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We define and prove limit results for a class of dominant Pólya sequences, which are randomly reinforced urn
processes with color-specific random weights and unbounded number of possible colors. Under fairly mild as-
sumptions on the expected reinforcement, we show that the predictive and the empirical distributions converge
almost surely (a.s.) in total variation to the same random probability measure P̃ ; moreover, P̃ (D) = 1 a.s., where
D denotes the set of dominant colors for which the expected reinforcement is maximum. In the general case, the
predictive probabilities and the empirical frequencies of any δ-neighborhood of D converge a.s. to one. That is,
although non-dominant colors continue to be regularly observed, their distance to D converges in probability to
zero. We refine the above results with rates of convergence. We further hint potential applications of dominant
Pólya sequences in randomized clinical trials and species sampling, and use our central limit results for Bayesian
inference.
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1. Introduction

Random processes with reinforcement constitute an important class of mathematical models that are of
interest to probabilistis and practitioners alike; see [29] for a review on the subject. A classic example
is the k-color Pólya urn model, which describes the composition of an urn with balls of k different
colors that is sequentially being sampled and reinforced with an additional ball of the observed color.
Denote byXn ∈ {1, . . . , k} the color of the additional ball at step n. Then,X1 is chosen from a discrete
distribution with P(X1 = j) =mj

/∑k
l=1ml, j = 1, . . . , k, wheremj > 0 is the initial number of balls

of color j in the urn, and, for every n≥ 1,

P(Xn+1 = j|X1, . . . ,Xn) =
mj +

∑n
i=1 δXi({j})∑k

l=1ml + n
,

where δx is the Dirac measure at the point x. It is well-known (see, e.g., [29, p.30]) that, for each
j = 1, . . . , k, as n approaches infinity, the proportion of j-colored balls in the urn converges almost
surely (a.s.) to a random variable p̃j , that is,

P(Xn+1 = j|X1, . . . ,Xn)
a.s.−→ p̃j .

Moreover, the random vector p̃ = (p̃1, . . . , p̃k) has a Dirichlet distribution with parameters (mj)
k
j=1

and the process (Xn)n≥1 is exchangeable; thus, by de Finetti representation theorem for exchangeable
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sequences, see, e.g., [1, Theorem 3.1], given p̃, the Xn are conditionally independent and identically
distributed (i.i.d.) according to p̃.

In this paper, we study the generalization of the above urn sampling scheme towards infinite colors
and random reinforcement. Let (X,X ) be a measurable space, ν a probability measure on X, and θ > 0
a positive constant. Formally, we consider a sequence of X-valued random variables (Xn)n≥1 with
predictive structure given by P(X1 ∈ ·) = ν(·) and, for every n≥ 1,

P(Xn+1 ∈ · |X1,W1, . . . ,Xn,Wn) =

n∑
i=1

Wi

θ+
∑n
j=1Wj

δXi(·) +
θ

θ+
∑n
j=1Wj

ν(·), (1.1)

where (Wn)n≥1 is a sequence of non-negative random weights. The important extension of the k-
color Pólya urn model to infinite colors, also known as Pólya sequence, was proposed by Blackwell
and MacQueen [11] and corresponds to the case of constant reinforcement Wn = 1 and ν possibly dif-
fuse. By Theorem 1 in [11], the predictive distributions (1.1) of a Pólya sequence converge weakly with
probability one to a random probability measure P̃ on X, which has a Dirichlet process distribution
with parameters (θ, ν). Moreover, given P̃ , the random variables X1,X2, . . . are i.i.d. with marginal
distribution P̃ ; thus, they are exchangeable. We recall that, for any exchangeable sequence, the predic-
tive and the empirical distributions converge to the same random probability measure, which is called
the directing random measure of the process; see [1, Section 2].

Because of their simple predictive structure, Pólya sequences play a fundamental role in the con-
struction of more complex procedures for nonparametric Bayesian inference; see [16] for a review. On
the other hand, there is a growing interest from different areas of research, such as signalling theory
[3], economics [6], clinical trial design [32], in extending the basic Pólya urn model along the lines of
time-dependent or random reinforcement. The predictive construction (1.1) thus represents a natural
and important contribution in this direction. However, the weighing scheme in (1.1) may lead to an
unbalanced design, which can violate the condition of exchangeability. In general, an exchangeable
process (Xn)n≥1 with prediction rule (1.1) is a member of the family of species sampling sequences
[31], which implies by [20, Theorem 1] a rather restrictive form of dependence between Xn and Wn.

Bassetti and coauthors [5] define a class of generalized species sampling sequences that have pre-
dictive distributions of the kind (1.1), and the process they generate is conditionally identically dis-
tributed (c.i.d.). By [9], a stochastic process (Yn)n≥1 is c.i.d. if, for every n ≥ 1, given Y1, . . . , Yn,
the random variables Yn+1, Yn+2, . . . are identically distributed. Therefore, any exchangeable pro-
cess is c.i.d., while the converse is generally not true; indeed, by [24, Proposition 2.1], a sequence
of random variables is exchangeable if and only if it is both stationary and c.i.d. Nevertheless, c.i.d.
processes are asymptotically exchangeable and thus preserve basic limit properties of exchangeable
sequences; see [9] for more details. In (1.1), the presence of the random weights Wn can lead to a tem-
porary disequilibrium in the observation process. Then it may be reasonable to assume that (Xn)n≥1

is c.i.d., and a sufficient condition due to [5] is that Wn and Xn are conditionally independent given
(X1,W1, . . . ,Xn−1,Wn−1).

In this work, we focus on the case where the random reinforcement Wn in (1.1) depends explicitly
on the color Xn, and the process (Xn)n≥1 is in general neither exchangeable nor c.i.d. This situation
occurs in many contexts; for example, in problems of species sampling, color-specific random weights
describe different levels of species adaptability. Then we expect that colors which have a higher ex-
pected reinforcement will tend to dominate the observation process, just as better-adapted species have
a greater chance at survival. To the best of our knowledge, existing studies consider only the model
with k colors, which is known as a randomly reinforced urn (RRU), and show that the probability of
drawing a color whose expected weight is maximum goes indeed to one, see, e.g., [7, 27, 28, 33].
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We thus explore the extension of RRUs to an unbounded set of possible colors, which parallels the
extension provided by exchangeable Pólya sequences for k-color Pólya urns.

Recently, [4, 23, 26] introduced a general class of random processes with reinforcement, called
measure-valued Pólya urn processes, which formalize the idea of urn composition as a random finite
measure. In this setting, the conditional distribution (1.1) can be regarded as the (normalized) compo-
sition of an urn, which is “reinforced” at each time n with the random measure WnδXn ; see [18] for
more details. A proper urn model to illustrate the sampling procedure implied by (1.1) is a weighted
version of Hoppe’s urn [22]. Imagine an urn initially containing θ black balls. Then, at each step n, a
ball is picked at random from the urn. If the ball is black, we generate a new color from ν and update
the urn with a random number of balls of the new color; if a non-black ball is picked instead, it is
replaced together with a random number of balls of the same color. It follows that the parameter θ
controls the probability of observing a new color, and ν is the color distribution. The above sampling
scheme can be visualized as a randomly reinforced version of the Chinese restaurant process, which
models the random partition generated by a Pólya sequence.

We study the limit behavior of the proposed class of randomly reinforced Pólya sequences under
minimal assumptions on the reinforcement. Let w̄ be the sup of the expected reinforcement as it varies
across colors, and D ⊆ X the set of dominant colors whose expected weight is w̄. Let us denote the
predictive and the empirical distributions of (Xn)n≥1 by

Pn(·)≡ P(Xn+1 ∈ · |X1,W1, . . . ,Xn,Wn) and P̂n(·)≡ 1

n

n∑
i=1

δXi(·).

