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Abstract

Random vectors of measures are the main building block to a major portion of Bayesian
nonparametric models. The introduction of infinite–dimensional parameter spaces guar-
antees notable flexibility and generality to the models but makes their treatment and
interpretation more demanding. To overcome these issues we seek a deep understanding
of infinite–dimensional random objects and their role in modeling complex dependence
structures in the data. Comparisons with baseline models play a major role in the
learning process and are expressed through the introduction of suitable distances. In
particular, we define a distance between the laws of random vectors of measures that
builds on the Wasserstein distance and combines intuitive geometric properties with
analytical tractability. This is first used to evaluate approximation errors in posterior
sampling schemes and then culminates in the definition of a new principled and non
model–specific measure of dependence for partial exchangeability, going beyond current
measures of linear dependence. The study of dependence is complemented by the in-
vestigation of asymptotic properties for partially exchangeable mixture models from a
frequentist perspective. We extend Schwartz theory to a multisample framework by re-
lying on natural distances between vectors of densities and leverage it to find optimal
contraction rates for a wide class of hierarchical models.
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3.7.2 Clayton–Lévy copula . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.3 GM–dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Measuring dependence between random hazards . . . . . . . . . . . . . . 63
3.9 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Posterior contraction rates of mixtures over hierarchical processes 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Preliminaries and main result . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Contraction rates for partially exchangeable sequences . . . . . . . . . . . 85
4.4 Boosted hierarchical Dirichlet process . . . . . . . . . . . . . . . . . . . . 88
4.5 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Wasserstein distances 98

Bibliography 99

iv



List of Symbols

d
= Equal in distribution
⇠ P Distributed according to P 2 PX
iid⇠ P Independently and identically distributed according to P 2 PX
ind⇠ Pi Independent and distributed according to Pi 2 PX
A \B Relative complement set
) Weak convergence
a.s. Almost surely
an ⇣ bn Equal order of magnitude, i.e. anb�1

n ! K 6= 0 as n ! +1
an ⌧ bn Smaller order of magnitude, i.e. anb�1

n ! 0 as n ! +1
an . bn (an & bn) Smaller (greater) up to a proportionality constant
↵
[n] Ascending factorial, i.e. ↵[n] = ↵(↵+ 1), . . . , (↵+ n� 1)

| · | Cardinality of a set or absolute value of a real number
k · k Euclidean norm on Rd

k · kp Lp norm
f ⇤ g Convolution
B(·) Borel sets of a topological space
Beta(↵,�) Beta distribution
Be(c,↵) Law of beta CRM of concentration parameter c > 0 and base

measure ↵ 2 M(X)
A

c Complement set
C⇥ Class of models with parameter space ⇥
CRM Completely random measure
CRV Completely random vector
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Introduction

The last fifty years have witnessed the rising popularity of Bayesian nonparametric
models in the statistics literature. Starting from the definition of Dirichlet process by
Ferguson (1973), the remarkable potential of introducing infinite–dimensional parameter
spaces in the Bayesian paradigm has been recognized and widely explored. The huge
increase in the flexibility and generality of the models allows to describe complex depen-
dence structures in the data, while at the same time providing a natural quantification
of uncertainty and incorporation of expert opinion. Together with the computational
advances of the last decades, this brought to an increasing di↵usion of Bayesian non-
parametric models also in applied fields.
Of course, the greater flexibility comes at a price, making the investigation of theo-
retical and inferential properties of the models more demanding. This applies to the
interpretation of the model, prior elicitation, posterior sampling, robustness and fre-
quentist properties, just to mention a few aspects. To address these matters one needs
a deep understanding of the inferential implications of using infinitely–dimensional ran-
dom objects, typically consisting in random vectors of measures, in the specification of
the model. In this thesis we pursue this goal with three leading principles: (i) measure
the impact of random vectors of measures on the inferential properties of the model with
numerical quantities, so to allow for meaningful comparisons between di↵erent specifica-
tions; (ii) find the analytical expression of such quantities by relying on the properties of
the most common random vectors of measures, such as the independence of increments
and the stick–breaking representations; (iii) gain insight on the properties of a complex
model by relating it to simpler and well–known ones. In the interest of quantifying and
ordering such relations (“x is more similar to z than y”) we address the challenging task
of introducing a distance between the laws of random vectors of measures.
We seek a distance that reflects a natural idea of similarity between distributions and
at the same time is analytically tractable, so that one may fruitfully use it to interpret
and tune the hyperparameters of the models. To our knowledge, this is the first work
that uses distances between (vectors of) random measures in this direction. Indeed, in
many cases one employs distances to understand the asymptotic behavior of a distribu-
tion, so that it su�ces to provide bounds that only capture the leading behavior and
typically hold up to asymptotically negligible constants. Another beaten road in more
applied settings is to approximate the distance between two distributions with the one
between the corresponding empirical distributions, whose convergence rates are widely

viii
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studied. In contrast, the analytical evaluation of distances is already very demanding
between random vectors in Rd. Moreover, in finite–dimensional contexts one usually
relies on isometric mappings between the space of distributions and suitable spaces of
measurable functions on R, usually realized through the density function, the cumulative
distribution function (cdf, typically when d = 1) or the characteristic function. This al-
lows to rephrase the distance between distributions in terms of the discrepancy between
measurable functions on R, which are typically more tractable and well–studied objects.
Moving from Rd to infinite–dimensional spaces, the task of evaluating a distance between
random objects becomes even harder, since their distribution is not characterized by a
measurable function in general. Indeed, the specification of the law follows more indirect
schemes, usually by relating to the collection of finite–dimensional projections through
uniqueness arguments, as in Kolmogorov’s Extension Theorem or Ionescu–Tulcea’s The-
orem. Even if we manage to evaluate a distance between finite–dimensional projections,
which as underlined is a di�cult task on its own, it is not clear how to put the informa-
tion together to obtain an overall distance between infinite–dimensional random objects.
In this scenario, focusing on random vectors of measures with independent increments
notably simplifies the final goal. Random measures with independent increments are
typically known as completely random measures (CRMs) and thus we refer to their
multi–dimensional extensions as completely random vectors (CRVs). The law of this
widely used class of random objects is characterized by a deterministic measure, termed
Lévy intensity, so that one may use discrepancies between measures to define a distance
between the corresponding CRVs, in a similar spirit to using densities or cdfs to build
distances between random variables. The main obstacle is that Lévy intensities are still
rather complex objects to treat, e.g. they may have infinite mass, and, more impor-
tantly, it is not immediate to understand how a variation of the Lévy intensity impacts
the distribution of the CRVs. There are two main roads that one can follow: (i) build
a distance in terms of the Lévy intensities putting its interpretability on the side; (ii)
define an interpretable distance based on the finite–dimensional projections and then
express it in terms of the underlying Lévy intensities for concrete evaluations. Since our
primary goal is to use the distance to gain insight on the model, (i) is not a flawless
path. On the other hand, (ii) seems particularly demanding, since the expression of the
density or cdf of the finite–dimensional projections is often not available in closed form.
Nonetheless, we manage to overcome these obstacles and build an interpretable and an-
alytically tractable distance by relying on the Wasserstein distance, whose intrinsically
geometric definition makes it an ideal choice for describing the similarity between distri-
butions. Historically, the rich structure of the Wasserstein distance has been object of
study in many branches of mathematics, including transport theory, partial di↵erential
equations and ergodic theory. Recently, its attractive theoretical properties have also
been supported by e�cient algorithms, leading to a renewed popularity both in Statistics
and in the related fields of Machine Learning and Optimization. From our perspective,
the Wasserstein distance has the further benefit of providing informative comparisons
between distributions with di↵erent support and without density. This property is not
shared by many other common distances and divergences as the total variation distance,
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the Hellinger distance or the Kullback–Leibler divergence.
With a tractable distance between CRVs at our disposal, we then deal with several
intriguing problems that arise in Bayesian nonparametrics. In Chapter 2 we use it to
quantify errors in approximate posterior sampling schemes for exchangeable time-to-
event data. Notable Bayesian nonparametric models in this context are built on CRMs,
which typically characterize both the prior and the posterior distribution. Sampling
infinite–dimensional random quantities is a hard task and clever approximations are
needed to provide fast and e↵ective solutions. Nonetheless, a precise quantification of
approximation errors is fundamental to guarantee their reliability, especially in terms of
their impact on the final object of inference, which usually consists in the hazard rate
or survival function.
The use of our distance is not confined to sampling schemes and in Chapter 3 we leverage
it to create a new measure of dependence for partially exchangeable models, chief result of
this thesis. Partial exchangeability is a natural generalization of exchangeability that has
drawn plenty of attention in the last two decades. Dependence between di↵erent groups
of exchangeable observations is flexibly modeled through the introduction of dependent
random probability measures, with suitable transformations of CRVs representing a nat-
ural and popular tool to define them. The amount of prior dependence between random
probabilities regulates the borrowing of information between groups and crucially im-
pacts on the final inference and prediction. In order to measure the dependence of a
model and compare di↵erent dependence structures for a principled prior elicitation,
current methods consist in pairwise measures of linear dependence. More specifically,
one resorts to the correlation between one–dimensional projections (Cor(P̃1(A), P̃2(A))
for each Borel set A), which is clearly not ideal for objects as random probability mea-
sures. In Chapter 3 we go beyond linearity and propose a new measure of dependence
in terms of closeness to the maximally dependent case, which corresponds to full ex-
changeability of the observations. The leading idea is to recast the problem in terms of
the underlying CRV and measure the dependence as the distance between this random
vector and the maximally dependent one in the same Fréchet class. This brings to the
first principled and non model–specific framework for measuring dependence in partially
exchangeable models. The intuitive notion of similarity stemming from the Wasserstein
distance is flanked by solid analytical tools. It should be stressed that the analytical
treatment of the Wasserstein distance on the Euclidean plane is a lively research topic on
its own, since a general expression for the optimal coupling is currently missing, making
the evaluation of the distance particularly demanding. We manage to solve this issue
in our particular domain of interest and then use the Lévy intensities to evaluate tight
bounds of the distance in many noteworthy models in the literature, providing a natural
framework for the quantification of dependence in terms of hyperparameters.
Another interesting and not much explored topic in partially exchangeable models is
the analysis of their frequentist properties, which provides an additional validation of
Bayesian models. Distances are still the most natural instrument to address these top-
ics, but with a very di↵erent flavor. Instead of comparing the laws of two infinitely–
dimensional random objects, we establish convergence results towards deterministic
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probability measures representing the frequentist truth. Thus it appears more natu-
ral to define a distance on the realizations of the random object rather than on its law,
which brings to a random quantification of discrepancy. In Chapter 4 we focus our at-
tention on partially exchangeable mixture models for multivariate density estimation for
di↵erent groups of observations, where the number of groups is fixed by the design of
the experiment. Our final purpose is to study the convergence rate of the random m-
dimensional vector of posterior densities to the true one with respect to natural distances
that combine the Hellinger distance with the `p distance in Rm. We accomplish this task
by extending Schwartz theory to partially exchangeable sequences, which is non–trivial
in the realistic scenario where the observations in each group grow at di↵erent rates. To
overcome this issue, the models are required to put su�cient mass around a reinforced
Kullback–Leibler neighborhood of the truth. We test the e�cacy of this procedure on
the boosted hierarchical Dirichlet process, a generalization of the hierarchical Dirichlet
process that accommodates for a faster growth of the number of discovered latent fea-
tures as the sample size increases. In this way, we provide a very general framework for
finding convergence rates for density estimation, which opens the way to the frequentist
validation of other notable dependent priors.

This thesis consists of four almost self-contained chapters and a brief appendix, where we
list some useful properties of the Wasserstein distances. After an introductory chapter,
the remaining ones contain the original results of the thesis. Catalano et al. (2020) is
based on the contents of Chapter 2 and Catalano et al. (2020+) on the ones of Chapter 3.
Chapter 4 has inspired a forthcoming work with Pierpaolo De Blasi, Antonio Lijoi and
Igor Prünster.

Chapter 1 introduces the theoretical framework of this thesis. We review some key
concepts in Bayesian nonparametrics, with particular emphasis on exchangeability, par-
tial exchangeability and completely random measures. The scope of this chapter is to
fix the notation and provide a common ground whom we will refer to in further chapters.

In Chapter 2 we look into Bayesian nonparametric models for exchangeable time-to-
event data. In particular, we focus on priors for the hazard rate function, a popular
choice being the kernel mixture with respect to a gamma random measure. Sampling
schemes are usually based on approximations of the underlying random measure, both
a priori and conditionally on the data. The main goal we pursue is the quantification
of approximation errors through the Wasserstein distance. Though easy to simulate,
the Wasserstein distance is generally di�cult to evaluate, strengthening the need for
tractable and informative bounds. Here we accomplish this task on the wider class of
completely random measures and specialize our results to the gamma random measure
and the related kernel mixtures. The techniques that we introduce yield upper and lower
bounds for the Wasserstein distance between hazard rates, cumulative hazard rates and
survival functions.

xi



Contents

In Chapter 3 we go beyond the exchangeability assumption. The proposal and study
of dependent Bayesian nonparametric models has been one of the most active research
lines in the last two decades, with random vectors of measures representing a natural
and popular tool to define them. Nonetheless a principled approach to understand and
quantify the associated dependence structure is still missing. In this chapter we devise
a general, and non model-specific, framework to achieve this task for random measure
based models, which consists in: (a) quantify dependence of a random vector of prob-
abilities in terms of closeness to exchangeability, which corresponds to the maximally
dependent coupling in the same Fréchet class, i.e. the comonotonic vector; (b) recast the
problem in terms of the underlying random measures (in the same Fréchet class) and
quantify the closeness to comonotonicity; (c) define a distance based on the Wasserstein
metric, which is ideally suited for spaces of measures, to measure the dependence in a
principled way. Several results, which represent the very first in the area, are obtained.
In particular, useful bounds in terms of the underlying Lévy intensities are derived rely-
ing on compound Poisson approximations. These are then specialized to popular models
in the Bayesian literature leading to interesting insights.

