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Abstract: Measure-valued Pólya urn processes (MVPP) are Markov chains with an additive structure
that serve as an extension of the generalized k-color Pólya urn model towards a continuum of pos-
sible colors. We prove that, for any MVPP (µn)n≥0 on a Polish space X, the normalized sequence
(µn/µn(X))n≥0 agrees with the marginal predictive distributions of some random process (Xn)n≥1.
Moreover, µn = µn−1 + RXn , n ≥ 1, where x 7→ Rx is a random transition kernel on X; thus, if
µn−1 represents the contents of an urn, then Xn denotes the color of the ball drawn with distribu-
tion µn−1/µn−1(X) and RXn —the subsequent reinforcement. In the case RXn = WnδXn , for some
non-negative random weights W1, W2, . . ., the process (Xn)n≥1 is better understood as a randomly re-
inforced extension of Blackwell and MacQueen’s Pólya sequence. We study the asymptotic properties
of the predictive distributions and the empirical frequencies of (Xn)n≥1 under different assumptions
on the weights. We also investigate a generalization of the above models via a randomization of the
law of the reinforcement.

Keywords: predictive distributions; random probability measures; reinforced processes; Pólya
sequences; urn schemes; Bayesian inference; conditional identity in distribution; total variation
distance

MSC: 60G57; 60B10; 60G25; 60F05; 60G09

1. Introduction

Let (Xn)n≥1 be a sequence of homogeneous random observations, taking values in a
Polish space X. The central assumption in the Bayesian approach to inductive reasoning
is that (Xn)n≥1 is exchangeable, that is, its law is invariant under finite permutations.
Then, by de Finetti’s theorem, there exists a random probability measure P̃ on X such that,
given P̃, the random variables X1, X2, . . . are conditionally independent and identically
distributed with marginal distribution P̃ (see [1], Section 3), denoted

Xn | P̃ i.i.d.∼ P̃. (1)

Furthermore, P̃ is the almost sure (a.s.) weak limit of the predictive distributions and
the empirical frequencies,

P(Xn+1 ∈ · | X1, . . . , Xn)
w−→ P̃(·) a.s. and

1
n

n

∑
i=1

δXi (·)
w−→ P̃(·) a.s. (2)

The model (1) is completed by choosing a prior distribution for P̃. Inference consists
in computing the conditional (posterior) distribution of P̃ given an observed sample
(X1, . . . , Xn), with most inferential conclusions depending on some average with respect
to the posterior distribution; for example, under squared loss, for any measurable set
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B ⊆ X, the best estimate of P̃(B) is the posterior mean, E[P̃(B)|X1, . . . , Xn]. In addition,
the posterior mean can be utilized for predictive inference since

P(Xn+1 ∈ B|X1, . . . , Xn) = E[P̃(B)|X1, . . . , Xn]. (3)

A different modeling strategy uses the Ionescu–Tulcea theorem to define the law of
the process from the sequence of predictive distributions, (P(Xn+1 ∈ ·|X1, . . . , Xn))n≥1.
In that case, one can refer to Theorem 3.1 in [2] for necessary and sufficient conditions
on (P(Xn+1 ∈ ·|X1, . . . , Xn))n≥1 to be consistent with exchangeability. The predictive
approach to model building is deeply rooted in Bayesian statistics, where the parameter P̃
is assigned an auxiliary role and the focus is on observable “facts”, see [2–6]. Moreover,
using the predictive distributions as primary objects allows one to make predictions
instantly or helps ease computations. See [7] for a review on some well-known predictive
constructions of priors for Bayesian inference.

In this work, we consider a class of predictive constructions based on measure-valued
Pólya urn processes (MVPP). MVPPs have been introduced in the probabilistic litera-
ture [8,9] as an extension of k-color urn models, but their implications for (Bayesian)
statistics have yet to be explored. A first aim of the paper is thus to show the potential
use of MVPPs as predictive constructions in Bayesian inference. In fact, some popular
models in Bayesian nonparametric inference can be framed in such a way, see Equation (8).
A second aim of the paper is to suggest novel extensions of MVPPs that we believe can
offer more flexibility in statistical applications.

MVPPs are essentially measure-valued Markov processes that have an additive struc-
ture, with the formal definition being postponed to Section 2.1 (Definition 1). Given an
MVPP (µn)n≥0, we consider a sequence of random observations that are characterized by
P(X1 ∈ ·) = µ0(·)/µ0(X) and, for n ≥ 1,

P(Xn+1 ∈ · | X1, µ1, . . . , Xn, µn) =
µn(·)
µn(X)

. (4)

The random measure µn is not necessarily measurable with respect to (X1, . . . , Xn), so
the predictive construction (4) is more flexible than models based solely on the predictive
distributions of (Xn)n≥1; for example, (µn)n≥0 allows for the presence of latent variables or
other sources of observable data (see also [10] for a covariate-based predictive construction).
However, (4) can lead to an imbalanced design, which may break the symmetry imposed
by exchangeability. Nevertheless, it is still possible that the sequence (Xn)n≥1 satisfies
(2) for some P̃, in which case Lemma 8.2 in [1] implies that (Xn)n≥1 is asymptotically
exchangeable with directing random measure P̃.

In Theorem 1, we show that, taking (µn)n≥0 as primary, the sequence (Xn)n≥1 in (4)
can be chosen such that

µn = µn−1 + RXn , (5)

where x 7→ Rx is a measurable map from X to the space of finite measures on X. Models
of the kind (4)–(5) are computationally efficient. Indeed, as new observations become
available, predictions can be updated at a constant computational cost and with limited
storage of information. If, in addition, (Xn)n≥1 is asymptotically exchangeable, then (4)–
(5) can provide a computationally simple approximation of an exchangeable scheme for
Bayesian inference, along the lines in [11].

The recursive formula (5) allows us to interpret the dynamics of MVPPs in terms of
an urn sampling scheme, as the name suggests. Let µ0 be a non-random finite measure
on X. Suppose we have an urn whose contents are described by µ0 in the sense that µ0(B)
denotes the total mass of balls with colors in B ⊆ X. At time n = 1, a ball is extracted at
random from the urn, and we denote its color by X1. The urn is then reinforced according
to a replacement rule (Rx)x∈X, so that the updated composition becomes µ1 ≡ µ0 + RX1 .
At any time n > 1, a ball of color Xn is picked with probability distribution µn−1/µn−1(X),
and the contents of the urn are subsequently reinforced by RXn . In the case the space of
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colors is finite, |X| = k, the above procedure is better known as a generalized k-color Pólya
urn [12].