We show in Theorem 3.3 that, under certain conditions of compactness, the probability of observing
non-dominant colors may not vanish, though their distance to D converges in probability to zero. If
w̄ is significantly larger than the expected reinforcement of any x ∈ Dc, then there exists a random
probability measure P̃ on X with P̃ (D) = 1 a.s. such that

‖Pn − P̃‖
a.s.−→ 0 and ‖P̂n − P̃‖

a.s.−→ 0, (1.2)

where ‖α− β‖ ≡ supA∈X |α(A)− β(A)| is the total variation distance between two probability mea-
sures α, β on X. The latter implies, in particular, that P̃ is a.s. discrete on the set D. On the other
hand, one can show from (1.2) that (Xn)n≥1 is asymptotically exchangeable with limit directing ran-
dom measure P̃ ; that is, as n→∞, (Xn+1,Xn+2, . . .) converges in distribution to an exchangeable
sequence with directing random measure P̃ , see [1, Lemma 8.2].

In addition, we provide set-wise rates of convergence for Pn and P̂n in the form of a central limit
theorem; namely, Theorem 4.2 gives conditions under which, for every A ∈ X such that A∩D 6= ∅,

√
n
(
P̂n(A)− Pn(A)

)
and

√
n
(
Pn(A)− P̃ (A)

)
,

converge to non-degenerate Gaussian limits in the sense of stable convergence and a.s. conditional con-
vergence, respectively. We illustrate the statistical use of these results by obtaining marginal asymptotic
credible intervals for P̃ under a Bayesian approach.

The paper is organized as follows. The formal definition of the proposed Pólya sequences with
dominant colors is given in Section 2. Their first-order convergence properties are derived in Section
3, which also includes examples of their potential use in species sampling and clinical trials. Section
4 contains results on rates of convergence and central limit theorems. The proofs are postponed to
Section 5.
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2. Pólya sequences with dominant colors

Let (Ω,H,P) be a probability space, (X, d) a complete separable metric space, endowed with its Borel
σ-algebra X , and (Xn)n≥1 a sequence of X-valued random variables on (Ω,H,P) with predictive
distributions (1.1). We assume that the random reinforcement in (1.1) is color-specific in the sense that

Wn = h(Xn,Un), (2.1)

where (Un)n≥1 is a sequence of i.i.d. random variables such that Un is independent of (X1, . . . ,Xn),
and h is a measurable function from X×R into R+.

Let us define the expected weight of color x ∈X by

w(x) = E[Wn|Xn = x],

and denote

w̄ = sup
x∈X

w(x).

We further let F0 = {Ω,∅}, Fn = σ(X1,U1, . . . ,Xn,Un), n≥ 1, and

D = {x ∈X :w(x) = w̄}, Dδ = {x ∈X : d(x,D)< δ},

for every δ > 0, where d(x,D)≡ inf{d(x, y) : y ∈D} denotes the distance of x from D. By construc-
tion, w is X -measurable, so D ∈X , and we call D the set of dominant colors. We make the following
assumptions:

0≤Wn ≤ β for some constant β;

w̄ ∈ supp(νw);

w̄ > sup
x∈Dcδ

w(x) for every δ > 0,

(2.2)

where νw is the image measure of ν under w, and supp(νw) is the support of νw on R+, defined by

supp(νw) = {u≥ 0 : ∀ε > 0, νw((u− ε, u+ ε))> 0}.

The assumptions (2.2) essentially require that the colors x, for which the expected weight w(x) is
arbitrarily close to w̄, lie in a compact set that we are able to sample from. If D is non-empty and
ν(D) > 0, then w̄ ∈ supp(νw) is automatically satisfied, in which case we shall be interested in the
relationship between w̄ and the next highest value in the support of νw,

w̄c = sup{u≥ 0 : u ∈ supp((ν|Dc)w)},

where ν|Dc(·) = ν(· |Dc). We call any process characterized by (1.1) with (2.1) a dominant Pólya
sequence (DPS) if it satisfies the assumptions (2.2).

3. First-order convergence

We first consider the DPS with a constant expected weight function, w(x) ≡ w̄. Then all colors are
dominant and one can show that Wn and Xn are conditionally uncorrelated given Fn−1. Recall from
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Section 1 that (Xn)n≥1 is c.i.d. whenever Wn and Xn are conditionally independent. In that case,
general c.i.d. theory implies that the predictive and empirical distributions converge set-wise to the
same random limit; see [9, Section 2]. Here, (Xn)n≥1 is generally not c.i.d., yet Pn and P̂n converge
to a common random probability measure, and convergence is in total variation.

Proposition 3.1. Assume X =D. Then there exists a random probability measure P̃ on X such that

‖Pn − P̃‖
a.s.−→ 0 and ‖P̂n − P̃‖

a.s.−→ 0.

The next result concerns the opposite extreme case of a strictly increasing w function on X = [0,1].
Then “1” is the only dominant color and we show that the predictive and the empirical distributions
converge weakly with probability one to a probability measure degenerate at “1”. Even so, the proba-
bility of drawing a non-dominant color may not vanish.

Proposition 3.2. Let X = [0,1] and (Xn)n≥1 be a DPS with a continuous and strictly increasing
expected weight function w. Then, as n→∞, 1

n

∑n
i=1Wi

a.s.−→w(1) and

Pn
w−→ δ1 a.s.[P] and P̂n

w−→ δ1 a.s.[P].

Moreover, there exists a [0,1]-valued random variable η such that Pn({1}c) a.s.−→ η.

The sampling scheme implied by a strictly increasing w can be described as follows: colors are
picked and reinforced until a new color closer to “1” is drawn. This color is then increasingly preferred
by the model until a better alternative appears, which happens almost surely. In fact, as we will show
in Proposition 4.1, non-dominant colors are forgotten quicker the more distant they are from “1”.

Given Propositions 3.1 and 3.2, we are ready to state our main result of this section, which involves a
DPS with an arbitrary expected weight function w(·) and a general space of colors X. We show that, as
n increases, the observations tend to concentrate around the set of dominant colors. If further w̄ > w̄c,
then the probability of observing non-dominant colors converges a.s. to zero.

Theorem 3.3. For any DPS (Xn)n≥1, as n→∞, 1
n

∑n
i=1Wi

a.s.−→ w̄ and

Pn(Dcδ)
a.s.−→ 0 for every δ > 0.

Moreover, there exists a [0,1]-valued random variable η such that

Pn(Dc) a.s.−→ η.

If, in addition, it holds that w̄ > w̄c, then η = 0 and there exists a random probability measure P̃ on X
with P̃ (D) = 1 a.s.[P] such that

‖Pn − P̃‖
a.s.−→ 0 and ‖P̂n − P̃‖

a.s.−→ 0.

If w̄ = w̄c, then Pn(Dδ)
a.s.−→ 1 and, by Theorem 3.3, lim infnPn(Dδ\D) can be strictly positive. In

that case, non-dominant colors continue to be regularly observed yet get closer and closer toD. In fact,
using dominated convergence,

d(Xn,D)
p−→ 0. (3.1)
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If w̄ > w̄c, then, in particular, Pn
w−→ P̃ a.s.[P] and P̂n

w−→ P̃ a.s.[P]. It follows from a generalized
martingale convergence theorem (see [10, Theorem 2]) that the conditional distribution of Xn+1 given
(X1, . . . ,Xn) converges weakly with probability one to P̃ . Thus, by Lemma 8.2 in [1], (Xn)n≥1 is
asymptotically exchangeable with limit directing random measure P̃ .

The reinforced urn scheme (1.1) implies that there will be ties in a sample (X1, . . . ,Xn) of size n
with positive probability. Let us denote the number of distinct colors in (X1, . . . ,Xn) by

Ln = max
{
k ∈ {1, . . . , n} :Xk /∈ {X1, . . . ,Xk−1}

}
.

The next result shows that Ln is approximately w̄−1θ logn for large n.