In Chapter 4 we stay in the domain of partial exchangeability and focus on infinite–
dimensional priors that place full support on absolutely continuous probabilities with
respect to a common measure, typically coinciding with the Lebesgue measure on Rd.
Despite these models being widely used in the Bayesian community, there are still many
open questions in terms of frequentist validation. In particular, we study the posterior
contraction rates for data distributions that are modeled as mixtures over the boosted
hierarchical Dirichlet process, a generalization of the hierarchical Dirichlet process that
accommodates for a faster growth of the number of discovered latent features as the sam-
ple size increases. By extending Schwartz theory to partially exchangeable sequences we
uncover the interesting behavior that posterior contraction rates depend on the relation
between the numbers of observations in di↵erent groups. If these are equal or at most
related in a polynomial fashion, we recover the minmax rates up to a logarithmic factor.
As the relation becomes exponential, the rates may deteriorate drastically.
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Chapter 1

Random measures in Bayesian

nonparametrics

The aim of this first chapter is to fix the notation and introduce the reader to some com-
mon instruments that will be used in further chapters. We point out that what follows
does not aim at being an exhaustive introduction to the field of Bayesian nonparametric
statistics nor its scopes. The point of view is the one that was found to introduce at
best the main contents of the thesis.

1.1 The Bayes–Laplace paradigm

Any statistical analysis begins with a collection of data x1, . . . , xn on some space X.
Whether one wants to take an informed decision or provide a deeper insight on their na-
ture, x1, . . . , xn are treated as instances (observations) of random variables X1, . . . , Xn

(observables). To this end, one typically endows X with a Borel �–algebra B(X) and
introduces a random vector (X1, . . . , Xn) : (⌦,⌃) ! (Xn

,B(Xn)), where (⌦,⌃,P) is
some unknown probability space and (Xn

,B(Xn)) is the n-fold product space with corre-
sponding product �-algebra. We denote by Pn the unknown distribution of the random
vector, i.e. (X1, . . . , Xn) ⇠ Pn 2 PXn , the space of probabilities on Xn. The statisti-
cal analysis then proceeds in two directions: the modeling consists in specifying a class
C⇥ = {Pn,✓ : ✓ 2 ⇥} ⇢ PXn which is considered a reasonable container for the unknown
distribution Pn; the inference consists in choosing and implementing a criterion to select
the element Pn,✓ of C⇥ that “best” represents Pn. We refer to the corresponding ✓ as
parameter of the model and underline how the parameter space ⇥ may always be em-
bedded in a subset of PXn .
In this thesis we focus on the Bayes–Laplace paradigm as a criterion for model selection.
We refer to Regazzini (1996) for an exhaustive exposition of this inferential framework,
which we only briefly describe. From now on we assume that both ⇥ and X are Polish
spaces. The Bayesian picks a probability ⇧ on the parameter space ⇥, the prior dis-
tribution of the parameter, and assumes that ✓ ⇠ ⇧. If every Pn,✓ 2 C⇥ is a regular
conditional probability for X1, . . . , Xn|✓, ⇧ and C⇥ may be used to define a probability

1



1.2. Exchangeability and de Finetti’s Theorem

P on ⇥⇥ Xn as follows:

P (A⇥B) =

Z

A

Pn,✓(B) d⇧(✓),

for any A ⇢ ⇥ and B ⇢ Xn measurable sets, so that (✓, X1, . . . , Xn) ⇠ P . The Bayesian
then performs statistical inference on the parameter by providing a version of the con-
ditional probability P (✓ 2 · |X1, . . . , Xn), the so–called posterior distribution, evaluated
on the observed values x1, . . . , xn. This entails that the Bayesian paradigm does not
provide a value for the parameter, but rather an entire distribution, allowing for the
evaluation of uncertainty around the estimate for ✓. Moreover, when the sequence of
observables is judged infinitely extendible, a class of consistent sequences {Pn,✓}n�1 of
regular conditional probabilities, together with a prior ⇧ for the parameter, may be used
to uniquely define a probability for (Xn)n�1 2 X1. Indeed by Kolmogorov’s Extension
Theorem, it su�ces to set for every n 2 N+ and every measurable A ⇢ Xn,

P((X1, . . . , Xn) 2 A) =

Z

⇥
Pn,✓(A) d⇧(✓).

It should be mentioned that some statisticians find it unorthodox to express a prior
opinion on a latent quantity. In the predictive approach to inference, on the other
hand, the interest shifts from the parameter ✓ to the predictive distribution P(Xn+1 2
·|X1, . . . , Xn). Indeed, by Ionescu Tulcea’s Theorem, a sequence of predictive distribu-
tions is su�cient to assign a law on (Xn)n�1, so that in principle the predictive approach
allows one not to specify a prior opinion for the parameter and to only focus on observ-
able quantities.
In this thesis we will focus on sequences that are judged infinitely extendible, so that
(X1, . . . , Xn) is considered as the projection on the first n coordinates of a sequence
(Xi)i�1 defined on X1. Most of our work stems from the notion of exchangeability, an
intuitive symmetry assumption on the distribution of the observables.

1.2 Exchangeability and de Finetti’s Theorem

The notion of exchangeability is a milestone in the probabilistic foundations of Bayesian
nonparametrics. Let Sn denote the finite symmetric group of order n, i.e. the group
of permutations of n objects. We point out that Sn acts in a natural way of N, by
permuting the first n numbers and acting as the identity on the remaining.

Definition 1. A sequence of random variables (Xi)i�1 is said to be exchangeable if for
every n and every � 2 Sn,

(Xi)i�1
d
= (X�(i))i�1,

where
d
= denotes the equality in distribution.

In a statistical analysis, the generality of the model and the feasibility of the inference
are typically complementary aspects. Thanks to de Finetti’s Representation Theorem
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(de Finetti, 1937), exchangeability stands out as a positive counterexample, combining
an intuitive assumption on the observables with tractability in the inference. In order to
state de Finetti’s Theorem, we recall that if X is a Polish space, the space of probabilities
PX is Polish as well with respect to the weak convergence. In particular, we endow PX
with the corresponding Borel �-algebra PX.

Theorem 1 (de Finetti’s Representation Theorem). Let X be a Polish space and let
(Xi)i�1 be an exchangeable sequence on X1. Then there exists a probability measure ⇧
on PX such that, for every n 2 N and every A1, . . . , An measurable subsets of X,

P(Xi 2 Ai for i = 1, . . . , n) =

Z

PX

nY

i=1

P (Ai) d⇧(P ). (1.1)

de Finetti’s Theorem provides a comprehensive way to specify the law of an exchangeable
sequence through the corresponding probability ⇧, which is usually referred to as the
de Finetti measure of the sequence. Many statistical analyses rephrase (1.1) in terms of
conditional independence with respect to a random probability P̃ : ⌦ ! PX:

X1, . . . , Xn|P̃
iid⇠ P̃ ; P̃ ⇠ ⇧.

It follows that under the single assumption of exchangeability the parameter space ⇥
reduces from a subset of PXn to a subset of PX. In the next section we discuss some
common specifications for the de Finetti measure ⇧.

1.3 The Dirichlet process

In order to perform Bayesian inference for an exchangeable sequence of observations,
thanks to de Finetti’s Theorem it su�ces to specify a prior distribution on PX, and
then find the posterior distribution through conditional probability. Until the 70’s the
treatment of priors with large support on PX was considered unfeasible and statisticians
typically resorted to parametric models, i.e. such that ⇥ ⇢ Rd. Then, Ferguson (1973)
came up with the Dirichlet process, a probability distribution with full weak support on
PX that initiated the branch of Bayesian nonparametrics and still underlies most current
developments in the field.

1.3.1 Definition

In order to introduce the Dirichlet process, we first recall the definition of its finite–
dimensional counterpart, the Dirichlet distribution on the simplex. For k 2 N \ {0, 1},
let Sk�1 = {(x1, . . . , xk) : mini xi � 0,

P
k

i=1 xi = 1} ⇢ Rk be the (k � 1)–dimensional
simplex and let ↵1, . . . ,↵k > 0. The Dirichlet distribution Dir(k,↵) of order k and
parameter ↵ = (↵1, . . . ,↵k) is a probability distribution on Sk defined by the following
density with respect to the Lebesgue measure L (Rk):

fk,↵(x1, . . . , xk) =
�(
P

k

i=1 ↵i)Q
k

i=1 �(↵i)
x
↵1
1 . . . x

↵k

k Sk�1(x1, . . . , xk),

3



1.3. The Dirichlet process

where � is the gamma function. Alternatively, if (X1, . . . , Xk) ⇠ Dir(k,↵), one can fix
Xk = 1 �

P
k�1
i=1 Xi and let (X1, . . . , Xk�1) have the following density with respect to

L (Rk�1):

gk,↵(x1, . . . , xk�1) =
�(
P

k

i=1 ↵i)Q
k

i=1 �(↵i)
x
↵1
1 . . . x

↵k�1

k�1

✓
1�

k�1X

i=1

xk�1

◆
↵k

Dk�1(x),

where Dk�1 = {(x1, . . . , xk�1) : mini xi � 0,
P

k�1
i=1 xi  1} ⇢ Rk�1 and x = (x1, . . . , xk�1).

Let now (⌦,⌃,P) be a measure space endowed with a �–algebra ⌃ and a probability
measure P. A random probability on a Polish space X is a measurable P̃ : (⌦,⌃,P) !
(PX,PX). In order to specify the law for a random probability measure, it may be help-
ful to express it in terms of a stochastic process with index set B(X), the Borel sets of X.
By Kolmogorov’s Extension Theorem, the probability law of (P̃ (A))A2B(X) is uniquely
determined by the law it attains on any finite collection of non–intersecting sets.

Definition 2. Let ↵ > 0 be a concentration parameter and P0 2 PX be a base probability
measure. The Dirichlet process with base measure ↵P0 is the only probability law on
PX that satisfies

(P̃ (A1), . . . , P̃ (An))
d
= Dir(n+ 1, (↵P0(A1), . . . ,↵P0(An),↵P0(A

⇤))),

for any collection of non–intersecting measurable sets A1, . . . , An such that A
⇤ = X \

[n

i=1Ai. We write P̃ ⇠ DP(↵, P0).

In order to give an interpretation to the parameters, we point out that if P̃ ⇠ DP(↵, P0),
then P̃ (A) ⇠ Beta(↵P0(A),↵P0(Ac)) for any measurable set A with complementary A

c

in X. It follows that

E(P̃ (A)) = P0(A); Var(P̃ (A)) =
P0(A)(1� P0(A))

↵+ 1
.

We may thus regard the base probability P0 as the mean of the process and ↵ as the
concentration of the distribution around P0. These interpretations play a fundamental
role in the prior elicitation when we use the Dirichlet process as de Finetti measure for
an exchangeable sequence of observations.

1.3.2 Properties

In this section we recall some fundamental features of the Dirichlet process in terms
of posterior conjugacy, predictive distribution and exchangeable partition probability
function. Together with the definition of Dirichlet process, Ferguson (1973) also provided
a closed form expression for the corresponding posterior distribution, which is conjugate
in the following sense.
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1.3. The Dirichlet process

Theorem 2. Let X be a Polish space and let (Xn)n�1 be an exchangeable sequence on

X1 with de Finetti measure DP(↵,P0), so that X1, . . . , Xn|P̃
iid⇠ P̃ ; P̃ ⇠ DP(↵,P0).

Then the posterior distribution P̃ |X1, . . . , Xn ⇠ DP(↵+ n,P⇤
0), where

P
⇤
0 =

↵

↵+ n
P0 +

1

↵+ n

nX

i=1

�Xi
, (1.2)

with �X the Dirac measure centered at X.

The previous theorem sheds light on some key properties of the use of the Dirichlet
process in statistics: as the number of observation increases, the mean estimate is a
weighted sum of the prior opinion and the empirical distribution. In the meantime, the
confidence on the mean estimate increases and, as the number of observations goes to
infinity, the posterior distribution contracts to the empirical process.
Thanks to the work of Blackwell & MacQueen (1973), we also have a characterization
of the predictive distribution, which is often addressed as generalized Pólya urn scheme
or Blackwell-MacQueen urn scheme.

Theorem 3. Let X be a Polish space and let (Xn)n�1 be an exchangeable sequence on

X1 with de Finetti measure DP(↵,P0), so that X1, . . . , Xn|P̃
iid⇠ P̃ ; P̃ ⇠ DP(↵,P0).

Then P
⇤
0 defined in (1.2) is the predictive distribution for Xn+1|X1, . . . , Xn.

The expression of P ⇤
0 highlights the almost–sure existence of ties between the observables

X1, . . . , Xn, due to the almost–sure discreteness of the Dirichlet process. Namely if
⇧ = DP(↵, P0),

⇧(P 2 PX : P is discrete) = 1.

One may use the ties between X1, . . . , Xn to obtain a random partition of the first n

numbers [n] = {1, . . . , n}, which plays a particularly important role in Bayesian non-
parametric clustering methods. At the same time, the exchangeable partition probabil-
ity function (Pitman, 1995) provides a simple expression for the predictive distribution,
which is often exploited in sampling algorithms. We give a very brief introduction to
these topics and refer to Pitman (2006) and Lijoi & Prünster (2010) for a complete treat-
ment of random partitions and their uses in Bayesian nonparametrics. We recall that
a partition of [n] is an unordered collection of disjoint non–empty sets C1, . . . , Ck ⇢ [n]
such that [n] = [k

i=1Ck. A random partition of [n] is a random object on the set of
all partitions of [n]. Given a sequence of random variables {Xi}in, one can define a
random partition of [n] by considering the random equivalence classes C̃1, . . . , C̃k of the
relation

i ⇠ j if and only if Xi = Xj .