We focus our analysis on MVPPs for which Rx is concentrated on x; thus, after each
draw, we reinforce only the color of the observed ball. More formally, we consider MVPPs
that have a reinforcement measure of the kind RXn = WnδXn , n ≥ 1, where Wn is some
non-negative random variable. In that case, Equations (4) and (5) become

P(Xn+1 ∈ · | X1, W1, . . . , Xn, Wn) =
n

∑
i=1

Wi
µ0(X) + ∑n

j=1 Wj
δXi (·) +

µ0(X)
µ0(X) + ∑n

j=1 Wi
µ′0(·), (6)

and
µn = µn−1 + WnδXn . (7)

A notable example is Blackwell and MacQueen’s em Pólya sequence [13], which is a
random process (Xn)n≥1 characterized by P(X1 ∈ ·) = ν(·) and, for n ≥ 1,

P(Xn+1 ∈ · | X1, . . . , Xn) =
n

∑
i=1

1
θ + n

δXi (·) +
θ

θ + n
ν(·), (8)

for some probability measure ν on X and a constant θ > 0. By [13], (Xn)n≥1 is exchangeable
and corresponds to the model (1) with Dirichlet process prior with parameters (θ, ν). It is
easily seen that (8) is related to the MVPP (µn)n≥0 given by µ0 = θν and, for n ≥ 1,

µn = µn−1 + δXn .

Therefore, we will call any MVPP a randomly reinforced Pólya process (RRPP) if it
admits representation (6)–(7).

Existing studies on MVPPs look at models that have mostly a balanced design,
i.e., Rx(X) = r, x ∈ X, and assume irreducibility-like conditions for (Rx)x∈X, see [8,9,14,15]
and Remark 4 in [16]. In contrast, RRPPs require that Rx({x}c) = 0, and so are excluded
from the analysis in those papers. In fact, this difference in reinforcement mechanisms mir-
rors the dichotomy within k-color urn models, where the replacement R is best described
in terms of a matrix with random elements. There, the class of randomly reinforced urns
[17] assumes an R with zero off-diagonal elements (i.e., we reinforce only the color of the
observed ball), whereas the generalized Pólya urn models require the mean replacement
matrix to be irreducible. Similarly to the k-color case, RRPPs need the use of different
techniques, which yield completely different results than those in [8,9,14–16]. As an exam-
ple, Theorem 1 in [16] and our Theorem 2 prove convergence of the kind (2), yet the limit
probability measure in [16] is non-random.

The RRPP has been implicitly studied by [17–23], among others, with the focus being
on the process (Xn)n≥1. Those papers deal primarily with the k-color case (with the ex-
ception of [18,19,23]) and can be categorized on the basis of their assumptions on (Wn)n≥1.
For example, [18,19,21,22] assume that Wn and (X1, W1, . . . , Xn−1, Wn−1, Xn) are indepen-
dent, in which case the process (Xn)n≥1 is conditionally identically distributed (c.i.d.) [21],
that is, conditionally on current information, all future observations are identically dis-
tributed. It follows from [21] that c.i.d. processes preserve many of the properties of
exchangeable sequences and, in particular, satisfy (2)–(3). In contrast, [17,20,23] assume
that the reinforcement Wn depends on the particular color Xn, and prove a version of (2)
where P̃ is concentrated on the set of dominant colors for which the expected reinforcement
is maximum. In this work, we reconsider the above models in the framework of RRPPs.
For the c.i.d. case, we prove results whose analogues have already been established by [23]
for the model with dominant colors. In particular, we extend the convergence in (2) to be
in total variation and give a unified central limit theorem. We also examine the number of
distinct values that are generated by the sequence (Xn)n≥1.

In some applications, the definition of an MVPP can be too restrictive as it assumes that
the probability law of the reinforcement R is known. However, we can envisage situations
where the law is itself random, so we extend the definition of an MVPP by introducing
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a random parameter V. The resulting generalized measure-valued Pólya urn process
(GMVPP) turns out to be a mixture of Markov processes and admits representation (4)–(5),
conditional on the parameter V. When the reinforcement measure Rx is concentrated on
x, we call (µn)n≥0 a generalized randomly reinforced Pólya process (GRRPP). We give a
characterization of GRRPPs with exchangeable weights (Wn)n≥1 and show that the process
((Xn, Wn))n≥1 is partially conditionally identically distributed (partially c.i.d) [24], that
is, conditionally on the past observations and the concurrent observation from the other
sequence, the future observations are marginally identically distributed. We also extend
some of the results for RRPPs to the generalized setting.

The paper is structured as follows. In Section 2.1, we recall the definition of a measure-
valued Pólya urn process and prove representation (4)–(5) for a suitably selected sequence
(Xn)n≥1. Section 2.2 defines a particular subclass of MVPPs, called randomly reinforced
Pólya processes (RRPP), which share with exchangeable Pólya sequences the property
of reinforcing only the observed color. Section 3 is devoted to the study of the asymp-
totic properties of RRPPs. In Section 4, we give the definition of GMVPPs and GRRPPs,
and obtain basic results.

2. Definitions and a Representation Result

Let (X, d) be a complete separable metric space, endowed with its Borel σ-field X .
Denote by

MF(X), M∗F(X), MP(X),

the collections of measures µ on X that are finite, finite and non-null, and probability mea-
sures, respectively. We regard MF(X), M∗F(X) and MP(X) as measurable spaces equipped
with the σ-fields generated by µ 7→ µ(B), B ∈ X . We further let

KF(X,Y), KP(X,Y),

be the collections of transition kernels K from X to Y that are finite and probability kernels,
respectively. Any non-null measure µ ∈ M∗F(X) has a normalized version µ′ = µ/µ(X).
If f : X→ Y is measurable, then f ] : MF(X) → MF(Y) denotes the induced mapping of
measures, f ](µ)(·) = µ( f−1(·)), µ ∈MF(X).

All random quantities are defined on a common probability space (Ω,H,P), which is
assumed to be rich enough to support any required randomization. The symbol ‘⊥” will

be used to denote independence between random objects, and “ d
=” equality in distribution.

2.1. Measure-Valued Pólya urn Processes

Let µ ∈M∗F(X) describe the contents of an urn, as in Section 1. Once a ball is picked
at random from µ, the urn is reinforced according to a replacement rule, which is formally
a kernel R ∈ KF(X,X) that maps colors x 7→ Rx(·) to finite measures; thus,

µ + Rx, (9)

represents the updated urn composition if a ball of color x has been observed. In general,
R is random and there exists a probability kernelR ∈ KP(X,MF(X)) such that Rx ∼ Rx,
x ∈ X. Then, the distribution of (9) prior to the sampling of the urn is given by

R̂µ(·) =
∫
X

ψ]
µ(Rx)(·)µ′(dx), (10)

where ψµ is the measurable map ν 7→ ν + µ from MF(X) to M∗F(X). By Lemma 3.3 in [9],
µ 7→ R̂µ is a measurable map from M∗F(X) to MP(M∗F(X)).

Definition 1 (Measure-Valued Pólya Urn Process [9]). A sequence (µn)n≥0 of random finite
measures on X is called a measure-valued Pólya urn process (MVPP) with parameters µ0 ∈M∗F(X)
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and R ∈ KP(X,MF(X)) if it is a Markov process with transition kernel R̂ given by (10). If,
in particular,Rx = δRx for some R ∈ KF(X,X), then (µn)n≥0 is said to be a deterministic MVPP.

The representation theorem below formalizes the idea of MVPP as an urn scheme.

