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Abstract
We propose a novel framework for the economic assessment of environmental policy. Our main point of departure from exist-
ing work is the adoption of a satisficing, as opposed to optimizing, modeling approach. Along these lines, we place primary 
emphasis on the extent to which different policies meet a set of goals at a specific future date instead of their performance 
vis-a-vis some intertemporal objective function. Consistent to the nature of environmental policymaking, our model takes 
explicit account of model uncertainty. To this end, the decision criterion we propose is an analog of the well-known success-
probability criterion adapted to settings characterized by model uncertainty. We apply our criterion to the climate-change 
context and the probability distributions constructed by Drouet et al. (2015) linking carbon budgets to future consumption. 
Insights from computational geometry facilitate computations considerably and allow for the efficient application of the 
model in high-dimensional settings.
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1 Introduction

Policy makers want direct answers to simple questions, yet 
such demands are frequently at odds with the complexity of 
economic analysis and forecasting. The economic assess-
ment of environmental policy, an enterprise often beset by 
multiple layers of uncertainty, provides a salient case in 
point.

To fix ideas, consider the setting of climate-change pol-
icy. The economics of climate change are characterized by 
two fundamental challenges. First, there is deep uncertainty 
regarding the dynamic response of the climate to emissions, 
the damages higher temperatures will cause to economic 
activity, and the costs of climate-change mitigation and 
adaptation. The uncertainty surrounding these crucial mod-
eling inputs falls under the category of model uncertainty 

(Marinacci  [1]), meaning that it cannot be captured by 
unique Bayesian priors. Second, there is strong disagree-
ment regarding the underlying ethical objective that poli-
cies should strive to meet. These are manifested in vigor-
ous debates regarding the functional form of the objective 
function, its coefficients of intertemporal substitution and 
risk aversion, and the magnitude of future discount rates 
(for a particularly vehement exchange between two eminent 
economists see Roemer [2, 3] and Dasgupta [4, 5]). Prefer-
ences over such parameter values tend to reflect different 
fundamental ethical stances. As illustrated by the Roemer-
Dasgupta conflict, adjudicating between them is a matter of 
subjective judgment and/or political debate that cannot be 
resolved via empirical analysis.

Despite these difficulties, the current paper rigorously 
engages with policy makers’ concerns for clarity and sim-
plicity. It does so by posing the following question, ver-
sions of which recur in the global negotiations regarding 
climate change: Given the deep uncertainty surrounding 
environmental decision making, which policy ensures that 
adverse future impacts are avoided with highest confidence? 
To address this question, we adopt a so-called satisfic-
ing, as opposed to optimizing, modeling framework. First 
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introduced by Herbert Simon in the nineteen-fifties [6–8], 
satisficing models assume that people reason in terms of 
meeting a goal (or, alternatively, respecting a constraint), 
not of optimizing some objective.1 Over the years, they 
have been shown to hold significant descriptive power [9] 
as well as normative appeal [10–12]. The specific decision-
making criterion we propose can be viewed as an analog 
of the well-known success-probability criterion [10, 11] 
adapted to settings characterized by model uncertainty. The 
uncertainty sets that form the backbone of our analysis are 
the convex hulls of probability distributions that are relevant 
to our setting, a choice that is suitable for our practical pur-
poses and often discussed in the theoretical literature (e.g., 
Ahn [13], Olszewski [14], Danan et al. [15]). We exploit 
results from computational geometry [16, 17] to propose an 
efficient method of exactly computing the value of this deci-
sion criterion. Under certain assumptions on the constraint 
set that render it a convex polytope, our geometric technique 
can accommodate high-dimensional problem domains and 
multiple goals and indicators. While our focus is on the envi-
ronmental setting, we emphasize that the decision criterion 
that we employ, i.e., a success-probability criterion account-
ing for model uncertainty, is completely general and can 
be applied to any context of decision-making under model 
uncertainty.

In the paper’s numerical section, we apply our theoretical 
model to data by Drouet et al. [18]. Combining comprehen-
sive data from the most recent IPCC AR5 reports with a 
novel statistical framework, these authors derived a range 
of plausible probabilistic estimates connecting carbon budg-
ets to climate-change impacts given latest scientific knowl-
edge. These differing estimates correspond to different, but 
plausible, assumptions regarding mitigation costs, climate 
dynamics, and climate damages. As such, they reflect the 
multiplicity of expert opinion on these issues, embodying 
the model uncertainty alluded to earlier. The main, tenta-
tive, result which emerges from our analysis is the superior 
performance of middle-of-the-road carbon budgets in con-
taining future consumption losses to non-catastrophic levels 
with high probability. We note that we are wary of drawing 
policy implications from this numerical exercise; instead, 
we view its primary function as a proof of concept for the 
proposed decision-making criterion.

Related work in environmental economics has applied 
satisficing concepts to dynamic models of sustainable 
resource management. De Lara and Martinet  [19] pro-
posed a stochastic, dynamic-satisficing (referred to also as 

“stochastic viability”) framework for resource management 
and computed optimal control rules under an extensive set 
of monotonicity assumptions on dynamics and constraints. 
Beyond its adoption of a satisficing as opposed to optimizing 
framework2 , a distinctive feature of their model is its focus 
on multiple criteria of economic and environmental perfor-
mance. Martinet [20] and Doyen and Martinet [21] made an 
explicit connection between stochastic-viability models and 
sustainability concepts such as the maximin criterion. Doyen 
et al. [22] and Martinet et al. [23] applied similar ideas to a 
setting of sustainable fishery management. In the stochastic 
component of this work, emphasis was placed on calculating 
the probability of different policies respecting the various 
sustainability constraints. Where applicable, this was done 
via Monte Carlo simulation.