Let n1, . . . , nk 2 N+ such that n1 + · · ·+ nk = n. We define the exchangeable partition
probability function (EPPF) of order n of an exchangeable sequence (Xn)n�1 as

p
(n)(n1, . . . , nk) = P(|C̃1| = n1, . . . , |C̃k| = nk),

where | · | indicates the cardinality of a set. When dealing with the Dirichlet process,
the EPPF comes in a very simple form and it coincides with Ewen’s sampling formula.
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Theorem 4. Let X be a Polish space and let (Xn)n�1 be an exchangeable sequence on

X1 with de Finetti measure DP(↵,P0), so that X1, . . . , Xn|P̃
iid⇠ P̃ ; P̃ ⇠ DP(↵,P0).

Then

p
(n)(n1, . . . , nk) =

↵
k

(↵)n

kY

i=1

(ni � 1)!,

where (↵)n = ↵(↵+ 1) . . . (↵+ n� 1).

1.3.3 Extensions

Though the Dirichlet process provides a very tractable infinite–dimensional prior, there
may be scenarios that require more flexibility in the induced posterior, predictive or
clustering distribution. Consequently, there have been extensive e↵orts to generalize the
Dirichlet process in order to obtain a wider range of updating schemes. The starting
points are typically the two most notable representations of the Dirichlet process, namely
as stick–breaking process and as normalized random measure. In this section we briefly
describe them.
We have introduced the Dirichlet process starting from its finite–dimensional distribu-
tions. An alternative compelling way to specify its law is through the residual allocation
model or stick–breaking representation, which highlights the almost surely discrete na-
ture of the process and turns out to be very convenient for sampling schemes. Let

Vi

iid⇠ Beta(1,↵) and define Wi = Vi

Q
i�1
j=1 Vj . If Zi

iid⇠ P0 independently from (Vi)i�1,
then Sethuraman (1994) proved that

+1X

i=1

Wi�Zi
⇠ DP(↵, P0).

Starting from this representation, one possible way of extending the Dirichlet process
is to assign di↵erent laws to the weights (Wi)i�1 and to the atoms (Zi)i�1. Following
Pitman (1995), one usually addresses as species sampling models those probability laws
whose atoms are iid and independent from the weights. A prominent prior in this class
is the Pitman–Yor process or two parameters Dirichlet process (Perman et al., 1992;
Pitman & Yor, 1997).

Definition 3. Let ↵ 2 [0, 1), ✓ > �↵ and P0 2 PX. Let Vi

ind⇠ Beta(1 � ↵, ✓ + i↵),

Wi = Vi

Q
i�1
j=1 Vj and Zi

iid⇠ P0 independently from (Vi)i�1. Then the Pitman–Yor process
is defined by

+1X

i=1

Wi�Zi
⇠ PY(↵, ✓, P0).

When ↵ = 0 one retrieves the Dirichlet process DP(✓, P0) as special case.
As already mentioned, the Dirichlet process may also be represented as the normal-
ization of a gamma random measure (Ferguson, 1973). This representation proves to
be particularly convenient for analytical computations and o↵ers a nourishing ground
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for many generalizations of the Dirichlet process. In order to properly define gamma
random measures and their extensions, in the next section we give a brief account on
completely random measures.

1.4 Completely random measures

Completely random measures are one of the main building blocks for defining infinite–
dimensional priors and performing Bayesian inference. In this section we revise some key
properties and dwell on those aspects that will play a dominant role in future sections.
For a complete account on the topic we refer to Lijoi & Prünster (2010).

1.4.1 Definition

Let MX denote the space of boundedly finite measures on X endowed with the weak]

topology, so that MX is a Polish space (Daley & Vere-Jones, 2002). We denote by MX
the corresponding Borel �-algebra. A random measure is a measurable function from
some probability space (⌦,⌃,P) to (MX,MX).

Definition 4. A random measure µ̃ is a completely random measure (CRM) if, given
a finite collection of pairwise disjoint bounded measurable sets {A1, · · · , An} of X, the
random variables µ̃(A1), · · · , µ̃(An) are mutually independent.

An important class of CRMs is given by Poisson random measures, which are the main
building block to all other CRMs. Let ⌫ be a measure on X. A CRM µ̃ is a Poisson
random measure of mean measure ⌫ if µ̃(B) has a Poisson distribution of parameter
⌫(B), for every measurable set B such that ⌫(B) < +1. We write µ̃ ⇠ PRM(⌫) and
point out that ⌫(B) = E(N (B)). Kingman (1967) proved that any CRM can be uniquely
represented as the sum of three independent components, µ+ µ̃f + µ̃, where µ is a fixed
measure on X, µ̃f is a discrete random measure with fixed atoms and µ̃ is an almost surely
discrete random measure without fixed atoms. In what follows we will focus on CRMs
µ̃ without fixed atoms, so that their distribution is uniquely determined by a Poisson
random measure. Indeed, Kingman (1967) proved that there exists N ⇠ PRM(⌫) such
that

µ̃(dy)
d
=

Z

R+
sN (ds, dy), (1.3)

where the mean measure ⌫ on R+ ⇥ X is such that for all x 2 X, ⌫(R+ ⇥ {x}) = 0, and
for all bounded measurable set A ⇢ X and ✏ > 0,

Z

A

Z

R+
min(✏, s) ⌫(ds, dy) < +1. (1.4)

We write µ̃ ⇠ CRM(⌫) and refer to ⌫ as the Lévy intensity of µ̃. In view of (1.3), the
probability distribution of µ̃ can be characterized through the Laplace functional

E
⇣
e
�

R
X f(y)µ̃(dy)

⌘
= exp

⇢
�
Z

R+⇥X
[1� e

�s f(y)]⌫(ds, dy)

�
(1.5)
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for all measurable functions f : X ! [0,+1).
We conclude by listing some important classes of CRMs that will be treated in this work:
the gamma, the beta and the generalized gamma CRM. We refer to Lijoi & Prünster
(2010) for an exhaustive account. A random measure µ̃ ⇠ Ga(b,↵) is a gamma CRM of
rate parameter b > 0 and base measure ↵ 2 M(X) if its Lévy intensity is

⌫(ds, dy) =
e
�sb

s
(0,+1)(s) ds↵(dy). (1.6)

With a slight abuse of notation we will sometimes refer to ↵ as the total mass of the
base measure, so that ↵(dy) = ↵P0(dy), where ↵ > 0 and P0 2 PX. We hope that the
role of ↵ will be clear from the context.
A random measure µ̃ ⇠ Be(c,↵) is a beta CRM of concentration parameter c > 0 and
base measure ↵ 2 M(X) if

⌫(ds, dy) =
c (1� s)c�1

s
(0,1)(s) ds↵(dy). (1.7)

A random measure µ̃ ⇠ GenGamma(b,�,↵) is a generalized gamma CRM of rate pa-
rameter b > 0, parameter � 2 [0, 1) and base measure ↵ 2 M(X) if

⌫(ds, dy) = s
�1��

e
�bs

ds↵(dy). (1.8)

1.4.2 Uses in Bayesian Nonparametrics

As mentioned in Section 1.3.3, CRMs can be used to define de Finetti priors through
normalization. Let µ̃ ⇠ CRM(⌫) such that 0 < µ̃(X) < +1 almost surely. Then one
defines a normalized random measure with independent increments as

P̃ (·) = µ̃(·)
µ̃(X) ⇠ NRMI(⌫).

We will often refer to such priors as normalized CRMs. The Bayesian inference associated
with these de Finetti priors has been proposed and studied in Regazzini et al. (2003). In
particular the authors prove that if (i) the integrability condition (1.4) holds for every
measurable A ⇢ X and (ii) for any measurable A ⇢ X and for any ✏ > 0, ⌫((0, ✏]⇥A) =
+1, then 0 < µ̃(X) < +1 almost surely. The latter condition is usually addressed to as
inifinite activity of the CRM. In particular, all the CRMs that we will treat within this
thesis will fulfill these standard requirements. This includes gamma random measures:
when µ̃ ⇠ Ga(b,↵P0), Ferguson (1973) proved that

µ̃(·)
µ̃(X) ⇠ DP(↵P0).

Other notable priors that are found through normalization include the normalized stable
process (Kingman, 1975), the normalized inverse–Gaussian process (Lijoi et al., 2005)
and the normalized generalized gamma process (Brix, 1999; Pitman, 2003).
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Normalized random measures with independent increments may be used as de Finetti
measures in the same spirit of Theorem 2, i.e.

X1, . . . , Xn|P̃
iid⇠ P̃ ; P̃ ⇠ ⇧, (1.9)

where ⇧ is the law of a random probability measure (James et al., 2006, 2009). On
the other hand, one can also specify the law of the de Finetti measure indirectly, by
modeling other characterizing quantities, such as the density function f̃(·). One of the
most popular models is the kernel mixture over a probability measure, which in this
context is referred to as mixing measure:

X1, . . . , Xn|P̃
iid⇠ f̃(t) =

Z

X
k(t|x) dP̃ (x); P̃ ⇠ ⇧. (1.10)

This model was first introduced for the Dirichlet process in Ferguson (1983) and Lo
(1984) and provides continuous estimates of the density, contrarily to (1.9). One down-
side is that one loses the closed form expression for the posterior distribution and must
content with e�cient algorithms to sample from it.
The use of CRMs in Bayesian nonparametrics is not confined to normalization. Indeed,
one often specifies the de Finetti measure through the survival function, the hazard
function or the cumulative hazards. The latter functions are particular appealing in the
context of survival analysis and reliability theory, where CRMs are frequently used as
main building block to specify the prior. For example, (Doksum, 1974) provided a con-
venient way to model the survival function S̃(·) through neutral to the right processes.
The author also showed that these may be characterized as

S̃(t) = e
�µ̃[t,+1)

,

for some CRM µ̃. Moreover, Hjort (1990) proposed a popular model for the cumulative
hazards H̃(t) by using a beta random measure µ̃,

H̃(t) = µ̃(0, t].

As for hazard functions, CRMs may be conveniently used to build kernel mixture models,

h̃(t) =

Z

X
k(t|x) dµ̃(x). (1.11)

This model was initially proposed with a gamma random measure and a specific kernel
by Dykstra & Laud (1981), and has been further generalized to generic kernels (Lo &
Weng, 1989) and to generic CRMs (James, 2005).

1.4.3 Approximation

In the previous subsection we have listed some popular models that entail making infer-
ence on a class C of random measures. Since these infinite–dimensional objects are often
di�cult to treat, both analytically and computationally, in many cases one restricts to
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an approximating class C⇡. The restriction is usually justified with density arguments,
typically in terms of weak convergence (Ishwaran & James, 2004; Trippa & Favaro, 2012;
Argiento et al., 2016), so that for every µ̃ 2 C there exists an approximating sequence
µ̃n 2 C⇡ such that µ̃n(A) converges to µ̃(A) for every Borel set A, as n ! +1. Nonethe-
less, with a very few exceptions (Ishwaran & James, 2001; Arbel et al., 2019; Campbell
et al., 2019), there is no extensive analysis on how to judge the quality of such approxi-
mations. Indeed, the convergence result alone does not give further guidance on how to
choose the truncation level n in practice, leading to possibly consistent errors. In order
to quantify the approximation error one needs to evaluate

d(µ̃n(A), µ̃(A)),

for each n, where d is a discrepancy measure. In Chapter 2 we will thoroughly address
this matter, by taking d equal to the Wasserstein distance. In particular, we will apply
our results to a posterior sampling scheme for the hazard model in (1.11), establishing
truncation levels based on a precise quantification of the approximation errors.

1.5 Partial exchangeability

Exchangeability may be regarded as a notion of homogeneity between a group of ob-
servables. In presence of more than one group of observations, one may often be willing
to assume homogeneity within each group, though keeping some heterogeneity across
di↵erent groups. In this context, partial exchangeability arises as an extremely natural
generalization of exchangeability, as first introduced in de Finetti (1938).

Definition 5. Let m 2 N+. A sequence of random variables {(Xi,j)j�1 : i = 1, . . . ,m} is
partially exchangeable if for every (n1, . . . , nm) 2 Nm and every (�1, . . . ,�m) 2

Q
m

i=1 Sni
,

{(Xi,j)j�1 : i = 1, . . . ,m} d
= {(Xi,�i(j))j�1 : i = 1, . . . ,m}.

A generalization of de Finetti’s Representation Theorem states that for any partially
exchangeable sequence {(Xi,j)j�1 : i = 1, . . . ,m} there exists a probability measure ⇧m

on Pm

X such that for every ni 2 N and every measurable Ai ⇢ Xni for i = 1, . . . ,m,

P(\m

i=1{(Xi,1, . . . , Xi,ni
) 2 Ai}) =

Z

P(m)
X

mY

i=1

P
(ni)
i

(Ai) d⇧m(P1, . . . , Pm),

where P (n) =
Q

n

i=1 P is the n–fold product probability on Xn with marginal distributions
equal to P 2 PX. From a statistical perspective, this characterization is usually rewritten
in terms of a dependent random probabilities:

(Xi,1, . . . , Xi,ni
)mi=1|(P̃1, . . . , P̃m) ⇠ P̃

(n1)
1 ⇥ · · ·⇥ P̃

(nm)
m ;

(P̃1, . . . , P̃m) ⇠ ⇧m.
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It follows that the law of a partially exchangeable sequence is characterized by the
law of a random vector of probabilities. In particular, we point out that when the
random probabilities are equal almost surely, we recover the exchangeability assumption.
The next section summarizes some popular methods for building dependent random
probabilities.