Theorem 1. A sequence (µn)n≥0 of random finite measures is an MVPP with parameters (µ0,R)
if and only if, for every n ≥ 1,

µn = µn−1 + RXn a.s., (11)

where (Xn)n≥1 is a sequence of X-valued random variables such that X1 ∼ µ′0 and, for n ≥ 2,

P(Xn ∈ · | X1, µ1, . . . , Xn−1, µn−1) = µ′n−1(·), (12)

and R is a random finite transition kernel on X such that

P(RXn ∈ · | X1, µ1, . . . , Xn−1, µn−1, Xn) = RXn(·). (13)

Proof. If (µn)n≥0 satisfies (11)–(13) for every n ≥ 1, then it holds a.s. that

P(µn ∈ · | µ1, . . . , µn−1) = E[ψ]
µn−1(RXn)(·) | µ1, . . . , µn−1] = R̂µn−1(·).

Conversely, suppose (µn)n≥0 is a MVPP with parameters (µ0,R). AsR is a probability
kernel from X to MF(X) and MF(X) is Polish, then there exists by Lemma 4.22 in [25] a
measurable function f (x, u) such that, for every x ∈ X,

f (x, U) ∼ Rx,

whenever U is a uniform random variable on [0, 1], denoted U ∼ Unif[0, 1].
Let us prove by induction that there exists a sequence ((Xn, Un))n≥1 such that X1 ∼ µ′0,

U1 ⊥ X1, U1 ∼ Unif[0, 1], µ1 = µ0 + f (X1, U1) a.s., (µ2, µ3, . . . ) ⊥ (X1, U1) | µ1, and,
for every n ≥ 2,

(i) P(Xn ∈ · | X1, U1, µ1, . . . , Xn−1, Un−1, µn−1) = µ′n−1(·);
(ii) Un ∼ Unif[0, 1] and Un ⊥ (X1, U1, µ1, . . . , Xn−1, Un−1, µn−1, Xn);
(iii) µn = µn−1 + f (Xn, Un) a.s.;
(iv) (µn+1, µn+2, . . .) ⊥ (Xn, Un) | (X1, U1, µ1, . . . , Xn−1, Un−1, µn−1, µn);
(v) µn+1 ⊥ (X1, U1, . . . , Xn, Un) | (µ1, . . . , µn).

Then, Equations (11)–(13) follow from (i)–(iii) with RXn = f (Xn, Un).
Regarding the base case, let X̃1 and Ũ1 be independent random variables such that

Ũ1 ∼ Unif[0, 1] and X̃1 ∼ µ′0. It follows that, for any measurable set B ⊆MF(X),

P(µ1 ∈ B) = R̂µ0(B) = E[ψ]
µ0(RX̃1

)(B)] = P
(
(µ0 + f (X̃1, Ũ1)) ∈ B

)
;

thus, µ1
d
= µ0 + f (X̃1, Ũ1). By Theorem 8.17 in [25], there exist random variables X1 and

U1 such that
(µ1, X1, U1)

d
=
(
µ0 + f (X̃1, Ũ1), X̃1, Ũ1

)
,

and (µ2, µ3, . . .) ⊥ (X1, U1) | µ1. Then, in particular, (X1, U1)
d
= (X̃1, Ũ1) and (µ1, µ0 +

f (X1, U1))
d
= (µ0 + f (X̃1, Ũ1), µ0 + f (X̃1, Ũ1)), so

µ1 = µ0 + f (X1, U1) a.s.

Regarding the induction step, assume that (i)–(v) hold true until some n > 1. Let
X̃n+1 and Ũn+1 be such that Ũn+1 ∼ Unif[0, 1], Ũn+1 ⊥ (X1, U1, µ1, . . . , Xn, Un, µn, X̃n+1),
and

P(X̃n+1 ∈ · | X1, U1, µ1, . . . , Xn, Un, µn) = µ′n(·).
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It follows from (v) that, for any measurable set B ⊆MF(X),

P(µn+1 ∈ B|X1, U1, µ1, . . . ,Xn, Un, µn) = E[ψ]
µn(RX̃n+1

)(B)|X1, U1, µ1, . . . , Xn, Un, µn]

= P
(
(µn + f (X̃n+1, Ũn+1)) ∈ B|X1, U1, µ1, . . . , Xn, Un, µn

)
;

thus, µn+1
d
= µn + f (X̃n+1, Ũn+1) | X1, U1, µ1, . . . , Xn, Un, µn. By Theorem 8.17 in [25],

there exist random variables Xn+1 and Un+1 such that

(µn+1, X1, U1, µ1, . . . , Xn, Un, µn, Xn+1, Un+1)

d
=
(
µn + f (X̃n+1, Ũn+1), X1, U1, µ1, . . . , Xn, Un, µn, X̃n+1, Ũn+1

)
,

and (µn+2, µn+3, . . .) ⊥ (Xn+1, Un+1) | (X1, U1, µ1 . . . , . . . , Xn, Un, µn, µn+1). Then, in par-
ticular, Un+1 ∼ Unif[0, 1], Un+1 ⊥ (X1, U1, µ1, . . . , Xn, Un, µn, Xn+1), and

P(Xn+1 ∈ · | X1, U1, µ1, . . . , Xn, Un, µn) = µ′n(·).

Moreover,(
µn+1, µn + f (Xn+1, Un+1)

) d
=
(
µn + f (X̃n+1, Ũn+1), µn + f (X̃n+1, Ũn+1)

)
;

therefore,

P
(
µn+1 = µn + f (Xn+1, Un+1)

)
= P

(
µn + f (X̃n+1, Ũn+1) = µn + f (X̃n+1, Ũn+1)

)
= 1.

By Theorem 8.12 in [25], statement (v) with n + 1 is equivalent to µn+2 ⊥ (X1, U1) |
(µ1, . . . , µn+1) and µn+2 ⊥ (Xk+1, Uk+1) | (X1, U1, . . . , Xk, Uk, µ1, . . . , µn+1), k = 1, . . . , n.
The latter follows from the induction hypothesis since, by (iv), we have (µk+2, . . . , µn+2) ⊥
(Xk+1, Uk+1) | (X1, U1, . . . , Xk, Uk, µ1, . . . , µk+1) for every k = 1, . . . , n.

The process (Xn)n≥1 in Theorem 1 corresponds to the sequence of observed colors
from the implied urn sampling scheme. Furthermore, the replacement rule takes the
form RXn = f (Xn, Un), where f is some measurable function, Un ∼ Unif[0, 1], and Un ⊥
(X1, U1, . . . , Xn−1, Un−1, Xn), from which it follows that

µn = µn−1 + f (Xn, Un), (14)

and

P(Xn+1 ∈ · | X1, . . . , Xn, (Um)m≥1) =
µ0(·) + ∑n

i=1 f (Xi, Ui)(·)
µ0(X) + ∑n

i=1 f (Xi, Ui)(X)
. (15)

Thus, the sequence (Un)n≥1 models the additional randomness in the reinforcement
measure R. Janson [9] obtains a rather similar result; Theorem 1.3 in [9] states that any
MVPP (µn)n≥0 can be coupled with a deterministic MVPP (µ̄n)n≥0 on X× [0, 1] in the
sense that

µ̄n = µn × λ, (16)

where λ is the Lebesgue measure on [0, 1], and µn × λ is the product measure on X× [0, 1].
In our case, the MVPP defined by µ̄0 = µ0 × λ and, for n ≥ 1,

µ̄n = µ̄n−1 + f (Xn, Un)× λ,

has a non-random replacement rule Rx,u = f (x, u)× λ and satisfies (16) on a set of proba-
bility one.
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2.2. Randomly Reinforced Pólya Processes

It follows from (8) that any Pólya sequence generates a deterministic MVPP through

µn = µn−1 + δXn .