A well-known methodology for dealing with model 
uncertainty in a satisficing framework is Robust Decision 
Making (RDM), developed by researchers in the RAND 
Corporation (Lempert et  al  [24, 25]). RDM proposes a 
systematic, simulation-based procedure of exploring the 
implications of many plausible models and synthesizing 
the resulting information. In particular,“...Rather than using 
computer models and data as predictive tools, the [RDM] 
approach runs models myriad times to stress test proposed 
decisions against a wide range of plausible futures. Analysts 
then use visualization and statistical analysis of the result-
ing large database of model runs to help decision-makers 
identify the key features that distinguish those futures in 
which their plans meet and miss their goals...” (Lempert [26] 
page 25). The key goal of RDM is to identify strategies that 
perform well across a range of plausible modeling assump-
tions. RDM is a mature methodology that has been applied 
in many settings, including climate change policy [27].

Our work differs from the previous literature in substan-
tive ways. First, as regards its relation to the stochastic via-
bility literature, our model accounts for model uncertainty by 
considering multiple probability distributions that link pol-
icy choices to future economic and environmental outcomes. 
This contrasts with [19–23] who incorporate stochasticity 
but do not take model uncertainty into account. Another 
important difference in this context involves our work’s 
focus on one-shot future goals (e.g., sustainability guaran-
tees for the year 2100) as opposed to dynamic constraints 
in optimal-control settings. Finally, unlike both stochastic 
viability and RDM, our work does not rely on simulation 
as a tool for calculating success probabilities, as it exploits 
the problem’s structure to provide exact numbers for these 
probabilities. Along related lines, the geometric techniques 
we employ allow us to efficiently study the implications of 

1 “Evidently, organisms adapt well enough to satisfice; they do not, 
in general, optimize...a satisficing path [is] a path that will permit sat-
isfaction at some specified level of all its needs.” Simon [7]. We thank 
a referee for bringing this quote to our attention.

2 Another good example of this link between classical satisficing and 
viability is Karacaoglu et al. [39].



A Satisficing Framework for Environmental Policy Under Model Uncertainty  

1 3

an (uncountably) infinite set of plausible probability distri-
butions linking current policies to future impacts.

The paper is organized as follows. Section 2 introduces 
the model and formally defines the decision-making crite-
rion we adopt. Section 3 applies the model to climate-change 
data by Drouet et al [18]. Section 4 concludes and an Appen-
dix collects all Figures and supplementary analyses.

2  Theoretical Model

The theoretical model that is presented in this section is cast 
in terms of the climate-change application. Thus, model 
parameters, variables, and probability distributions refer 
directly to the climate-change context. This is done for the 
sake of convenience and clarity and results in no loss of 
generality.

The model’s decision variable is the carbon budget, 
which, for the purposes of the current study, is defined 
as cumulative CO2 emissions over the period 2010-2100, 
indexed by b. Carbon budgets enjoy favor within the cli-
mate-modeling community for their robust statistical rela-
tion to global warming [28, 29] and clear translation into 
policy  [30]. We elaborate more on carbon budgets and 
their time horizon in Section 3, which presents the model’s 
numerical application.

There are m = 1, 2, ...,M different models linking carbon 
budgets to future consumption, and we denote this set of 
models by M . Conditional on carbon budget b, model m 
implies a probability distribution �m

t
(⋅|b) on relative con-

sumption losses in year t compared to a world in which there 
are no climate damages. Collecting these distributions across 
models, we define the set3

summarizing the uncertainty of future consumption losses 
conditional on carbon budget b, as captured by all available 
models.

Convex hulls. In the analysis we pursue, we go beyond 
set Πb by considering not only the distributions that make 
it up, but also the set of all their convex combinations. That 
is, for each carbon budget b we introduce and focus on the 
convex hull of Πb , which we denote by CHb . Formally,

We assume that the set CHb encapsulates the entire universe 
of uncertain beliefs regarding the effect of carbon budget 

(1)Πb ≡ {�m(⋅|b) ∶ m ∈ M},

(2)CHb ≡

{
M∑

m=1

�m�
m(⋅|b) ∶ � ≥ 0,

M∑

m=1

�m = 1

}
.

b on future consumption losses. Is this a sensible choice? 
An oblique way of addressing this question is to imagine 
examples in which the consideration of convex combina-
tions is problematic. Such examples tend to involve cases in 
which there is some prior knowledge restricting the range 
of the “true” distribution. For instance, suppose we wish to 
make a decision on the basis of our shower’s temperature. 
There are two experts, one of which claims that the water is 
freezing and the other that it is boiling hot. Suppose, further, 
that we know that one of the two experts must be correct 
(this may be because our water mixer is broken and unable 
to modulate between the two extremes). In this case, there 
is really no point in considering the convex combinations of 
the experts’ beliefs. It would suffice to simply perform our 
analysis with these single two distributions and any extra 
information would simply serve to muddy the water.

Do the socio-economic effects of climate-change policy 
fall into the above category? We do not see how they could. 
Probabilistic projections of consumption losses are such that 
no expert (or model, or set of assumptions) is expected to 
be exactly “right.” Like most questions in social science, the 
economic impact of carbon budgets on future consumption 
patterns cannot be neatly summarized with unique probabil-
ity distributions, even if the latter are updated over time with 
Bayesian methods. Instead, it seems reasonable to assume 
that the truth lies in some middle-of-the-road estimate that 
splits the difference between the various existing probabilis-
tic models. If we accept this proposition, then it makes sense 
to consider the convex hull of all probability distributions as 
defining a probabilistic “realm of the possible” that can be 
used to guide decision-making.4

A satisficing framework. A recurring feature of climate-
change negotiations is policymakers’ reluctance to engage 
with traditional economic analysis. The intertemporal opti-
mization models used by economists are deemed esoteric 
and overly dependent on assumptions that laymen cannot 
fully grasp. In addition, the false sense of determinism that 
a single optimal solution provides may be a source of well-
justified suspicion. Still, as alluded to in the Introduction, 
policymakers seek simplicity. In the context of our paper’s 
focus on carbon budgets as instruments for climate change 
policy, we translate this need into the following question:

Q1: If carbon budget b is chosen, is the probability 
that future consumption losses are no greater than L% 
at least p?

