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Abstract
Evaluating the reduction in pollution caused by a sudden change in emissions is complicated by the
confounding effect of weather variations. We propose an approach based on machine learning to
build counterfactual scenarios that address the effect of weather and apply it to the COVID-19
lockdown of Lombardy, Italy. We show that the lockdown reduced background concentrations of
PM2.5 by 3.84 µg m−3 (16%) and NO2 by 10.85 µg m−3 (33%). Improvement in air quality saved
at least 11% of the years of life lost and 19% of the premature deaths attributable to COVID-19 in
the region during the same period. The analysis highlights the benefits of improving air quality and
the need for an integrated policy response addressing the full diversity of emission sources.

1. Introduction

Exposure to airborne pollutants is detrimental to
human health. Fine particulate matter (PM2.5)
increases mortality rates and hospitalizations due
to respiratory and cardiovascular disease (Pope and
Dockery 2006, Ebenstein et al 2017, Deryugina et al
2019). Additionally, it leads to a decline in physical
and cognitive productivity (Graff Zivin and Neidell
2012, Ebenstein et al 2016, Zhang et al 2018, He
et al 2019, Kahn and Li 2020). Similarly, exposure to
nitrogen dioxide (NO2) leads to an increase in hos-
pital admissions and premature mortality (Mills et al
2015, Amini et al 2019, Duan et al 2019).

The design of effective pollution abatement
policies requires a comprehensive understanding of
the relationship between reductions of emissions and
concentrations. However, the processes of formation,
transport, and dispersion of pollutants are complex
phenomena, introducing considerable uncertainty on
the effect of policies on air quality. Moreover, impact
assessments need to address the confounding effect
of annual and daily weather variations, a significant
driver of pollutant concentrations.

This paper provides novel evidence on the change
in concentrations of PM 2.5 following a compos-
ite reduction in emissions across different sources.

Specifically, we exploit the dramatic decrease in Italy’s
mobility and economic activity in response to the
COVID-19 outbreak from late February to early May.
We provide causal estimates of the change in PM2.5

and NO2 over more than two months for Lombardy,
one of the most polluted regions among Organisa-
tion for Economic Co-operation and Development
countries, and one of the first areas outside China that
imposed a strict lockdown.

Using a machine-learning algorithm, we address
the confounding effect of weather and build a coun-
terfactual scenario of the pollution concentrations
that would have occurred if the COVID-19 pandemic
had not broken out and no lockdownhad been imple-
mented. Finally, we compute the years of life saved
(YLS) and the number of premature deaths avoided
by the improvement in air quality. We compare these
numbers against the years of life lost (YLL) and pre-
mature deaths due to COVID-19 in the region over
the same period.

Ex-post studies can provide valuable estimates of
the sensitivity of concentrations to emissions. How-
ever, a host of confounding factors can seriously
hinder policy evaluation. In particular, the concen-
tration of airborne pollutants is highly dependent
on atmospheric conditions. Formation, transport,
dispersion, and even emission of pollutants are
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directly or indirectly affected by the weather (Kroll
et al 2020). For instance, severe haze events in Beijing
follow periodic cycles governed by meteorological
conditions, especially wind patterns (Guo et al 2014).
Unless the confounding impact of weather is accoun-
ted for, the estimated change in concentrations fol-
lowing intervention will be biased.

A common approach to impact evaluation of
pollution control policies is comparing areas that
were affected by a policy and areas that were not (e.g.
He et al (2020) and Cole et al (2020) for the case
of COVID-19 lockdowns). However, even when dif-
ferences in weather have been accounted for, unaf-
fected and comparable areasmay not always exist. For
the problem at hand, a precise separation between
affected and unaffected regions is not possible, con-
sidering the ubiquitous adoption of measures to con-
trol the spreading of COVID-19.