Here, we consider a randomly reinforced extension of Pólya sequences in the form
of an MVPP with replacement rule Rx = W(x) · δx, x ∈ X, where W(x) is a non-negative
random variable.

Definition 2 (Randomly Reinforced Pólya Process). We call an MVPP with parameters
(µ0,R) a randomly reinforced Pólya process (RRPP) if there exists η ∈ KP(X,R+) such that
Rx = ξ]x(ηx), x ∈ X, where ξx : R+ →MF(X) is the map w 7→ wδx.

Observe that, for RRPPs, the reinforcement measure f (x, u) in (14)–(15) concen-
trates its mass on x; thus, we obtain the following variant of the representation result
in Theorem 1.

Proposition 1. Let (µn)n≥0 be an RRPP with parameters (µ0, η). Then, there exist a measurable
function h : X× [0, 1]→ R+ and a sequence ((Xn, Un))n≥1 such that, using Wn = h(Xn, Un),
we have for every n ≥ 1 that

µn = µn−1 + WnδXn a.s., (17)

where X1 ∼ µ′0 and, for n ≥ 1, Un ∼ Unif[0, 1], Un ⊥ (X1, U1, . . . , Xn−1, Un−1, Xn), and

P(Xn+1 ∈ · | X1, W1, . . . , Xn, Wn) =
n

∑
i=1

Wi
µ0(X) + ∑n

j=1 Wj
δXi (·) +

µ0(X)
µ0(X) + ∑n

j=1 Wj
µ′0(·). (18)

Moreover,
P(Wn ∈ · | X1, W1, . . . , Xn−1, Wn−1, Xn) = ηXn(·). (19)

It follows from (19) that W(x) ≡ h(x, U) ∼ ηx, x ∈ X, whenever U ∼ Unif[0, 1]. Then,
the random measure

Rx = W(x) · δx (20)

is such that Rx ∼ Rx, whereRx appears in Definition 2.

3. Asymptotic Properties of RRPP

In this section, we study the asymptotic properties of RRPPs through the sequence
(Xn)n≥1 in the representation (17). We show that the limit behavior of (µn)n≥0 depends
on the relationship between weights and observations. In particular, when W(x) ≡ W
in (20) is constant with respect to the color x, the process (Xn)n≥1 is conditionally identically
distributed (c.i.d.) and, for every A ∈ X , the normalized sequence (µ′n(A))n≥0 is a bounded
martingale. We consider the c.i.d. case in Section 3.3. In contrast, if some colors x have a
higher expected reinforcement, then they tend to dominate the observation process and,
as n grows to infinity, the probability measure µ′n concentrates its mass on the subset of
dominant colors, see Theorem 2.

3.1. Preliminaries

Our focus is on the convergence of the normalized sequence (µ′n)n≥0, which by
Theorem 1 is a.s. equal to the predictive distributions (18). We also consider the sequence
of empirical frequencies of (Xn)n≥1, defined for n ≥ 1 by

µ̂′n =
1
n

n

∑
i=1

δXi .
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We obtain conditions under which the convergence in (2) extends to convergence in
total variation, where the total variation distance between any two probability measures
α, β ∈MP(X) is given by

dTV(α, β) = sup
B∈X
|α(B)− β(B)|.

To state some of the results, we recall the definition of support of a probability measure
γ ∈MP(R+),

supp(γ) = {u ≥ 0 : γ((u− ε, u + ε)) > 0, ∀ε > 0}.

Of particular interest is the conditional probability of observing a new color, given by

θn ≡ P(Xn+1 /∈ {X1, . . . , Xn} | X1, W1, . . . , Xn, Wn) =
θ

θ + ∑n
j=1 Wj

µ′0({X1, . . . , Xn}c),

for n ≥ 1, where θ = µ0(X). This would inform us on the number of distinct values in a
sample (X1, . . . , Xn) of size n,

Ln = max{k ∈ {1, . . . , n} : Xk /∈ {X1, . . . , Xk−1}},

since θn = P(Ln+1 = Ln + 1|X1, W1, . . . , Xn, Wn).

The following modes of convergence are used when we investigate the rate of conver-
gence of the distance between µ′n and µ̂n.

Almost sure (a.s.) conditional convergence. Let G = (Gn)n≥0 be a filtration and Q̃ ∈
KP(Ω,X). A sequence (Yn)n≥1 is said to converge to Q̃ in the sense of a.s. conditional
convergence w.r.t. G if the conditional distribution of Yn, given Gn, converges weakly on a
set of probability one to Q̃, that is, as n→ ∞,

P(Yn ∈ · | Gn)
w−→ Q̃(·) a.s.

We refer to [22] for more details.
Stable convergence. Stable convergence is a strong form of convergence in distribution,

albeit weaker than a.s. conditional convergence. A sequence (Yn)n≥1 is said to converge
stably to Q̃ if

E
[
V f (Yn)

]
−→ E

[
V
∫
X

f (x)Q̃(dx)
]
,

for all continuous bounded functions f and any integrable random variable V. The main
application of stable convergence is in central limit theorems that allow for mixing variables
in the limit. See [26] for a complete reference on stable convergence.

In the sequel, the stable and a.s. conditional limits will be some Gaussian law, which
we denote by N (µ, σ2) for parameters (µ, σ2), where N (µ, 0) = δµ.

3.2. RRPP with Dominant Colors

Using (20), let us define, for x ∈ X,

w(x) = E[W(x)] and w̄ = sup
x∈X

w(x).

We further let
D = {x ∈ X : w(x) = w̄},

be the set of dominant colors. The model (18) with D ⊂ X has been studied by [23] under
the assumption that w̄ is strictly greater than the next largest value of w(·) in the support of
w](µ′0). Then, the probability of observing a non-dominant color, x ∈ Dc, vanishes, and the
predictive and the empirical distributions converge in total variation to a common random
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probability measure, which is concentrated on D. For completeness reasons, we report
here the main results from [23].

Theorem 2 ([23], Theorem 3.3). For any RRPP (µn)n≥0 that satisfies

W(x) ≤ β < ∞;

w̄ ∈ supp(w](µ′0));

w̄ > w̄c ≡ sup{u ≥ 0 : u ∈ supp(w](µ′0(·|Dc))},
(21)

there exists a random probability measure P̃ on X with P̃(D) = 1 a.s. such that

dTV(µ
′
n, P̃) a.s.−→ 0 and dTV(µ̂

′
n, P̃) a.s.−→ 0.