Proposition 3.4. For any DPS (Xn)n≥1, if ν is diffuse, then, as n→∞,

Ln
logn

a.s.−→ θ

w̄
.

3.1. Examples

We close this section with a few examples and hints of potential areas of application.

Example 3.5 (k-color RRU). Let F1, . . . Fk be probability distribution functions on [0, β]. Denote
wj =

∫
tdFj(t), j = 1, . . . , k, and suppose that, for some k0 ∈ {1, . . . , k},

w1 = · · ·=wk0
= w̄ > w̄c ≡ max

k0<j≤k
wj . (3.2)

The k-color RRU is a DPS that associates Wn|{Xn = j} ∼ Fj to color j = 1, . . . , k. Then w(j) =wj ,
j = 1, . . . , k and D = {1, . . . , k0}. RRUs with k0 = 1 and k0 = k have been studied by [27, 28], while
[7, 33] consider the case 1< k0 < k, although [7] assumes (3.2) only asymptotically.

Denote by Pn(· |D) = Pn(· ∩ D)
/
Pn(D) the predictive distribution of Xn+1 restricted to D. It

follows from Proposition 3.1 that Pn({j}|D)
a.s.−→ p̃j , j = 1, . . . , k0, for some non-negative random

variables p̃1, . . . , p̃k0
such that

∑k0
j=1 p̃j = 1 a.s.[P]. As Pn(D)

a.s.−→ 1 by Theorem 3.3, then

Pn({j}) = Pn(D)Pn({j}|D) + Pn(Dc)Pn({j}|Dc) a.s.−→ p̃j .

Therefore, ‖Pn − P̃‖
a.s.−→ 0 and, similarly, ‖P̂n − P̃‖

a.s.−→ 0, where P̃ =
∑k0
j=1 p̃jδj .

Example 3.6 (Unimodal DPS). Suppose that we have a DPS with a unique dominant color, i.e.,
D = {x0} for some x0 ∈X. It follows from (3.1) that

Xn
p−→ x0.

Moreover,

Pn
w−→ δx0 a.s.[P].

Indeed, for every open set G ∈ X , we have that, if x0 ∈G, then there exists δ > 0 such that x0 ∈Dδ ⊆
G; therefore, by Theorem 3.3,

lim inf
n→∞

Pn(G)≥ lim inf
n→∞

Pn(Dδ) = 1 = δx0(G) a.s.[P].
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As δx0(G) = 0 otherwise, a.s. weak convergence of Pn to δx0 follows.
Unimodal DPSs can be used in the context of response-adaptive randomization procedures for clini-

cal trials (see [32] for a general reference) to provide an ethical design that can deal with an unbounded
number or even a continuum of potential treatments. Consider a stylized trial for determining the opti-
mal dose of a drug. Let Xn represent the dose given to the nth patient who enters the trial, and denote
by Wn the patient’s response to it. Then the reinforced predictive scheme (1.1) with a unimodal w(·)
function provides a response-adaptive rule for selecting the dose for the next patient. It follows from
Theorem 3.3 that such a design is ethical in the sense that, for any δ > 0, Pn(Dδ)

a.s.−→ 1; that is, even
in situations where it is practically impossible to select x0 exactly (e.g., ν({x0}) = 0 with ν is diffuse),
the probability of assigning the next patient a dose arbitrarily close to x0 converges a.s. to one.

Example 3.7 (Species sampling model with dominant species). Exchangeable species sampling mod-
els are of interest in many fields and, in particular, in the broad area of Bayesian nonparametrics (see
[31]), yet forms of competition between species can easily break the symmetry imposed by exchange-
ability. Dominant Pólya sequences can thus provide an extension to the framework of species sampling
models by addressing situations where exchangeability holds only asymptotically and a restricted set
of dominant species tends to prevail. Another related direction of application is in random graph the-
ory, where conciliating between exchangeability and graph density is a challenging issue (see [12]),
and dominant Pólya sequences can suggest ‘sparse’ and asymptotically exchangeable graph structures.

Consider again the sampling scheme (1.1). In this case, interest lies on the categorical species and
Xn plays the role of a label chosen, say, in X = [0,1] from a uniform ν. Take 0<w1 <w2 <∞ and
p ∈ (0,1). Let Wn =w(Xn) where

w(x) =w1 · 1[0,p)(x) +w2 · 1[p,1](x) for x ∈X.

Then (Xn)n≥1 is a DPS with D = [p,1]. According to this scheme, when a new species appears, it
has probability p to be non-dominant and (1 − p) to be dominant, independently over n. As p > 0,
then

∑n
i=1 δXi(D

c) =∞ a.s.[P] and we discover non-dominant species infinitely often. However,
P̂n([p,1])

a.s.−→ 1 by Theorem 3.3, so the discovery rate of non-dominant species is of order less than n
(see also Proposition 4.1).

4. Rates and central limit results

Let (Xn)n≥1 be a DPS such that w̄ > w̄c, and let P̃ be a random probability measure as in Theorem 3.3.
It follows for every A ∈ X that

Pn(A)− P̃ (A)
a.s.−→ 0 and P̂n(A)− Pn(A)

a.s.−→ 0.

We proceed to study the rate of convergence by first considering A=Dc.

4.1. Rate of convergence for dominated colors

Assume w̄ > w̄c. By Theorem 3.3, both P̂n(Dc) and Pn(Dc) converge a.s. to zero. The next result
shows that P̂n(Dc) and Pn(Dc) are O(n−(w̄−w̄c)/w̄), as n→∞.



8

Proposition 4.1. Suppose w̄ > w̄c. Then there exists a random variable ξ ∈ [0,∞) such that, letting
γ = 1− w̄c/w̄, as n→∞,

nγ · P̂n(Dc) a.s.−→ ξ and nγ · Pn(Dc) a.s.−→ w̄c

w̄
ξ.

Moreover, nγ · P̂n(Dc) a.s.−→∞ and nγ · Pn(Dc) a.s.−→∞ when γ > 1− w̄c/w̄.

4.2. Central limit theorem

Let A ∈ X be such that A∩D 6= ∅. We provide conditions under which

Cn(A) =
√
n
(
P̂n(A)− Pn(A)

)
and Dn(A) =

√
n
(
Pn(A)− P̃ (A)

)
,

converge to non-degenerate Gaussian limits. The results are given in terms of stable and almost sure
(a.s.) conditional convergence, which we briefly recall.

Almost sure conditional convergence. Let G = (Gn)n≥0 be a filtration on H, and Q̃ a random prob-
ability measure on X. A sequence (Yn)n≥1 is said to converge to Q̃ in the sense of a.s. conditional
convergence with respect to (w.r.t.) G if, as n→∞,

P(Yn ∈ · | Gn)
w−→ Q̃(·) a.s.[P].

We refer to [14] for more details.
Stable convergence. Stable convergence is a strong form of convergence in distribution, albeit weaker

than a.s. conditional convergence. A sequence (Yn)n≥1 converges stably to Q̃ if, as n→∞,

E
[
V f(Yn)

]
−→ E

[
V

∫
X
f(x)Q̃(dx)

]
,

for all continuous bounded functions f and any integrable random variable V . The main application of
stable convergence is in central limit theorems that allow for mixing variables in the limit. See [21] for
a complete reference on stable convergence.

In the sequel, the stable and a.s. conditional limits will be some Gaussian law, which we denote by
N (µ,σ2) for parameters (µ,σ2), whereN (µ,0) = δµ. Recall from Section 2 that F = (Fn)n≥0 is the
filtration onH generated by (Xn,Un)n≥1.

Lastly, we can show using standard arguments that E[f(Xn+1)|Fn]
a.s.−→

∫
X f(x)P̃ (dx) for every

bounded measurable function f . Then the following limit exists with probability one

qA = lim
n→∞

E[W 2
n+1δXn+1

(A)|Fn].