1.6 Dependent random probabilities

Though the first contribution dates to Cifarelli & Regazzini (1978), most proposals
for laws of dependent random probabilities have followed the two seminal papers of
MacEachern (1999, 2000). Recent years have seen an outburst of models which deal
with this inferential problem in creative ways, providing for both analytical and compu-
tational tools. In this section we will try to give a brief overview of the subject that by no
means aims at being complete. In particular, we focus on models for finite–dimensional
vectors of random probabilities, which cover inference for a finite number of groups of
observations, i.e. in presence of categorical covariates. This leaves out significant work
on spatial or time covariates, which o↵er an extremely interesting line of research but
are not particularly related to the topics of this work. We refer to Quintana et al. (2020)
for a recent review.

In Section 1.4.2 we have pointed out how the law of a random probability may be
specified directly on P̃ or by resorting to characterizing quantities, such as density,
survival function, cumulative hazards and hazard function. Consequently, when defining
dependent random probabilities one can chose any of the previous frameworks. When
dealing with priors on P̃ or on mixture densities as in (1.10), the starting point is usually
the Dirichlet process: as we shall see, most dependent structures were first defined for
the Dirichlet process and then extended to other priors. In Section 1.3.3 we have seen
how the Dirichlet process may be expressed through the stick–breaking representation
and as a normalized CRM, which brings to a breakdown between models for dependent
Dirichlet processes. Indeed, one can identify dependence models that rely on the stick–
breaking construction, placing the dependence between weights or atoms, and methods
that rely on the representation as normalized random measure, defining the dependence
at the level of the underlying CRMs. Since the two representations are equivalent,
one can sometimes express the same dependence structure in both ways, leveraging the
advantages of each representation: the computational advantages of the first and the
analytic properties of the second. Before moving to the main examples, we further
mention that the models for dependent CRMs may be also used in contexts other than
normalization, playing a prominent role in Bayesian nonparametric models for dependent
survival functions, hazards and cumulative hazards.
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1.6.1 Hierarchical processes

The hierarchical process is arguably one of the most notable tools to introduce depen-
dence between random probability measures. The underlying idea is to assume that the
random measures are exchangeable with a de Finetti measure that has full support on
some specific class of priors on the space of probabilities PX, such as the Dirichlet pro-
cesses. Let ↵,↵⇤

> 0 and let P ⇤ 2 PX. (P̃1, . . . , P̃m) ⇠ HDP(↵,↵⇤
, P

⇤) is a Hierarchical
Dirichlet process if

P̃1, . . . , P̃m|P̃ ⇠ DP(↵, P̃ );

P̃ ⇠ DP(↵⇤
, P

⇤).

This dependence structure was first introduced in Teh et al. (2006) starting from the
stick–breaking characterization and subsequently expressed in terms of normalization
in Camerlenghi et al. (2019b). In particular, the authors extended the definition of
hierarchical process to CRMs. As a side e↵ect, they were also able to study many
distributional properties of the hierarchical Pitman–Yor process, which we define in a
natural way as follows. Let ↵,↵⇤ 2 [0, 1), ✓, ✓⇤ > 0 and P

⇤ 2 PX. Then (P̃1, . . . , P̃m) ⇠
HPY(↵, ✓,↵⇤

, ✓
⇤
, P

⇤) if

P̃1, . . . , P̃m|P̃ ⇠ PY(↵, ✓, P̃ );

P̃ ⇠ PY(↵⇤
, ✓

⇤
, P

⇤).

Hierarchical CRMs have also been used in the context of survival analysis in Camerlenghi
et al. (2020).

1.6.2 Nested processes

Another popular way to model exchangeable random probabilities is through the nested
process, where the de Finetti measure is distributed as a Dirichlet process whose base
space is the space of probabilities PX. Let ↵,↵⇤

> 0 and let P
⇤ 2 PX. (P̃1, . . . , P̃m) ⇠

NDP(↵,↵⇤
, P

⇤) is a nested Dirichlet process if

P̃1, . . . , P̃m|⇧̃ ⇠ ⇧̃;

⇧̃ ⇠ DP(↵,DP(↵⇤
, P

⇤)).

This model was first defined in Rodrguez et al. (2008) for the stick–breaking represen-
tation and then extended to normalized CRMs in Camerlenghi et al. (2019a).

1.6.3 Additive processes

Additive dependence structures model the nonparametric priors as convex sums of a
common component and an idiosyncratic one. Let ↵ > 0,P0 2 PX and �1, . . . ,�m 2 [0, 1].
Then (P̃1, . . . , P̃m) is an additive Dirichlet process if

P̃i = �iQ̃0 + (1� �i)Q̃i;

Q̃0, Q̃1, . . . , Q̃n

iid⇠ DP(↵, P0).

12



1.6. Dependent random probabilities

This model was first proposed by Müller et al. (2004) for the stick–breaking represen-
tation and then extended in Lijoi et al. (2014) to normalized random measures. In
particular, the authors define additive CRMs by introducing the dependence at the level
of the Poisson processes, following an additive dependence structure proposed in Gri�ths
& Milne (1978). For this reason, additive CRMs are often referred to as GM-dependent.
These were then used in Lijoi & Nipoti (2014) to model dependent hazards.

1.6.4 Compound random measures

Many common procedures introduce dependence between CRMs by relying on random
vectors µ̃ = (µ̃1, . . . , µ̃m) with jointly independent increments, i.e. such that given
a finite collection of disjoint bounded Borel sets {A1, · · · , An}, the random elements
{µ̃(A1), . . . , µ̃(An)} are independent. When this condition holds, we refer to µ̃ as a
completely random vector (CRV). In particular this entails that the marginal random
measures of a CRV are completely random, though we point out that the converse is
not necessarily true: a random vector of measures whose marginals are CRMs is not
necessarily a CRV. The independence of the increments guarantees that if µ̃ has no
fixed atoms, there exists a Poisson random measure N on Rm

+ ⇥ X such that for every
A 2 X ,

µ̃(A)
d
=

Z

Rm

+⇥A

sN (ds1, . . . , dsm, dx), (1.12)

where s = (s1, . . . , sm). Thus, in order to specify a law for dependent CRMs it su�ces
to provide a multivariate Lévy intensity ⌫(ds1, . . . , dsm, dx) = E(N (ds1, . . . , dsm, dx)).
Among these methods, compound random measures stand out as a particularly tractable
approach that was first introduced in Gri�n & Leisen (2017), though a special case may
be already be found in Leisen et al. (2013). The multivariate Lévy intensity is modeled
as

⌫(ds1, . . . , dsm, dx) = ↵P0(dx)

Z

R+

1

u2
h

✓
s1

u
, . . . ,

sm

u

◆
⌫
⇤(du) ds1 . . . dsm,

where ↵ > 0, P0 2 PX, h : Rm ! R+ is a density function and ↵⌫
⇤(du)P0(dx) is a

Lévy intensity on R+ ⇥R. Adequate choices for ⌫⇤ and h bring to di↵erent dependence
structures and marginal CRMs, including gamma, generalized gamma, beta and sta-
ble random measures. Moreover the authors also provided a series representation that
highlights how compound random measures have dependent jumps and share the same
atoms. These have been used both in the context of density estimation through normal-
ization (Gri�n & Leisen, 2018) and in the context of survival analysis (Riva Palacio &
Leisen, 2018).

1.6.5 Lévy copulae

Lévy copulae provide another e↵ective way to model multivariate Lévy intensities. As
copulae can be seen as a way to separate the marginal components of a bivariate dis-
tribution from its dependence structure, so do their generalization to Lévy intensities,

13



1.7. Measuring dependence

conceived in Tankov (2003) and Cont & Tankov (2004) to build dependent Lévy pro-
cesses. For simplicity, we focus on 2–dimensional copulae, though the definition and
the main results may be extended to a generic m � 2. A Lévy copula is a function
c : [0,+1]2 ! [0,+1] such that

1. 8u 2 [0,+1], c(u, 0) = c(0, u) = 0;

2. 8u 2 [0,+1], c(+1, u) = c(u,+1) = u;

3. 8 0  u1  u2, 0  v1  v2,
c(u2, v2)� c(u2, v1)� c(u1, v2) + c(u1, v1) � 0.

Given a Lévy intensity on R2
+ ⇥ X, ⌫(ds1, ds2, A) =

R
X A(x)⌫(ds1, ds2, dx) is a Lévy

intensity on R2
+ for any measurable A ⇢ X. We indicate its marginal tail integrals by

U1,A(t) = ⌫([t,+1) ⇥ R+ ⇥ A) and U2,A(t) = ⌫(R+ ⇥ [t,+1) ⇥ A). An analogue of
Sklar’s theorem states that there exists a Lévy copula c : [0,+1]2 ! [0,+1] such that

⌫((t1,+1)⇥ (t2,+1)⇥A) = c(U1,A(t1), U2,A(t2)).

When the Lévy copula and the tail integrals are su�ciently smooth, ⌫(ds1, ds2, A) is
recovered by

⌫(ds1, ds2, A) =
@
2

@u1@u2
c(u1, u2)

��
U1,A(s1),U2,A(s2)

⌫1(ds1, A) ⌫2(ds2, A). (1.13)

Lévy copulae are a useful instrument to build multivariate Lévy intensities with a close
look at their dependence structure. They have been used in the context of survival
analysis in (Epifani & Lijoi, 2010) and through normalization in Leisen & Lijoi (2011).

1.7 Measuring dependence

In the previous section we have underlined how many popular models for partially ex-
changeable observables are based on dependent random measures. The amount of depen-
dence plays a fundamental role in the learning mechanism, allowing for di↵erent degrees
of borrowing of information across groups. One can identify two extreme prior assump-
tions: on one hand when the random measures are independent, so are the groups of
observables, so that there will be no sharing of information between them; on the other
hand, when the random measures are almost surely equal, the observations are exchange-
able and there is maximal borrowing of strength across groups. A precise elicitation of
the prior dependence structure is crucial for these models, since it has a great impact on
the learning mechanism and the posterior inference. Interestingly, a principled approach
to dependence is still missing is this context and one usually considers measures of set–
wise linear correlation, which in presence of two groups amounts to cor(µ̃1(A), µ̃2(A)),
for any Borel set A. In Chapter 3 we propose a way to go beyond linear correlation, by
introducing a non-model specific quantification of dependence in terms of closeness to
exchangeability. To this end, we recall that exchangeability is recovered whenever the
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1.7. Measuring dependence

random measures are equal almost surely, i.e. µ̃1 = µ̃2 a.s. We will refer to this vector
as comonotonic and denote it as µ̃co. We then propose to measure the dependence of a
vector µ̃ = (µ̃1, µ̃2) as a distance d(µ̃, µ̃co) from the comonotonic vector. We will build
d on the Wasserstein distance because it is ideally suited for measuring discrepancy be-
tween random quantities and, more specifically, it allows for an informative comparison
between distributions with di↵erent support. This will then be used for quantifying the
dependence structure in noteworthy Bayesian nonparametric models, including additive
structures (1.6.3), compound random measures (1.6.4) and Lévy copulae (1.6.5).
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Chapter 2

Approximation of Bayesian

models for time-to-event data

Random measures are the key ingredient for e↵ective nonparametric Bayesian model-
ing of time-to-event data. This chapter focuses on priors for the hazard rate function,
a popular choice being the kernel mixture with respect to a gamma random measure.
Sampling schemes are usually based on approximations of the underlying random mea-
sure, both a priori and conditionally on the data. Our main goal is the quantification of
approximation errors through the Wasserstein distance. Though easy to simulate, the
Wasserstein distance is generally di�cult to evaluate, making tractable and informative
bounds essential. Here we accomplish this task on the wider class of completely random
measures, yielding a measure of discrepancy between many noteworthy random mea-
sures, including the gamma, generalized gamma and beta families. By specializing these
results to gamma kernel mixtures, we achieve upper and lower bounds for the Wasserstein
distance between hazard rates, cumulative hazard rates and survival functions.