We turn the complex correlation of weather
and pollution to our favor, predicting concentra-
tions as a function of weather variables and sea-
son with machine learning. We follow a simple
strategy, similar to Petetin et al (2020), that does
not require the availability of comparable but unaf-
fected regions. For each air pollution monitoring
station in Lombardy, we train an extreme gradi-
ent boosting regressor (Friedman 2001), a tree-based
machine learning algorithm, over daily concen-
trations from 2012 to 2019 and predict concen-
trations for the first four months of 2020. We
show in supplementary information (available online
at stacks.iop.org/ERL/16/035012/mmedia) that this
approach is more reliable than linear regressionmod-
els. To account for any constant error in our pre-
diction, including inter-annual trends (Silver et al
2020), we adopt a difference-in-differences strategy.
We identify the average impact of the lockdown on
air pollution concentrations as the difference between
the prediction error before and during the lockdown.

We find that, despite the unprecedented halt in
mobility and economic activity, the concentrations
of major pollutants only partially decreased as a con-
sequence of the lockdown. Background concentra-
tions of PM2.5 and NO2 decreased by 3.84 µg m−3

(16%) and 10.85 µg m−3 (33%), respectively. Non-
etheless, the improvement in air quality saved at least
11% of the YLL and 19% of the premature deaths
attributable to COVID-19 in the region during the
same period.

This paper contributes to several active strands of
literature in air pollution research. First, it speaks to
works on the assessment of pollution control policies,
and in particular, to the growing corpus of research
employing machine learning and fine-grained data.
The paper illustrates an innovative procedure to
quantify the implications of a change in emissions
on outdoor concentrations of pollutants, isolating the
effect of weather variability. While existing studies
applying a similar approach restrict the analysis to no

more than a few days, we show the conditions under
which the procedure can be applied to longer time
windows, the length of weeks ormonths.We illustrate
the approach through a specific event—the lockdown
of Lombardy, in Northern Italy—but it can be gener-
alized wherever spatially and temporally detailed data
on air pollution concentrations and atmospheric con-
ditions are available.

Second, this paper is relevant to pollution control
policies in the domain of study. Lombardy is a high-
income, densely populated region, home to approx-
imately 10 million people, and one of the most pol-
luted inOECD countries. The EuropeanCommission
has repeatedly referred Italy to the Court of Justice
of the European Union over persistently high levels
of NO2 and PM10, mainly in Lombardy and the rest
of the Po Valley (European Commission v. Italian
Republic 2012, 2019, 2020). This study sheds light on
the sectoral contributions to emissions of PM2.5 and
NO2, offering tools to regulators and policymakers.

Finally, our study relates to the literature on
source apportionment to different sectors, partic-
ularly agriculture, a topic of increasing relevance
(Lelieveld et al 2015). During the study period,
agricultural production continued unaffected, and
on average 11.6 µg m−3 (39%) of PM10 in Milan,
the largest city, were attributable to agriculture. We
acknowledge that missing sufficient data on 2020 sec-
toral emissions and on the composition of PM2.5,
source apportionment to different sectors remains
elusive.Were the data available, our machine learning
approach could be used to exactly estimate changes in
the composition of PM2.5.

2. Sectoral emissions during lockdown

The timing and nature of the lockdown of Lombardy
and Italy are discussed in detail in the supplementary
information.We highlight here two keymoments. On
21 February 2020, the first outbreak of COVID-19 in
Italy was identified in the south of Lombardy. Within
24 h, 11municipalities in the region went under strict
lockdown: schools were closed, all non-essential eco-
nomic activities had to stop, and a stay-at-home order
was in place. Teaching activities in the rest of Lom-
bardy also were suspended. On 8 March, authorit-
ies extended the lockdown to the rest of Lombardy;
and to the rest of Italy on the following day. Lock-
down measures were kept in place almost unaltered
until 4 May.