Theorem 4.2. Suppose w̄ > 2w̄c. Let A ∈ X be such that A∩D 6= ∅. Define

V (A) =
1

w̄2

{
(P̃ (Ac))2qA + (P̃ (A))2qAc

}
and U(A) = V (A)− P̃ (A)P̃ (Ac).

Then

Cn(A)
stably−→ N

(
0,U(A)

)
and Dn(A)

a.s.cond.−→ N
(
0, V (A)

)
w.r.t. F . (4.1)
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It follows from (4.1) and Lemma 1 in [8] that

√
n
(
P̂n(A)− P̃ (A)

)
=Cn(A) +Dn(A)

stably−→ N
(
0,U(A) + V (A)

)
.

Moreover, the a.s. conditional convergence ofDn(A) implies that the distribution of P̃ (A) has no point
masses when 0< ν(A)< 1; see the proof of Theorem 3.2 in [2]. Then 0< P̃ (A)< 1 a.s.[P], and V (A)
and U(A) are strictly positive with probability one.

If D = X, the assumptions of Theorem 4.2 are automatically satisfied and (4.1) follows. In the
general case, conditionally on D, we have effectively a constant expected weight function. Let us
define, for n≥ 1,

Pn(A|D) =
Pn(A∩D)

Pn(D)
and P̂n(A|D) =

P̂n(A∩D)

P̂n(D)
.

Under w̄ > 2w̄c, it holds ν(D)> 0, so Pn(D)> 0. Moreover, lim infn→∞ P̂n(D)> 0 a.s.[P] by The-
orem 3.3; thus, P̂n(D)> 0 a.s.[P] for large n. Then, working with the sequence (Xn)n≥1 restricted to
D, we get

√
n
(
P̂n(A|D)− Pn(A|D)

) stably−→ N
(
0,U(A)

)
,

√
n
(
Pn(A|D)− P̃ (A)

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. F .

(4.2)

In order to show (4.1), the assumption w̄ > 2w̄c in Theorem 4.2 is critical. Indeed, under w̄ ≤ 2w̄c,
Proposition 4.1 implies that

Dn(A)−
√
n
(
Pn(A|D)− P̃ (A)

)
=
√
n Pn(Dc)Pn(A|D)

a.s.−→∞;

thus, Dn(A) (and, similarly, Cn(A)) fails to converge as
√
n(Pn(A|D)− P̃ (A)) converges by (4.2).

Example 4.3 (k-color RRU (Continued)). Consider again the k-color RRU from Example 3.5. It
follows that qj = limnE[W 2

n+1δXn+1
({j})|Fn], j = 1, . . . , k0 exists a.s.[P]. Then, arguing as in (4.2),

√
n
(
P̂n({j}|D)− Pn({j}|D)

) stably−→ N
(

0,
p̃j
w̄2

{
(1− p̃j)2qj + p̃j

∑
i≤k0,i 6=j

qip̃i

}
− p̃j

(
1− p̃j

))
,

√
n
(
Pn({j}|D)− p̃j

) a.s.cond.−→ N
(

0,
p̃j
w̄2

{
(1− p̃j)2qj + p̃j

∑
i≤k0,i 6=j

qip̃i

})
w.r.t. F .

In addition, P(p̃j = p) = 0, p ∈ [0,1], so that pj > 0 a.s.[P] and p̃i 6= p̃j a.s.[P], i 6= j.

4.3. An application: asymptotic credible intervals for P̃

We close with an application of Theorem 4.2 to a problem of statistical inference on the limit structure
of the process. We assume that the random weights Wn are observable, as it might be the case, for ex-
ample, in the context of clinical trials (see Example 3.6). Suppose X = R, D = [a, b], w̄ > 2w̄c. Define
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Fn(x) = Pn((−∞, x]), x ∈ R, n≥ 1. By Theorem 3.3, there exists a random distribution function F̃
on [a, b] such that

‖Fn − F̃‖
a.s.−→ 0.

The process F̃ is measurable w.r.t. σ(X1,W1,X2,W2, . . .) and so cannot be calculated on the basis of
a finite sample (Xi,Wi)

n
i=1. Still, one can do inference on it; under a Bayesian approach, one does so

by computing the conditional distribution of F̃ given (Xi,Wi)
n
i=1. The latter is usually summarized

by a credible band or, in practice, by plotting marginal credible intervals around F̃ (x) for x varying on
a fine grid. Take x ∈ [a, b] such that 0< ν((−∞, x])< 1. The following limits exist a.s.

q1 = lim
n→∞

E
[
W 2
n+1δXn+1

([a,x])
∣∣Fn], q0 = lim

n→∞
E
[
W 2
n+1δXn+1

((x, b])
∣∣Fn]. (4.3)

It follows from Theorem 4.2 that

√
n
(
Fn(x)− F̃ (x)

) a.s.cond.−→ N (0, Vx) w.r.t. F ,

where Vx = w̄−2((1− F̃ (x))2q1 + F̃ (x)2q0). In order to obtain asymptotic credible intervals for F̃ (x),
we need a convergent estimator of Vx. Let us define, for n≥ 1,

Vn,x =
1

m2
n

(
(1− Fn(x))2sn,1 + (Fn(x))2sn,0

)
,

mn =
1

n

n∑
i=1

Wi, sn,1 =
1

n

n∑
i=1

W 2
i δXi([a,x]), sn,0 =

1

n

n∑
i=1

W 2
i δXi((x, b]).

By Theorem 3.3, mn
a.s.−→ w̄. Moreover,

∑∞
n=1 E[W 2

n ]/n2 ≤
∑∞
n=1 β

2/n2 <∞, so Lemma 2 in [8]
implies from (4.3) that sn,1

a.s.−→ q1 and sn,0
a.s.−→ q0. Thus,

Vn,x
a.s.−→ Vx.

A generalized Slutsky’s theorem (see also [17, Theorem 6]) implies, for every t ∈R,

P
( F̃ (x)− Fn(x)√

Vn,x/n
≤ t
∣∣∣Fn) a.s.−→N (0,1)((−∞, t]).

As a consequence, denoting by zα the (1− α/2)-quantile of the standard Normal distribution, we get

lim inf
n→∞

P
(
Fn(x)− zα

√
Vn,x
n
≤ F̃ (x)≤ Fn(x) + zα

√
Vn,x
n

∣∣∣Fn)≥ 1− α.

Thus, an asymptotic marginal credible interval for F̃ (x) at level 1− α is

[
Fn(x)− zα

√
Vn,x
n

, Fn(x) + zα

√
Vn,x
n

]
.
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5. Proofs

We shall use the following notation throughout this section,

Nn(A) = θν(A) +

n∑
i=1

WiδXi(A), Mn(A) =

n∑
i=1

δXi(A) + 1, Nn = θ+

n∑
i=1

Wi,

so that Pn(A) = Nn(A)/Nn for every n ≥ 0 and A ∈ X , with the convention
∑0
i=1 ai = 0, and we

will omit the parenthesis whenA is an interval for the sake of clarity. All random quantities are defined
on the probability space (Ω,H,P) unless otherwise specified.

The following identity, given for anyA ∈ X and n≥ 0, is a consequence of (2.1) and will be applied
repeatedly,

E[Wn+1δXn+1
(A)|Fn] = E[w(Xn+1)δXn+1

(A)|Fn]. (5.1)

The proof of Proposition 3.1 uses the following general fact for DPSs with X =D.

Lemma 5.1. Under the conditions in Proposition 3.1, as n→∞,

n

Nn
−→ 1

w̄
a.s.[P] and in Lp for all p≥ 1.