3 Since the analysis will concentrate on year 2100, in what follows 
we omit the subscript t.

4 Note that such polyhedral uncertainty sets are often encountered in 
the decision-theoretic literature (e.g., Olszewski [14], Danan et al. [15]) 
and its applications to environmental policy (Athanassoglou and 
Bosetti [40], Danan et al. [15]).
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In climate negotiations, policymakers tend to gravitate 
towards this kind of goal-oriented mindset when weighing 
the relative merits of different policies. Indeed, the much 
vaunted 2 ◦ C target is an example of a non-optimized goal 
policymakers seek to meet. It satisfies some requirements on 
the prevention of major natural disasters, but certainly it is 
not the result of any conscious optimization effort.

For any given distribution of future consumption losses, 
we can definitely answer the above question with a simple 
yes or no. In this case, Q1 is analogous to asking whether 
the p-quantile of the distribution of future consumption 
losses (conditional on carbon budget b) is at least L.5 Such 
clarity is impossible in an environment of model uncer-
tainty where multiple distributions of future consumption 
losses conditional on b need to be taken into account. This 
means that the preceding question must be modified to 
reflect probabilistic ambiguity. We propose the following 
adaptation:

Q2: If carbon budget b is chosen, what proportion of 
distributions in CHb keep future consumption losses to 
at most L% with probability at least p?

The parameters L and p are real numbers satisfying 
L ∈ [0, 100] and p ∈ [0, 1].

Put differently, we are interested in the proportion of dis-
tributions within CHb whose p-quantiles do not exceed L. As 
we are focusing on proportions, we are implicitly assigning 
equal weight to all the distributions in CHb . In the parlance 
of Bayesian statistics, we are assigning a uniform prior on 
all the distributions of CHb.

Let us now add some formalism to make the above a lit-
tle more precise. We focus on future consumption losses 
with respect to a world without any climate change dam-
ages. This is clearly a continuous random variable with 
support [0, 1]. For tractability, we discretize consumption 
losses in intervals of length 1/I where I is a natural num-
ber. Let ΔI−1 denote the (I − 1)-dimensional simplex, i.e., 
ΔI−1 = {� ∈ ℜI ∶ � ≥ 0,

∑I

i=1
�(i) = 1} . Given a distribu-

tion � ∈ ΔI−1 , let �(i) denote the probability of a consump-
tion loss of i% . Then, the set of distributions satisfying the 
sustainability requirement outlined above is given by the 
following expression:

(3)

Π(L, p) =

{
� ∈ ℜ

I ∶ � ≥ 0,

I∑

i=1

�(i) = 1,
∑

i≤L

�(i) ≥ p

}
.

The intersection of CHb with Π(L, p) , denoted by CHb(L, p) , 
includes all the distributions of CHb whose p-quantiles do 
not exceed L. Formally, it is given by:

With the above definitions and Eqs. (2) and (4) in place, we 
assume that the performance of a carbon budget b is meas-
ured by the following ratio:

where Vol denotes volume in I-dimensional space.
Thus, given a carbon budget b, the quantity Vp

L
(b) calcu-

lates the proportion of distributions belonging to CHb that 
ensure consumption losses of no more than L% with prob-
ability at least p. (Put differently, the quantity Vp

L
(b) calcu-

lates the proportion of distributions belonging to CHb whose 
p-quantiles do not exceed L). The greater this quantity is the 
better, for any choice of L and p.

2.1  Computation

Granting that criterion Vp

L
 provides a sound basis for com-

paring alternative carbon budgets, is it computationally 
tractable? In engaging with this question, it is immediately 
clear that the high-dimensional integrals in Eq. (5) pose a 
formidable challenge. The usual way of proceeding is via 
approximations based on Monte Carlo simulation. This 
approach, however, can be both computationally costly as 
well as inaccurate, especially when working in high-dimen-
sional settings such as ours.6

We thus take a different approach that draws on results 
from computational geometry (Bueler et al. [16]). This ena-
bles us to efficiently calculate the exact value of Vp

L
(b) , with-

out resorting to any approximations whatsoever. The key 
trick is to exploit the uncertainty sets’ CHb and CHb(L, p) 
polyhedral structure and reduce the computation of Eq. (5) 
to a smaller problem, which in turn can be tackled by stand-
ard volume-computation algorithms. Essential to this result 
is the linearity of the constraint in Eq. (3).

To this end, suppose that I ≥ M , i.e., that the dimension 
of the consumption space is greater than the number of 
models. This is an innocuous assumption since consump-
tion losses are a continuous variable, typically discretized in 
intervals of (arbitrarily) small length (e.g., intervals of 1%), 

(4)CHb(L, p) ≡

{
� ∈ ℜ

I ∶ � ∈ CHb,
∑

i≤L

�(i) ≥ p

}
.