2.1 Introduction

One of the most attractive features of the Bayesian nonparametric approach to statisti-
cal inference is the modeling flexibility implied by priors with large support. There are
several classes of priors where this property is complemented by analytical tractability,
thus contributing to making Bayesian nonparametrics very popular in several applied
areas. See Hjort et al. (2010) and Ghosal & van der Vaart (2017) for broad overviews.
In this framework, survival analysis stands out as one of the most lively fields of appli-
cation. A prominent model for exchangeable time-to-event data is the extended gamma
process for hazard rates (Dykstra & Laud, 1981), which allows for continuous observables
and has been further generalized to kernel mixtures in Lo & Weng (1989) and James
(2005). These works paved the way for another active line of research that defines pri-
ors for the hazard rates by relaxing the dependence structure between the observables,
going beyond the exchangeability assumption. For example, Pennell & Dunson (2006),
De Iorio et al. (2009) and Hanson et al. (2012) model subject specific hazards based
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2.1. Introduction

on continuous covariates; Lijoi & Nipoti (2014) and Zhou et al. (2015) define priors for
cluster specific hazards, while Nipoti et al. (2018) account for both individual and cluster
covariates simultaneously. In this chapter we rather focus on priors for the hazard rates
of exchangeable time-to-event data.
An important feature shared by most classes of nonparametric priors is their definition in
terms of random measures and transformations thereof. While there is a wealth of theo-
retical results that have eased their actual implementation in practice, sampling schemes
are typically based on approximations of the underlying random measures. Nonetheless,
with a very few exceptions (Ishwaran & James, 2001; Arbel et al., 2019; Campbell et al.,
2019), there is no extensive analysis on how to judge the quality of such approximations.
Consider the common situation where one is interested in making inference or sampling
from a wide class of random measures C, but can only treat a subclass C⇡ because of
good analytical or computational properties. The restriction to C⇡ is usually argued
through density statements, typically in terms of weak convergence of random measures.
In many cases this reduces to the weak convergence of one–dimensional distributions,
i.e. for every µ̃ 2 C there exists an approximating sequence {µ̃n}n�1 in C⇡ such that
µ̃n(A) converges weakly to µ̃(A) for every Borel set A. This leaves out the possibil-
ity of establishing the rate of convergence and, more importantly, provides no guidance
on the choice of the approximation µ̃n̄ 2 {µ̃n}n�1 to use in practical implementations.
Spurred by these considerations, the goal we pursue is to quantify the approximation er-
rors by evaluating the Wasserstein distance between µ̃n(A) and µ̃(A). Since convergence
in Wasserstein distance implies weak convergence, this has the additional advantage of
strengthening most results known in the literature.
The Wasserstein distance was first defined by Gini (1914) as a simple measure of dis-
crepancy between random variables. During the 20th century it has been redefined
and studied in many other disciplines, such as transportation theory, partial di↵eren-
tial equations, ergodic theory and optimization. Nowadays, depending on the field of
study, it is known with di↵erent names, such as Gini distance, coupling distance, Monge-
Kantorovich distance, Earth Moving distance and Mallows distance; see Villani (2008),
Rachev (1985) and Cifarelli & Regazzini (2017) for reviews. Indeed, one can find it scat-
tered across the statistics literature (Mallows, 1972; Dudley, 1976; Bickel & Freedman,
1981; Chen, 1995), though only in recent years it has achieved major success, especially
in probability and machine learning. For a detailed review on the uses of the Wasser-
stein distance in statistics see Panaretos & Zemel (2019). As for the Bayesian literature,
the Wasserstein distance was first used in Nguyen (2013) and has been mainly used
to evaluate approximations of the posterior distribution and to deal with consistency
(Nguyen, 2013; Srivastava et al., 2015; Cifarelli et al., 2016; Gao & van der Vaart, 2016;
Donnet et al., 2018; Heinrich & Kahn, 2018). These works deal with the convergence of
the (random) Wasserstein distance between the attained values of random probability
measures. In a similar vein, though without a specific statistical motivation, Mijoule
et al. (2016) examine the Wasserstein convergence rate of the empirical distribution to
the prior, namely the de Finetti measure, for an exchangeable sequence of {0,1}–valued
random variables. Our approach goes in a di↵erent direction: we are interested in a
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2.2. Convergence of completely random measures

distance between the laws of random measures rather than a random distance between
measures.
The Wasserstein distance may be e↵ectively approximated through simulation (Sripe-
rumbudur et al., 2012; Cuturi, 2013) but it is di�cult to evaluate it analytically and,
hence, tractable bounds are needed for concrete applications. We achieve them in two
steps. First, we determine bounds for the Wasserstein distance between so–called com-
pletely random measures, since they act as building blocks of most popular nonparametric
priors. This is carried out by relying on results in Mariucci & Reiß (2018) on Lévy pro-
cesses. The techniques we develop in this first part measure the discrepancy between the
laws of many noteworthy random measures, including the gamma, generalized gamma
and beta families. Secondly, we move on to using these bounds in order to quantify the
divergence between hazard rate mixture models that are used to model time-to-event
data. These are then applied to evaluate the approximation error in a posterior sampling
scheme for the hazards, in multiplicative intensity models, that relies on an algorithm
for extended gamma processes (Al Masry et al., 2017).

The outline of the chapter is as follows. After providing some basic notions and results
on the Wasserstein distance and on completely random measures in Section 2.2, we de-
termine upper and lower bounds for the Wasserstein distance between one–dimensional
distributions associated to completely random measures in Section 2.3. This is special-
ized to the case of gamma and beta completely random measures in Section 2.3.2. These
results are the starting point for carrying out an in–depth analysis of hazard rate mixture
models driven by completely random measures. In Section 2.4 we obtain a quantifica-
tion of the discrepancy between two hazard rate mixtures and for the associated random
survival functions. Examples related to its specification with mixing gamma random
measures may be found in Section 2.4.3. Finally, in Section 2.5 we apply these results
to evaluate the approximation error of a sampling scheme for the posterior hazards,
conditional on the data. Proofs of the main results are deferred to Section 2.6.

2.2 Convergence of completely random measures

In this first section we recall notions about the convergence of completely random mea-
sures in terms of the Wasserstein distance.
Let X be a Polish space with distance dX and Borel �-algebra X . The space MX of
boundedly finite measures on X endowed with the weak] topology is a Polish space as
well; see Daley & Vere-Jones (2002). We denote by MX the corresponding Borel �-
algebra and consider completely random measures (CRMs µ̃ : (⌦,⌃,P) ! (MX,MX),
as defined in Section 1.4. Motivated by Bayesian nonparametric modeling, we focus on
CRMs without fixed atoms such that the corresponding Lévy intensity ⌫ satisfies

Z

A

Z

R+
(✏ ^ s) ⌫(ds, dy) < +1 (2.1)
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2.3. Wasserstein bounds for completely random measures

for every A in X and such that infinitely activity holds, i.e. for all A in X and ✏ > 0,
⌫((0, ✏] ⇥ A) = +1. As mentioned in Section 1.4.2, this is a standard requirement for
most applications in Bayesian nonparametrics.
When dealing with convergence of random measures we think of random measures in
terms of probability distributions on MX. Results in strong convergence are often too
hard to establish, so that one usually deals with weak convergence (of distributions) of
random measures, L(µ̃n) ) L(µ̃), where L(X) denotes the probability distribution of a
random element X, which can be either finite– or infinite–dimensional. A remarkable
result establishes that this is equivalent to the weak convergence of all finite–dimensional
distributions L(µ̃n(A1), · · · , µ̃n(Ad)) ) L(µ̃(A1), · · · , µ̃(Ad)), forA1, . . . , Ad 2 X stochas-
tic continuity sets for µ̃; see Theorem 11.1.VII in Daley & Vere-Jones (2007). Moreover,
when dealing with CRMs, the weak convergence of finite–dimensional distributions is
equivalent to the weak convergence of one–dimensional distributions. Thus, if d denotes
a metric on the probability distributions on R whose convergence is stronger than the
weak convergence, one has that if

d(L(µ̃n(A)),L(µ̃(A))) ! 0 (2.2)

for every A 2 X , then µ̃n converges weakly to µ̃. In the sequel, we will choose d as the
Wasserstein distance of order 1 with respect to the Euclidean norm on R, as defined in
Section A in the appendix. We denote such distance by W and refer to Villani (2008) for
a complete reference. In view of the previous discussion on weak convergence, a major
goal that we pursue is evaluating or bounding W(µ̃1(A), µ̃2(A)), for A in X . Before
detailing the results and general techniques we rely on in order to achieve them in the
next few sections, we recall that for any pair of random variables (X,Y ),

|E(X)� E(Y )|  W(X,Y )  E(|X|) + E(|Y |), (2.3)

as in Proposition 52 in the appendix. Thus the Wasserstein distance is finite when the
random variables have finite mean. We will therefore focus our attention on CRMs
whose total mass has finite mean. By Campbell’s theorem this boils down to

E(µ̃(R)) = E
✓Z

R+⇥X
sN (ds, dy)

◆
=

Z

R+⇥X
s ⌫(ds, dy) < +1. (2.4)

2.3 Wasserstein bounds for completely random measures

2.3.1 General result

There are situations where one is only interested in a numerical value for the Wasserstein
distance: in such a case there are e�cient ways to simulate it (Sriperumbudur et al.,
2012; Cuturi, 2013). On the other hand, one may be interested in understanding how the
distance is a↵ected by the choice of distributions, by the parameters or by meaningful
functionals, such as moments. This raises the need for an analytical evaluation of the
Wasserstein distance, which in general is not an easy task. The most common practice is
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2.3. Wasserstein bounds for completely random measures

thus to develop meaningful bounds and to analyze how these are a↵ected by the choices
above. In this section we will express a bound for the Wasserstein distance between the
one–dimensional distributions of CRMs in terms of their corresponding Lévy intensities.
The proof is based on a compound Poisson approximation of CRMs.

Theorem 5. Let µ̃1 and µ̃2 be infinitely active CRMs with finite total mean. Then for
every A 2 X

g`(A)  W (µ̃1(A), µ̃2(A))  gu(A),

where

g`(A) = |E(µ̃1(A))� E(µ̃2(A))| =
����
Z

R+
s ⌫1(ds⇥A)�

Z

R+
s ⌫2(ds⇥A)

����;

gu(A) =

Z +1

0
|⌫1((u,+1)⇥A)� ⌫2((u,+1)⇥A)| du.

We observe that gu(A) has a compelling form with respect to the upper bound in (2.3),

since it equals zero if µ̃1
d
= µ̃2. We stress that this bound holds for all CRMs and may

be evaluated through numerical integration. Nonetheless, when specializing to certain
classes of CRMs, we manage to bound gu(A) from above with an expression that can
be evaluated exactly, as we do in Section 2.3.2. In particular, easily computable upper
bounds are available whenever the tails of the Lévy intensities are ordered, as we prove
in the next corollary. In such a case not only we have a simple expression for gu(A), we
may also prove that the upper and lower bounds coincide, providing the exact expression
of the Wasserstein distance itself.

Corollary 6. Consider the hypotheses of Theorem 5 and let A 2 X . If the tails of
⌫1(ds⇥A) and ⌫2(ds⇥A) are ordered, namely ⌫i((u,+1)⇥A)  ⌫j((u,+1)⇥A) for
all u 2 R+ and i 6= j in {1, 2}, then

W(µ̃1(A), µ̃2(A)) =

����
Z

R+
s ⌫1(ds⇥A)�

Z

R+
s ⌫2(ds⇥A)

����.

Remark 1. The condition of Corollary 6 holds whenever there exists a dominating
measure ⌘ on R+ such that the Radon–Nikodym derivatives of ⌫1(ds⇥A) and ⌫2(ds⇥A)
are ordered, i.e. ⌫i,A(s)  ⌫j,A(s) for all s 2 R+ and i 6= j in {1, 2}. This more restrictive
condition, which is however much easier to verify, holds true for many examples to be
displayed in the sequel.

As underlined in Section 2.2, the convergence in the Wasserstein distance between µ̃n(A)
and µ̃(A) for every A 2 X is su�cient to guarantee the weak convergence of the CRMs
and provide convergence rates. This motivates our main interest in set–wise results as
those in Corollary 6. However, one can also define a uniform distance between laws of
random measures with finite total mean, by considering

dW(µ̃1, µ̃2) = sup
A2X

W(µ̃1(A), µ̃2(A)). (2.5)
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2.3. Wasserstein bounds for completely random measures

Corollary 6 can be used to find the exact expression of such distance. We focus on
homogeneous CRMs, i.e. such that their Lévy intensity is a product measure ⌫(ds, dx) =
⇢(s) ds↵(dx). It will be next shown that dW admits a very intuitive representation, being
proportional to the total variation distance between the base measures

TV(↵1,↵2) = sup
A2X

|↵1(A)� ↵2(A)|.

Corollary 7. Let µ̃i be infinitely active homogeneous CRMs with finite total mean such
that the Lévy intensities ⌫i(ds, dx) = ⇢(s) ds↵i(dx), for i = 1, 2. Then,

dW(µ̃1, µ̃2) = TV(↵1,↵2)

Z

R+
s ⇢(s) ds.

2.3.2 Examples

When the conditions of Corollary 6 do not hold, we may often find upper bounds of gu(A)
which may be evaluated exactly for specific examples of CRMs. In the next proposition
we consider a gamma CRMs, as defined in (1.6) in Section 1.4. A random measure
µ̃ ⇠ Ga(b,↵) is easily shown to be infinitely active and, if ↵ is a finite measure on X, it
has finite total mean.

Proposition 8. Let µ̃i ⇠ Ga(bi,↵i), where 0 < b1 < b2 and ↵i is a finite measure on X
for i = 1, 2. Then,

g`(b,↵, A)  W(µ̃1(A), µ̃2(A))  gu(b,↵, A),

where

g`(b,↵, t) =

����
↵1(A)

b1
� ↵2(A)

b2

����;

gu(b,↵, t) =
↵1(A)

b1
� ↵2(A)

b2
+ (0,+1)(↵2(A)� ↵1(A)) 2

↵2(A)� ↵1(A)

b2 � b1
log

b2

b1
;

and we have used the vector notations b = (b1, b2) and ↵ = (↵1,↵2).

This result extends the ones in Gairing et al. (2015), who develop upper bounds for
similar integrals of gamma Lévy measures in a more restrictive framework as they do
not allow for both base measures and the scale parameter to di↵er between the two
specifications. The bounds of Proposition 8 are informative in the sense that, the closer
the parameters of the two CRMs, the smaller the bound of the Wasserstein distance.
Moreover, when the base measures are equal on A, the upper and lower bounds coin-
cide, providing the exact expression for the Wasserstein distance, in accordance with
Corollary 6. The same holds true if b1 = b2, since

lim
b2!b

+
1

1

b2 � b1
log

b2

b1
=

1

b1
.
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Figure 2.1: Wasserstein distance W(µ̃1(A), µ̃2(A)) between gamma CRMs and relative upper
and lower bounds. In the upper panel ↵1(A) = 1, b1 = 2, b2 = 3 are fixed, whereas ↵2(A) ranges
from 0.5 to 2. In the lower one ↵1(A) = 1, b1 = 1,↵2(A) = 2 are fixed, whereas b2 ranges
from 0.5 to 2. In both plots the Simulated Wasserstein distance is based on 10 samples of 1000
observations using the Python Optimal Transport (POT) package (Flamary & Courty, 2017).