Proof. By hypothesis, E[Wn+1|Fn] = w̄ and
∑∞
n=1 E[W 2

n ]/n2 ≤
∑∞
n=1 β

2/n2 <∞, so [8, Lemma
2] implies that Nn/n

a.s.−→ w̄. Define N∗n =
∑n
i=1{Wi − E[Wi]}, n ≥ 1. By a classical martingale

inequality (see [25, Lemma 1.5] and [8, Lemma 3]), we have

P(|N∗n|> x)≤ 2 exp
{
−x2/2βn2} for all x > 0.

Fix p > 0. It follows that

E[N−pn ] = p

∫ ∞
θ

1

tp+1
P(Nn < t)dt≤ p

θp+1

∫ θ+nw̄
2

θ
P(Nn < t)dt+ p

∫ ∞
θ+nw̄

2

1

tp+1
dt.

Clearly, p
∫∞
θ+nw̄

2
t−p−1dt= (θ+ nw̄

2 )−p =O(n−p). On the other hand, for t < θ+ nw̄
2 ,

P(Nn < t) = P(N∗n < t− θ− nw̄)≤ P(|N∗n|> θ+ nw̄− t)≤ 2 exp
{
− (θ+ nw̄− t)2

2β2n

}
;

thus,
∫ θ+nw̄

2
θ P(Nn < t)dt≤ nw̄ exp{−nw̄2/4β2} and, ultimately, E[N−pn ] =O(n−p).

Proof of Proposition 3.1. Let A ∈ X and n≥ 0. Then

Pn+1(A)− Pn(A) =
Wn+1/Nn

1 +Wn+1/Nn

(
δXn+1

(A)− Pn(A)
)

≤ Wn+1

Nn
Pn(Ac)δXn+1

(A)−
(Wn+1

Nn
−
W 2
n+1

N2
n

)
Pn(A)δXn+1

(Ac),
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where we have used that x− x2 ≤ x
1+x ≤ x for x≥ 0; therefore,

E[Pn+1(A)− Pn(A)|Fn]≤ β2Pn(A)Pn(Ac)N−2
n . (5.2)

and, by Lemma 5.1,

∞∑
n=0

E[Pn+1(A)− Pn(A)|Fn]≤
∞∑
n=0

β2

N2
n
<∞ a.s.[P], (5.3)

∞∑
n=0

E
[
(Pn+1(A)− Pn(A))2|Fn

]
≤
∞∑
n=0

E
[
W 2
n+1

N2
n

∣∣∣Fn]≤ ∞∑
n=0

β2

N2
n
<∞ a.s.[P]. (5.4)

Given (5.3) and (5.4), there exists by [30, Lemma 3.2] a random variable p̃A such that

Pn(A)
a.s.−→ p̃A.

Define Q̃(A) = p̃A, A ∈ X . Then Q̃(X) = 1, Q̃(∅) = 0 and Q̃(A) ≥ 0, A ∈ X , a.s.[P]. Moreover,
ω 7→ Q̃(A)(ω) is H-measurable for every A ∈ X , and Q̃(A1 ∪ A2) = Q̃(A1) + Q̃(A2) a.s.[P] for
disjoint A1,A2 ∈ X . In addition, the map A 7→ E[Q̃(A)] is a probability measure on X. Indeed, let
{Am}m≥1 ⊆X be such that Ak ∩Al = ∅, k 6= l. Put A=

⋃∞
m=1Am. It follows from (5.2) that

E[Pn(Am)] =

n∑
i=1

E[Pi(Am)−Pi−1(Am)] + ν(Am)≤ β2
∞∑
n=0

E
[
Pn(Am)N−2

n ] + ν(Am)≡M(m).

By dominated convergence theorem w.r.t. the counting measure, limn→∞
∑∞
m=1 E[Pn(Am)] =∑∞

m=1 limn→∞E[Pn(Am)], whenever
∑∞
m=1M(m)<∞. The latter follows from Lemma 5.1 as

∞∑
m=1

M(m) = β2
∞∑
n=0

∞∑
m=1

E
[
Pn(Am)N−2

n

]
+ ν(A)≤ β2

∞∑
n=0

E[N−2
n ] + ν(A)<∞.

Therefore,

E[Q̃(A)] = lim
n→∞

∞∑
m=1

E[Pn(Am)] =

∞∑
m=1

lim
n→∞

E[Pn(Am)] =

∞∑
m=1

E[Q̃(Am)]. (5.5)

By [19, Theorem 3.1], there exists a random probability measure P̃ on X such that Q̃(A) = P̃ (A)
a.s.[P], for every A ∈ X ; thus,

Pn(A)
a.s.−→ P̃ (A).

Using standard arguments, E[f(Xn+1)|Fn]
a.s.−→

∫
X f(x)P̃ (dx) for every bounded measurable func-

tion f , which implies that Pn
w−→ P̃ a.s.[P] since X is separable.

Define Sn = {X1, . . . ,Xn}, n≥ 1. Then Sn ↑ {X1,X2, . . .} ≡ S and, by Portmanteau theorem,

P̃ (S) = lim
n→∞

P̃ (Sn)≥ lim
n→∞

lim sup
k→∞

Pk(Sn)≥ lim
n→∞

lim sup
k→∞

(
1− θ

Nk

)
= 1 a.s.[P],



Dominant Pólya sequences 13

that is, P̃ is P-a.s. discrete with random support S. On the other hand, proceeding as in (5.3) and (5.4),
we can show that Pn({Xm})

a.s.−→ p̃m for some random variable p̃m, m≥ 1. By Portmanteau theorem,

P̃ ({Xm})≥ lim sup
n→∞

Pn({Xm}) = p̃m a.s.[P], for m≥ 1.

But 1 = P̃ (S) =
∑∞
m=1 P̃ ({Xm})≥

∑∞
m=1 p̃m a.s.[P] and, using the same arguments as in (5.5),

E
[ ∞∑
m=1

p̃m

]
=

∞∑
m=1

lim
n→∞

E[Pn({Xm})] = lim
n→∞

E[Pn(S)] = 1 a.s.[P],

so
∑∞
m=1 p̃m = 1 a.s.[P], and thus P̃ ({Xm}) = p̃m a.s.[P], m≥ 1. As a result, we have

P
(
Pn({x})→ P̃ ({x}) for all x ∈ S

)
= P

(
Pn({Xm})→ P̃ ({Xm}) for all m≥ 1

)
= 1,

and, by Scheffe’s lemma,

‖Pn − P̃‖ ≤ sup
x∈S

∣∣Pn({x})− P̃ ({x})
∣∣+ Pn(Sc)≤

∑
x∈S

∣∣Pn({x})− P̃ ({x})
∣∣+ θ

Nn
ν(Sc)

a.s.−→ 0.

Finally, [8, Lemma 2] implies that P̂n({Xm})
a.s.−→ P̃ ({Xm}), m≥ 1, and so ‖P̂n − P̃‖

a.s.−→ 0.

The proof of Proposition 3.2 makes use of the following three preliminary results.

Lemma 5.2. Under the conditions in Proposition 3.2, as n→∞,Nn(t,1]
a.s.−→∞ for every t ∈ (0,1).

Proof. Fix t ∈ (0,1). Denote A = (t,1]. It follows from (2.2) that Pn(A) ≥ θν(A)
/

(θ + nβ) > 0,
so
∑∞
n=1Pn(A) =∞, and thus

∑∞
n=1 δXn(A) =∞ a.s.[P] by [15, Theorem 1]. Since Nn(A) =∑n

i=1(Ni(A) − Ni−1(A)) + θν(A), then, by [13, Theorem 1], Nn(A)
a.s.−→∞ if we can show that∑∞

n=1 E[Nn(A)−Nn−1(A)|Fn−1 ∨ σ(Xn)] =∞ a.s.[P]. But w is strictly increasing, so

n∑
i=1

E[Ni(A)−Ni−1(A)|Fi−1 ∨ σ(Xi)] =

n∑
i=1

w(Xi)δXi(A)≥w(t)

n∑
i=1

δXi(A)
a.s.−→∞.

