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Learning in deep neural networks takes place by minimizing a
nonconvex high-dimensional loss function, typically by a stochas-
tic gradient descent (SGD) strategy. The learning process is
observed to be able to find good minimizers without getting
stuck in local critical points and such minimizers are often satis-
factory at avoiding overfitting. How these 2 features can be kept
under control in nonlinear devices composed of millions of tun-
able connections is a profound and far-reaching open question. In
this paper we study basic nonconvex 1- and 2-layer neural net-
work models that learn random patterns and derive a number of
basic geometrical and algorithmic features which suggest some
answers. We first show that the error loss function presents few
extremely wide flat minima (WFM) which coexist with narrower
minima and critical points. We then show that the minimizers of
the cross-entropy loss function overlap with the WFM of the error
loss. We also show examples of learning devices for which WFM
do not exist. From the algorithmic perspective we derive entropy-
driven greedy and message-passing algorithms that focus their
search on wide flat regions of minimizers. In the case of SGD and
cross-entropy loss, we show that a slow reduction of the norm
of the weights along the learning process also leads to WFM. We
corroborate the results by a numerical study of the correlations
between the volumes of the minimizers, their Hessian, and their
generalization performance on real data.

machine learning | neural networks | statistical physics

Artificial neural networks (ANN), currently also known as
deep neural networks (DNN) when they have more than

2 layers, are powerful nonlinear devices used to perform differ-
ent types of learning tasks (1). From the algorithmic perspective,
learning in ANN is in principle a hard computational problem
in which a huge number of parameters, the connection weights,
need to be optimally tuned. Yet, at least for supervised pattern
recognition tasks, learning has become a relatively feasible pro-
cess in many applications across domains and the performances
reached by DNNs have had a huge impact on the field of machine
learning.

DNN models have evolved very rapidly in the last decade,
mainly by an empirical trial and selection process guided by
heuristic intuitions. As a result, current DNN are in a sense
akin to complex physical or biological systems, which are known
to work but for which a detailed understanding of the princi-
ples underlying their functioning remains unclear. The tendency
to learn efficiently and to generalize with limited overfitting
are 2 properties that often coexist in DNN, and yet a unifying
theoretical framework is still missing.

Here we provide analytical results on the geometrical structure
of the loss landscape of ANN which shed light on the success
of deep learning (2) algorithms and allow us to design efficient
algorithmic schemes.

We focus on nonconvex 1- and 2-layer ANN models that
exhibit sufficiently complex behavior and yet are amenable to
detailed analytical and numerical studies. Building on methods
of statistical physics of disordered systems, we analyze the com-

plete geometrical structure of the minimizers of the loss function
of ANN learning random patterns and discuss how the current
DNN models are able to exploit such structure, for example start-
ing from the choice of the loss function, avoiding algorithmic
traps, and reaching rare solutions that belong to wide flat regions
of the weight space. In our study the notion of flatness is given
in terms of the volume of the weights around a minimizer that
do not lead to an increase of the loss value. This generalizes the
so-called local entropy of a minimizer (3), defined for discrete
weights as the log of the number of optimal weights assignments
within a given Hamming distance from the reference minimizer.
We call these regions high local entropy (HLE) regions for dis-
crete weights or wide flat minima (WFM) for continuous weights.
Our results are derived analytically for the case of random data
and corroborated by numerics on real data. In order to eliminate
ambiguities that may arise from changes of scale of the weights,
we control the norm of the weights in each of the units that com-
pose the network. The outcomes of our study can be summarized
as follows.

1) We show analytically that ANN learning random patterns
possess the structural property of having extremely robust
regions of optimal weights, namely WFM of the loss, whose
existence is important to achieve convergence in the learning
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process. Although these wide minima are rare compared to
the dominant critical points (absolute narrow minima, local
minima, or saddle points in the loss surface), they can be
accessed by a large family of simple learning algorithms. We
also show analytically that other learning machines, such as
the parity machine, do not possess WFM.

2) We show analytically that the choice of the cross-entropy
(CE) loss function has the effect of biasing learning algo-
rithms toward HLE or WFM regions.

3) We derive a greedy algorithm—entropic least-action learning
(eLAL)—and a message passing algorithm—focusing belief
propagation (fBP)—which zoom in their search on wide flat
regions of minimizers.

4) We compute the volumes associated to the minimizers found
by different algorithms using belief propagation (BP).

5) We show numerically that the volumes correlate well with the
spectra of the Hessian on computationally tractable networks
and with the generalization performance on real data. The
algorithms that search for WFM display a spectrum that is
much more concentrated around zero eigenvalues compared
to plain stochastic gradient descent (SGD).

Our results on random patterns support the conclusion that the
minimizers that are relevant for learning are not the most fre-
quent isolated and narrow ones (which also are computationally
hard to sample) but the rare ones that are extremely wide. While
this phenomenon was recently disclosed for the case of discrete
weights (3, 4), here we demonstrate that it is present also in non-
convex ANN with continuous weights. Building on these results
we derive algorithmic schemes and shed light on the performance
of SGD with the CE loss function. Numerical experiments suggest
that the scenario generalizes to real data and is consistent with
other numerical results on deeper ANN (5).

HLE/WFM Regions Exist in Nonconvex Neural Devices Storing
Random Patterns
In what follows we analyze the geometrical structure of the
weights space by considering the simplest nonconvex neural
devices storing random patterns: the single-layer network with
discrete weights and the 2-layer networks with both continuous
and discrete weights. The choice of random patterns, for which no
generalization is possible, is motivated by the possibility of using
analytical techniques from statistical physics of disordered sys-
tems and by the fact that we want to identify structural features
that do not depend on specific correlation patterns of the data.

The Simple Example of Discrete Weights. In the case of binary
weights it is well known that even for the single-layer network
the learning problem is computationally challenging. Therefore,
we begin our analysis by studying the so-called binary perceptron,
which maps vectors of N inputs ξ ∈{−1, 1}N to binary outputs
as σ (W , ξ)= sign (W · ξ), where W ∈{−1, 1}N is the synaptic
weights vector W = (w1, w2, . . . , wN ).