The progressive spreading of the virus in
Northern Italy and the tightening of containment
measures have substantially reduced mobility and
economic activity. As mobile phone data reveals, the
movement of individuals in Lombardy has followed
a two-step response, following the first outbreak of
COVID-19 cases in lower Lombardy (21 February)
and the lockdown of the entire country (9 March)
(figure 1(a)). By mid-March, mobility dropped by
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Figure 1. Proxies of sectoral emissions. (a), Mobility indices for Milan, Lombardy based on mobile phone data. Indices equal 100
on 23 February. Source: Google (2020), Apple (2020). (b), Total load of energy demand in Northern Italy in MW, 2019 vs 2010.
The time series of 2019 has been shifted to match the day of the week. Source: TERNA (2020).

three-fourths, according to data compiled by Google
and Apple (Apple 2020, Google 2020). Under lock-
down, all non-essential industrial production halted.
As a consequence, energy demand in Northern Italy
steadily decreased since 9 March, as businesses shut
down, bottoming to 50% of pre-lockdown levels after
two weeks (figure 1(b)).

However, not allmajor sources of emissions, espe-
cially those releasing precursors of PM2.5, have been
affected by restrictions. The lockdown forced most
people to home isolation; it is sensible to hypothesize
that emissions from residential buildings increased
as a consequence. On the other hand, emissions
from non-residential buildings might have decreased.
Although data to confirm this is lacking, it is plausible
that emissions from heating systems have not been
affected substantially.

During the transition between winter and spring,
agriculture becomes an important source of sec-
ondary PM2.5 in Lombardy (INEMAR 2017). The
dispersal of animal liquids on open fields is a com-
mon (though regulated) practice that releases ammo-
nia in the atmosphere, a precursor to secondary
PM2.5. Public authorities have not restricted agri-
cultural activities during lockdown in the interest
of securing food supplies. These practices have con-
tinued virtually unchanged compared to previous

years (personal exchange with public officials at the
regional office for agriculture).

The agricultural sector is responsible for almost
all emissions of ammonia (NH3) in the region
(INEMAR 2017), a precursor to particulate matter as
it combines into ammoniumnitrates and ammonium
sulfates. Data on the decomposition of background
PM10 in Milan shows that ammonium nitrates
and ammonium sulfates accounted for almost 40%
of PM10 concentrations during the lockdown (see
figure D.2 in supplementary information). This cor-
roborates the evidence that restrictive measures did
not meaningfully alter agricultural emissions.

3. Methods

3.1. Machine learning
To identify the causal effect of the lockdown on con-
centrations without directly observing emissions, we
build a synthetic counterfactual. We train a machine
learning algorithm that can reproduce pollution con-
centrations on a business-as-usual scenario, and then
predict concentrations during the lockdown. The
difference between observed concentrations and the
counterfactual, or prediction error, is the effect of
the intervention. To account for potential systemic
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bias in the counterfactual, we adopt a difference-in-
differences strategy. We identify the average impact
of the lockdown on concentrations as the difference
between the average prediction error before and dur-
ing the lockdown. This approach does not require
identifying comparable regionswhose concentrations
follow a business-as-usual trend.

We first assemble a dataset of air pollution, atmo-
spheric conditions, and calendar variables for the
period 2012–2020 for the Italian region of Lombardy.
Pollution concentrations aremeasured at 83monitor-
ing stations. Data on daily minimum and maximum
temperature, average wind speed and wind direction,
average relative humidity, daily cumulative precip-
itation, and atmospheric soundings come from 227
weather stations.

For every monitoring station, we build the
counterfactual using an extreme gradient boosting
regressor, a tree-based model (Friedman 2001)4.
Next, monitor by monitor, we train the algorithm
on data from 2012 through 2019 and predict con-
centrations of PM2.5 and NO2 in 2020. We use the
pre-lockdown period from 1 January to 22 February,
which was not included in the training set, to assess
the validity of the counterfactual.