(5)V
p

L
(b) ≡

∫
ℜI

{� ∈ CHb(L,P)}d�

∫
ℜI

≡
Vol(CHb(L, p))

Vol(CHb)
,

6 Any meaningful discretization of consumption losses—a continu-
ous variable—will be high-dimensional.

5 It is worth noting the extremely close relationship of loss quantiles 
to Value-At-Risk (VaR), a risk measure that is ubiquitous in finance. 
Given a random variable X of losses related to a risky position, 
VaR

�
(X) is equal to the 1 − �-quantile of X.
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and the number of climate models is generally no more than 
10 or 20.7 Define the I ×M matrix (the �i(⋅|b) ’s are implic-
itly assumed to be column vectors)

collecting all the distributions in set Pb . We assume the 
matrix �b has full column rank, i.e., that the elements of 
Πb are linearly independent (if this is not the case, we drop 
one of the linearly dependent distributions at random and 
continue). Let us define now the linear transformation 
Tb ∶ ℜM

↦ ℜI , where

Now, consider the sets

Clearly, CHb and CHb(L, p) are equal to the images under Tb 
of Λ and Λb(L, p) , respectively.8 Since matrix �b is assumed 
to have full column rank, elementary linear algebra implies:

As a result, Eqs. (6)-(7) yield

This is very good news because it means that the problem’s 
dimensionality has been reduced from I, typically a large 
number, to M, the number of different models. Since 
Λ = ΔM−1 , where ΔM−1 denotes the (M − 1)-dimensional 
simplex, we have Vol(Λ) =

√
M

(M−1)!
 . Furthermore, we can use 

the equality constraints in Λ and Λb(L, p) to eliminate a vari-
able and reduce their dimension to M − 1 . After this elimina-
tion, the denominator of Eq. (8) becomes 1

(M−1)!
 . Conversely, 

we can compute the value of the numerator using insights 
from computational geometry and volume computation (see 

�b ≡
[
�
1(⋅|b),�2(⋅|b), ...,�M(⋅|b)

]

Tb(x) = �b ⋅ x =

M∑

m=1

�
m(⋅|b)xm.

Λ =

{
� ∈ ℜ

M ∶ � ≥ 0,

M∑

m=1

�m = 1

}
,

Λb(L, p) =

{
� ∈ ℜ

M ∶ � ∈ Λ,

M∑

m=1

�m

(
∑

i≤L

�
m(i|b)

)
≥ p

}
.

(6)Vol(CHb) =

√
det[��

b
⋅�b] Vol(Λ)

(7)Vol(CHb(L, p))) =

√
det[��

b
⋅�b] Vol(Λb(L, p)).

(8)V
p

L
(b) =

Vol(Λb(L, p))

Vol(Λ)
.

Bueler et al. [16]). In this paper’s numerical exercise, we use 
an efficient Matlab implementation of state-of-the-art vol-
ume computation algorithms due to Herceg et al. [17].

2.2  Extensions

The power and efficiency of the volume-computation algo-
rithms we employ mean that the decision-making criterion 
of Eq. (5) can be extended in a number of meaningful direc-
tions. In particular, the following enhancements can be made 
to the basic model of Section 2: 

 (i) multiple linear (in � ) constraints. For instance, we 
could add to set CHb(L, p) a constraint imposing that 
the expected value of future consumption losses not 
exceed some limit. Analogously, we could include 
similar bounds on higher moments of future con-
sumption losses.9 In addition, if we had data on the 
distribution of consumption across and within coun-
tries, we could have used them to impose “equity” 
requirements of various types. As long as the addi-
tional constraints are linear in � , the underlying 
structure of the problem does not change. We can 
perform a similar reduction in the problem’s dimen-
sionality as in Eq. (8) and subsequently use the same 
algorithm as before to calculate volumes.

 (ii) multiple indicators. For example, staying within the 
climate-change setting, we could consider not only 
probability distributions on future consumption but 
also on pure temperature increase. Setting bounds on 
the latter could be considered a sort of “ecological” 
constraint, similar in spirit to the ones considered in 
the stochastic viability literature (e.g., [19, 20, 23]). 
Such an operation would increase the problem’s 
dimensionality considerably, but it can be addressed, 
so long as the total number of distributions across 
indicators is not excessive.

 (iii) weighting function on different pdfs. We could expand 
the model by introducing a weighting function for the 
pdfs in CHb that captures a decision-maker’s confi-
dence in the various models. Suppose we denoted 
such a weighting function by f (⋅) . Then, the decision 
criterion of Eq. (5) becomes 

V
p

L
(b) =

∫
ℜI

1{� ∈ CHb(L, p)} f (�)d�

∫
ℜI

1{� ∈ CHb} f (�)d�
.

7 If for some reason we wanted to impose M > I (so that our problem 
is effectively already low-dimensional), we would proceed directly 
without reducing Eq. (5) to Eq. (8).
8 Note how 

∑
i≤L

�∑M

m=1
�
m
�
m(i�b)

�
=
∑M

m=1
�
m

�∑
i≤L �

m(i�b)
�
.

9 Note that moment constraints can be made linear by raising both 
sides of the inequality to the corresponding inverse power.
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 In contrast to (i) and (ii), this extension to the model 
poses formidable conceptual and computational chal-
lenges. On the conceptual side, there is little consen-
sus on how to come up with a rigorous, theoretically 
grounded way of explicitly weighting the various cli-
mate-economy models and the estimates they produce. 
Indeed, with regard to the specific climate application 
in our paper, the choice of mitigation costs (bottom-up 
or top-down), and especially the functional form of 
the damage function (quadratic, exponential, or sextic) 
cannot be adjudicated by current data. This means that 
there is no clear way we can weight the probabilis-
tic models that are derived from these assumptions. 
On the technical side, the introduction of a weighting 
function would significantly complicate the compu-
tation of the decision criterion. This is because we 
can no longer use algorithms of volume computation 
and would instead need to tackle the computation of 
multidimensional integrals across convex polytopes 
–a much harder problem. Along similar lines, it is not 
clear how we would be able to reduce the problem’s 
dimensionality from I to M, where we to stray from the 
volume computation framework.