Lemma 5.3. Under the conditions in Proposition 3.2, for every t ∈ (0,1), there exist s ∈ (t,1) and
λt ∈ (0,1) such that, for all λ ∈ (λt,1], the ratio Nn[0, t]

/
Nn(s,1]λ converges P-a.s. to a finite limit.

Proof. Fix t ∈ (0,1). Put λt = (w(1) +w(t))/2w(1). Take λ ∈ (λt,1] and s ∈ (t,1) such that w(s)>
w(t)/λt; such an s exists as w([0,1]) is connected and w(t)<w(t)/λt <w(1). Then, by (5.1),

E
[
Nn+1[0, t]

Nn+1(s,1]λ
− Nn[0, t]

Nn(s,1]λ

∣∣∣Fn]=
Nn[0, t]

Nn(s,1]λ
E
[
Nn+1[0, t]

Nn[0, t]

(
1−

Wn+11{Xn+1>s}
Nn+1(s,1]

)λ
− 1
∣∣∣Fn]

≤ Nn[0, t]

Nn(s,1]λNn

{
w(t)− λw(s)

Nn(s,1]

Nn(s,1] + β

}
,
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where we have used that (1 + x)λ ≤ 1 + λx for −1≤ x≤ 0. Let us define, for n,m≥ 0,

Rn =w(t)− λw(s)
Nn(s,1]

Nn(s,1] + β
and Tm = inf{n≥m :Rn ≥ 0}.

Each Tm is a F-stopping time and (Nn∧Tm [0, t]
/
Nn∧Tm(s,1]λ)n≥m a non-negative supermatingale,

so it converges to a random limit Lm <∞, say, on Ωm ∈H : P(Ωm) = 1. Put Ω∗ = {lim supnRn <
0} ∩

⋃
mΩm. By Lemma 5.2 and as w(t) < λw(s), we have lim supnRn < 0 a.s.[P], and thus

P(Ω∗) = 1. Take ω ∈ Ω∗. There exists m0 ∈ N such that Rn(ω) < 0, n ≥m0. Then Tm0(ω) =∞
and Nn[0, t](ω)

/
Nn(s,1](ω)λ→ Lm0(ω). Therefore, limn→∞Nn[0, t]

/
Nn(s,1]λ <∞ a.s.[P].

Lemma 5.4. Under the conditions in Proposition 3.2, if ν(t,1) > 0 for every t ∈ (0,1), then
Nn({1}c)

/
Mn({1}c) a.s.−→w(1).

Proof. Fix t ∈ (0,1). It follows from ν(t,1) > 0 and a slightly modified version of Lemma 5.3 that
Nn[0, t)

/
Nn({1}c) a.s.−→ 0. Then

lim inf
n→∞

1

Pn({1}c)
E[Wn+1δXn+1

({1}c)|Fn]≥ lim inf
n→∞

w(t)
Pn[t,1)

Pn({1}c)
=w(t) a.s.[P].

Since lim supn→∞E[Wn+1δXn+1
({1}c)|Fn]

/
Pn({1}c)≤w(1), letting t ↑ 1, we get

1

Pn({1}c)
E[Wn+1δXn+1

({1}c)|Fn]
a.s.−→w(1). (5.6)

Define T0 = 0 and, for every n≥ 1,

Tn = inf{m>Tn−1 :Xm 6= 1}.

As Pn({1}c)> 0, then Mn({1}c) a.s.−→∞ by [15, Theorem 1], and so P(Xn 6= 1 i.o.) = 1. Therefore,
each Tn is a F-stopping time such that Tn <∞ a.s.[P], and Tn

a.s.−→∞.
We further let, for n≥ 1,

X∗n =XTn , W ∗n =WTn , P ∗n(·) =
PTn+1−1(· ∩ {1}c)
PTn+1−1({1}c)

, F∗n = σ(X∗1 ,W
∗
1 , . . . ,X

∗
n,W

∗
n),

which are well-defined on the probability space (Ω∗,H∗,P∗) ≡ (Ω∗,H ∩ Ω∗,P(· |Ω∗)), where Ω∗ ≡⋂∞
n=0{Tn <∞} and P(Ω∗) = 1. Fix n ∈N. Take B ∈ B[0,1]. Then

P ∗n(B) =
θν(B ∩ {1}c) +

∑Tn+1−1
i=1 WiδXi(B ∩ {1}

c)

θν(B ∩ {1}c) +
∑Tn+1−1
i=1 WiδXi({1}c)

=
θν(B ∩ {1}c) +

∑n
k=1W

∗
k δX∗

k
(B)

θν({1}c) +
∑n
k=1W

∗
k

;

thus, P ∗n(B) is F∗n-measurable. Let A ∈ F∗n. Since 1A = f(X∗1 ,W
∗
1 , . . . ,X

∗
n,W

∗
n) for some measur-

able function f , we can show that

P∗
(
A∩ {X∗n+1 ∈B}

)
= E

[
f(XT1

,WT1
, . . . ,XTn ,WTn)1{XTn+1

∈B}∩Ω∗
]

= E
[
f(XT1

,WT1
, . . . ,XTn ,WTn)

PTn+1−1(B ∩ {1}c)
PTn+1−1({1}c)

1Ω∗

]
= E∗[1A · P ∗n(B)].
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Therefore, P ∗n is a version of the conditional distribution of X∗n+1 given F∗n. Then, by (5.1) and (5.6),

P∗
(

lim
n→∞

E∗[w(X∗n+1)|F∗n] =w(1)
)

= 1.

Moreover,
∑∞
n=1 E∗[(W ∗n)2]/n2 <∞, so P∗( 1

n

∑n
k=1W

∗
k →w(1)) = 1 by [8, Lemma 2]. As a result,

Nn({1}c)
Mn({1}c)

=
θν({1}c)
Mn({1}c)

+

∑Mn({1}c)−1
k=1 WTk

Mn({1}c)
−→w(1) a.s.[P].

Proof of Proposition 3.2.

Part I. (Pn
w−→ δ1 a.s.[P], P̂n

w−→ δ1 a.s.[P], Nnn
a.s.−→ w(1)). Let t ∈ (0,1). Take s ∈ (t,1) and λ ∈

(0,1) as in the statement of Lemma 5.3. It follows from Lemmas 5.2 and 5.3 that

lim sup
n→∞

Pn[0, t]≤ lim sup
n→∞

Nn[0, t]

Nn(t,1]
≤ lim sup

n→∞

1

Nn(s,1]1−λ
Nn[0, t]

Nn(s,1]λ
= 0 a.s.[P];

thus, Pn(t,1]
a.s.−→ 1 for every t ∈ (0,1), and so Pn

w−→ δ1 a.s.[P]. By [8, Lemma 2], P̂n(t,1]
a.s.−→ 1 for

every t ∈ (0,1) and, similarly, P̂n
w−→ δ1 a.s.[P].

On the other hand, (5.1) and the a.s. weak convergence of Pn to δ1 imply E[Wn+1|Fn]
a.s.−→ w(1).

As
∑∞
n=1 E[W 2

n ]/n2 ≤
∑∞
n=1 β

2/n2 <∞, then, by [8, Lemma 2],

Nn
n

a.s.−→w(1). (5.7)

Part II. (Pn({1}c) a.s.−→ η). Suppose 0 < ν({1}) < 1; else, if ν({1}) = 0 (or ν({1}) = 1), then
Pn({1}c) = 1 (Pn({1}c) = 0), and so Pn({1}c) a.s.−→ η with η = 1 (η = 0).

Case 1: ν(t,1) = 0 for some t ∈ (0,1). It follows that Pn({1}c) = Pn[0, t], so Part I implies
lim supn→∞Pn[0, t]≤ δ1([0, t]) = 0 a.s.[P], and thus Pn({1}c) a.s.−→ 0.