As our ultimate goal is a reliable prediction of
pollutant concentrations from January through early
May 2020, cross-validation is performed over four
folds, each one consisting of the months from Janu-
ary to April for 2016–2019. Themore common cross-
validation on random subsamples, or folds, gives
equal weight to all seasons. However, with such valid-
ation strategy it cannot be ruled out that an algorithm
make good average predictions, while over-predicting
in one season and under-predicting in the opposite
one. Suppose, for instance, that the predictions of
a learner are positively biased in spring, negatively
biased in fall, and unbiased in winter and summer.
In this case, testing predictions on the pre-lockdown
period (in wintertime) does not give correct estim-
ates of the bias during the lockdown (in springtime).
For this reason, we perform cross-validation over the
months for which we want predictions to be reliable.
Model parameters are selected to maximize the cross-
validated root mean square error (RMSE).

The identification strategy relies on two
assumptions. First, input variables should not be
themselves affected by the intervention; otherwise,
estimated effects will be biased toward zero. To this
end, we exploit the sensitivity of concentrations to
meteorological conditions and build the counterfac-
tual as a function of weather and season. While emis-
sions are affected by weather (e.g. lower emissions
from heating systems on warmer days), our identi-
fication assumption is not violated as the weather is
not affected by emissions. On the other hand, the

4We use the python package xgboost (Chen and Guestrin 2016).

algorithm implicitly learns the patterns of emissions
as the weather varies and seasons pass.

Second, emissions that would have materialized
absent the lockdown, and once weather has been
accounted for, should be equal to emissions in the
training period. One might be concerned that dif-
ferences in technology (such as upgrading of the
vehicle fleet) or economic activity between the train-
ing and prediction sample violate this assumption
(Silver et al 2020). We address this concern adopting
a difference-in-differences strategy that excludes any
constant prediction bias from the estimated effects of
the lockdown. As long as the variation of observed
values around the true counterfactual mean is well
reproduced, estimates will be valid. Furthermore, the
learner is cross-validated on data from 2016 through
2019; thus, recent years are given more weight.

We estimate the average effect of the lockdown
with the following equation:

yit − ŷit = α+βLockdownt + ϵit (1)

where yit is concentration measured at monitor i on
day t, ŷit is the predicted value, and Lockdown is a
dummy equal to 1 during the lockdown and 0 prior
to it. α captures any time-invariant bias of the pre-
dictor; β is the parameter of interest; and εit is a
random term. The preferred specification then dis-
tinguishes treatment effects by type of monitoring
station5. Since concentrations are consequential to
the extent that they reflect exposure, we weight obser-
vations by population within 20 km from monitors6.
We leave estimates of unweighted regressions, which
yield qualitatively similar results, to the supplement-
ary information. To our knowledge, there is little
guidance in the literature on how to estimate stand-
ard errors in this context properly. Thus, where reas-
onable, we cluster standard errors by monitor; where
the number of clusters is small, we use robust stand-
ard errors.

3.2. Data sources
We assemble a dataset of air pollution, atmospheric
conditions and calendar variables for the period 2012
to 2020 for the Italian region of Lombardy. The region
is the home to about 10 million people and is the first
contributor to national GDP by size. Its natural geo-
graphy is conducive to lowwinds and stable airmasses
throughout the cold season. Mountain ranges to the
North, West and South effectively block transbound-
ary air streams extending wintertime thermal inver-
sions and aggravating pollution events. For exceeding
recommended air quality thresholds, Italy has been
fined and subject to infringement procedures by the

5 Namely background, industrial, and traffic monitoring stations.
6 Territory within 20 km of two or more monitors is assigned
to the closest monitor. The construction of population weights is
described in more detail in supplementary information.
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European Commission. We describe the data sources
and pollution trends in Lombardy.

3.2.1. Air pollution
Data for air pollution is collected, checked, and
published by ARPA Lombardia, the regional environ-
mental agency7.We obtain readings forNO2 and total
PM2.5 for background, traffic, and industrial stations
as available. Hourly readings are averaged to daily
readings. We exclude all monitoring stations that are
not functioning during the lockdown or have been set
up after 2015. Background stations account for about
60% of pollution monitors, traffic stations for about
30%, and the remaining 10% is located in industrial
areas.