Under conditions (21), Theorem 3.3 in [23] implies ∑n
i=1 Wi/n a.s.−→ w̄. If µ0 is further

diffuse, then ∑∞
n=1 θn = ∞ a.s., and so Ln

a.s.−→ ∞ by Theorem 1 in [27]; thus, by Theorem 1
in [27], Proposition 3.4 in [23] shows that the actual growth rate is that of a Pólya sequence,

Ln

log n
a.s.−→ θ

w̄
. (22)

In addition to the uniform convergence in Theorem 2, the authors in [23] obtain
set-wise rates of convergence. To state their result, we introduce, for any A ∈ X ,

qA = lim
n→∞

E[W2
n+1δXn+1(A)|X1, W1, . . . , Xn, Wn],

which exists a.s. under the assumptions of Theorem 2.

Theorem 3 ([23], Theorem 4.2). Let (µn)n≥0 be an RRPP satisfying (21). Suppose w̄ >
2w̄c. Define

V(A) =
1

w̄2

{
(P̃(Ac))2qA + (P̃(A))2qAc

}
and U(A) = V(A)− P̃(A)P̃(Ac).

Then,
√

n
(
µ′n(A)− µ̂′n(A)

) stably−→ N (0, U(A)),

and √
n
(
µ′n(A)− P̃(A)

) a.s.cond.−→ N (0, V(A)) w.r.t. (FX,W
n )n≥1,

where FX,W
n = σ(X1, W1, . . . , Xn, Wn), n ≥ 1 is the filtration generated by ((Xn, Wn))n≥1.

3.3. RRPP with Independent Weights

Let (µn)n≥0 be an RRPP with reinforcement distribution ηx ≡ η that does not depend
on x. Using the notation of Section 3.2, we have

w(x) ≡ w̄, (23)

and, thus, D = X. An equivalent formulation can be given in terms of the sequence of
weights (Wn)n≥1 in Proposition 1, whereby

Wn = h(Un), (24)

for some measurable function h, with Un ⊥ (X1, U1, . . . , Xn−1, Un−1, Xn) and Un ∼ Unif[0, 1].

Then, Wn
i.i.d.∼ η and Wn ⊥ (X1, . . . , Xn), which implies that E[W1] = w̄.

The model (18) with weights (24) has been studied by [18,19,22], among others, where
the authors obtain central limit theorems and study the growth rate of Ln when w̄ < ∞.
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Their results rely on the fact that (Xn)n≥1 is conditionally identically distributed (c.i.d.)
with respect to the filtration generated by ((Xn, Wn))n≥1. By [21], an X-valued random
sequence (Yn)n≥1 that is adapted to a filtration (Fn)n≥1 is said to be c.i.d. with respect to
(Fn)n≥1 if and only if (Yn)n≥1 is identically distributed and, for every n, k ≥ 1,

P(Yn+k ∈ · | Fn) = P(Yn+1 ∈ · | Fn). (25)

Proposition 2 ([19], Lemma 6). For any RRPP (µn)n≥0 with ηx ≡ η, the observation process
(Xn)n≥1 is c.i.d. with respect to the filtration generated by ((Xn, Wn))n≥1.

C.i.d. processes preserve many of the properties of exchangeable sequences, see [21].
For example, if (Yn)n≥1 is c.i.d., then there exists a random probability measure such that
(2)–(3) hold true with respect to the filtration used in the definition (25). It follows for the
model in Proposition 2 that there exists P̃ ∈ KP(Ω,X) such that, for every A ∈ X ,

µ′n(A)
a.s.−→ P̃(A).

In fact, by (25), the sequence (µ′n(A))n≥0 is a bounded martingale. On the other hand,
(23) implies that D = X; therefore, any RRPP with ηx ≡ η whose weights are bounded,
W1 ≤ β < ∞, satisfies the assumptions of Theorem 2. In that case,

dTV(µ
′
n, P̃) a.s.−→ P̃.

It follows from Theorem 4.2 in [23] that the boundedness condition in (21) is needed to
show that (i) ∑n

i=1 Wi/n a.s.−→ w̄; and (ii) µ′n converge set-wise to P̃, which is non-trivial in
that setting. Here, (i) is granted as (Wn)n≥1 is i.i.d., and (ii) has already been established;
thus, we obtain the following result for RRPPs with independent weights.

Theorem 4. For any RRPP (µn)n≥0 with ηx ≡ η, there exists a random probability measure P̃ on
X such that

dTV(µ
′
n, P̃) a.s.−→ 0 and dTV(µ̂

′
n, P̃) a.s.−→ 0.

Proof. Let ((Xn, Wn))n≥1 be the joint observation process associated to (µn)n≥0 by Propo-

sition 1. As ηx ≡ η, Equation (19) implies that Wn
i.i.d.∼ η; thus, by the strong law of large

numbers,
1
n

n

∑
i=1

Wi
a.s.−→ w̄ ≤ ∞. (26)

Let us define, for n ≥ 1,

Pn(·) = P(Xn+1 ∈ · | FX,W
n ), where FX,W

n = σ(X1, W1, . . . , Xn, Wn).

By Proposition 2, (Xn)n≥1 is c.i.d. with respect to (FX,W
n )n≥1, so there exists by

Lemmas 2.1 and 2.4 in [21] a random probability measure P̃ on X such that, for every
A ∈ X ,

Pn(A)
a.s.−→ P̃(A). (27)

Moreover,
∫
X f (x)Pn(dx) = E[

∫
X f (x)P̃(dx)|FX,W

n ] a.s. for every bounded measur-
able f : X → R. Fix m ≥ 1. By a monotone class argument, we can show that, for every
bounded measurable f : X2 → R,∫

X
f (Xm, x)Pn(dx) = E[

∫
X

f (Xm, x)P̃(dx) | FX,W
n ] a.s., for all n > m;
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thus, Pn({Xm}) = E[P̃({Xm})|FX,W
n ] a.s., and so (Pn({Xm}))n>m is a uniformly integrable

martingale. It follows from martingale convergence that, as n→ ∞,

Pn({Xm})
a.s.−→ P̃({Xm}). (28)

Using (26)–(28), we can repeat the argument in the proof of Proposition 3.1 in [23]
to show that (i) dTV(Pn, P̃) a.s.−→ 0, and so dTV(µ

′
n, P̃) a.s.−→ 0 by Proposition 1; and (ii)

dTV(µ̂
′
n, P̃) a.s.−→ 0.

Equation (26) implies that θn
a.s.−→ 0. If, in addition, w̄ < ∞, then ∑∞

n=1 θn = ∞ a.s. and
Ln

a.s.−→ ∞. In fact, as long as w̄ < ∞, the sequence (Ln)n≥1 grows at the same rate as (22).

Proposition 3 ([18], Lemma 6). Let η ∈MP(X) and µ0 be diffuse. If w̄ < ∞, then

Ln

log n
a.s.−→ θ

w̄
.

If w̄ = ∞, then θn may approach zero fast enough that we stop seeing new observations
as n→ ∞. For example, let us consider random reinforcement with a totally skewed stable
distribution Sα(1, σ, 0) for α ∈ (0, 2] and σ > 0. If α < 1, then w̄ = ∞, and we show that
n1/αθn is stochastically bounded, which implies that Ln converges to a finite limit.

Proposition 4. Let η be a Sα(1, σ, 0) distribution with stability parameter α < 1, and µ0 be
diffuse. Then, θn = Op(n−1/α) and

lim
n→∞

Ln < ∞ a.s.