Given a training set composed of αN input patterns ξµ with
µ∈{1, . . . ,αN } and their corresponding desired outputs σµ ∈
{−1, 1}αN , the learning problem consists of finding a solu-
tion W such that σ (W , ξµ) =σµ for all µ. The entries ξµi and
the outputs σµ are random unbiased independent and identi-
cally distributed variables. As discussed in ref. 6 (but see also
the rigorous bounds in ref. 7), perfect classification is possible
with probability 1 in the limit of large N up to a critical value
of α, usually denoted as αc ; above this value, the probability
of finding a solution drops to zero. αc is called the capacity of
the device.

The standard analysis of this model is based on the study of
the zero-temperature limit of the Gibbs measure with a loss (or
energy) functionLNE that counts the number of errors (NE) over
the training set:

LNE =

αN∑
µ=1

Θ (−σµσ (W , ξµ)), [1]

where Θ (x )is the Heaviside step function, Θ (x ) = 1 if x > 0 and
0 otherwise. The Gibbs measure is given by

P (W ) =
1

Z (β)
exp

(
−β

αN∑
µ=1

Θ (−σµσ (W , ξµ))

)
, [2]

where β≥ 0 is the inverse temperature parameter. For large
values of β, P (W ) concentrates on the minima of LNE. The
key analytical obstacle for the computation of P (W ) is the
evaluation of the normalization factor, the partition function
Z (β):

Z (β) =
∑

{wi=±1}

exp

(
−β

αN∑
µ=1

Θ (−σµσ (W , ξµ))

)
. [3]

In the zero-temperature limit (β→∞) and below αc the
partition function simply counts all solutions to the learning
problem,

Z∞= lim
β→∞

Z (β)=
∑
{W}

Xξ (W ), [4]

where Xξ (W ) =
∏αN
µ=1 Θ (σµσ (W , ξµ)) is a characteristic func-

tion that evaluates to one if all patterns are correctly classified,
and to zero otherwise.

Z∞ is an exponentially fluctuating quantity (in N ), and its
most probable value is obtained by exponentiating the average
of logZ∞, denoted by 〈logZ∞〉ξ, over the realizations of the
patterns:

Z∞,typical' exp
(
N 〈lnZ∞〉ξ

)
. [5]

The calculation of 〈logZ∞〉ξ was done in the 1980s and 1990s
by the replica and the cavity methods of statistical physics and,
as mentioned above, the results predict that the learning task
undergoes a threshold phenomenon at αc = 0.833, where the
probability of existence of a solution jumps from one to zero
in the large N limit (6). This result has been put recently on
rigorous grounds by ref. 7. Similar calculations predict that for
any α∈ (0,αc), the vast majority of the exponentially numerous
solutions on the hypercube W ∈{−1, 1}N are isolated, sepa-
rated by a O (N ) Hamming mutual distance (8). In the same
range of α, there also exist an even larger number of local min-
ima at nonzero loss, a result that has been corroborated by
analytical and numerical findings on stochastic learning algo-
rithms that satisfy detailed balance (9). Recently it became
clear that by relaxing the detailed balance condition it was pos-
sible to design simple algorithms that can solve the problem
efficiently (10–12).

Local Entropy Theory. The existence of effective learning
algorithms indicates that the traditional statistical physics
calculations, which focus on the set of solutions that dominate
the zero-temperature Gibbs measure (i.e., the most numerous
ones), are effectively blind to the solutions actually found by
such algorithms. Numerical evidence suggests that in fact the
solutions found by heuristics are not at all isolated; on the con-
trary, they appear to belong to regions with a high density of
nearby other solutions. This puzzle has been solved very recently
by an appropriate large deviations study (3, 4, 13, 14) in which
the tools of statistical physics have been used to study the most
probable value of the local entropy of the loss function, that is,
a function that is able to detect the existence of regions with an
O (N ) radius containing a high density of solutions even when
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the number of these regions is small compared to the number of
isolated solutions. For binary weights the local entropy function
is the (normalized) logarithm of the number of solutions W ′ at
Hamming distance D N from a reference solution W :

ED (W ) = − 1

N
lnU (W ,D) [6]

with

U (W ,D) =
∑
{W ′}

Xξ
(
W ′)δ (W ′ ·W ,N (1− 2D)

)
[7]

and where δ is the Kronecker delta symbol. In order to derive
the typical values that the local entropy can take, one needs to
compute the Gibbs measure of the local entropy:

PLE (W ) =
1

ZLE
exp (−yED (W )), [8]

where y has the role of an inverse temperature. For large values
of y this probability measure focuses on the W surrounded by an
exponential number of solutions within a distance D . The regions
of HLE are then described in the regime of large y and small D .
In particular, the calculation of the expected value of the optimal
local entropy

S (D)≡ E opt
D = max

{W}

{
− 1

N
〈lnU (W ,D)〉ξ

}
[9]

shows the existence of extremely dense clusters of solutions up
to values of α close to αc (3, 4, 13, 14).

The probability measure Eq. 8 can be written in an equivalent
form that generalizes to the nonzero errors regime, is analytically
simpler to handle, and leads to novel algorithmic schemes (4):

PLE (W )∼P (W ;β, y ,λ) =Z (β, y ,λ)−1ey Φ(W ,β,λ). [10]

where Φ (W ,β,λ)is a “local free entropy” potential in which the
distance constraint is forced through a Lagrange multiplier λ:

Φ (W ,β,λ) = ln
∑
{W ′}

e−βLNE(W ′)−λ d(W ,W ′), [11]

where d (·, ·) is some monotonically increasing function of the
distance between configurations, defined according to the type of
weights under consideration. In the limit β→∞ and by choosing
λ so that a given distance is selected, this expression reduces to
Eq. 8.

The crucial property of Eq. 10 comes from the observation that
by choosing y to be a nonnegative integer, the partition function
can be rewritten as

Z (β, y ,λ) =
∑
{W}

ey Φ(W ,β,λ)=
∑
{W}

∑
{W ′a}ya=1

e−βLR(W ,W ′a),

[12]
where

LR

(
W ,W ′a)=

y∑
a=1

LNE

(
W ′a)− λ

β

y∑
a=1

d
(
W ,W ′a). [13]

These are the partition function and the effective loss of y + 1
interacting real replicas of the system, one of which acts as ref-
erence system (W ) while the remaining y ({W ′a}) are identical,
each being subject to the energy constraint LNE (W ′a)and to the
interaction term with the reference system. As discussed in ref. 4,
several algorithmic schemes can be derived from this framework

by minimizing LR. Here we shall also use the above approach
to study the existence of WFMs in continuous models and to
design message-passing and greedy learning algorithms driven by
the local entropy of the solutions.