In Figure 2.1 we compare the simulated Wasserstein distance between two gamma CRMs
with the upper bound in Theorem 5, which can be evaluated numerically, the ones in
Proposition 8, which can be evaluated exactly, and the upper bound in (2.3), which is
non–informative. For a wide range of parameters the bounds of Theorem 5 and Proposi-
tion 8 coincide with the Wasserstein distance. In contrast, when the Lévy intensities are
not ordered, the upper and lower bounds do not coincide. The upper bound of Proposi-
tion 8 is tight whenever at least one of the two parameters is close to the corresponding
parameter of the other CRM (i.e. ↵1(A) ⇡ ↵2(A) or b1 ⇡ b2), whereas the upper bound
of Theorem 5 is tight on the whole range of parameters. Moreover, they are both more
informative than the upper bound in (2.3). The lower bound, on the other hand, is al-
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2.4. Hazard rate mixtures

ways tight and becomes non–informative when the two CRMs have di↵erent parameters
but equal ratios (↵i(A)/bi), i.e. when they have equal mean.

A di↵erent situation occurs with beta CRMs, defined in (1.7) in Section 1.4, where
the Lévy densities corresponding to di↵erent concentration parameters and same base
measure are not ordered.

Proposition 9. Let µ̃i ⇠ Be(ci,↵i), where 0 < c1  c2 and ↵i is a finite measure on X
for i = 1, 2. Then,

1. If c1 = c2 = c, then W(µ̃1(A), µ̃2(A)) = |↵1(A)� ↵2(A)|.

2. If ↵1 = ↵2 = ↵, then W(µ̃1(A), µ̃2(A)))  2↵(A) log
�
c2
c1

�

We conclude this section with an immediate application of Corollary 7 on the distance
dW between the laws of generalized gamma CRMs.

Example 1. Consider µ̃i ⇠ GenGamma(b,�,↵i) generalized gamma CRMs, as defined
in (1.8) in Section 1.4, for i = 1, 2. Then Corollary 7 ensures that dW(µ̃1, µ̃2) = �(1 �
�)b��1TV(↵1,↵2). When � = 0 we recover the distance between two gamma CRMs
with same rate parameter.

2.4 Hazard rate mixtures

Applications in survival analysis and reliability involve time-to-event data and have
spurred important developments in Bayesian nonparametric modeling. Stimulating and
exhaustive overviews of popular models in the area can be found in Müller et al. (2015)
and in Ghosal & van der Vaart (2017). If T1, . . . , Tn are from an exchangeable sequence
of time-to-event data, i.e.

Ti | P̃
iid⇠ P̃ (i = 1, . . . , n), P̃ ⇠ ⇧, (2.6)

the choice of ⇧ follows from specifying a prior on the survival function t 7! S̃(t) =
P̃ ((t,1)). This may be done directly by resorting, e.g., to neutral to the right random
probability measure (Doksum, 1974), or by setting a prior on the corresponding cumula-
tive hazard function by means of, e.g., the Beta process (Hjort, 1990), or on the hazard
rate function if one can assume that S̃ is almost surely continuous, in which case a con-
venient option is a kernel mixture model (Dykstra & Laud, 1981). For all these model
specifications, one can also take into account the presence of censored observations. The
most common mechanism is right–censoring, which associates to each Ti a censoring
time Ci. In this case, the actual observations are the pairs (Xi,�i), where Xi = Ti ^Ci

and �i = (0,Ci](Ti) identifies exact observations whenever it equals 1. Here we focus
on priors for the hazard rates, i.e. the instantaneous risk of failure, that are induced
by kernel mixtures over a gamma CRM. The model, originally proposed as a prior for
increasing hazard rates in Dykstra & Laud (1981), is conjugate with respect to right
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2.4. Hazard rate mixtures

censored observations and has led to several interesting generalizations. Henceforth, we
consider a specification that has been investigated in its full generality by James (2005).
Before focusing on our main results, let us first recall some basic definitions that will
also allow us to set the notation to be used throughout. If F is a cumulative distribution
function on [0,+1) and S = 1�F the corresponding survival function, we assume it is
absolutely continuous so that one can define the hazard rate h = F

0
/(1�F ) and rewrite,

for any t � 0,

S(t) = exp{�H(t)}; H(t) =

Z
t

0
h(s) ds,

where H is the cumulative hazard function. Let k : R+ ⇥X ! [0,+1) be a measurable
kernel function. If µ̃ is a CRM, with corresponding Poisson random measure N , and k

is such that

lim
t!1

Z
t

0

Z

R+⇥X
k(u | y) s duN (ds, dy) = +1, (2.7)

a prior for the hazard rates is the probability distribution of the process {h̃(t) | t � 0}
such that for any t � 0,

h̃(t) =

Z

X
k(t | y) µ̃(dy) d

=

Z

R+⇥X
k(t | y) sN (ds, dy). (2.8)

Thus, condition (2.7) ensures that the mean cumulative hazards go to +1 as time
increases. We use the techniques developed in the previous sections to obtain bounds on
the Wasserstein distance between the marginal hazard rates coming from di↵erent kernels
and di↵erent CRMs. Moreover, we successfully address the same issue when considering
the Wasserstein distance between cumulative hazards and survival functions.

2.4.1 Bounds for hazard rates

Consider two random hazard rates h̃1 = {h̃1(t) | t � 0} and h̃2 = {h̃2(t) | t � 0} as in
(2.8). From a statistical standpoint, these may be seen as di↵erent prior specifications
corresponding, e.g., to di↵erent mixing CRMs or kernels. Alternatively, h̃2 may be
thought as an approximation of the actual prior h̃1 and one may be interested to ascertain
the quality of such an approximation. The issue is of great interest when we need to
sample from h̃1, or its posterior distribution, while it is much easier to sample from h̃2:
in this case a bound on the error can provide an e↵ective guidance as on how to fix the
parameters of the approximating distribution. We first investigate how di↵erent CRMs
and kernels impact the marginal hazards and use the Wasserstein distance as a measure.
In other terms, we will be focusing on W(h̃1(t), h̃2(t)) for every t � 0. The results in
the previous sections will provide the necessary background for obtaining the desired
bounds. Before displaying these, we state a technical result. To this end, we recall that
if ⌫ is a measure on X and g : X ! Y is a measurable function, the pushforward measure
g# ⌫ on Y is defined by (g# ⌫)(A) = ⌫(g�1(A)).
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2.4. Hazard rate mixtures

Lemma 10. Let µ̃ be a CRM with intensity measure ⌫ and let f : X ! R+ be a
measurable function. Then the random measure µ̃f (dy) = f(y) µ̃(dy) is a CRM with
Lévy intensity equal to the pushforward measure ⌫f = pf # ⌫ where pf (s, y) = (s f(y), y).
Thus for every A 2 X ,

Z

R+⇥A

s ⌫f (ds, dx) =

Z

R+⇥A

f(y) s ⌫(ds, dy). (2.9)

When ⌫(ds, dy) = ⌫(s, y) ds↵(dy), with a change of variable Lemma 10 ensures that

⌫f (ds, dy) =
1

f(s)
⌫

⇣
s

f(y)
, y

⌘
ds↵(dy).

Thus, we will use the notation ⌫f (ds, dy) =
1

f(s)⌫(d
s

f(y) , dy). The relevance of this change

of measure result is apparent since the prior specification in (2.8) involves a multiplicative
structure with the kernel and the mixing CRM. The following example deals with the
gamma case.

Example 2. Consider µ̃ ⇠ Ga(b,↵) and a generic kernel k. Then the random measures
defined by µ̃k(t|·)(dy) = k(t | y)µ̃(dy) are CRMs with Lévy intensity

⌫k(t|·)(ds, dy) =
e
� sb

k(t | y)

s
(0,+1)(s) ds↵(dy).

Thus µ̃k(t|·) is an extended gamma CRM with scale function �(y) = k(t | y)
b

and base
measure ↵. Extended gamma CRMs are easily shown to be infinitely active.

Lemma 10 ensures that marginally the hazard process in (2.8) satisfies h̃(t)
d
= µ̃k(t|·)(X),

where µ̃k(t|·) is a CRM. In order to bound the Wasserstein distance between marginal
hazards we may thus apply the results of Theorem 5 with A = X. By (2.9), µ̃k(t|·) has
finite total mean and it is infinitely active if, respectively,

Z

R+⇥X
k(t | y) s ⌫(ds, dy) < +1, (2.10)

Z

[0,✏]⇥A

1

k(t | y)⌫
⇣
d

s

k(t | y) , dy
⌘
= +1, (2.11)

for every ✏ � 0, A 2 X . If ⌫ is infinitely active, (2.11) holds.

Theorem 11. Let h̃1 = {h̃1(t) | t � 0} and h̃2 = {h̃2(t) | t � 0} be random hazard rates
as in (2.8) with associated infinitely active CRMs µ̃i, Lévy intensity ⌫i, and kernel ki
that satisfy (2.7) and (2.10), for i = 1, 2. Then the Wasserstein distance between the
marginal hazard rates is finite and for every t � 0,

g`(t)  W(h̃1(t), h̃2(t))  gu(t),
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2.4. Hazard rate mixtures

where

g`(t) =

����
Z

R+⇥X
k1(t | y) s ⌫1(ds, dy)�

Z

R+⇥X
k2(t | y) s ⌫2(ds, dy)

����;

gu(t) =

Z +1

0

����
Z

(u,+1)⇥X

1

k1(t | y)
⌫1

⇣
d

s

k1(t | y)
, dy

⌘
� 1

k2(t | y)
⌫2

⇣
d

s

k2(t | y)
, dy

⌘���� du.

In particular if there exists a dominating measure ⌘ such that the Radon–Nikodym deriva-
tives ⌫i(s, y) satisfy, for i 6= j in {1, 2},

1

ki(t | y)
⌫i

⇣
s

ki(t | y)
, y

⌘
 1

kj(t | y)
⌫j

⇣
s

kj(t | y)
, y

⌘

for all (s, y) 2 R+ ⇥ X, then

W(h̃1(t), h̃2(t)) =

����
Z

R+⇥X
k1(t | y) s ⌫1(ds, dy)�

Z

R+⇥X
k2(t | y) s ⌫2(ds, dy)

����.

2.4.2 Bounds for survival functions

The bounds we derived for the hazard rates translate into bounds for the corresponding
survival functions and these are of great interest since one typically targets estimation
of functionals of the survival function. We proceed by first deriving bounds for the
corresponding cumulative hazards processes H̃ = {H̃(t) | t � 0}, defined by

H̃(t) =

Z
t

0
h̃(u) du =

Z

X
K(t | y) µ̃(dy), (2.12)

where K(t | y) =
R
t

0 k(u | y) du is the cumulative kernel. Thus, the cumulative hazards
can be treated as a kernel mixture as well, and an analogue of Theorem 11 is available.

Theorem 12. Let H̃1 = {H̃1(t) | t � 0} and H̃2 = {H̃2(t) | t � 0} be two random
cumulative hazards as in (2.12) with associated infinitely active CRMs µ̃i, with Lévy
intensity ⌫i, and kernel ki that satisfy (2.7), for i = 1, 2. If the cumulative kernels
Ki(t | y) =

R
t

0 ki(u | y)du satisfy (2.10), the Wasserstein distance between the marginal
cumulative hazards is finite and for every t � 0,

g`(t)  W(H̃1(t), H̃2(t))  gu(t),

where

g`(t) =

����
Z

R+⇥X
K1(t | y) s ⌫1(ds, dy)�K2(t | y) s ⌫2(ds, dy)

����;

gu(t) =

Z +1

0

����
Z

(u,+1)⇥X

1

K1(t | y)
⌫1

⇣
d

s

K1(t | y)
, dy

⌘
� 1

K2(t | y)
⌫2

⇣
d

s

K2(t | y)
, dy

◆���� du.
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2.4. Hazard rate mixtures

In particular if there exists a dominating measure ⌘ such that the Radon–Nikodym deriva-
tives ⌫i(s, y) satisfy, for i 6= j in {1, 2},

1

Ki(t | y)
⌫h

⇣
s

Ki(t | y)
, y

⌘
 1

Kj(t | y)
⌫j

⇣
s

Kj(t | y)
, y

⌘

for all s, y 2 R+ ⇥ X , then

W(H̃1(t), H̃2(t)) =

����
Z

R+⇥X
K1(t | y) s ⌫1(ds, dy)�

Z

R+⇥X
K2(t | y) s ⌫2(ds, dy)

����.

The bounds for the distance between cumulative hazards in Theorem 12 are also useful
to identify a similar result for the survival function process S̃ = {S̃(t) | t � 0} defined by

t 7! S̃(t) = e
�H̃(t) = exp

⇢
�
Z

X
K(t | y) µ̃(dy)

�
. (2.13)

Theorem 13. Let H̃1 and H̃2 be as in Theorem 12 with survival process S̃i as in (2.13),
for i = 1, 2. Then for every t � 0,

g`(t)  W(S̃1(t), S̃2(t))  min{gu,1(t), gu,2(t)},

where

g`(t) =
��E
�
e
�H̃1(t)

�
� E

�
e
�H̃2(t)

���, gu,1(t) = 1� e
�W(H̃1(t),H̃2(t)),

gu,2(t) = E
�
e
�H̃1(t)

�
+ E

�
e
�H̃2(t)

�
�
�
e
�E(H̃1(t)) + e

�E(H̃2(t))
�
e
�W(H̃1(t),H̃2(t)).

2.4.3 Examples

We now apply these results on kernels of the type of Dykstra & Laud (1981), k(t|y) =
�(y) [0,t](y), which is a popular choice when one wants to model increasing hazards.
In this setting X = [0,+1). For simplicity we will restrict our attention to constant
functions �(s) = �, which is a common choice in applications (Dykstra & Laud, 1981;
Laud et al., 1996), and gamma CRMs with the same base measure ↵. In this scenario ↵
may also be an infinite measure, though it must be boundedly finite. We will consider
the Lebesgue measure on the positive real axis, L +(ds) = [0,+1)(s) ds, which is the
base measure proposed in the original paper of Dykstra & Laud (1981) and meets the
conditions of Theorem 11.