Proof. From the properties of stable distributions, we obtain n−1/α ∑n
i=1 Wi

d
= W1 for every

n ≥ 1 and, as a consequence,

θn = n−1/α θ

n−1/αθ + n−1/α ∑n
i=1 Wi

d
= n−1/α θ

n−1/αθ + W1
≤ n−1/α θ

W1
.

By Theorem 5.4.1 in [28], E[1/W1] < ∞, and so 1/W1 < ∞ a.s. It follows for every M > 0
that P(n1/αθn > M) ≤ P(θ/W1 > M), which can be made arbitrarily small by taking M
large enough. Regarding the second assertion, as 1/α > 1, we have

E[ lim
n→∞

Ln] = lim
n→∞

n

∑
i=1

E[11{Li=Li−1+1}] =
∞

∑
n=1

E[θn] ≤
∞

∑
n=1

θ

n1/α
E[1/W1] < ∞.

Proposition 4 can be extended for any fat tailed reinforcement distribution η by means
of a generalized central limit theorem (see, e.g., [28] (p. 62)).

The rate of convergence of (18) and µ̂′n has already been studied for the model with
independent weights under different assumptions, see, e.g., [19] (p. 1363), Examples 4.2
and 4.5 in the technical report to [18], Corollary 4.1 in [22] for X = {0, 1}. In the next
theorem, we combine ideas from [18,20] to give a fairly general result.

Theorem 5. Let η ∈MP(R+). If E[W2
1 ] < ∞, then

√
n(µ′n(A)− µ̂n(A))

stably−→ N (0, U(A)), where U(A) =
Var(W1)

E[W2
1 ]

P̃(A)P̃(Ac). (29)
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If, in addition, E[W4
1 ] < ∞, then, with respect to the filtration generated by ((Xn, Wn))n≥1,

√
n(µ′n(A)− P̃(A))

a.s.cond.−→ N (0, V(A)), where V(A) =
E[W2

1 ]

w̄2 P̃(A)P̃(Ac). (30)

Proof. Let us define, for n ≥ 1,

Pn(·) = P(Xn+1 ∈ · | X1, W1, . . . , Xn, Wn).

The assertions in Theorem 5 have already been established by [18] when W1 ≥ γ >
0. In that case, Examples 4.2 and 4.5 in the technical report to [18] show that (29) is a
consequence of the fact that

E
[

max
1≤k≤n

|Yn,k|
]
−→ 0 and

n

∑
k=1

Y2
n,k

p−→ U(A), (31)

where Yn,k =
1√
n

{
δXk (A)− kPk(A) + (k− 1)Pk−1(A)

}
, and (30) follows from

E
[
sup
n≥1

√
n|Pn−1(A)− Pn(A)|

]
< ∞ and n ∑

k≥n

(
Pk−1(A)− Pk(A)

)2 a.s.−→ V(A).

Replicating the approach of Proposition 9 in [20], we avoid using the assumption
W1 ≥ γ > 0 by conditioning on the sets Hn = {2 ∑n

i=1 Wi ≥ nw̄}, n ≥ 1. By (26), 11Hn
a.s.−→ 1,

so (29) follows from (31) with

Yn,k =
1√
n

11Hk−1

{
δXk (A)− kPk(A) + (k− 1)Pk−1(A)

}
,

whereas (30) is, ultimately, a result of

E
[
sup
n≥1

√
n · 11Hn |Pn−1(A)− Pn(A)|

]
< ∞ and n ∑

k≥n

(
Pk−1(A)− Pk(A)

)2 a.s.−→ V(A).

4. Generalized Measure-Valued Pólya Urn Processes

The definition of an MVPP assumes that the law of the reinforcementR is fixed, yet,
in some situations, R can itself be random (e.g., RRPP with exchangeable weights, see
Section 4.1). To avoid measurability issues, we assume a parametric model forR, with the
parameter taking values in a Polish space V.

Definition 3 (Generalized Measure-Valued Pólya Urn Process). Let V be a V-valued random
variable. A sequence (µn)n≥0 of random finite measure on X is called a generalized measure-
valued Pólya urn process (GMVPP) with uncertainty parameter V, initial state µ0 ∈M∗F(X) and
replacement ruleR ∈ KP(V×X,MF(X)) if µ1 | V ∼ R̂V

µ0
, and, for every n ≥ 2,

P(µn ∈ · | V, µ1, . . . , µn−1) = R̂V
µn−1

(·),

where R̂ is the transition probability kernel from V×M∗F(X) to M∗F(X) given by

(v, µ) 7→ R̂v
µ(·) =

∫
X

ψ]
µ(R(v, x))(·)µ′(dx),

and ψµ is the map ν 7→ ν + µ.
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It follows from Definition 3 that any GMVPP is a mixture of Markov chains with
initial state µ0 and transition kernel R̂V . A separate modeling approach, which we do not
examine here, defines a measure-valued Markov chain with transition kernel

µ 7→
∫
X

ψ]
µ(R(µ, x))(·)µ′(dx).

In fact, some of the predictive constructions in [11,29] can be framed in such a way.
Theorem 1 extends to GMVPPs, provided that we condition all quantities on the

parameter V. As a consequence, there exists a measurable function f from V×X× [0, 1] to
MF(X) and a random sequence ((Xn, Un))n≥1 such that

µn = µn−1 + f (V, Xn, Un) a.s., (32)

where Un ∼ Unif[0, 1], Un ⊥ (V, X1, U1, . . . , Xn−1, Un−1, Xn), X1 | (V, (Um)m≥1) ∼ µ′0,
and, for n ≥ 1,

P(Xn+1 ∈ · | V, X1, . . . , Xn, (Um)m≥1) =
µ0(·) + ∑n

i=1 f (V, Xi, Ui)(·)
µ0(X) + ∑n

i=1 f (V, Xi, Ui)(X)
, (33)

and
P( f (V, Xn, Un) ∈ · | V, X1, U1, . . . , Xn−1, Un−1, Xn) = R(V, Xn)(·). (34)

The definition of a randomly reinforced Pólya process is similarly generalized to cover
the case of a random reinforcement distribution η.

Definition 4 (Generalized Randomly Reinforced Pólya Process). We call a GMVPP with
parameters (V, µ0,R) a generalized randomly reinforced Pólya process (GRRPP) if there exists
η ∈ KP(V× X,R+) such that R(v, x) = ξ]x(η(v, x)), where ξx : R+ → MF(X) is the map
w 7→ wδx.