Two-Layer Networks with Continuous Weights. As for the discrete
case, we are able to show that in nonconvex networks with con-
tinuous weights the WFMs exist and are rare and yet accessible
to simple algorithms. In order to perform an analytic study, we
consider the simplest nontrivial 2-layer neural network, the com-
mittee machine with nonoverlapping receptive fields. It consists
of N input units, one hidden layer with K units and one output
unit. The input units are divided into K disjoint sets of Ñ = N

K
units. Each set is connected to a different hidden unit. The input
to the `-th hidden unit is given by xµ` = 1√

Ñ

∑Ñ
i=1 w`iξ

µ
`i , where

w`i ∈R is the connection weight between the input unit i and
the hidden unit ` and ξµ`i is the i -th input to the `-th hidden unit.
As before, µ is a pattern index. We study analytically the pure
classifier case in which each unit implements a threshold trans-
fer function and the loss function is the error loss. Other types
of (smooth) functions, more amenable to numerical simulation,
will be also discussed in a subsequent section. The output of the
`-th hidden unit is given by

τµ` = sign (xµ` ) = sign

 1√
Ñ

Ñ∑
i=1

w`iξ
µ
`i

. [14]

In the second layer all of the weights are fixed and equal to
one, and the overall output of the network is simply given by a
majority vote σµout = sign

(
1√
K

∑
` τ

µ
`

)
.

As for the binary perceptron, the learning problem consists
of mapping each of the random input patterns (ξµ`i), with `=

1, . . . ,K , i = 1, . . . , Ñ , µ= 1, . . . ,αN , onto a randomly chosen
output σµ. Both ξµ`i and σµ are independent random variables
that take the values ±1 with equal probability. For a given set
of patterns, the volume of the subspace of the network weights
that correctly classify the patterns, the so-called version space, is
given by

V =

∫ ∏
i`

dw`i
∏
`

δ

(∑
i

w2
`i − Ñ

)∏
µ

Θ (σµσµout). [15]

where we have imposed a spherical constraint on the weights via
a Dirac δ in order to keep the volume finite (though exponential
in N ). In the case of binary weights the integral would become a
sum over all of the 2N configurations and the volume would be
the overall number of zero error assignments of the weights.

The committee machine was studied extensively in the 1990s
(15–17). The capacity of the network can be derived by comput-
ing the typical weight space volume as a function of the number
of correctly classified patternsαN , in the large N limit. As for the
binary case, the most probable value of V is obtained by expo-
nentiating the average of logV , Vtypical' exp

(
N 〈logV 〉ξ

)
, a

difficult task which is achieved by the replica method (18, 19).
For the smallest nontrivial value of K , K = 3, it has been found

that above α0' 1.76 the space of solutions changes abruptly,
becoming clustered into multiple components.* Below α0 the
geometrical structure is not clustered and can be described by
the simplest version of the replica method, known as replica
symmetric solution. Above α0 the analytical computation of the

*Strictly speaking each cluster is composed of a multitude of exponentially small domains
(20).
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typical volume requires a more sophisticated analysis that prop-
erly describes a clustered geometrical structure. This analysis can
be performed by a variational technique which is known in sta-
tistical physics as the replica-symmetry-breaking (RSB) scheme,
and the clustered geometrical structure of the solution space is
known as RSB phase.

The capacity of the network, above which perfect classifica-
tion becomes impossible, is found to be αc ' 3.02. In the limit of
large K (but still with Ñ � 1), the clustering transition occurs at
a finite number of patterns per weight, α0' 2.95 (15), whereas
the critical capacity grows with K as αc ∝

√
lnK (20).

The Existence of WFM. In order to detect the existence of WFM
we use a large deviation measure which is the continuous version
of the measure used in the discrete case: Each configuration of
the weights is reweighted by a local volume term, analogously to
the analysis in Local Entropy Theory. For the continuous case,
however, we adopt a slightly different formalism which simplifies
the analysis. Instead of constraining the set of y real replicas†to
be at distance D from a reference weight vector, we can identify
the same WFM regions by constraining them directly to be at a
given mutual overlap: For a given value q1 ∈ [−1, 1], we impose
that W a ·W b =Nq1 for all pairs of distinct replicas a, b. The
overlap q1 is bijectively related to the mutual distance among
replicas (which tends to 0 as q1→ 1). That, in turn, determines
the distance between each replica and the normalized barycen-
ter of the group

√
N
∑

a W
a/
∥∥∑

a W
a
∥∥, which takes the role

that the reference vector had in the previous treatment. Thus, the
regime of small D corresponds to the regime of q1 close to 1, and
apart from this reparametrization the interpretation of the WFM
volumes is the same. As explained in Materials and Methods,
the advantage of this technique is that it allows to use directly
the first-step formalism of the RSB scheme (1-RSB). Similarly to
the discrete case, the computation of the maximal WFM volumes
leads to the following results: For K = 3 and in the large y limit,
we find‡

V (q1) = max
{W a}ya=1

{
1

Ny
〈lnV ((W a)ya=1, q1)〉ξ

}
= GS (q1) +αGE (q1)

with

GS (q1) =
1

2
[1 + ln 2π+ ln (1− q1)]

GE (q1) =

∫ 3∏
`=1

Dv` max
u1,u2,u3

[
−
∑3
`=1 u

2
`

2
+

+ ln
(
H̃1H̃2 + H̃1H̃3 + H̃2H̃3− 2H̃1H̃2H̃3

)]
,

where H̃`≡H
(√

d0
1−q1

u` +
√

q0
1−q1

v`
)
, H (x )≡

∫∞
x

Dv , Dv ≡

dv 1√
2π

e−
1
2
v2

, d0≡ y (q1− q0) and q0 satisfies a saddle point
equation that needs to be solved numerically. V (q1) is the log-
arithm of the volume of the solutions, normalized by Ny , under
the spherical constraints on the weights, and with the real repli-
cas forced to be at a mutual overlap q1. In analogy with the
discrete case, we still refer to V (q1) as to the local entropy. It
is composed by the sum of 2 terms; the first one, GS (q1), cor-
responds to the log-volume at α= 0, where all configurations
are solutions and only the geometric constraints are present.
This is an upper bound for the local entropy. The second term,

†Not to be confused with the virtual replicas of the replica method.
‡All of the details are reported in SI Appendix.