Average yearly concentrations of PM2.5 in Milan,
the region’s capital, are systematically above the safety
levels established by the WHO (10 µg m−3); from
December to the end of February, daily concentra-
tions average above 40 µg m−3. Average levels of NO2

during the period are also well above WHO safety
standards.

3.2.2. Weather data
Data on weather conditions at weather stations
throughout the region are also elaborated and made
available by ARPA Lombardia. We retrieve the daily
minimum and maximum temperature; average wind
speed and wind direction; average relative humid-
ity; and daily cumulative precipitation. We further
include a host of atmospheric sounding indicesmeas-
ured at Milano Linate airport and made available by
the University of Wyoming, namely Showalter index,
Lifted index, SWEAT index, K index, andCross Totals,
and Vertical Totals indices. All atmospheric variables
enter as predictors in the form of contemporaneous
and lagged values. Although monitor data and atmo-
spheric soundings have gone through quality checks
at the source, we winsorize all atmospheric predict-
ors at 1 and 99 percentiles to bound the influence of
extreme values.

3.2.3. Additional predictors
The ratio of PM2.5 to PM10 in Lombardy is typic-
ally altered in presence of pollution transported from
long distances. For instance, a mass of dust from the
Caspian Sea reached Northern Italy in late March,
substantially altering the ratio. We assume the PM2.5

to PM10 ratio is independent of the lockdown and
include it among predictors as the concentration of
PM2.5 is affected by such shocks. Additional predict-
ors are calendar variables to capture trends over time
and seasons. We include year, month, week of the
year, day of the month, day of the week in the form
of continuous variables as well as dummy variables.

7 Both air pollution and weather data are publicly available at
www.dati.lombardia.it/stories/s/auv9-c2sj.

We further include sine functions of time to mimic
seasonality.

3.2.4. Population weights
Populationweights formonitoring stations reflect the
population within 20 km of monitors (figure D.4 in
supplementary information). Population data on a
1 km by 1 km grid comes from the Italian National
Statistical Office (ISTAT)8. Grid cells within less than
20 km from two or more monitors are assigned to the
closest one.

3.3. Health impact assessment
To compute the number of avoided deaths and years
of life saved by the reduction in PM2.5, we follow
Fowlie et al (2019) and take all-cause mortality rel-
ative risk (RR) ratios for PM2.5 from two influen-
tial studies, Krewski et al (2009) and Lepeule et al
(2012). In addition, we use the RR ratio recommen-
ded by the WHO (Henschel et al 2013) and adop-
ted by the European Environment Agency (European
Environment Agency 2019). For NO2, we only use the
WHO recommendations. The calculation of avoided
deaths and years of life saved from concentration-
response functions is described in supplementary
information A.

The more conservative estimates are based on
Krewski et al (2009), who report an hazard ratio 1.056
for an increase of 10 µg m−3 of PM2.5. Lepeule et al
(2012) estimate instead a larger hazard ratio of 1.14
for the same change in concentrations. The WHO
recommends estimating the long-term impact of
exposure to PM2.5 in adult populations using an RR
of 1.062 for 10µgm−3; it recommends an RR of 1.055
for 10 µg m−3 of NO2 above 20 µg m−3 in adult
populations.

4. Results and discussion

4.1. Accuracy of predictions
To assess the accuracy of predictions, we test the
counterfactual against observed values during the
pre-lockdown period from 1 January to 22 Febru-
ary, which has not been used for training. Table 1
reports mean values of Pearson’s correlation coef-
ficient (Corr), mean bias (MB), normalized mean
bias (nMB), and RMSE. As we ultimately compute
the difference-in-differences between observed values
and the counterfactual, we also report the centered
RMSE (cRMSE) and the normalized centered RMSE
(ncRMSE)9. For completeness, the table also includes
statistics for the training set.

8 The data is available at www.istat.it/it/files//2015/04/
GEOSTAT_grid_POP_1K_IT_2011-22-10-2018.zip. Last Accessed
on 23 July 2020.
9 The centered RMSE is computed as

[
1/N

∑
(̂yi − ¯̂y− yi +

ȳ)2
]1/2

.
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Table 1. Accuracy of predictions, average values across monitors.