For GRRPPs, the function f in the representation (32)–(34) can be written as

f (v, x, u) = h(v, x, u) · δx,

where h is a measurable function from V×X× [0, 1] to R+ such that h(v, x, U) ∼ η(v, x)
for all v ∈ V and x ∈ X, whenever U ∼ Unif[0, 1]. Letting Wn = h(V, Xn, Un), we obtain

µn = µn−1 + WnδXn a.s., (35)

where

P(Xn+1 ∈ · | V, X1, . . . , Xn, (Um)m≥1) =
µ0(·) + ∑n

i=1 WiδXi (·)
µ0(X) + ∑n

i=1 Wi
, (36)

and
P(Wn ∈ · | V, X1, U1, . . . , Xn−1, Un−1, Xn) = η(V, Xn)(·). (37)

The weights Wn in (36) allow us to incorporate additional information about the ob-
servations (Xn)n≥1. As an example, consider the problem of computer-based classification,
where the output usually includes confidence scores, which reflect the software’s confi-
dence that the classifications are correct. In analyzing the number and dimension of the
types already discovered, or the probability of detecting a new type, a typical procedure
would take into account only those classifications whose confidence scores are above a
certain threshold. Alternatively, we could adopt a Bayesian perspective and weigh each
classification according to its confidence score. Denoting by ((Xn, Wn))n≥1 the sequence
of classifications and confidence scores, we would model the distribution of the next
classification by (36).
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4.1. GRRPP with Exchangeable Weights

Let (µn)n≥0 be a GRRPP with reinforcement distribution η(v) that does not depend
on x. Then,

Wn = h(V, Un),

for some measurable function h(v, u). The next result shows that the sequence (Wn)n≥1 is
exchangeable with directing random measure η̃ ≡ η(V). Moreover, (µn)n≥0 is completely
parameterized by (µ0, η̃).

Theorem 6. A sequence (µn)n≥0 of random finite measures is a GRRPP with parameters (µ0, η̃)
for η̃ ∈ KP(Ω,R+) if and only if µ0 = θν and, for every n ≥ 1,

µn = µn−1 + WnδXn a.s.,

where θ ∈ (0, ∞), ν ∈ MP(X), (Wn)n≥1 is an exchangeable process with directing random
measure η̃, and (Xn)n≥1 is a sequence of X-valued random variables such that X1 | (Wk)k≥1 ∼ ν
and, for n ≥ 1,

P(Xn+1 ∈ · | X1, . . . , Xn, (Wk)k≥1) =
n

∑
i=1

Wi
θ + ∑n

j=1 Wj
δXi (·) +

θ

θ + ∑n
j=1 Wj

ν(·). (38)

Proof. Let (µn)n≥0 be a GRRPP with parameters (µ0, η̃), and consider the representation
(35)–(37). Put θ = µ0(X) and ν = µ′0. It follows from (37) that

Wn | η̃
i.i.d.∼ η̃;

thus, (Wn)n≥1 is exchangeable. Moreover, Wn = h(V, Un), n ≥ 1, so (38) follows from (36).
Conversely, suppose µn = µn−1 + WnδXn , where the process ((Xn, Wn))n≥1 is as

described. It follows from (38) and Theorem 8.12 in [25] that

(Wk)k≥1 ⊥ X1 and (Wn+k)k≥1 ⊥ (X1, . . . , Xn+1) | (W1, . . . , Wn), n ≥ 1. (39)

Since (Wn)n≥1 is exchangeable with directing random measure η̃, we have

Wn | η̃
i.i.d.∼ η̃. (40)

Furthermore, η̃ is measurable with respect to the tail σ-field of (Wn)n≥1, so, by (39),

η̃ ⊥ X1 and η̃ ⊥ (X1, . . . , Xn+1) | (W1, . . . , Wn), n ≥ 1. (41)

Using (39)–(41), we can show that

W1 ⊥ X1 | η̃ and Wn+1 ⊥ (X1, W1, . . . , Xn, Wn, Xn+1) | η̃, n ≥ 1.

Then, P(µ1 ∈ · | η̃) = P(µ0 +W1δX1 ∈ · | η̃) =
∫
X ψ]

µ0(ξ
]
x(η̃))(·)µ′0(dx) and, for n ≥ 2,

P(µn ∈ · | η̃, µ1, . . . ,µn−1)

= E
[
P(µn−1 + WnδXn ∈ · | η̃, X1, . . . , Wn−1, Xn)

∣∣η̃, µ1, . . . , µn−1
]

= E
[
E[ψ]

µn−1(ξ
]
Xn
(η̃))(·) | X1, . . . , Xn−1, (Wm)m≥1]

∣∣η̃, µ1, . . . , µn−1
]

=
∫
X

ψ]
µn−1(ξ

]
x(η̃))(·)µ′n−1(dx).
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It follows from the proof of Theorem 6 that (X1, W1) ∼ µ′0 ×E[η̃] and, for n ≥ 1,

P
(
(Xn+1, Wn+1) ∈ · | X1, W1, . . . , Xn, Wn

)
=
(
µ′n ×E[η̃|W1, . . . , Wn]

)
(·). (42)

As µ′n andE[η̃|W1, . . . , Wn] are both symmetric with respect to ((X1, W1), . . . , (Xn, Wn)),
then (42) is a symmetric function of ((X1, W1), . . . , (Xn, Wn)). This is a necessary but not
sufficient condition for ((Xn, Wn))n≥1 to be exchangeable, see Proposition 3.2 and Example
3.1 in [2]. In Proposition 5, we show that ((Xn, Wn))n≥1 is exchangeable if and only if either
µ′0 is degenerate or the weights are a.s. identical. On the other hand, for every n, k ≥ 1,
the sequence ((Xn, Wn))n≥1 satisfies

P(Wk ∈ · | X1) = P(W1 ∈ · | X1), P(Xk ∈ · |W1) = P(X1 ∈ · |W1), (43)

and

P(Wn+k ∈ ·|X1, W1, . . . , Xn, Wn, Xn+1) = P(Wn+1 ∈ ·|X1, W1, . . . , Xn, Wn, Xn+1),

P(Xn+k ∈ ·|X1, W1, . . . , Xn, Wn, Wn+1) = P(Xn+1 ∈ ·|X1, W1, . . . , Xn, Wn, Wn+1).
(44)

By [24], Equations (43) and (44) are defining a process that is partially conditionally
identity distributed (partially c.i.d.). Analogously to the c.i.d. case, partially c.i.d. processes
preserve many of the properties of partially exchangeable sequences, see [24].

Proposition 5. Under the conditions of Theorem 6, ((Xn, Wn))n≥1 is partially c.i.d. Moreover,
((Xn, Wn))n≥1 is exchangeable if and only if either µ′0 is degenerate or Wn = W1 a.s., n ≥ 1.
In that case, ((Xn, Wn))n≥1 is partially exchangeable.

Proof. It follows that ((Xn, Wn))n≥1 is partially c.i.d. if and only if X2
d
= X1 | W1, W2

d
=

W1 | X1, and (44) is true for every n ≥ 1 with k = 2. By hypothesis, (Wn)n≥1 is exchangeable

and (Wn)n≥1 ⊥ X1, so W2
d
= W1 | X1. Moreover, applying (39) repeatedly, we obtain

P(Wn+2 ∈ · | X1, W1, . . . , Xn, Wn, Xn+1)

= E
[
P(Wn+2 ∈ · | X1, . . . , Wn+1, Xn+2)|X1, W1, . . . , Xn, Wn, Xn+1

]
= E

[
P(Wn+2 ∈ · |W1, . . . , Wn+1)|W1, . . . , Wn

]
= P(Wn+1 ∈ · |W1, . . . , Wn) = P(Wn+1 ∈ · | X1, W1, . . . , Xn, Wn, Xn+1).