V1 (q1)≡αGE (q1), is in general negative and it represents the
log of the fraction of solutions at overlap q1 (among all configu-
rations at that overlap), and we call it normalized local entropy.
Following the interpretation given above, we expect (in anal-
ogy to the discrete case at small D ; see Fig. 3) that in a WFM
this fraction is close to 1 (i.e., V1 is close to 0) in an extended
region where the distance between the replicas is small, that
is, where q1 is close to 1; otherwise, WFMs do not exist in the
model. In Fig. 1 we report the values of V1 (q1) vs. the over-
lap q1 for different values of α. Indeed, one may observe that
the behavior is qualitatively similar to that of the binary percep-
tron: Besides the solutions and all of the related local minima
and saddles predicted by the standard statistical physics analysis
(15–17, 20) there exist absolute minima that are flat at relatively
large distances. Indeed, reaching such wide minima efficiently is
nontrivial, and different algorithms can have drastically different
behaviors, as we will discuss in detail in Numerical Studies.

The case K = 3 is still relatively close to the simple perceptron,
although the geometrical structure of its minima is already domi-
nated by nonconvex features for α> 1.76. A case that is closer to
more realistic ANNs is K � 1 (but still N �K ), which, luckily
enough, is easier to study analytically. We find

GS (q1)=
1

2
[1 + ln 2π+ ln (1− q1)]

GE (q1)=

∫
Dv max

u

[
−u2

2
+ lnH

(√
∆qe

1

1− qe
1

u +
qe

0

1− qe
1

v

)]
,

where ∆qe
1 = qe

1 − qe
0 with qe

1 ≡ 1− 2
π

arccos (q1), qe
0 ≡ 1−

2
π

arccos (q0), and q0 is fixed by a saddle point equation. The
numerical results are qualitatively similar to those for K = 3:
We observe that indeed WFM still exist for all finite values of
α. The analogue of Fig. 1 for this case is reported in the SI
Appendix.

The results of the above WFM computation may require small
corrections due to RSB effects, which, however, are expected to
be very tiny due to the compact nature of the space of solutions
at small distances.

A more informative aspect is to study the volumes around
the solutions found by different algorithms. This can be done

Fig. 1. Normalized local entropy V1 vs. q1, that is, logarithm of the frac-
tion of configurations of y real replicas at mutual overlap q1 in which all
replicas have zero error loss LNE. The curves are for a tree-like committee
machine with K = 3 hidden units trained on αN random patterns, for vari-
ous values of α, obtained from a replica calculation in the limit of large N
and large number of real replicas y. When the curves approach 0 as q1→ 1 it
means that nearly all configurations are minima, and thus that the replicas
are collectively exploring a wide minimum (any q1 < 1 implies distances of
O(N) between replicas). The analogous figure for the limiting case of a large
number of hidden units K can be found in SI Appendix.
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by the BP method, similarly to the computation of the weight
enumerator function in error correcting codes (21).

Not All Devices Are Appropriate: The Parity Machine Does Not Display
HLE/WFM Regions. The extent by which a given model exhibits the
presence of WFM can vary (see, e.g., Fig. 1). A direct compar-
ison of the local entropy curves on different models in general
does not yet have a well-defined interpretation, although at least
for similar architectures it can still be informative (22). On the
other hand, the existence of WFM itself is a structural prop-
erty. For neural networks, its origin relies on the threshold sum
form of the nonlinearity characterizing the formal neurons. As a
check of this claim, we can analyze a model that is in some sense
complementary, namely the so-called parity machine. We take
its network structure to be identical to the committee machine,
except for the output unit, which performs the product of the
K hidden units instead of taking a majority vote. While the out-
puts of the hidden units are still given by sign activations, Eq. 14,
the overall output of the network reads σµout =

∏K
`=1 τ`. The vol-

ume of the weights that correctly classifies a set of patterns is still
given by Eq. 15.

Parity machines are closely related to error-correcting codes
based on parity checks. The geometrical structure of the absolute
minima of the error loss function is known (20) to be composed
of multiple regions, each in one to one correspondence with the
internal representations of the patterns. For random patterns
such regions are typically tiny and we expect the WFM to be
absent. Indeed, the computation of the volume proceeds anal-
ogously to the previous case§, and it shows that in this case for
any distance the volumes of the minima are always bounded
away from the maximal possible volume, that is, the volume
one would find for the same distance when no patterns are
stored. The log-ratio of the 2 volumes is constant and equal to
−α log (2). In other words, the minima never become flat, at any
distance scale.

The Connection between Local Entropy and CE. Given that dense
regions of optimal solutions exist in nonconvex ANN, at least in
the case of independent random patterns, it remains to be seen
which role they play in current models. Starting with the case of
binary weights, and then generalizing the result to more complex
architectures and to continuous weights, we can show that the
most widely used loss function, the so-called CE loss, focuses pre-
cisely on such rare regions (see ref. 23 for the case of stochastic
weights).

For the sake of simplicity, we consider a binary classification
task with one output unit. The CE cost function for each input
pattern reads

LCE (W ) =

M∑
µ=1

fγ

(
σµ√
N

N∑
i=1

wiξ
µ
i

)
, [16]

where fγ (x ) = − x
2

+ 1
2γ

log (2 cosh (γx )). The parameter γ

allows one to control the degree of “robustness” of the training
(Fig. 2, Inset). In standard machine learning practice γ is sim-
ply set to 1, but a global rescaling of the weights Wi can lead
to a basically equivalent effect. That setting can thus be inter-
preted as leaving γ as implicit, letting its effective value, and
hence the norm of the weights, to be determined by the initial
conditions and the training algorithm. As we shall see, control-
ling γ explicitly along the learning process plays a crucial role in
finding HLE/WFM regions.

For the binary case, however, the norm is fixed and thus
we must keep γ as an explicit parameter. Note that since

§ It is actually even simpler; see SI Appendix.