Pollutant Dataset Corr MB nMB RMSE cRMSE ncRMSE

NO2 Train 1 .004 0 .276 .275 .008
NO2 Test .875 −4.672 −.159 9.961 8.088 .261
PM2.5 Train .999 0 0 .443 .443 .015
PM2.5 Test .871 −1.335 −.049 8.764 8.476 .295

Notes: Corr: Pearson’s correlation coefficient.MB: Mean bias, where negative values indicate observed values below predicted values.

nMB: Normalized mean bias. RMSE: Root mean squared error. cRMSE: Centered RMSE. ncRMSE: Normalized centered RMSE. Mean

bias, RMSE and centered RMSE are expressed in µg m−3. Mean bias, RMSE and centered RMSE are normalized dividing by mean

observed concentrations. The centered RMSE is computed as
[
1/N

∑
(̂yi − ¯̂y− yi + ȳ)2

]1/2
.

The correlation between observed and predicted
values in the pre-lockdown period is 0.87 and 0.88
for PM2.5 and NO2, respectively. The counterfac-
tual overestimates observed values by 1.34 µg m−3

(PM2.5) and 4.7 µg m−3 (NO2), thus motivating
the use of a difference-in-differences strategy. The
cRMSE is 30% (PM2.5) and 27% (NO2) of mean
observed concentrations. A graphical summary of
model predictive performance, Taylor diagrams, can
be found in supplementary information.

In air pollution forecasting, machine learning
techniques are typically used to predict concentra-
tions an hour to few days ahead, and studies that
can be used as benchmark are scarce. To the best of
our knowledge, Petetin et al (2020) is the only work
whose methodology and length of forecast are com-
parable. They use machine learning to build a coun-
terfactual for NO2 concentrations in Spain during the
COVID-19 lockdown. They report a nMB of 2%–7%,
depending on the type of station, a correlation coef-
ficient of 0.71–0.75, and normalized RMSE of 28%–
32%. Compared to their study, our algorithm better
mimics variation around the mean, than the mean
itself. However, in our estimation strategy, any con-
stant bias is captured by the constant in equation (1).

4.2. Effect of the lockdown on air pollution
Following the lockdown, air quality in Lombardy
improved only partially. Figure 2 plots the
population-weighted observed and counterfactual
values for PM2.5 (figure 2(a)) and NO2 (figure 2(b)).
NO2 at background stations reached levels below the
yearly limit set by the WHO Air Quality Guidelines.
However, background concentrations of PM2.5 still
exceeded the daily limit of 25 µg m−3 every one in
four days.

The counterfactual well mimics observed values
in the pre-lockdown period, corroborating the valid-
ity of the statistical approach. In contrast, a gap
between observed and counterfactual values is evid-
ent as restrictions are tightened. We show in supple-
mentary information that the method outperforms a
linear regression.

Suggestive evidence of the effect of the lockdown
on concentrations ofNO2, which in Lombardy largely
originate from motor vehicles, is visible from the
week of 25 February, consistent with the reduction

in mobility documented in figure 1(a). The effect on
PM2.5 only appears as non-essential economic activ-
ities are halted in Lombardy and the rest of Italy, and
is smaller in magnitude.

The lockdown may have affected PM2.5 concen-
trations mainly through two channels: the reduc-
tion of primary PM2.5 emissions, such as black and
organic carbon, and reduction of precursors of sec-
ondary PM2.5. We remark that NO2 is a precursor
of secondary PM2.5; a reduction in NO2 may, there-
fore, lead to a decline in PM2.5. However, as data on
PM2.5 composition is insufficient, we cannot quantify
the contribution of NO2 to the reductions in PM2.5

concentrations10. Therefore we treat both pollutants
independently.

