proposition
3.9 we can find a sequence w, € LI(X, m), w, > 0, strongly converging to L in H"9(X). Let ,, := w,m
and v, := Ry(w,)m; applying Theorem 4.6 we can find optimal dynamic plans 7, € I1,(u,, v,) such that
Bar,(m,) = pCE”[’p(pn -,) < C. Since .Z,(v,|m) is also uniformly bounded, the sequence , satisfies
the tightness criterium of [21, Lemma 8.5], so that it admits a subsequence (still denoted by =) weakly
converging to m € B,(RA(X)) € M, (RA(X)).
The Radon measure u := (€g);7 is the weak limit of y,: in particular, for every f € &/

Loy =L f) = 1imffd,un=ffd,u. .
n—oo X X
5. Measures with finite energy and Newtonian capacity
In this last section we apply the previous result to prove new properties of the Newtonian capacity.
We first recall the basic facts about the Newtonian approach [18,23], based on the notion of p-Modulus
which has been introduced by Fuglede [15] in the natural framework of collection of positive measures,
as in [1]. We refer to [8, 17] for a comprehensive presentation of this topic. As usual, p,q € (1, o)

denote a pair of conjugate exponents.
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5.1. p-Modulus of a family of arcs and Newtonian Sobolev spaces

Definition 5.1 (p-Modulus of a family of rectifiable arcs). The p-Modulus of a collection I' ¢ RA(X)
is defined by

Mod,(I') := inf{ffpdm: f:X — [0, 00] is Borel, ff >1 forallye F}.
X y

I' is said to be Mod,,-negligible if Mod ,(I') = 0. We say that a property P on RA(X) holds Mod,,-a.e. if
the set of arcs where P fails is Mod,,-negligible. We say that a property P on X holds quasi everywhere
(q.e.) if the set of points E where P fails is m-negligible and satisfies

Mod,(Tz) =0 where Tp:={y € RAX): (k) >0, e[yl NE # 0},

Notice that if E is m-negligible then for Mod,-a.e. arc y the set {r € [0,1] : R,(t) € E} is Z1-
negligible. It can be shown (see e.g., [8]) that Mod,, is an increasing and subadditive functional which
is continuous along increasing sequences. In fact, by [1] and [21, §7.2], Mod, is also continuous
along decreasing sequence of compact sets, so that it is a Choquet capacity for the compact paving in
RA(X) [11, Chap. III, 28].

It is not difficult to check that for every dynamic plan 7 € B,(RA(X)) and every m-measurable set
I' c RA(X)

m(I') < Bar,(7) Mod,/”(I'),

which in particular shows that Borel Mod,-negligible sets are also m-negligible for every
n € B,(RA(X)). In fact, a much more refined result holds [1,21]:

Theorem 5.2. If X is a complete e.m.t.m. space and 7 is a Souslin topology for X, then every Borel or

Souslin set I' in RA(X) is Mod,,-capacitable and satisfies

1/
(Mod, M) " = sup {x(T) : # € M.(RA(X)), Bar,(m) < 1},
In particular, T is Mod,-negligible if and only if n(I') = 0 for every m € B ,(RA(X)).
Recall that e;(y), i = 0, 1, denote the initial and final points of a rectifiable arc y € RA(X).

Definition 5.3 (Newtonian weak upper gradient). Let f : X — R be m-measurable and p-summable
function. We say that f belongs to the Newtonian space N'P(X) if there exists a nonnegative g €
L?(X, m) such that

fei(y)) - f(eo(y))' < f g forMod,-a.e. arcy € RA(X). (5.1)
Y

In this case, we say that g is a N'""-weak upper gradient of f.

Functions with Mod,-weak upper gradient have the important Beppo-Levi property of being
absolutely continuous along Mod,-a.e. arc y (more precisely, this means f o R, is absolutely
continuous, see [23, Proposition 3.1]). Notice that functions in N'”(X) are everywhere defined. We
say that f € N'P(X) is a good representative of a function f € LP(X, m) if m({f # f}) = 0.

Weak upper gradient enjoys a strong stability property [8, Prop. 2.3], resulting from a refined version
of Fuglede’s Lemma:
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Theorem 5.4. Let f, € N'*(X), g, € LP(X, m) be two sequences strongly converging to f,g € LP(X, m)
respectively in LP(X, m). If g, is a N'"P-weak upper gradient of f then there exists a good representative
f € N'""(X) of f and a subsequence k > n(k) such that f,u — f quasi everywhere; moreover g is a
N'“P-weak upper gradient of f.

It is clear that a function f € Lip,(X, 7, d) belongs to N'(X) and lip f is a N'"P-weak upper gradient
(it is in fact an upper gradient). By Theorems 5.4 and 3.3 one can easily get that also every feHY”X)
admits a good representative f € N'7(X) and |Df|, is a N'"’-weak upper gradient of f. Equivalently,
f is absolutely continuous along Mod,-a.e. arc and g satisfies (5.1) Mod,-a.e.

In fact these two notions are essentially equivalent modulo the choice of a representative in the
equivalence class [1,5,6,21]:

Theorem 5.5. Let us suppose that X is a complete e.m.t.m. space. Every function f € N'"P(X) also
belongs to H'""(X) and every N'P-weak upper gradient g satisfies g > |Df|, m-a.e., so that |Df], is
also the minimal N'P-weak upper gradient of f.