Fig. 2. Mean error rate achieved when optimizing the CE loss in the binary
single-layer network, as predicted by the replica analysis, at various val-
ues of γ (increasing from top to bottom). The figure also shows the points
αc ≈ 0.83 (up to which solutions exist) and αU ≈ 0.76 (up to which noniso-
lated solutions exist). (Inset) Binary CE function fγ (x) for various values of
γ (increasing from top to bottom). For low values of γ, the loss is nonzero
even for small positive values of the input, and thus the minimization proce-
dure tends to favor more robust solutions. For large values of γ the function
tends to max(−x, 0). The dotted line shows the corresponding NE function,
which is just 1 in case of an error and 0 otherwise (cf. Eq. 1).

limγ→∞ fγ (x ) = max (−x , 0) the minima of LCE below αc at
large γ are the solutions to the training problem, that is, they
coincide with those of LNE.

We proceed by first showing that the minimizers of this loss
correspond to near-zero errors for a wide range of values of α
and then by showing that these minimizers are surrounded by an
exponential number of zero error solutions.

In order to study the probability distribution of the minima
of LCE in the large N limit, we need to compute its Gibbs dis-
tribution (in particular, the average of the log of the partition
function; see Eq. 5) as it has been done for the error loss LNE.
The procedure follows standard steps and it is detailed in SI
Appendix. The method requires one to solve 2 coupled integral
equations as functions of the control parameters α, β, and γ. In
Fig. 2 we show the behavior of the fraction of errors vs. the load-
ing α for various values of γ. Up to relatively large values of α the
optimum of LCE corresponds to extremely small values of LNE,
virtually equal to zero for any accessible size N .

Having established that by minimizing the CE one ends up in
regions of perfect classification where the error loss function is
essentially zero, it remains to be understood which type of con-
figurations of weights are found. Does the CE converge to an
isolated point-like solution in the weight space (such as the typi-
cal zero energy configurations of the error function)¶ or does it
converge to the rare regions of HLE?

In order to establish the geometrical nature of the typical
minima of the CE loss, we need to compute the average value
of ED (W ) (which tells us how many zero energy configura-
tions of the error loss function can be found within a given
radius D from a given W ; see Eq. 6) when W is sampled
from the minima of LCE. This can be accomplished by a well-
known analytical technique (24) which was developed for the
study of the energy landscape in disordered physical systems. The

¶A quite unlikely fact given that finding isolated solutions is a well-known intractable
problem.
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Fig. 3. Average local entropy around a typical minimum of the LCE loss for
various values of α and γ. The gray upper curve, corresponding to α= 0,
is an upper bound since in that case all configurations are solutions. For
α= 0.4, the 2 curves with γ= 1 and 2 nearly saturate the upper bound at
small distances, revealing the presence of dense regions of solutions (HLE
regions). There is a slight improvement for γ= 2, but the curve at γ→∞
shows that the improvement cannot be monotonic: In that limit, the mea-
sure is dominated by isolated solutions. This is reflected by the gap at small D
in which the entropy becomes negative, signifying the absence of solutions
in that range. For α= 0.6 we see that the curves are lower, as expected. We
also see that for γ= 1 there is a gap at small D, and that we need to get to
γ= 3 in order to find HLE regions.

computation is relatively involved, and here we report only
the final outcome. For the dedicated reader, all of the details
of the calculation, which relies on the replica method and
includes a double analytic continuation, can be found in SI
Appendix. As reported in Fig. 3, we find that the typical min-
ima of the CE loss for small finite γ are indeed surrounded
by an exponential number of zero error solutions. In other
words, the CE focuses on HLE regions. The range of γ for
which this happens is generally rather wide, but neither too-
small nor too-large values work well (additional details on this
point are provided in SI Appendix). On the other hand, this
analysis does not fully capture algorithmic dynamic effects, and
in practice using a procedure in which γ is initialized to a
small value and gradually increased should be effective in most
circumstances (4).

As an algorithmic check we have verified that while a simu-
lated annealing approach gets stuck at very high energies when
trying to minimize the error loss function, the very same algo-
rithm with the CE loss is indeed successful up to relatively high
values of α, with just slightly worse performance compared to
an analogous procedure based on local entropy (13). In other
words, the CE loss on single-layer networks is a computationally
cheap and reasonably good proxy for the LE loss. These ana-
lytical results extend straightforwardly to 2-layer networks with
binary weights. The study of continuous weight models can be
performed resorting to the BP method.

BP and fBP
BP, also known as sum-product, is an iterative message-passing
algorithm for statistical inference. When applied to the problem
of training a committee machine with a given set of input–output
patterns, it can be used to obtain, at convergence, useful infor-
mation on the probability distribution, over the weights of the
network, induced by the Gibbs measure. In particular, it allows
one to compute the marginals of the weights as well as their

entropy, which in the zero-temperature regime is simply the log-
arithm of the volume of the solutions, Eq. 15, rescaled by the
number of variables N . The results are approximate, but (with
high probability) they approach the correct value in the limit of
large N in the case of random uncorrelated inputs, at least in the
replica-symmetric phase of the space of the parameters. Due to
the concentration property, in this limit the macroscopic proper-
ties of any given problem (such as the entropy) tend to converge
to a common limiting case, and therefore a limited amount of
experiments with a few samples is sufficient to describe very well
the entire statistical ensemble.

We have used BP to study the case of the zero-temperature
tree-like committee machine with continuous weights and K = 3.
We have mostly used N = 999, which turns out to be large
enough to produce results in quite good agreement with the
replica theory analysis. Our implementation follows standard
practice in the field (see, e.g., refs. 4, 10, and 25) and can be made
efficient by encoding each message with only its mean and vari-
ance (SI Appendix). As mentioned above, this algorithm works
well in the replica-symmetric phase, which for our case means
when α≤α0≈ 1.76. Above this value, the (vanilla) algorithm
does not converge at all.

However, BP can be employed to perform additional analyses
as well. In particular, it can be modified rather straightforwardly
to explore and describe the region surrounding any given con-
figuration, as it allows one to compute the local entropy (i.e.,
the log-volume of the solutions) for any given distance and any
reference configuration (this is a general technique; the details
for our case are reported in SI Appendix). The convergence
issues are generally much less severe in this case. Even in the
RSB phase, if the reference configuration is a solution in a wide
minimum, the structure is locally replica-symmetric, and there-
fore the algorithm converges and provides accurate results, at
least up to a value of the distance where other unconnected
regions of the solutions space come into consideration. In our
tests, the only other issue arose occasionally at very small dis-
tances, where convergence is instead prevented by the loss of
accuracy stemming from finite size effects and limited numerical
precision.