Example 3. Let µ̃i ⇠ Ga(bi,L +) and let ki(t | y) = �i [0,t](y), with bi,�i > 0, for

i = 1, 2. If h̃1 and h̃2 are the corresponding hazard rate mixtures, then

W(h̃1(t), h̃2(t)) = t

����
�1

b1
� �2

b2

����.
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2.4. Hazard rate mixtures

Proof. The general expression for ⌫k(t|·) was derived in Example 2. With our choices,

1

ki(t | y)
⌫i

⇣
d

s

ki(t | y)
, dy

⌘
=

e
� s bi

�i

s
(0,+1)(s) [0,t](y) ds dy, (2.14)

which corresponds to the Lévy intensity of a gamma CRM of parameter bi/�i and the
restriction of L + to [0, t] as base measure. Since the Lebesgue measure on a bounded
set is finite, as observed in Proposition 8, (2.14) is infinitely active and has finite mean.
Thus condition (2.10) holds. In order to check condition (2.7) on the expected cumulative
hazards we first observe that for every t > 0,

E(h̃i(t)) =
Z

R+⇥R+
�i e

�s bi
[0,t](y) ds dy = t

�i

bi
.

Thus
R
t

0 E(h̃i(s)) ds = t
2 �i

2 bi
diverges as t ! +1, and condition (2.7) holds. The results

in Theorem 11 apply and since the densities of (2.14) are ordered, we easily derive the
expression for W(h̃1(t), h̃2(t)) from the expression of E(h̃i(t)), in accordance with the
results in Proposition 8 for gamma CRMs.

The choice of the kernel allows for great flexibility and usually depends on the type of
experiment one is considering. For example, if we are dealing with the failure of objects
whose material wears out in time, the assumption of increasing hazard rates appears
to be the most plausible. Besides the kernel of Dykstra & Laud (1981), which leads to
almost surely increasing hazard rates, one can resort to other options such as:

(1) Rectangular kernel with threshold ⌧ : k(t |x) = [t�⌧,t+⌧ ](x);

(2) Bathtub or U-shaped kernel with minimum ⌘ > 0: k(t |x) = [0,|t�⌘|](x);

(3) Ornstein-Uhlenbeck kernel with g > 0: k(t |x) =
p
2g e�g(t�x)

[0,t](x);

(4) Exponential kernel: k(t |x) = e
�tx.

More details can be found in Lo & Weng (1989); James (2003); De Blasi et al. (2009).
The choice of the kernel is typically dictated by the type of data one is examining. As
for the choice of random measure, this may be dictated by specific inferential properties
but it is usually motivated by analytical tractability and prior flexibility. In this regards,
the gamma CRM is a popular alternative. We thus pick one of the kernels above and
focus on gamma kernel mixtures. One is, then, left with the choice of the parameter
b, which heuristically quantifies the prior belief on the steepness of the hazard. Given
these specifications, one may be interested in quantifying the discrepancy induced by it
on the corresponding hazards. Before proceeding, we underline how the same reasoning
could be applied to the base measure, but for simplicity we consider gamma CRMs
with a given shared base measure. We point out that in all cases we achieve the exact
expression for the Wasserstein distance between the hazard rates.
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2.4. Hazard rate mixtures

Example 4. Let µ̃i ⇠ Ga(bi,L +), with bi > 0, for i = 1, 2. Let k1 = k2 = k be one of
the kernels (1)–(4) above. Then the Wasserstein distances between the corresponding
hazard rates mixtures equal

(a) W(h̃1(t), h̃2(t)) = (2⌧ � (⌧ � t)+) |b�1
1 � b

�1
2 |;

(b) W(h̃1(t), h̃2(t)) = |t� ⌘| |b�1
1 � b

�1
2 |;

(c) W(h̃1(t), h̃2(t)) = g
p
2g(1� e

�gt) |b�1
1 � b

�1
2 |;

(d) W(h̃1(t), h̃2(t)) = t
�1(1� e

�t
2
) |b�1

1 � b
�1
2 |;

where f
+ = max(f, 0) for any measurable function f with values in R.

Proof. Kernel (a) is very similar to the one in Example 3. The Lévy intensity

1

ki(t | y)
⌫i

⇣
d

s

ki(t | y)
, dy

⌘
=

e
�s bi

s
(0,+1)(s) [0^(t�⌧),t+⌧ ](y) ds dy

is the one of a gamma CRM with parameter b and Lebesgue base measure on [0 ^ (t�
⌧), t+ ⌧ ]. Since the corresponding densities are ordered, the exact Wasserstein distance
is available and coincides with (a0). The same is true for kernel (b). With kernel (c) one
has

1

ki(t | y)
⌫i

⇣
d

s

ki(t | y)
, dy

⌘
=

1

s
exp

⇢
� sbip

2g
e
g(t�y)

�
(0,+1)(s) [0,t](y) dy ds.

The corresponding densities are ordered, thus if the conditions of Theorem 11 hold we
only need to evaluate the expected value of the hazards to derive the exact Wasserstein
distance:

E(h̃i(t)) =
Z

R+⇥R

p
2g e�g(t�y)

e
�bis

[0,t](y) dy ds

=

Z
t

0
�
p
2g

bi
e
�g(t�y)

dy =

r
2

g
(1� e

gt)
1

bi
.

This also proves the finite mean condition (2.10). Since
R
t

0 (1�e
gs)ds = 1�e

gt

g
+t diverges

as t ! +1, also condition (2.7) holds.
Finally for kernel (d),

1

ki(t | y)
⌫i

⇣
d

s

ki(t | y)
, dy

⌘
=

1

s
exp

�
� sbe

ty
 

(0,+1)(s) [0,t](y) dy ds.

The mean hazard rates are

E(h̃i(t)) =
Z

t

0

e
�ty

bi
dy =

1� e
�t

2

bit
,
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and thus condition (2.10) holds. Moreover,
Z

t

0

1� e
�s

2

s
ds =

�

2
+

E1(t2)

2
+ log(t),

where � is the Euler gamma constant. This quantity diverges as log(t) for t ! +1 and
thus condition (2.7) holds. We conclude as in the previous cases.

Next, we apply the bounds on cumulative hazards and survival functions of Theorem 12
and Theorem 13 to the case where mixtures of gamma CRMs are used, as in Example 3.

Example 5. Consider the prior specification of Example 3. Denote by H̃i the corre-
sponding cumulative process (2.12) and by S̃i the corresponding survival process (2.13),
for i = 1, 2. Then for every t � 0,

W(H̃1(t), H̃2(t)) =
t
2

2

����
�1

b1
� �2

b2

����, (2.15)

g`(b, t)  W(S̃1(t), S̃2(t))  gu,1(b, t) ^ gu,2(b, t), (2.16)

where

g`(b, t) = e
t

����
⇣

b1

b1 + �1t

⌘ b1+�1t
�1 �

⇣
b2

b2 + �2t

⌘ b2+�2t
�2

����,

gu,1(b, t) = 1� e
� t

2

2

���1
b1

��2
b2

��
,

gu,2(b, t) = e
t

✓⇣
b1

b1 + �1t

⌘ b1+�1t
�1 +

⇣
b2

b2 + �2t

⌘ b2+�2t
�2

◆
�
⇣
e
� t

2
�1

2b1 + e
� t

2
�2

2b2

⌘
e
� t

2

2

���1
b1

��2
b2

��
.

Proof. Since the Lévy densities of

1

Ki(t | y)
⌫i

⇣
d

s

Ki(t | y)
, dy

⌘
=

1

s
exp

⇢
� sbi

t� y

�
(0,+1)(s) [0,t](y) dy ds

are ordered, if the conditions of Theorem 12 hold the expression for the Wasserstein
distance between the cumulative hazards easily derives from

E(H̃i(t)) =

Z

R+⇥[0,+1)
Ki(t | y) s ⌫i(ds, dy) =

Z

R+

Z
t

0
�i(t� y) e�sbids dy =

t
2
�i

2bi
. (2.17)

Now, condition (2.7) on the kernels has already been checked in Example 3. Moreover,
(2.17) proves condition (2.10) on the finite mean.
As for the Wasserstein distance between the survival functions, in order to apply The-
orem 13 it su�ces to evaluate the mean of the survival functions. This is easily done
thanks to the properties of the Laplace functional of a CRM. Specifically, E

�
e
�

R
R K(t | y) µ̃i(dy)

�

is equal to

exp

⇢
�
Z

R+⇥[0,+1)

�
1� e

sKi(t | y)
�
⌫i(ds, dy)

�
=
⇣

bi

bi + �it

⌘ bi+�it

�i
.
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In Figure 2.2 a graphical representation of the upper and lower bounds for the Wasser-
stein distance between the corresponding survival functions is given. In particular, the
distance between the survival functions lies in the gray area in the figure. The first upper
bound gu,1 appears to be tighter for small times, while the second gu,2 is more informative
as time increases. This depends on the fact that in the first case we are using the bound
e
�H̃1(t)^H̃2(t)  1, which is e↵ective for small values of the cumulative hazard function, i.e.
for small times, while in the second one we are using e

�H̃1(t)^H̃1(t)  e
�H̃1(t) + e

�H̃2(t),
which is e↵ective for large values of the cumulative hazard function, i.e. for large t.
Moreover, we point out that the Wasserstein distance between survival functions is con-
siderably smaller than the one between the hazard rates, which is what we expect from
a modeling perspective.

Figure 2.2: Theoretical upper and lower bounds for the Wasserstein distance
between marginals of the random survival functions in Example 5 with b1 = 1,
�1 = 1, b2 = 2 and �2 = 1.

2.5 Posterior sampling scheme

The techniques we have developed in the previous sections may be fruitfully applied to
evaluate approximation errors in posterior sampling schemes. In this section we will
focus on the gamma kernel mixture by Dykstra & Laud (1981) and rely on the posterior
analysis by James (2005). Even when the prior hazards are modeled as a gamma process
(i.e. constant �), conditionally on the data and a set of latent variables, the non–atomic
part of the posterior hazards is an extended gamma process. There are many available
methods in the literature to sample from an extended gamma process, as the finite
dimensional approximation by Ishwaran & James (2004), the inverse Lévy methods of
Ferguson & Klass (1972) and Wolpert & Ickstadt (1998), and the series representation of
Bondesson (1982), which serves as a basis for the algorithm in Laud et al. (1996). Other
available series representations can be found in Rosiński (2001). Recently, Al Masry
et al. (2017) proposed a new algorithm based on a discretization of the scale function:
in such case the extended gamma process can be approximated by a sum of gamma
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2.5. Posterior sampling scheme

random increments. The construction of the discretization is not always simple but,
when possible, it allows for a precise quantification of the approximation error. In
Al Masry et al. (2017) the error is quantified through a bound on the L

2 distance.
Here, we build the discrete approximation of the scale function of the posterior hazards
corresponding to a gamma process prior and use the Wasserstein distance to quantify the
approximation error between the induced hazard rates. Moreover, since one is usually
interested in the cumulative hazards or, more often, in the survival function, we provide
an estimate for their approximations as well, which provides a novel and meaningful
guide for fixing the approximation error in the algorithm.
We first recall the posterior characterization of mixture hazard rates models, with cen-
sored data, as achieved by James (2005). This result is suited to our case, since it con-
cerns CRM–driven mixtures under a multiplicative intensity model. In order to provide
a summary description of the posterior distribution, henceforth T1, . . . , Tn are random
elements from an exchangeable sequence as in (2.6) with ⇧ being the law of a random
probability measure with hazard rate h̃ as in (2.8). Furthermore, if ne =

P
n

i=1�i is the
number of exact observations in the sample, we may assume without loss of generality
that �1 = · · · = �ne

= 1 and, hence, the last n � ne observations are censored. The
data are, then, given by {(xj ,�j)}nj=1. A representation of the likelihood function that
is convenient for Bayesian computations is obtained by relying on a suitable augmenta-
tion that involves a collection of latent variables Y1, . . . , Yne

corresponding to the exact
observations. Hence, the augmented likelihood is given by

L(µ̃;x,y) = e
�

R
X Kn(y)µ̃(dy)

neY

j=1

µ̃(dyj)k(xj | yj)

= e
�

R
X Kn(y)µ̃(dy)

kY

h=1

µ̃(dy⇤
h
)nh

Y

i2Ch

k(xi | y⇤h),

where x = (x1, . . . , xn), y⇤1, · · · , y⇤k are the k  ne distinct values in y = (y1, . . . , yne
),

Cj = {r : yr = y
⇤
j
} and nj = card(Cj). The function Kn is interpretable as a kernel for

the cumulative hazards and, in general, accounts for di↵erent forms of censoring. For
simplicity we henceforth focus on the case of right-censored observations and this yields

Kn(y) =
nX

j=1

Z
xj

0
k(u | y) du. (2.18)

The posterior characterization we rely on is as follows.

Theorem 14 (James (2005)). Let T1, . . . , Tn be random elements from an exchangeable
sequence as in (2.6), with ⇧ being the law of a random probability measure with hazard
rate h̃ as in (2.8). Conditional on the observed data x = (x1, · · · , xn) and latent variables
y = (y1, · · · , yne

), the posterior distribution of µ̃ equals in distribution

µ̃
⇤ d
= µ̃

⇤
c +

kX

h=1

Jh�y⇤
h
, (2.19)
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2.5. Posterior sampling scheme

where µ̃
⇤
c is a CRM without fixed jump points and with intensity

⌫
⇤(ds, dy) = e

�sKn(y)⌫(ds, dy) = e
�sKn(y)⇢y(ds) ⌘(dy),

while J1, · · · , Jk are mutually independent and independent from µ̃
⇤
c . For h = 1, . . . , k,

the generic h–th jump Jh has distribution

Gh(ds) / s
nhe

�sKn(y⇤h) ⇢y⇤
h
(ds). (2.20)

In the rest of the section we focus on the case X = R, k(t|y) = � [0,t](y) and µ gamma
CRM with rate parameter b and base measure ↵, which is a typical choice in applications.
Thus the non–atomic posterior CRM µ̃

⇤
c has Lévy measure

⌫
⇤(ds, dy) =

e
�s(b+�

P
n

i=1(y�xi)+)

s
(0,+1)(s) ds↵(dy).