2.3  Discussion

The decision-making criterion of Eq. (5) is a particular kind of 
satisficing criterion adapted to a setting of model uncertainty. 
The goal that decision-makers want to meet (or, alternatively, 
the constraint they want to satisfy) is that of ensuring that the 
p-quantile of consumption losses does not exceed a threshold 
L. As such, it is similar to satisficing measures that focus on so-
called success probabilities [10–12].10 In our setting, a success 
occurs if the distribution’s p-quantile is smaller than L. Adapted 
to an environment with multiple probability distributions, we 
are interested in the proportion of such “virtuous” probability 
distributions that a particular carbon budget induces. Ultimately 
wish to choose a carbon budget that maximizes this propor-
tion. In addition, this criterion can be viewed as an approximate 
special case of the one proposed and axiomatized by Ahn [13].

How can we actually use the criterion of Eq. (5) in the 
selection of policy? Answering this question implies the 
choice of a L − p combination, or at the very least a range of 
such combinations, on which to apply the Vp

L
 criterion. Select-

ing such a L − p combination in a structured, non ad hoc way, 
is not obvious. If we are lucky, robustness standards of this 
sort could be dictated by law or custom. In their absence, 
it becomes incumbent on the decision-maker to develop a 
way of ordering policies on the basis of their performance 

vis-a-vis the criterion of Eq. (5) across a range of plausible 
L and p. This is reminiscent of the approach adopted in the 
Robust Decision-Making literature (Lempert et al. [24]).

A different framework for dealing with probabilistic 
bounds of the sort explored in this paper can be found in the 
literature on stochastic programming and chance-constrained 
optimization (Shapiro et al. [31]). Chance-constrained opti-
mization (CCO) is characterized by optimization problems 
with linear objectives and constraints that are expressed as 
probabilistic bounds (Erdogan and Iyengar [32]). Portfolio 
optimization problems with constraints involving VaR bounds 
are classic examples of CCO. Despite its intuitive nature, the 
applicability of CCO has been hindered by the fact that fea-
sible regions of CCO problems will rarely satisfy convexity. 
For this reason, the literature has largely focused on develop-
ing tractable approximations based on constraint sampling 
and statistical learning techniques. Some progress along these 
lines has also been achieved in the more challenging case 
of ambiguous CCO, wherein the probabilistic constraints are 
subject to model uncertainty (Erdogan and Iyengar [32]).

3  Application

In this section, we apply the decision-theoretic criterion of 
Eq. (5) to climate-change data from Drouet et al. [18]. Using 
the most recent modeling output from the three IPCC AR5 
working groups, Drouet et al. developed a novel statistical 
framework to derive a set of probability distributions linking 
carbon budgets to future damages, consumption, and wel-
fare. These probability distributions are built on the basis of 
different (but plausible) modeling assumptions regarding (i) 
mitigation costs, (ii) temperature dynamics, and (iii) climate-
related damages. For the purposes of our analysis, we dis-
regard uncertainty in temperature dynamics and retain six 
of Drouet et al. [18] modeling assumptions corresponding 
to the different combinations of mitigation costs (top-down 
and bottom-up) and climate damages (quadratic, exponen-
tial, and sextic damage function).11 We do so because we 
find that the latter two factors account for a much greater 
proportion of the variation in 2100 consumption levels.

In the present paper, we draw from the part of Drouet et al. 
analysis that connects carbon budgets to consumption losses 
in year 2100. Consumption losses are defined as (percent-
age) per-capita consumption reductions relative to a hypo-
thetical baseline in which there is both no climate policy and 
no climate-related damages. The latter scenario represents 
an idealized world in which climate change is harmless and 

11 Specifically, looking at Section S12 of Drouet et al. supplementary 
information, we assume temperature is fixed to “climate-all” and con-
sider all combinations of {mitigation-BU, mitigation-TD} and {dam-
age sextic, damage quadratic, damage exponential}.

10 Its consideration of quantiles is also somewhat reminiscent of the 
quantile-maximization model of Rostek [41].



A Satisficing Framework for Environmental Policy Under Model Uncertainty  

1 3

no limitations are imposed on emissions. The notion of per 
capita consumption that we are using is defined in the second 
page of the Methods section of Drouet et al. [18]. This formu-
lation is standard in the climate-change economics literature.

At this point, one may legitimately call into question the 
length of the model’s time horizon and the decision to focus 
on consumption losses so far into the future. Let us address 
these concerns. Our work, like many other papers in the litera-
ture, focuses on year 2100 for two main, interrelated reasons. 
First, considering the entire twenty-first century is compelling 
from a policy standpoint, as the Paris climate agreement aims 
to ”keep a global temperature rise this century well below 2 
degrees Celsius above pre-industrial levels.” Second, cumu-
lative emissions until 2100 are considered to be a robust sta-
tistical indicator of temperature increase, regardless of the 
exact trajectory that is taken to arrive at the 2100 cumulative 
amount (Meinshausen et al. [28], Steinacher et al. [29]).12

Indeed, a substantial number of papers that study the  
socioeconomic effects of climate change use the entire 
twenty-first century as their time frame and frequently focus 
on changes in GDP at year 2100. Notable recent examples 
that provide country-level estimates for per capita GDP 
losses in year 2100 include Burke, Hsiang and Miguel [33] 
and Burke, Davis and Diffenbaugh [34]. Other papers that 
also focus on the entire twenty-first century are Ricke et al. 
[35], for the computation of country-specific social cost of 
carbon, and Ueckerdt et al. [36].