Additionally, the standard BP algorithm can be modified and
transformed into a (very effective) solver. There are several ways
to do this, most of which are purely heuristic. However, it was
shown in ref. 4 that adding a particular set of self-interactions to
the weight variables could approximately but effectively describe
the replicated system of Eq. 12. In other words, this technique
can be used to analyze the local-entropy landscape instead of
the Gibbs one. By using a sufficiently large number of replicas
y (we generally used y = 10) and following an annealing pro-
tocol in the coupling parameter λ (starting from a low value
and making it diverge) this algorithm focuses on the maximally
dense regions of solutions, thus ending up in WFM. For these
reasons, the algorithm was called “focusing BP” (fBP). The
implementation closely follows that of ref. 4 (complete details
are provided in SI Appendix). Our tests—detailed below—show
that this algorithm is the best solver (by a wide margin) among
the several alternatives that we tried in terms of robustness of
the minima found (and thus of generalization properties, as
also discussed below). Moreover, it also achieves the highest
capacity, nearly reaching the critical capacity where all solutions
disappear.

eLAL
Least-action learning (LAL), also known as minimum-change
rule (26–28), is a greedy algorithm that was designed to extend
the well-known perceptron algorithm to the case of committee
machines with a single binary output and sign activation func-
tions. It takes one parameter, the learning rate η. In its original
version, patterns are presented randomly one at a time, and at
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most one hidden unit is affected at a time. In case of correct
output, nothing is done, while in case of error the hidden unit,
among those with a wrong output, whose preactivation was clos-
est to the threshold (and is thus the easiest to fix) is selected, and
the standard perceptron learning rule (with rate η) is applied to
it. In our tests we simply extended it to work in mini-batches, to
make it more directly comparable with stochastic-gradient-based
algorithms: For a given mini-batch, we first compute all of the
preactivations and the outputs for all patterns, then we apply the
LAL learning rule for each pattern in turn.

This algorithm proves to be surprisingly effective at finding
minima of the NE loss very quickly: In the random patterns
case, its algorithmic capacity is higher than gradient-based vari-
ants and almost as high as fBP, and it requires comparatively few
epochs. It is also computationally very fast, owing to its simplic-
ity. However, as we show in Numerical Studies, it finds solutions
that are much narrower compared to those of other algorithms.

In order to drive LAL toward WFM regions, we add a local-
entropy component to it, by applying the technique described in
ref. 4 (see Eq. 13): We run y replicas of the system in parallel
and we couple them with an elastic interaction. The resulting
algorithm, which we call eLAL, can be described as follows.
We initialize y replicas randomly with weights W a and com-
pute their average W̃ . We present mini-batches independently
to each replica, using different permutations of the dataset for
each of them. At each mini-batch, we apply the LAL learning
rule. Then, each replica is pushed toward the group average with
some strength proportional to a parameter λ. More precisely, we
add a term λη

(
W̃ −W a

)
to each of the weight vectors W a .

After this update, we recompute the average W̃ . At each epoch,
we increase the interaction strength λ. The algorithm stops when
the replicas have collapsed to a single configuration.

This simple scheme proves rather effective at enhancing the
wideness of the minima found while still being computation-
ally efficient and converging quickly, as we show in Numerical
Studies.

Numerical Studies
We conclude our study by comparing numerically the curva-
ture, the wideness of the minima, and the generalization error
found by different approaches. We consider 2 main scenar-
ios: One, directly comparable with the theoretical calculations,
where a tree committee machine with K = 9 is trained over
random binary patterns, and a second one, which allows us
to estimate the generalization capabilities, where a fully con-
nected committee machine with K = 9 is trained on a subset
of the Fashion-MNIST dataset (29). The choice of using K = 9
instead of 3 is intended to enhance the potential robustness
effect that the CE loss can have over NE on such architec-
tures (see Fig. 2, Inset): For K = 3, a correctly classified pattern
already requires 2 out for 3 units to give the correct answer,
and there is not much room for improvement at the level of
the preactivation of the output unit. On the other hand, since
we study networks with a number of inputs of the order of 103,
an even larger value of K would either make N /K too small
in the tree-like case (exacerbating numerical issues for the BP
algorithms and straying too far from the theoretical analysis)
or make the computation of the Hessians too onerous for the
fully connected case (each Hessian requiring the computation of
(NK )2 terms).

We compare several training algorithms with different set-
tings (Materials and Methods): stochastic GD with the CE loss
(ceSGD), LAL and its entropic version eLAL, and fBP. Of
these, the nongradient-based ones (LAL, eLAL, and fBP) can
be directly used with the sign activation functions (Eq. 14) and
the NE loss. On the other hand, ceSGD requires a smooth
loss landscape, and therefore we used tanh activations, adding

a gradually diverging parameter β in their argument, since
limβ→∞ tanh (βx ) = sign (x ). The γ parameter of the CE loss
(Eq. 16) was also increased gradually. As in the theoretical com-
putation, we also constrained the weights of each hidden unit
of the network to be normalized. The NE loss with sign activa-
tions is invariant under renormalization of each unit’s weights,
whereas the CE loss with tanh activations is not. In the latter
case, the parameters β and γ can be directly interpreted as the
norm of the weights, since they just multiply the preactivations
of the units. In a more standard approach, the norm would be
controlled by the initial choice of the weights and be driven by
the SGD algorithm automatically. In our tests instead we have
controlled these parameters explicitly, which allows us to demon-
strate the effect of different schedules. In particular, we show
(for both the random and the Fashion-MNIST scenarios) that
slowing down the growth of the norm with ceSGD makes a sig-
nificant difference in the quality of the minima that are reached.
We do this by using 2 separate settings for ceSGD, a “fast” and a
“slow” one. In ceSGD-fast both β and γ are large from the onset
and grow quickly, whereas in ceSGD-slow they start from small
values and grow more slowly (requiring much more epochs for
convergence).

In all cases—for uniformity of comparison, simplicity, and
consistency with the theoretical analysis—we consider scenar-
ios in which the training error (i.e., the NE loss) gets to zero.
This is, by definition, the stopping condition for the LAL algo-
rithm. We also used this as a stopping criterion for ceSGD in
the “fast” setting. For the other algorithms, the stopping cri-
terion was based on reaching a sufficiently small loss (ceSGD
in the “slow” setting), or the collapse of the replicas (eLAL
and fBP).