We estimate a population-weighted version of
equation (1) in Methods and report results in table 2.
Results of unweighted regressions are qualitatively
similar and can be found in supplementary inform-
ation. From 22 February to 4 May, the lockdown has
on average reduced daily concentrations of PM2.5 and
NO2 by 5.32 and 13.56 µg m−3. That is a reduction
of 21.8% and 35.6%, respectively, from the average
levels that would have been observed had not the epi-
demic broken out.

Next, our preferred specification distinguishes
effects of the lockdown by type of monitor. Back-
ground monitors are located where concentrations
are representative of the ambient exposure of the gen-
eral population; industrial monitors are located in
the proximity of industrial sites or industrial sources;
traffic monitors are located near a major road.

Population-weighted average background con-
centrations of PM2.5 decreased by 3.84 µg m−3 from
24.42 µg m−3 (table 3)11. The reduction was almost
twice as large in monitored industrial sites and near
major roads. Background concentrations of NO2

dropped by 10.85 µg m−3 from 33.22 µg m−3, by
10.66 µg m−3 near monitored industrial sites and by
15.85 µg m−3 more at major roads.

10 At the time of writing, data on composition of PM2.5 has not
been released. Data on composition of PM10 is available only for
three monitoring station.
11The very lownumber ofmonitors by typemakes clustered stand-
ard errors inappropriate. We thus use robust standard errors.
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Figure 2. Population-weighted average of observed and counterfactual values. (a), PM2.5. (b), NO2. Population is measured
within 20 km of a monitoring station. Territory within less than 20 km from two or more monitors is assigned to the closest one.

Table 2. Population-weighted regression.

∆Observed,Counterfactual

(1) (2)
PM2.5 NO2

Lockdown −5.32∗∗∗ −13.56∗∗∗

(1.08) (1.21)
Constant 0.73 2.59

(1.37) (1.67)
Average baseline
concentration

24.39 38.14

Observations 3555 10 084

Notes: Regression weighted by population within 20 km of a

monitoring station. Territory within less than 20 km from two or

more monitors is assigned to the closest one. The dependent

variable is the difference between the observed values and the

counterfactual. Lockdown is a dummy variable equal to 0 from 1

January 2020 to 22 February, and equal to 1 after 22 February

2020. Average baseline concentration is the population-weighted

average of counterfactual values during the lockdown, less the

constant in case the latter is statistically significant at 10%.

Standard errors, in brackets, are clustered by monitor. ∗p< 0.1,
∗∗ p< 0.05, ∗∗∗ p< 0.01.

4.3. Human health benefits
As the reduction in road transport and the slowing
of economic activity reduced toxic emissions, the
burden of pollutants on human health eased.
For calculations, we use the estimated change in

concentrations at background stations. Avoided
deaths and YLS should be considered a lower-bound
estimate of total health benefits avoided deaths.

The reduction in PM2.5 prevented 10.2–24.8 pre-
mature deaths per 100 000 individuals and saved
72.1–175.9 years of life per 100 000 individuals,
depending on the concentration-response function
(table 4). The reduction in NO2 prevented 28.8
premature deaths and saved 203.7 years of life
per 100 000 individuals. Given the high correla-
tion between concentrations of PM2.5 and NO2, the
concentration-response function of these pollutants
are interdependent. It is recommended that avoided
deaths and YLS be not aggregated across pollutants,
lest incurring in partial double counting.

As a comparison, in Italy in 2016 for every 100 000
individuals, there have been 96.6 premature deaths
attributable to PM2.5 and 24.1 attributable to NO2,
or 23.8 and 5.9 premature deaths in three months,
respectively (European Environment Agency 2019).
Since most of the premature deaths happen in the
more polluted North of Italy, including Lombardy,
the lockdown has temporarily reduced the cost of
pollution by a substantial amount.

We compare the results against the number
of deaths and the YLL related to COVID-19 in
Lombardy during the same period, computed from

7
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Table 3. Heterogeneous effects by type of monitoring station.