Consistent with the range of carbon budgets examined by 
Drouet et al., we examine nine carbon budgets ranging from 
1000 to 5000 GtCO2 in increments of 500. A carbon budget of 
1000 GtCO2 represents the adoption of an extremely stringent 
policy that rapidly accomplishes a complete transition from 
fossil fuels to renewable energy sources. Conversely, a carbon 
budget of 5000 GtCO2 represents a business-as-usual energy tra-
jectory that takes no special measures to reduce fossil-fuel use.13

We start by focusing on 2100 global consumption 
losses that are between 5 and 20 percent, i.e., we consider 
L ∈ [5, 20] . Losses in this range are considered very grave, 
to the extent that they are comparable to major economic 
calamities such as the Great Recession of 2008 and the Great 
Depression of the United States in the 1930’s. As such, policy 

makers should seek to avoid them with high probability, which 
is why we focus on high values for p, namely p ∈ [.8, 1].

Figure 1 summarizes the value of Vp

L
 for this range of L and 

p for the nine carbon budgets under consideration. A clear pat-
tern emerges. High carbon budgets (especially those equaling 
or exceeding 4000 GtCO2) do uniformly worse for all values 
of L and p. The best-performing carbon budget is among the 
middle-of-the-road choices, ranging from 2000 to 3000 GtCO2.

Table 1 provides additional evidence of this finding. It com-
pares the performance of three carbon budgets (1000-3000-
5000 GtCO2 ), representing stringent, “medium,” and business-
as-usual climate policies, across a range of L and p. It becomes 
clear that a medium carbon budget uniformly outperforms the 
two extremes, occasionally significantly so. In fact, for all the 
L − p combinations appearing in Table 1, it is the highest-per-
forming carbon budget among the nine examined (oftentimes 
uniquely so). This is because its middle-of-the-road approach 
guards against consumption losses that are due both to high 
mitigation costs and high climate damages. The differences 
can occasionally be striking: consider for instance L = 10 and 
p = .9 . Here, a medium carbon budget does exceedingly well, 
as 96% of all pdfs in CH3000 manage to contain losses at 10% 
with probability at least .9. The corresponding figures for the 
very stringent and business-as-usual policies are 0 and 7%, 
respectively. Finally, it should be mentioned, even though it 
does not appear in Table, that a carbon budget of 2500 GtCO2 is 
always at least the second-best choice after 3000 GtCO2 (occa-
sionally tying for first), for these combinations of L and p.

Next, we investigate these nine carbon budgets’ potential of 
meeting stronger guarantees on consumption losses. In particu-
lar, we zero in on losses ranging from 1 to 5 percent. Containing 
losses to such modest levels would represent a very good out-
come for the world. Yet, current estimates suggest it may be too 
late to attain, at least with a reasonable degree of confidence.

Figure 2 depicts the relevant results, and Table 2 summa-
rizes a set of corresponding Vp

L
 values for the same three carbon 

budgets (very stringent, medium, and business-as-usual) men-
tioned before. The patterns previously observed in Fig. 1 are 

Table 1  
[
V
p

L
(1000 GtCO2),V

p

L
(3000 GtCO2),V

p

L
(5000 GtCO2)

]
 evalu-

ated at different levels of L and p (truncated at two significant digits). 
A medium carbon budget of 3000 GtCO2 uniformly outperforms its 
very stringent (1000 GtCO2 ) and business-as-usual (5000 GtCO2 ) 
counterparts. Moreover, business-as-usual is by far the worst option

L ⧵ p .80 .85 .90 .95 .99

5 [0, .01, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
10 [1,1,.63] [.66, 1, 

.32]
[0, .96, 

.07]
[0, .29, 0] [0, 0, 0]

15 [1, 1, 1] [1, 1, .91] [1,1,.58] [.32, 1, 
.12]

[0, .28, 0]

20 [1, 1, 1] [1, 1, 1] [1, 1, .96] [1, 1, .46] [0, 1, 0]
25 [1, 1, 1] [1, 1, 1] [1, 1, 1] [1, 1, .82] [.45, 1, .03]

12 To be clear, the cited studies find that (distinct) emissions trajec-
tories that have the same cumulative emissions in year 2100 tend to 
imply similar levels of warming for year 2100.
13 By way of comparison, cumulative emissions from 1850 up to 
and including 2017 stood at roughly 1540 GtCO

2
 (see https ://www.

globa lcarb onpro ject.org/carbo nbudg et/18/highl ights .htm). A graph 
of the entire trajectory of global cumulative emissions, including the 
relative contributions of different regions, can be found at https :// 
ourwo rldin data.org/graph er/cumul ative -co2-emiss ions-regio n? 
stack Mode=absol ute.

https://www.globalcarbonproject.org/carbonbudget/18/highlights.htm
https://www.globalcarbonproject.org/carbonbudget/18/highlights.htm
https://ourworldindata.org/grapher/cumulative-co2-emissions-region?stackMode=absolute
https://ourworldindata.org/grapher/cumulative-co2-emissions-region?stackMode=absolute
https://ourworldindata.org/grapher/cumulative-co2-emissions-region?stackMode=absolute
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still present in Fig. 2. It is evident that middle-of-the-road car-
bon budgets (2000-3000 GtCO2) offer the best chance of con-
taining consumption losses to modest levels. The only excep-
tion to this statement applies to very low damages. For example, 
in Table 2 we see that a little more than a fifth of the pdfs in CHb 
for b = 1000 GTCO2 imply losses of L ≤ 1 with probability at 
least .05, whereas no other carbon budget achieves losses this 
low with probability at least .05. That said, p = .05 is a low 
probability offering little insurance against such losses, so it 
would be wise not to make too much of this fact.