Case 2: ν(t,1)> 0 for each t ∈ (0,1). By Lemma 5.4, Nn({1}c)
/
Mn({1}c) a.s.−→w(1) and, similarly,

Nn({1})
/
Mn({1}) a.s.−→w(1). Let ψ ∈ (0,1). Then

E
[Mn+1({1})ψ

Mn+1({1}c)
− Mn({1})ψ

Mn({1}c)

∣∣∣Fn]=
Mn({1})ψ

Mn({1}c)
E
[(

1 +
δXn+1

({1})
Mn({1})

)ψ Mn({1}c)
Mn+1({1}c)

− 1
∣∣∣Fn]

≤ Mn({1})ψ

Mn({1}c)Nn

{
ψ
Nn({1})
Mn({1})

− Nn({1}c)
Mn({1}c) + 1

}
,

using that (1 + x)ψ ≤ 1 +ψx for 0≤ x≤ 1. Since

lim sup
n→∞

(
ψ
Nn({1})
Mn({1})

− Nn({1}c)
Mn({1}c) + 1

)
< 0 a.s.[P],



16

we can show, arguing as in the proof of Lemma 5.3, that (Mn({1})ψ
/
Mn({1}c))n≥1 converges

a.s.[P]. But ψ is arbitrary and 0< (1 +ψ)/2< 1, so it holds that

Mn({1})ψ

Mn({1}c)
=Mn({1})

ψ−1
2
Mn({1})

1+ψ
2

Mn({1}c)
a.s.−→ 0.

Analogously, Mn({1}c)ψ
/
Mn({1}) a.s.−→ 0. Therefore, for every ψ < 1,

nψ

Nn({1})
=
(Mn({1}c) +Mn({1})− 2

Mn({1})1/ψ

)ψMn({1})
Nn({1})

a.s.−→ 0 and
nψ

Nn({1}c)
a.s.−→ 0. (5.8)

Define Zn = log
Nn({1}c)
Nn({1}) , n≥ 0. By [30, Lemma 3.2], (Zn)n≥0 converges P-a.s. in [−∞,∞) if

∞∑
n=0

E[Zn+1 −Zn|Fn]<∞ a.s.[P] and
∞∑
n=0

E
[
(Zn+1 −Zn)2

∣∣Fn]<∞ a.s.[P]. (5.9)

In that case, (Nn({1}c)
/
Nn({1}))n≥0 converges P-a.s. in [0,∞) and there exists a random variable

η ∈ [0,1) such that

Pn({1}c) =
Nn({1}c)

Nn({1}c) +Nn({1})
a.s.−→ η.

To prove (5.9), observe that

E[Zn+1 −Zn|Fn] = E
[
log

Nn+1({1}c)
Nn({1}c)

δXn+1
({1}c)− log

Nn+1({1})
Nn({1})

δXn+1
({1})

∣∣∣Fn]
= E

[∫ Wn+1

0

δXn+1
({1}c)

Nn({1}c) + t
dt−

∫ Wn+1

0

δXn+1
({1})

Nn({1}) + t
dt
∣∣∣Fn]

≤ E
[
δXn+1

({1}c)
( Wn+1

Nn({1}c)
−

W 2
n+1

2Nn({1}c)2
+ k1

W 3
n+1

3Nn({1}c)3

)∣∣∣Fn]−
−E

[
δXn+1

({1})
( Wn+1

Nn({1})
− k2

W 2
n+1

2Nn({1})2

)∣∣∣Fn]
≤ 1

Nn

(
k1

β3

3Nn({1}c)2
+ k2

β2

2Nn({1})

)
,

where we have used a Taylor expansion of the function f(x) = 1/(x+ t), x > 0 with t ∈R+ fixed, for
some constants k1, k2 ≥ 0. Then (5.7)-(5.8) imply

∑∞
n=0 E[Zn+1−Zn|Fn]<∞ a.s.[P]. On the other

hand,

E
[
(Zn+1 −Zn)2

∣∣Fn]≤ E
[
δXn+1

({1}c)
Nn({1}c)2

(∫ Wn+1

0
dt
)2

+
δXn+1

({1})
Nn({1})2

(∫ Wn+1

0
dt
)2∣∣∣Fn]

≤ Pn({1}c) β2

Nn({1}c)2
+ Pn({1}) β2

Nn({1})2
,

and thus
∑∞
n=0 E[(Zn+1 −Zn)2|Fn]<∞ a.s.[P].
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Proof of Theorem 3.3. Let us define g(x) =w(x)/w̄, x ∈X and, for n≥ 1 and A ∈ B[0,1],

X̃n = g(Xn), W̃n =Wn, P̃n(A) = Pn(g−1(A)), ν̃(A) = ν(g−1(A)).

Then E[W̃n|X̃n] = w̄X̃n and, for every t ∈ (0,1), by (2.2),

ν̃(t,1] = ν({x ∈X :w(x)> tw̄}) = νw(tw̄, w̄]> 0;

thus, 1 ∈ supp(ν̃). On the other hand, for every A ∈ B[0,1],

P̃n(A) =

n∑
i=1

W̃i

θ+
∑n
j=1 W̃j

δX̃i
(A) +

θ

θ+
∑n
j=1 W̃j

ν̃(A).

Therefore, (X̃n)n≥1 is1 a [0,1]-valued DPS with the continuous and strictly increasing expected weight
function w̃(t) = w̄t, t ∈ [0,1]. It follows immediately from Proposition 3.2 that

1

n

n∑
i=1

Wi =
1

n

n∑
i=1

W̃i
a.s.−→ w̃(1) = w̄.

Part I. (Pn(Dcδ)
a.s.−→ 0). Fix δ > 0. Let ε= (w̄ − supx∈Dcδ w(x))/2. Then ε > 0 by (2.2), so Proposi-

tion 3.2 implies

Pn(Dcδ)≤ P
(
w(Xn+1)< w̄− ε |Fn

)
= P̃n[0,1− ε/w̄)

a.s.−→ 0.

Part II. (Pn(Dc) a.s.−→ η). By Proposition 3.2, there exists a random variable η ∈ [0,1] such that

Pn(Dc) = P̃n({1}c) a.s.−→ η.

If it holds w̄ > w̄c, then there exists t ∈ (0,1) such that νw(tw̄, w̄) = 0. But ν̃(t,1) = νw(tw̄, w̄) = 0,
so Pn(Dc) = P̃n[0, t]

a.s.−→ 0.

Part III. (‖Pn− P̃‖
a.s.−→ 0, ‖P̂n− P̃‖

a.s.−→ 0). Suppose w̄ > w̄c. It follows from Part II that Pn(D)
a.s.−→

1, so P̂n(D)
a.s.−→ 1 by [8, Lemma 2], and thus P(Xn ∈D i.o.) = 1 by [15, Theorem 1].

Let us define T = 0 and, for n≥ 1,

Tn = inf{m ∈N :m>Tn−1,Xm ∈D} and Pn(· |D) = Pn(· ∩ D)
/
Pn(D).

Put Ω∗ =
⋂∞
n=0{Tn <∞}. Each Tn is a F-stopping time such that Tn <∞ a.s.[P], and Tn

a.s.−→∞;
thus, P(Ω∗) = 1. Then, arguing as in Lemma 5.4, one can show that P ∗n(·)≡ PTn+1−1(· |D) is a version
of the conditional distribution of XTn+1

given σ(XT1
,WT1

, . . . ,XTn ,WTn) on the probability space
(Ω∗,H∗,P∗) ≡ (Ω∗,H ∩ Ω∗,P(· |Ω∗)). Moreover, the sequence (XTn)n≥1 is a DPS with a constant
expected weight function, so there exists by Proposition 3.1 a random probability measure P̃ ∗ on D
such that

P∗
(

lim
n→∞

‖P ∗n − P̃ ∗‖= 0
)

= 1.