∆Observed,Counterfactual

PM 2.5 NO2

Background Industrial Traffic Background Industrial Traffic

Lockdown −3.84∗∗∗ −7.39∗∗∗ −7.28∗∗∗ −10.85∗∗∗ −10.66∗∗∗ −15.85∗∗∗

(0.97) (1.54) (1.20) (0.64) (0.96) (0.75)

Constant −1.26 5.18∗∗∗ 2.79
∗∗

0.21 7.29∗∗∗ 4.04∗∗∗

(0.84) (1.37) (1.07) (0.49) (0.84) (0.63)
Average
baseline con-
centration

24.42 27.99 27.77 33.22 31.93 46.67

Number of
monitors

18 2 10 53 6 24

Observations 2117 244 1194 6483 731 2870

Notes: Regression weighted by population within 20 km of a monitoring station. Territory within less than 20 km from two or more

monitors is assigned to the closest one. The dependent variable is the difference between the observed values and the counterfactual.

Lockdown is a dummy variable equal to 0 from 1 January 2020 to 22 February, and equal to 1 after 22 February 2020. Average baseline

concentration is the population-weighted average of counterfactual values during the lockdown, less the constant in case the latter is

statistically significant at 10%. Robust standard errors are in brackets. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

Table 4. Avoided premature deaths and years of life saved per 100 000 in Lombardy due to improved air quality during lockdown.

Pollutant Source of HR Hazard ratio Avoided deaths

Avoided deaths NO2 EEA/WHO 1.055 28.8
PM2.5 EEA/WHO 1.062 11.3
PM2.5 Krewski et al (2009) 1.056 10.2
PM2.5 Lepeule et al (2012) 1.14 24.8

Years of life saved NO2 EEA/WHO 1.055 203.7
PM2.5 EEA/WHO 1.062 79.7
PM2.5 Krewski et al (2009) 1.056 72.1
PM2.5 Lepeule et al (2012) 1.14 175.9

In Lombardy, from 22 February to 3 May 2020, every 100 000 people 155 died after testing positive for COVID-19 and 1891 years of life

have been directly lost to the virus. The hazard ratio is the ratio of two concentration-response functions, or hazard rates, between a

high and a low concentration differing by 10 µg m−3. Avoided premature deaths are calculated using the population-weighted change

in concentrations at background stations.

patient-level data12. In Lombardy, from 22 February
to 3 May 2020, every 100 000 people 155 died after
testing positive for COVID-19 and 1891 years of
life have been directly lost to the virus. Avoided
deaths from the reduction in PM2.5 are 6.5%–16%
of COVID-19 deaths; YLS are 3.8%–9.3% of YLL to
COVID-19. Avoided deaths from the reduction in
NO2 are 18.6% of COVID-19 deaths; YLS are 10.8%
of YLL to COVID-19.

5. Conclusions

The dramatic reduction in emissions of airborne
pollutants that has come with the response to
COVID-19 provides a unique natural experiment
to assess the sensitivity of pollutants concentrations
and health to emissions. We estimate a substan-
tial yet partial improvement in air quality in Lom-
bardy following the outbreak, and suggest that the
improvement originates primarily from the reduction

12 Data on the individual COVID-19 patients has been shared by
regional health officers under an institutional agreement.

of road transport; and to a lesser degree from the
reduction in industrial activity. Important sources of
emissions as heating systems and agriculture have not
been substantially affected by the outbreak.

The methodology used to build the
counterfactual does not require identifying compar-
able but unaffected regions, but relies on the assump-
tion of emissions absent the lockdown following his-
torical variation around the mean. The approach is
not limited to this case study, but can be applied in a
variety of settings due to the increasing and reliable
availability of pollution and weather data.

Finally, we are nowhere near suggesting the
pandemic has been beneficial for the affected com-
munities, yet the health benefits from improved air
quality are noticeable. While global pandemics are
rare phenomena, exposure to unhealthy levels of
toxic air pollutants is the rule, including in afflu-
ent regions of the world such as the one considered
here. This paper has emphasized some of the health
benefits of cleaner air, but also highlighted the vari-
ety of emissions sources and the need for a broader
policy response to solve Europe’s biggest environ-
mental health risk.
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