On the other hand, by (38),

P(Xn+2 ∈ · | X1, W1, . . . , Xn, Wn, Wn+1) = E
[
µ′n+1(·) | X1, W1, . . . , Xn, Wn, Wn+1

]
=

µn(·) + Wn+1 · µ′n(·)
µn+1(X)

= µ′n(·)

= P(Xn+1 ∈ · | X1, W1, . . . , Xn, Wn, Wn+1).

Analogously, P(X2 ∈ · |W1) = µ1(·) = P(X1 ∈ · |W1), which completes the proof of
the first part.

If µ′0 is degenerate, then ((Xn, Wn))n≥1 is trivially exchangeable. If Wn = W1 a.s.
instead, then one can show that ((Xn, Wn))n≥1 satisfies condition (b) of Proposition 3.2
in [2], which, together with the symmetry of (42), implies by Theorem 3.1 in [2] that
((Xn, Wn))n≥1 is exchangeable.

Conversely, suppose that ((Xn, Wn))n≥1 is exchangeable. As ((Xn, Wn))n≥1 is par-
tially c.i.d., the predictive distributions (42) converge to a product random measure [24]. It
follows from de Finetti’s theorem that ((Xn, Wn))n≥1 is partially exchangeable, so, in par-
ticular,

(X1, W1, X2, W2)
d
= (X1, W2, X2, W1).
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However, W2 ⊥ X2 | (X1, W1) from (36), so W1 ⊥ X2 | (X1, W2). Thus, for every
bounded measurable function f̃ , there exists a measurable function g f̃ such that

E[ f̃ (X2)|X1, W1, W2] = g f̃ (X1, W2) a.s.

Integrating f̃ (X2) with respect to (38) and rearranging the terms, we obtain

W1
(

f̃ (X1)− g f̃ (X1, W2)
)
= θ

(
g f̃ (X1, W2)−E[ f̃ (X1)]

)
a.s.

Assume that µ′0 is non-degenerate. Then, there is an f̃ such thatP
(

f̃ (X1) = E[ f̃ (X1)]
)
=

0; e.g., take f̃ = 11B for some B ∈ X such that 0 < P(X1 ∈ B) < 1. It follows that

P
(

f̃ (X1) = g f̃ (X1, W2) = 0
)
= P

(
f̃ (X1) = E[ f̃ (X2)|X1, W1, W2]

)
= P

(
f̃ (X1) = E[ f̃ (X1)]

)
= 0;

therefore,

W1 =
θ
(

g f̃ (X1, W2)−E[ f̃ (X1)]
)

f̃ (X1)− g f̃ (X1, W2)
a.s.

In other words, there exists a measurable function h̃ such that W1 = h̃(X1, W2) a.s.,
and so W2 = h̃(X1, W1) a.s. by partial exchangeability. It follows from X1 ⊥ (W1, W2) that,
for every A ∈ B(R+),

P(W2 ∈ A|W1) = P(W2 ∈ A|X1, W1) = 11A(W2) a.s.;

thus, W2 = W1 a.s. and, from exchangeability, Wn = W1 a.s., n ≥ 1.

4.2. Asymptotic Properties of GRRPP with Exchangeable Weights

It follows from (38) that the GRRPP with exchangeable weights is a mixture of
RRPPs with independent weights, with the mixing distribution affecting only the se-
quence (Wn)n≥1. Thus, we expect that the results in Section 3.3 carry over to this more
general setting. In this section, we concentrate on the behavior of θn and the sequence
(Ln)n≥1.

Assume that P(W1 > 0|η̃) > 0. If E[W1] < ∞, then 0 < E[W1|η̃] < ∞ a.s., and, by the
law of large numbers for exchangeable random variables (see [1], Section 2),

1
n

n

∑
i=1

Wi
a.s.−→ E[W1|η̃] ∈ (0,+∞).

Then, if µ0 is diffuse, n · θn
a.s.−→ θ/E[W1|η̃] and ∑n

i=1 θn = ∞ a.s., so Theorem 1 in [27]
implies

Ln

log n
=

Ln

∑n
k=1 θk

( 1
log n

n

∑
k=1

1
k
(k · θk)

)
a.s.−→ θ

E[W1|η̃]
.

If E[W1] = ∞, then Ln may converge to a finite limit, as n → ∞. For example, let us
consider a strictly stable reinforcement distribution as in Proposition 4.

Proposition 6. Let (µn)n≥0 be a GRRPP with parameters (V, µ0, η) such that V is a strictly
positive random variable with E[V−1] < ∞, µ0 is diffuse, and η(v), v > 0 is a Sα(1, v, 0)
distribution with stability parameter α < 1. Then, θn = OP(n−1/α) and

lim
n→∞

Ln < ∞ a.s.
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Proof. It follows from how the weights in the representation (35) are chosen that we
can take

Wn = VF−1(Un),

where Un ∼ Unif[0, 1], Un ⊥ (V, X1, U1, . . . , Xn−1, Un−1, Xn), and F−1 is the inverse of the
Sα(1, 1, 0) distribution function. Then,

θn =
θ

θ + ∑n
i=1 Wi

≤ n−1/α θ

Vn−1/α ∑n
i=1 F−1(Ui)

d
= n−1/α θ

VY
,

for some Y ∼ Sα(1, 1, 0) such that Y ⊥ V. It follows for every M > 0 that P(n1/αθn > M) ≤
P(θ/VY > M), which can be made arbitrarily small by taking M large enough. Regarding
the second assertion, as 1/α > 1 and E[θ/(VY)] < ∞ by Theorem 5.4.1 in [28], we have

E[ lim
n→∞

Ln] = lim
n→∞

n

∑
i=1

E[11{Li=Li−1+1}] =
∞

∑
n=1

E[θn] ≤
∞

∑
n=1

θ

n1/α
E[1/VY] < ∞.

Extensions of Proposition 6 can be obtained by exploiting the central limit theorems
for exchangeable random variables, which are found in [30,31].

5. Discussion

In this paper, we study the extension of randomly reinforced urns [17] to an un-
bounded set of possible colors. The resulting measure-valued urn process provides a
predictive characterization of the law of an asymptotically exchangeable sequence of ran-
dom variables, which corresponds to the observation process of an implied urn sampling
scheme. In fact, the model (6)–(7) fits into a line of recent research, which explores efficient
predictive constructions for fast online prediction or approximately-Bayesian solutions,
see [11,29,32] and references therein. To that end, one direction for future work is to
generalize the functional relationship in (7) and/or, as one referee suggested, to consider
finitely-additive measures, along the lines discussed in [33].

We investigate the asymptotic properties of the sequences of predictive distributions
and empirical frequencies of the observation process, and prove their convergence in
total variation distance to a common random limit. The rate of convergence of their
difference is given set-wise; so, another possible direction for future research is to consider
a stronger distance. As far as we know, the topic of merging of the predictive and empirical
distributions is largely unexplored. Within the relevant literature, we mention the works
of [4,34], where the authors study the rate of convergence of the Wasserstein or Prokhorov
distances under exchangeability, and the papers by Berti et al. [21,35], who consider the
c.i.d. case and regard the difference between the predictive and empirical measures as a
map in the space of real bounded functions.
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