5.2. Applications to the Newtonian capacity

The Newtonian capacity Cap ,(E) of a subset E C X can be defined as
Cap,(E) := inf {CE,(u) : u € N""(X), u > 1 on E}. (5.2)

By choosing u as the function taking the constant value 1 it is immediate to check that in our setting
the capacity of a set is always finite and

Cap (E) < m(X) < o0 for every E C X.
It can be proved [8, Prop. 1.48] that
E C X has 0 capacity if and only if E is m-negligible and Mod,(I'g) = 0, (5.3)

so that a property P on X holds quasi everywhere if the set where P fails has O capacity. Notice that if
fi € N"(X) coincide m-a.e., then f; = f> q.e. in X. Notice moreover that we can use q.e. inequality in
(5.2),1i.e.,

ue N(X), u>1lqe.onE = Cap,(E)<CE, ).

We also recall that the capacity satisfies the following properties [8, Thm 1.27, Prop. 2.22, Thm. 6.4]:
Cap,(0) =
m(E) < Capp(E)
E,CcE, = Capp(El) < Capp(Ez)
Cap(E, U Ey) + Cap(E| N E») < Cap,(E)) + Cap,(E>)

Cap, ( O E,) < i Cap,(E,)

E,1E = Cap,(E) = lim Cap,(E,) = sup Cap,(E,).

n>0
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We want now to study the relation between the Newtonian capacity and measures u € M, (X) with
finite energy, according to Definition 3.14. We will denote by

p=pt At pt=om<m, ptlm (5.4)

the canonical Lebesgue decomposition of u w.r.t. m. Since by a simple truncation argument it is easy
to check that

1 1 .
~PCE; ) = sup | [ ran- _90E,.(): f < Lip, . £ 2 0)
X
we obtain that
u<v = pCE,,(u) < pCE, ().
In particular pCE), , (u*) < pCE), | (1) < oo.

Theorem 5.6. Let u € M. (X) be a measure with finite energy and let L, € H;dl “(X) be the linear
Jfunctional associated to u according to Corollary 3.15.

(a) If E is a universally measurable subset of X with O capacity then E is u-negligible.

(b) If u € H""(X) is nonnegative and it € N'""(X) is a good representative of u, then ii € L' (X, u) and
~ " 1/q 1/p
(L u) = f idu < (pCE;, (1)) (CE () . (5.5)
X

Proof. (a) Let E be a set with 0 capacity according to (5.3); since m(E) = 0, by considering the
Lebesgue decomposition (5.4) it is sufficient to show that u*(E) = 0. It is not restrictive to assume
#(X) > 0; by Theorem 4.6 we can find a plan & € B,(RA(X)) such that

p = ().
It follows that
u(E) =nly e RAX) : eo(y) € E} < (Tg) < Mod,(I'g) Bar,(rr) = 0.

(b) Let us first assume that it < M for some constant M > 0. We can find a sequence u, € Lip,(X, 7,d)
taking values in [0, M], converging to ii q.e. and with u, — u, lipu, — [Dul, in L*(X, m). The uniform
bound, the g.e. convergence and the fact that L, € H;dl 4(X) yield

lim fun du = fﬁdy =(L,, ) = (L,,u) < (pCE;,l(ll))]/q(CEp’l(u))l/p
X X

n—oo

The case of a general nonnegative u follows by passing to the limit in the sequence uy, := u A M as
M 7T oo and using monotone convergence. O

Theorem 5.7. For every Borel set E C X and every measure u € M, (X) with finite energy we have

u(E) < (Cap,(E) " (0CE;, ) . (5.6)
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If F Cc X is a closed set then there exists u € M (X) supported in F with
u(F) = Cap (F) = pCE,, ;(u) = CE, 1 (u)
where u € N'P(X) realizes the infimum of (5.2) and
Ly =Tou+Apu in H (X).
Equivalently, for every closed set F C X

(Cap,(F)"" = max {u(F) : u € M.(X), pCE},,(u) < 1}. (5.7)

Proof. (5.6) follows easily by (5.5).
Let us now consider the case when F is closed and let us set K := {u € N"*(X): u>1q.e.on F};
K can be identified with a convex subset of H'"”(X). Let u, € X be a sequence satisfying
lim,, .o G, 1 (1) = Cap,(F). By a truncation argument, it is not restrictive to assume that 0 < u, < 1.
By applying Mazur’s Theorem and Theorem 5.4 it is not restrictive to assume that there exists
u € N'""(X) such that

u, > u q.e.,

u, — u||L2 + IDul - |Du|*||L2 -0

Up to modifying u in a set of O capacity, we can thus suppose that u € X, 0 < u < 1, and CE,, () =
Cap ,(F). The minimality yields that there exists L € A,(u) +J,(u) C H ~12(X) such that

(L,v—u)y>0 foreveryve X.
In particular, choosing v = u + ¢ with ¢ nonnegative we get
(L,¢) >0 forevery ¢ € N'"P(X), ¢ >0,

so that L € H;dl “/(X) and its action on bounded Lipschitz functions can be represented by a positive
Radon measure p according to (4.8) thanks to Theorem 4.7
Choosing now ¢ € Lip,(X, 7,d) such that ¢ = 0 on F we get

(L,¢) = f¢d,u =0,
X

so that u(X \ F) = 0 and u is concentrated on F (recall that Lip, (X, 7, d) generates the 7 topology of X).
Since L has finite energy pCE}, (1) = CE;, | (L). Since u € N"”(X) is nonnegative it follows that

Cap,(F) = CE,1(u) = CE,, | (L) =(L,u) = fud,u = u(F).
X
The renormalization fi := p(pCE;l(,u))_l/  provides (5.7). ]
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