Relation to expected maxmin utility. A prominent decision-
theoretic framework for choice under model uncertainty is 
that of maxmin expected utility (Gilboa and Schmeidler [37]). 
According to this criterion, a policy is preferred to another if 
and only if it has higher minimum expected utility (across the 
set of possible distributions). In the context of our application, 
a carbon budget is preferred to another if and only it has lower 
maximum expected consumption losses in year 2100 across 
the six pdfs of Drouet et al. [18].

Table 3 lists expected consumption losses in year 2100 
across all combinations of carbon budgets and probability 
distributions of Drouet et al [18]. Maximum expected con-
sumption losses (across the six pdfs of Drouet et al) for each 
carbon budget are denoted in Table’s last column. The car-
bon budget that minimizes such maximum expected losses 
is 2000 GtCO2 , with 2500 GtCO2 and 3000 GtCO2 closely 
behind it. In all three cases, the pdf which maximizes con-
sumption losses is the one corresponding to sextic damages 
and top-down abatement costs. We conclude that the min-
max expected loss criterion yields results that are broadly in 
line with those of our framework: middle-of-the-road carbon 

budgets, lying within the 2000-3000 GtCO2 range, do better 
than their more extreme counterparts. As the minmax crite-
rion leads to a complete ordering of carbon budgets, we are 
also able to say that among those medium carbon budgets 
2000 GtCO2 does slightly better than 2500 GtCO2 , which in 
turn does slightly better than 3000 GtCO2.

3.1  Comments

It is worth briefly reiterating the distinguishing features of our 
approach with respect to the rest of the literature. First of all, by 
focusing squarely on bounding future consumption losses, we 
adopt a satisficing, as opposed to optimizing, analytic frame-
work. This allows us to avoid all the attendant controversy 
of the optimization setting regarding the selection and justi-
fication of discount rates, rates of intertemporal substitution, 
coefficients of risk aversion, objective functional forms, and 
so on. Instead of solving a complex problem of intertemporal 
optimization, our primary goal is to assess the potential of 
different policies to stave off heavy consumption losses. This 
is, in a sense, similar to focusing on the goal of avoiding worst-
case future outcomes without caring about how that task is 
accomplished across time. The suitability of such a modeling 
framework is debatable, but at the very least it offers a fresh 
perspective on the assessment of environmental policy.

Second, we explicitly take into account model uncer-
tainty regarding the damages higher temperatures will 
cause to economic activity, and the costs of climate-change 
mitigation. This means that we can consider many plausible 
modeling choices simultaneously while remaining agnos-
tic on their relative likelihood. By taking this multiplicity 

Table 2  
[
V
p

L
(1000 GtCO2),V

p

L
(3000 GtCO2),V

p

L
(5000 GtCO2)

]
 evaluated at different levels of L and p (truncated at two significant digits)

L ⧵ p .05 .10 .20 .40 .60 .80

1 [.21, 0, 0] [0, 0, 0] [0, 0, 0] [0,0,0] [0, 0, 0] [0, 0, 0]
2 [.95, 1, .92] [.72, .80, .32] [.10, .03, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
3 [1, 1, 1] [1, 1, 1] [.95, 1, .59] [.02, .10, 0] [0, 0, 0] [0, 0, 0]
4 [1, 1, 1] [1, 1, 1] [1, 1, 1] [.87, .98, .25] [0, .10, 0] [0, 0, 0]
5 [1, 1, 1] [1, 1, 1] [1, 1, 1] [1, 1, .93] [.22, .87, .03]] [0, .01, 0]

Table 3  ELi(b) denotes 
expected consumption losses in 
year 2100 given carbon budget 
b and pdf i of Drouet et al. [18]. 
Pdfs 1-2-3 (resp., 4-5-6) reflect 
top-down (resp., bottom-up) 
mitigation costs. Pdfs 1-4 reflect 
quadratic, pdfs 2-5 exponential, 
and pdfs 3-6 sextic damages. 
For each carbon budget, 
maximum expected damages 
are indicated in bold

b (GtCO2) EL1(b) EL2(b) EL3(b) EL4(b) EL5(b) EL6(b) maxi ELi(b)

1000 0.0732   0.0662 0.0715 0.0504 0.0444 0.0485 0.0732
1500 0.0664   0.0599 0.0661 0.0435 0.0367 0.0435 0.0664
2000 0.0612 0.0540 0.0631   0.0392 0.0322 0.0415 0.0631
2500 0.0578 0.0505 0.0638   0.0369 0.0302 0.0426 0.0638
3000 0.0540 0.0485 0.0655 0.0362 0.0304 0.0470 0.0655
3500 0.0526 0.0473 0.0716   0.0367 0.0316 0.0563 0.0716
4000 0.0508 0.0476 0.0812   0.0390 0.0353 0.0699 0.0812
4500 0.0517 0.0510 0.0970   0.0428 0.0419 0.0878 0.0970
5000 0.0529 0.0571 0.1202   0.0467 0.0515 0.1162 0.1202
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of models into account in a systematic way, we are able to 
obtain a more robust idea of whether a given carbon budget 
will be able to keep consumption losses within an accept-
able threshold.

The combination of the above two elements in a way 
that does not rely on simulation is novel to the litera-
ture, as discussed in the Introduction. With regard to the 
actual results that our framework yields in the numerical 
example, we want to stress that caution is in order. This 
is because these results could plausibly change, where 
we have to consider additional modeling choices lead-
ing to a broader set of pdfs linking carbon budgets to 
economic outcomes and/or adopt an altogether different, 
though equally defensible, long-term goal. Instead, we 
view the primary importance of the numerical exercise 
as a proof of concept for the analytic framework as laid 
out in Section 2. Furthermore, it is worth reiterating that 
results from computational geometry allow us to obtain 
exact results for the value of the criterion of Eq.  (5), 
without resorting to Monte Carlo simulations of uncer-
tain accuracy. Along these lines, in Fig. 3 of section A1 
of the Appendix we show how Monte Carlo simulation 
with Latin-hypercube sampling may sometimes provide 
incorrect estimates.