1Strictly speaking, (X̃n)n≥1 differs from the definition of a DPS in that W̃n is a function of (Xn,Un) but not of
(X̃n,Un), and P̃n is the conditional distribution of X̃n+1 given Fn instead of σ(X̃1,U1, . . . , X̃n,Un). Nevertheless, the
conclusions of Proposition 3.2 continue to hold for the process (X̃n)n≥1 since E[W̃n|Fn−1 ∨ σ(Xn)] = w̃(X̃n).
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Define P̃ (A)(ω) = P̃ ∗(A ∩ D)(ω), ω ∈ Ω∗ and P̃ (A)(ω) = 0, ω /∈ Ω∗, A ∈ X . Then P̃ is a random
probability measure on X such that P̃ (D) = 1 a.s.[P]. On the other hand, Pn(· |D) ≡ P ∗mn(·) on Ω∗,
where mn =Mn(D)− 1, so

P
(

lim
n→∞

‖Pn(· |D)− P̃ (·)‖= 0
)

= P∗
(

lim
n→∞

‖P ∗mn − P̃
∗‖= 0

)
= 1.

Therefore,

‖Pn − P̃‖ ≤ 2Pn(Dc) + ‖Pn(· |D)− P̃ (·)‖ a.s.−→ 0.

Finally, denote by P̂n(· |D) = P̂n(· ∩ D)
/
P̂n(D), n≥ 0 the relative frequency of (Xn)n≥1 restricted

to D, which is well-defined for large n. Then, arguing as before, we have

‖P̂n − P̃‖ ≤ 2 P̂n(Dc) + ‖P̂n(· |D)− P̃ (·)‖ a.s.−→ 0.

Proof of Proposition 3.4. Define θn = θ/Nn and Zn = Ln − Ln−1, n≥ 1, with L0 = 0 and θ0 = 1.
As ν is diffuse and Zn ∈ {0,1}, then Ln =

∑n
i=1 1{Zi=1} and θn = P(Zn+1 = 1|Fn). Moreover,

θn ≥ θ/(θ+ βn), so
∑∞
n=1 P(Zn = 1|Fn−1) =∞ a.s.[P] and, by [15, Theorem 1],

Ln∑n
k=1 θk−1

=

∑n
i=1 1{Zi=1}∑n

k=1 P(Zk = 1|Fk−1)

a.s.−→ 1.

As Nn/n
a.s.−→ w̄ by Theorem 3.3, we obtain

Ln
logn

=
Ln∑n

k=1 θk−1

(
1

logn
+

θ

logn

n−1∑
k=1

1

k

( k

Nk

))
a.s.−→ θ

w̄
,

using the fact that, for any (an)n≥1 ⊆R+ : an→ a, it holds 1
logn

∑n
k=1 k

−1ak→ a.

Proof of Proposition 4.1. If ν(Dc) = 0, the result is immediate with ξ = 0. Suppose ν(Dc)> 0. Then
w̄c ∈ supp((ν|Dc)w) from the definition of w̄c. Moreover, ν({x ∈ Dc : w(x) > w̄c}) = 0; otherwise,
(w̄c, w̄) ∩ supp((ν|Dc)w) 6= ∅ and there exists u > w̄c such that u ∈ supp((ν|Dc)w), absurd. As a re-
sult, w̄c plays the same role for the subsequence of non-dominant observations as w̄ does for (Xn)n≥1.
Therefore, by Theorem 3.3, Nn(Dc)

/
Mn(Dc) a.s.−→ w̄c. Proceeding as in Part II of the proof of Propo-

sition 3.2, we can show that, for every ψ < w̄c/w̄,

Mn(D)ψ

Mn(Dc)
a.s.−→ 0, and then

Mn(Dc)
nψ

a.s.−→∞.

In addition, log
Nn(Dc)

Nn(D)w̄
c/w̄ converges P-a.s. in [−∞,∞), so there exists a random variable ξ ∈ [0,∞)

such that, letting γ = 1− w̄c/w̄,

nγ · P̂n(Dc) =
Mn(Dc)− 1

Nn(Dc)

(Nn
n

Nn(Dc)w̄/w̄c

Nn(D) +Nn(Dc)

)w̄c/w̄ a.s.−→ ξ,

nγ · Pn(Dc) = nγ ·
(
P̂n(Dc)− 1

n

) n

Nn

Nn(Dc)
Mn(Dc)

a.s.−→ w̄c

w̄
ξ.
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Proof of Theorem 4.2. By Theorem 3.3, Pn(D)
a.s.−→ 1, so we can proceed as in Theorem 3.3 to derive

results for the subsequence of dominant observations. Let us define T0 = 0 and, for n≥ 1

Tn = inf{n > Tn−1 :Xn ∈D}, Pn(· |D) =
Pn(· ∩ D)

Pn(D)
, P̂n(· |D) =

P̂n(· ∩ D)

P̂n(D)
,

which are well-defined for large n. We further let mn =Mn(D)− 1 and G = (Gn)n≥0 be the filtration
on H, given by G0 = {∅,Ω} and Gn = σ(XT1

,UT1
, . . . ,XTmn ,UTmn ), n≥ 1. With a slight abuse of

notation, (XTmn )n≥1 forms a subsequence of dominant observations,

Pn(· |D) =
θν(· ∩ D) +

∑mn
k=1WTkδXTk

(·)
θν(D) +

∑mn
k=1WTk

,

is a version of the conditional distribution of XTmn+1
given Gn (see the proof of Theorem 3.3), and

(P̂n(· |D))n≥1 is the relative frequency of (XTmn )n≥1 restricted to D. Observe that Pn(· |D) and
P̂n(· |D) remain unchanged unlessmn >mn−1. It follows from Proposition 3.1 that, for everyA ∈ X ,

Pn(A|D)
a.s.−→ P̃ (A) and P̂n(A|D)

a.s.−→ P̃ (A).

We can prove the convergence to Gaussian limits of
√
mn
(
P̂n(A|D)− Pn(A|D)

)
and

√
mn
(
Pn(A|D)− P̃ (A)

)
, (5.10)

by applying [8, Theorem 1] and [8, Proposition 1], respectively. Indeed, one can easily show that (5.10)
satisfy the assumptions of [8, Theorem 1, Proposition 1] using techniques from [7, Theorem 4] and [8,
Corollary 3]. As a result,

√
mn
(
P̂n(A|D)− Pn(A|D)

) stably−→ N
(
0,U(A)

)
,

√
mn
(
Pn(A|D)− P̃ (A)

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. G.

Since Mn(D)/n
a.s.−→ 1, a generalized Slutsky’s theorem (see also [17, Theorem 6]) implies

√
n
(
P̂n(A|D)− Pn(A|D)

) stably−→ N
(
0,U(A)

)
,

√
n
(
Pn(A|D)− P̃ (A)

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. G.

But P̃ (A) is σ(XTm1
,XTm2

, . . .)-measurable from P̂n(A|D)
a.s.−→ P̃ (A) and, using (2.1), we can show

that (XTmn+1
,XTmn+2

, . . .) and Fn are conditionally independent given Gn; therefore,

√
n
(
Pn(A|D)− P̃ (A)

) a.s.cond.−→ N
(
0, V (A)

)
w.r.t. F .

On the other hand, Proposition 3.2 implies that∣∣√n(Pn(A|D)−Dn(A)
∣∣=√n|Pn(A|D)− Pn(A)| ≤ 2

√
n · Pn(Dc) a.s.−→ 0.
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Then, using again the generalized Slutsky’s theorem, Dn(A)
a.s.cond.−→ N

(
0, V (A)

)
w.r.t. F .

Regarding the second result, we have∣∣√n(P̂n(A|D)− Pn(A|D))−Cn(A)
∣∣≤ 2

√
n · Pn(Dc) + 2

√
n · P̂n(Dc) a.s.−→ 0;

therefore, Cn(A)
stably−→ N

(
0,U(A)

)
.
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