The analysis of the quality of the results was mainly based on
the study of the local loss landscape at the solutions. On one
hand, we computed the normalized local entropy using BP as
described in a previous section, which provides a description
of the NE landscape. On the other hand, we also computed
the spectrum of the eigenvalues of a smoothed-out version of
the NE loss, namely the mean square error (MSE) loss com-
puted on networks with tanh activations. This loss depends
on the parameters β of the activations: We set β to be as
small as possible (maximizing the smoothing and thereby mea-
suring features of the landscape at a large scale) under the
constraint that all of the solutions under consideration were
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Fig. 4. Normalized local entropy as a function of the distance from a ref-
erence solution, on a tree-like committee machine with K = 9 and N = 999,
trained on 1,000 random patterns. The results were obtained with the BP
algorithm, by averaging over 10 samples. Numerical issues (mainly due to
the approximations used) prevented BP from converging at small distances
for the LAL algorithm, and additionally they slightly affect the results at very
small distances. Qualitatively, though, higher curves correspond to larger
local entropies and thus wider minima.
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still corresponding to zero error (to prevent degrading the per-
formance). For the Fashion-MNIST case, we also measured
the generalization error of each solution and the robustness to
input noise.

In the random patterns scenario we set N = 999 and α= 1
and tested 10 samples (the same for all of the algorithms). The
results are presented in Figs. 4 and 5. The 2 analyses allow one
to rank the algorithms (for the Hessians we can use the max-
imum eigenvalue as a reasonable metric) and their results are
in agreement. As expected, fBP systematically finds very dense
regions of solutions, qualitatively compatible with the theoretical
analysis (compare Fig. 4 with Fig. 1) and corresponding to the
narrowest spectra of the Hessian at all β; the other algorithms
follow roughly in the order eLAL, ceSGD-slow, ceSGD-fast, and
LAL. The latter is a very efficient solver for this model, but
it finds solutions in very narrow regions. On the other hand,
the same algorithm performed in parallel on a set of inter-
acting replicas is still efficient but much better at discovering
WFM. These results are for y = 20 replicas in eLAL, but our
tests show that y = 10 would be sufficient to match ceSGD-
slow and that y = 100 would further improve the results and
get closer to fBP. Overall, the results of the random pattern
case confirm the existence of WFM in continuous networks and
suggest that a (properly normalized) Hessian spectrum can be

Fig. 5. Spectra of the Hessian for the same solutions of Fig. 4, for various
algorithms. The spectra are directly comparable since they are all com-
puted on the same loss function (MSE; using CE does not change the results
qualitatively) and the networks are normalized. (Top) The results with the
parameter β of the activation functions set to a value such that all solu-
tions of all algorithms are still valid; this value is exclusively determined by
the LAL algorithm. (Bottom) The results for a much lower value of β that
can be used when removing the LAL solutions, where differences between
ceSGD-slow, eLAL and fBP that were not visible al higher β can emerge (the
spectrum of LAL would still be the widest by far even at this β).

used as a proxy for detecting whether an algorithm has found
a WFM region.

We then studied the performance of ceSGD (fast and slow set-
tings), LAL, and eLAL on a small fully connected network that
learns to discriminate between 2 classes of the Fashion-MNIST
dataset (we chose the classes Dress and Coat, which are rather
challenging to tell apart but also sufficiently different to offer
the opportunity to generalize even with a small simple network
trained on very few examples). We trained our networks on a
small subset of the available examples (500 patterns, binarized
to ±1 by using the median of each image as a threshold on the
original grayscale inputs; we filtered both the training and test
sets to only use images in which the median was between 0.25
and 0.75 as to avoid too-bright or too-dark images and make the
data more uniform and more challenging). This setting is rather
close to the one which we could study analytically, except for the
patterns statistics and the use of fully connected rather than tree-
like layers, and it is small enough to permit computing the full
spectrum of the Hessian. On the other hand, it poses a difficult
task in terms of inference (even though finding solutions with
zero training error is not hard), which allowed us to compare
the results of the analysis of the loss landscape with the gen-
eralization capabilities on the test set. Each algorithm was run
50 times. The results are shown in Fig. 6, and they are analo-
gous to those for the random patterns case, but in this setting
we can also observe that indeed WFM tend to generalize better.
Also, while we could not run fBP on this data due to the corre-
lations present in the inputs and to numerical problems related
to the fully connected architecture, which hamper convergence,
it is still the case that ceSGD can find WFM if the norms are
controlled and increased slowly enough, and that we can sig-
nificantly improve the (very quick and greedy) LAL algorithm
by replicating it, that is, by effectively adding a local-entropic
component.

We also performed an additional batch of tests on a ran-
domized version of the Fashion-MNIST dataset, in which the
inputs were reshuffled across samples on a pixel-by-pixel basis
(such that each sample only retained each individual pixel bias
while the correlations across pixels were lost). This allowed us
to bridge the 2 scenarios and directly compare the local vol-
umes in the presence or absence of features of the data that
can lead to proper generalization. We kept the settings of each
algorithm as close as possible to those for the Fashion-MNIST
tests. Qualitatively, the results were quite similar to the ones
on the original data except for a slight degradation of the per-
formance of eLAL compared to ceSGD. Quantitatively, we
observed that the randomized version was more challenging and
generally resulted in slightly smaller volumes. Additional mea-
sures comparing the robustness to the presence of noise in the
input (which measures overfitting and thus can be conceived
as being a precursor of generalization) confirm the general
picture. The detailed procedures and results are reported in
SI Appendix.

Conclusions and Future Directions
In this paper, we have generalized the local entropy theory to
continuous weights and we have shown that WFM exists in non-
convex neural systems. We have also shown that the CE loss
spontaneously focuses on WFM. On the algorithmic side we
have derived and designed algorithmic schemes, either greedy
(very fast) or message-passing, which are driven by the local
entropy measure. Moreover, we have shown numerically that
ceSGD can be made to converge in WFM by an appropriate
cooling procedure of the parameter which controls the norm of
the weights. Our findings are in agreement with recent results
showing that rectified linear units transfer functions also help
the learning dynamics to focus on WFM (22). Future work will
be aimed at extending our methods to multiple layers, trying
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Fig. 6. Experiments on a subset of Fashion-MNIST. (Top) Average nor-
malized local entropies. (Bottom) Test error vs. maximum eigenvalue of
the Hessian spectrum at β= 90. The maximum eigenvalue is correlated to
the generalization (WFM tend to generalize better), and the quality of the
minima varies between algorithms.

to reach a unified framework for current DNN models. This is
a quite challenging task which has the potential to reveal the
role that WFM play for generalization in different data regimes
and how that can be connected to the many layer architectures
of DNN.