4  Conclusion

This paper has presented a model for decision-making 
under model uncertainty. Its main conceptual departure 
from existing work is the integration of ideas from the 
literature on satisficing (Simon [6, 8]) into an ambiguity-
aversion framework. The decision criterion that we pro-
pose is an adaptation of the success-probability criterion 
(Castagnoli and LiCalzi [11]) to a setting of non-unique 
probability distributions linking actions to consequences. 
The integration of the model-uncertainty and satisficing 
literatures in a non-simulation-based framework is novel14, 
as is the application of results from computational geom-
etry to obtain precise results. On the latter front, these 
computational techniques mean that we do not have to use 
Monte Carlo simulations of dubious accuracy to approxi-
mate our results.

We apply our decision criterion to a set of distributions 
derived by Drouet et al. [18] linking carbon budgets to future 
consumption losses. The main finding of this numerical 
study is the superior performance of medium carbon budg-
ets in preventing grave consumption losses with high prob-
ability. These results, however, should be taken with a grain 

of salt, and we caution against drawing overconfident policy 
implications. Instead, we view the main contribution of the 
empirical exercise as a proof of concept for the proposed 
theoretical framework.

Along similar lines, it is worth emphasizing that focus-
ing only on the effects of climate change in year 2100 intro-
duces important limitations to the present study. We high-
light two which are particularly prominent. First, ignoring 
emissions dynamics means that we cannot comment 
explicitly on the intertemporal tradeoffs that are inherent 
in climate policy. For example, an ambitious carbon budget 
might imply emission cuts for the current generations that 
are politically infeasible or borderline intractable from a 
technological standpoint. Such information would be worth 
taking into account in a systematic way as we assess the 
desirability of different carbon budgets on the basis of their 
effects on year 2100. To some extent, these kinds of inter-
temporal considerations are already captured by the pdfs of 
Drouet et al. [18] but a clearer picture would be very useful.

Second, by disregarding the exact way in which we arrive at 
2100 cumulative emissions targets, our model is not acknowl-
edging that trajectories with similar carbon budgets may imply 
different levels of climate risk. This is due to the fact that cli-
mate dynamics are nonlinear and potentially rife with tipping 
points and dangerous thresholds that, once exceeded, can pro-
voke runaway climate change and irreversible damage (e.g., 
shutdown of the thermohaline circulation, permafrost melt). 
In the setting of our model, there might be more than one 
way of achieving a middle-of-the-road carbon budget, with 
a significant portion of them being quite dangerous. When 
one takes such information into account, it may suggest that a 
lower carbon budget should be chosen, even though the deci-
sion criterion of the model may say otherwise. Once again, 
the pdfs of Drouet et al. [18] do implicitly take these risks into 
account, but a more transparent treatment would be desirable.

Fruitful avenues for future research would seek to enhance 
both the theory as well as the applied section of the paper. On 
the theoretical side, it would be interesting to develop a way 
of ordering policies on the basis of their performance vis-a-vis 
the criterion of Eq. (5) across a range of L and p. It is impor-
tant to consider such ranges because it may often be hard to 
justify the choice of a unique specific L − p combination to 
apply the criterion to. Here, methods from the social-choice 
literature on voting (see, e.g., [38] for an application regarding 
indices of multidimensional welfare) could be useful. On the 
applied side, follow-up work could seek to improve and enrich 
the set of probability distributions linking carbon budgets to 
future economic and social conditions. Along these lines, var-
ious tipping points (relating to, e.g., permafrost melt, ecosys-
tem collapse, thresholds of tropical deforestation, etc) could 
be better taken into account. Finally, it would be interesting 
to apply the satisficing framework to alternative long-term 
policy goals that go beyond bounding consumption losses.

14 Though we remind the reader that our model can be viewed as a 
special case of the more general framework of Ahn [13].
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Appendix

Comparison with Monte Carlo Simulation Based 
on Latin Hypercube Sampling

It is reasonable to ask how our geometric technique compares 
to the results of an equivalent simulation exercise. To answer 
this question, we performed the exact same computations by 
using Latin Hypercube sampling to sample 10000 points in the 
five-dimensional simplex. This leads to roughly similar run-
ning time. Fig. 3 summarizes the relevant results. Comparing 
it to Fig. 1, we notice qualitatively similar patterns regarding 
the superior performance of medium carbon budgets and poor 

performance of business-as-usual scenarios. However, we also 
see that the simulation-based method does not fully capture 
the true range of the Vp

L
 criterion, as it tends to expand the area 

of the L − p graphs with binary 0-1 values. This imprecision is 
relatively harmless in the current example but could become 
problematic when there is greater divergence between the pdfs 
whose convex hull we are considering. Higher dimensionality 
could also pose significant hurdles for a pure simulation-based 
approach due to the “curse of dimensionality.” 

Figures

Fig. 1  Applying criterion Vp

L
(b) to nine carbon budgets using the data of Drouet et al. [18], in the range L ∈ [5, 20] and p ∈ [0.8, 1]
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Fig. 2  Applying criterion Vp

L
(b) to nine carbon budgets using the data of Drouet et al. [18], in the range L ∈ [1, 5] and p ∈ (0, 1]
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Fig. 3  Monte Carlo simulation estimates (using Latin Hypercube 
sampling) of Vp

L
 for nine carbon budgets using the data of Drouet 

et  al.  [18], in the range L ∈ [5, 20] and p ∈ [0.8, 1] . Compared to 

Figure  1, some of the true uncertainty has been suppressed, with a 
greater proportion of 0-1 values appearing in the graphs
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