Materials and Methods
1-RSB Formalism to Analyze Subdominant Dense States. The rela-
tionship between the local entropy measure (12) and the 1-
RSB formalism is direct and is closely related to the work of
Monasson (30). All of the technical details are given in SI
Appendix; here we just give the high-level description of the
derivation.

Consider a partition function in which the interaction among
the real replicas is pairwise (without the reference configuration
W̃ ) and the constraint on the distance is hard (introduced via a
Dirac delta function):

Z =

∫ ∏
a

dµ (W a)
∏
µ

e−β
∑y

a=1E(W a)
∏
a>b

δ
(
d
(
W a ,W b

)
−ND

)
,

where dµ (W a)is an integration measure that imposes some nor-
malization constraint (e.g., spherical) on the W s. Suppose then
that we study the average free entropy 〈logZ 〉 (where 〈·〉 rep-
resents the average over the random parameters, the patterns
in the specific case of ANN) in the context of replica theory.
The starting point is the following small n expansion Z n = 1 +
n logZ +O

(
n2
)
. This identity may be averaged over the random

parameters and gives the average of the log from the averaged

n-th power of the partition function 〈logZ 〉= minn→0
〈Zn 〉−1

n
.

The idea of the replica method is to compute the average for
integer n and to take the analytic continuation n→ 0. Overall
we have to deal with n virtual replicas of the whole system (com-
ing from the replica method) and since each system has y real
replicas we end up with ny total replicas. Let us use indices c,
d for the virtual replicas and a , b for the real ones, such that
a configuration will now have 2 indices, for example W ca . Sup-
pose that we manage to manipulate the expression such that it
becomes a function, among other order variables, of the over-
laps qca,db = 1

N

〈
W ca ,W db

〉
, where 〈·, ·〉 represents some scalar

product, and that the distance function d (·, ·) can be expressed
in terms of those. Say that d (W ,W ′) = 〈W ,W 〉+ 〈W ′,W ′〉−
2 〈W ,W ′〉; then

δ
(
d
(
W ca ,W cb

)
−ND

)
= δ

(
N
(
qca,ca + qcb,cb − 2qca,cb −D

))
.

By assuming replica symmetry, the integral can be computed by
saddle point over the following variables:

qca,ca =Q

qca,cb = q1 (a 6=b)

qca,db = q0 (c 6=d)

with Q ≥ q1≥ q0. The above expression simplifies to

δ
(
N
(
qca,ca + qcb,cb − 2qca,cb −D

))
= δ (2N (Q − q1−D)).

Therefore, the order parameter q1 is simply Q −D , rather than
being fixed by a saddle point. In the cases under our considera-
tion, Q is also fixed a priori by the intergration measure. We are
thus left with an expression that depends only on q1, which can be
treated as an external parameter. By comparison with the generic
1-RSB formalism applied to the original system (without any real
replica), one finds that the only differences in the expressions are
that 1) in our setting the parameter q1 is not optimized but rather
becomes a control parameter and 2) the so-called Parisi param-
eter m is replaced by the number of real replicas y and instead
of ranging in [0, 1] it is sent to∞ in order to maximize the local
entropy measure. Additional technical details can be found in SI
Appendix.

Numerical Experiments. Here we provide the details and the
settings used for the experiments reported in Numerical Studies.

In all of the experiments and for all algorithms except fBP
we have used a mini-batch size of 100. The mini-batches were
generated by randomly shuffling the datasets and splitting them
at each epoch. For eLAL, the permutations were performed
independently for each replica. Also, for all algorithms except
fBP the weights were initialized from a uniform distribution and
then normalized for each unit. The learning rate η was kept
fixed throughout the training. The parameters γ and β for the
ceSGD algorithm were initialized at some values γ0, β0 and
multiplied by 1 + γ1, 1 +β1 after each epoch. Analogously, the
parameter λ for the eLAL algorithm was initialized to λ0 and
multiplied by 1 +λ1 after each epoch. The parameter λ for the
fBP algorithm ranged in all cases between 0.5 and 30 with an
exponential schedule divided into 30 steps; at each step, the algo-
rithm was run until convergence or at most 200 iterations. We
used y = 20 for eLAL and y = 10 for fBP. The stopping crite-
rion for ceSGD-fast was that a solution (0 errors with β=∞)
was found; for ceSGD-slow, that the CE loss reached 10−7; and
for eLAL, that the sum of the squared distances between each
replica and the average replica W̃ reached 10−7. We also report
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here the average and SD of the number of epochs T for each
algorithm.
Parameters for the case of random patterns. ceSGD-fast:
η= 10−2, γ0 = 3, β0 = 1, γ1 = 0, β1 = 10−3 (T = 770± 150).
ceSGD-slow: η= 3 · 10−3, γ0 = 0.1, β0 = 0.5, γ1 = 4 · 10−4 (T =
(1.298± 0.007)· 104). LAL: η= 5 · 10−3 (T = 76± 15). eLAL:
η= 10−2, λ0 = 0.5, λ1 = 10−4 (T = 861± 315).
Parameters for the Fashion-MNIST experiments. ceSGD-fast:
η= 2 · 10−4, γ0 = 5, β0 = 2, γ1 = 0, β1 = 10−4 (T = 460± 334).

ceSGD-slow: η= 3 · 10−5, γ0 = 0.5, β0 = 0.5, γ1 = 10−3, β1 =
10−3 (T = (3.57± 0.05)· 103). LAL: η= 10−4 (T = 61± 21).
eLAL: η= 2 · 10−3, λ0 = 30, λ1 = 5 · 10−3 (T = 190± 40).
Data Availability. The code and scripts for the tests reported
in this paper have been deposited at https://gitlab.com/bocconi-
artlab/TreeCommitteeFBP.jl.
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