It follows that µ̃⇤
c is an extended gamma CRM with base measure ↵ and scale function

1/(b + �
P

n

i=1(y � xi)+). The non–atomic posterior hazards are an extended gamma
process and can thus be written as

h̃
⇤(t)

d
=

Z
t

0
�
⇤(s) µ̃(ds), (2.21)

where �⇤(y) = �/(b+ �
P

n

i=1(y � xi)+) and µ̃ is a gamma CRM with parameter 1 and
base measure ↵.
Consider an interval of interest [0, T ], which can be thought as the initial and final time
of the study, so that 0 < x1  · · ·  xn < T . The algorithm proposed by Al Masry et al.
(2017) to sample from {h̃⇤(t) | t 2 [0, T ]} is based on a piecewise constant approximation

of �⇤ on the interval [0, T ]. If �✏(y) =
Pn(✏)

h=0 �h (th,th+1](y), then for every t � 0,

h̃
✏(t) =

Z
t

0
�
✏(s) µ̃(ds) =

ntX

h=1

�h µ̃(th, th+1] + �nt+1 µ̃(tnt
, t], (2.22)

where nt is such that tnt
 t  tnt+1. We observe that the increments �h = �h µ̃(th, th+1]

have a gamma distribution with scale �h and shape ↵(th, th+1). If the points{th |h =
1, . . . , n(✏)} are dense in the interval [0, T ] as n(✏) ! +1, one samples directly from a
sum of gamma random variables

P
tht

�h.
In order to apply this algorithm we need to build an approximating strictly positive
piecewise constant function �✏ : [0, T ] ! (0,+1) and find a reasonable criterion to fix
the approximation error. We will build �✏ by discretizing the reciprocal of �⇤, namely
�(y) = b�

�1+
P

n

i=1(y�xi)+. Consider the points t0  t1  · · ·  tn(✏)�1 = xn  tn(✏) =
T defined by

t
j+

P
j�1
i=0 [✏

�1(n�i)(xi+1�xi)]+k
= xj +

k ✏

n� j
,
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2.5. Posterior sampling scheme

for every j = 0, . . . , n � 1 and k = 0, . . . ,
⇥
(n � j)(xj+1 � xj)✏�1

⇤
, where x0 = 0 and

[·] denotes the integer part, so that n(✏) = n + 1 +
P

n�1
i=0

⇥
(n � i)(xi+1 � xi)✏�1

⇤
. We

observe that

�

⇣
t
j+

P
j�1
i=0 [✏

�1(n�i)(xi+1�xi)]+k

⌘
=

b

�
+

nX

i=j+1

xi � (n� j)xj � k ✏.

Next we set �h = �(th+1) and define

�
✏(y) =

n(✏)X

h=0

�i (th,th+1](y). (2.23)

intervals
Figure 2.3: Piecewise constant ap-
proximation �

✏ of the function � on
the interval [0, T ].

Theorem 15. The function defined in (2.23) is piecewise constant and satisfies

sup
y2([0,T ]

|�(y)� �
✏(y)|  ✏.

Moreover, �✏(y) � �(y) for every y 2 [0, T ].

From this theorem one easily deduces a very simple uniform bound for the discrepancy
between �✏ and �⇤.

Corollary 16. If �✏(y) = 1
�✏(y) =

Pn(✏)
h=0

1
�h

(th,th+1](y), then one has

sup
y2(0,T ]

|�⇤(y)� �
✏(y)|  �

2

b2
✏. (2.24)

For a given ✏, these results provide a constructive rule for determining an approximation
of �⇤, and hence an approximating hazard h̃

✏. One may then wonder which value of
✏ should be specified if we wish to achieve a prescribed error of approximation for the
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2.6. Proofs

posterior hazards and survivals. This is achieved in the next result, where we propose
three di↵erent rules based on the Wasserstein distance between the hazards, cumulative
hazards and the survival functions respectively. The result is stated for the hypotheses
of Example 3, ↵ = L +, but can be easily adapted to any base measure.

Theorem 17. Consider the hypotheses of Theorem 14 with µ̃ ⇠ Ga(b,L +) and k(y|t) =
� (0,t](y). Let h̃⇤ = {h̃⇤(t) | t 2 [0, T ]} be the non–atomic posterior hazard rates process

(2.21), and let h̃✏ = {h̃✏(t) | t 2 [0, T ]} be its approximation (2.22). If H̃⇤, H̃✏, S̃⇤, S̃✏

denote their respective cumulative hazards and survival functions processes, then

sup
t2(0,T ]

W(h̃⇤(t), h̃✏(t))  ✏
�
2

b2
T ;

sup
t2(0,T ]

W(H̃⇤(t), H̃✏(t))  ✏
�
2

2b2
T
2;

sup
t2(0,T ]

W(S̃⇤(t), S̃✏(t))  1� exp

⇢
� ✏

�
2

2b2
T
2

�
.

Theorem 17 determines three di↵erent cut–o↵ rules for approximating the posterior esti-
mate coming from the model of Dykstra & Laud (1981). This is crucial for practitioners
that are interested in implementing a nonparametric model for nondecreasing hazards
and plan on leveraging prior information on the shape of the hazards. Previous studies
or expert opinions may be included in the choice of the hyperparameters � and b. To
this end, it is useful to observe that E(h̃(t)) = �/bt and Var(h̃(t) = �

2
/bt. On the

other hand, the time-interval of interest [0, T ] is typically dictated by the length of the
experiment. Depending on the study, the main quantity of interest may be the hazard
function, the cumulative hazards or, more often, the survival function. One then picks a
level of tolerance � for the quantity of interest and equates it to the corresponding upper
bound in Theorem 17, so to find the desired cut–o↵ value ✏ for the algorithm.

2.6 Proofs

2.6.1 Proof of Theorem 5

First of all we state a technical lemma.

Lemma 18. Let µ̃ be a CRM with Lévy intensity ⌫ and finite total mean (2.4). Then
for every A 2 X ,

lim
✏!0+

✏ ⌫([✏,+1)⇥A) = 0.

Proof. For every � > 0 consider ✏ > 0 such that ✏ < �. Then

✏ ⌫([✏,+1)⇥A) = ✏

Z
�

✏

Z

A

⌫(ds, dy) + ✏

Z +1

�

Z

A

⌫(ds, dy).
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The second integral is finite by (2.1), thus ✏
R +1
�

R
A
⌫(ds, dy) ! 0 as ✏ ! 0. As for the

first one, this can be bounded by

✏

Z
�

✏

Z

A

⌫(ds, dy) 
Z

�

✏

Z

A

s ⌫(ds, dy).

Since the integrand is integrable in [0, �] thanks to the finite total mean condition (2.4),
by the dominated convergence theorem,

lim sup
✏!0

✏

Z
�

✏

Z

A

⌫(ds, dy) 
Z

�

0

Z

A

s ⌫(ds, dy).

Since this is true for every � > 0, ✏
R
�

✏

R
A
⌫(ds, dy) ! 0 as ✏ ! 0 by the absolute

continuity of the integral.

We now prove the results in Theorem 5. The lower bound g`(A) is easily achieved by
(2.3) and by Campbell’s theorem applied to the underlying Poisson random measures
with respect to the measurable function f(s, x) = s A(x), similarly to (2.4). We thus
concentrate on the upper bound.
Since the Lévy intensities are di↵use and infinitely active, for every A 2 X and r > 0
there exists ✏i,r,A > 0 such that

⌫i([✏i,r,A,+1)⇥A) = r, (2.25)

for i = 1, 2. By denoting with Ni the Poisson random measure underlying µ̃i as in (1.3),

µ̃i(A)
d
=

Z
✏i,r,A

0

Z

A

sNi(ds, dy) +

Z +1

✏i,r,A

Z

A

sNi(ds, dy).

We use the notation J
S

i,r,A
=
R
✏i,r,A

0

R
A
sNi(ds, dy) for the small jumps and J

B

i,r,A
=R1

✏i,r

R
A
sNi(ds, dy) for the big jumps. The independence of the increments of a Poisson

random measure ensures that JS

i,r,A
and J

B

i,r,A
are independent, thus by (A.3)

W(µ̃1(A), µ̃2(A))  W(JS

1,r,A, J
S

2,r,A) +W(JB

1,r,A, J
B

2,r,A).

We first show that the small jumps do not play any role in the final bound. By (2.3),

W(JS

1,r,A, J
S

2,r,A)  E(JS

1,r,A) + E(JS

2,r,A).

The means E(JS

i,r,A
) =

R
✏i,r,A

0 s ⌫i(ds ⇥ A) are finite by (2.1) and thus go to zero as
r ! +1 by the absolute continuity of the integral. We now focus on the big jumps.
By (2.1), these are integrals of Poisson random measures with finite mean measure,
⌫i(ds, dy) [✏i,r,A,+1)(s). Proposition 19.5 in Sato (1999) then ensures that J

B

i,r,A
has a

compound Poisson distribution, so that

J
B

i,r,A

d
=

Ni,r,AX

h=1

⇠
h
,
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where Ni,r,A is a Poisson random variable with intensity r = ⌫i([✏i,r,A,+1) ⇥ A) and
(⇠h)h are iid random variables, independent from Ni,r,A, with distribution

⇢i,r,A(ds) =
1

r

Z

A

⌫i(ds, dy) [✏i,r,A,+1)(s). (2.26)

Theorem 10 in Mariucci & Reiß (2018) deals with the Wasserstein distance between
compound Poisson distributions. Since J

B

1,r,A and J
B

2,r,A have the same total intensity
measure r but di↵erent jump distribution ⇢i,r,A, an immediate adaptation of their result
yields

W(JB

1,r,A, J
B

2,r,A)  rW(⇢1,r,A, ⇢2,r,A).

By (A.2), W(⇢1,r,A, ⇢2,r,A) =
R +1
�1 |F1,r,A(u)� F2,r,A(u)| du, where Fi,r,A(u) is equal to

1

r
⌫i([✏i,r,A, u]⇥A) [✏i,r,A,+1)(u) =

✓
1� 1

r
⌫i((u,+1)⇥A)

◆
[✏i,r,A,+1)(u).

Define min 2 {1, 2} such that ✏min = ✏min,r,A = min{✏1,r,A, ✏2,r,A} and similarly max 2
{1, 2}. Then

W(⇢1,r,A, ⇢2,r,A) =

Z
✏max

✏min

Fmin,r,A(u) du+

Z +1

✏max

|F1,r,A(u)� F2,r,A(u)| du.

Now, r
R
✏max

✏min
Fmin,r,A(u) du =

R
✏max

✏min
⌫min([✏min, u) ⇥ A) dy  (✏max � ✏min) r, which can

be rewritten as ✏max⌫max,x([✏max,+1))� ✏min⌫min,x([✏min,+1)). Thus by Lemma 18 it
converges to zero as r goes to +1. On the other hand,

r

Z +1

✏max

|F1,r,A(u)� F2,r,A(u)| du =

Z +1

✏max

|⌫1((u,+1)⇥A)� ⌫2((u,+1)⇥A)| du,

which attains the expression for gu(A) as r goes to +1.

2.6.2 Proof of Corollary 6

For every u 2 R+, ⌫h((u,+1) ⇥ A)  ⌫j((u,+1) ⇥ A) because the Radon–Nikodym
derivatives are ordered. Thus gu(A) is equal to

����
Z +1

0
(⌫1((u,+1)⇥A)� ⌫2((u,+1)⇥A)) du

����

=

����
Z +1

0

Z +1

u

(⌫1(ds⇥A)� ⌫2(ds⇥A)) du

����.

By interchanging the integrals this is equal to the lower bound in Theorem 5.

2.6.3 Proof of Corollary 7

Without loss of generality we assume ↵1(A)  ↵2(A). Then by taking ⌘(ds) = (0,+1)(s) ds,

⌫1(s⇥A) = ↵1(A) ⇢(s)  ↵2(A) ⇢(s) = ⌫2(s⇥A),

for every s 2 R+. Thus W(µ̃1(A), µ̃2(A)) = |↵1(A)�↵2(A)|
R
R+ s ⇢(s) ds by Corollary 6.

We conclude by taking the supremum over A 2 X .
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2.6.4 Proof of Proposition 8

Let µ̃i ⇠ Ga(bi,↵i), for i = 1, 2. Without loss of generality we assume 0 < b1  b2. Thus
for every A 2 X ,

E(µ̃i(A)) =

Z

R+⇥A

s ⌫i(ds, dy) =
↵i(A)

bi
.

This implies that the total mean is finite. Since e
�sbi

s
is not integrable near zero, the

random measures are infinitely active. Thus Theorem 5 holds and from the expression
of E(µ̃i(A)) above we derive the lower bound in Proposition 8. We now focus on the
upper bound. For every u 2 R+,

⌫i((u,+1)⇥A) = ↵i(A)

Z +1

u

e
�sbi

s
ds = ↵i(A)E1(biu),

where E1(x) =
R1
x

e
�y

y
dy. Thus,

W(µ̃1(A), µ̃2(A) 
Z +1

0
|↵1(A)E1(b1u)� ↵2(A)E1(b2u)| du.

The fundamental theorem of line integral ensures that

Z +1

0
|↵1(A)E1(b1u)� ↵2(A)E1(b2u)| du =

Z +1

0

���
Z

C

r u(a, b) · ds
���du,

where r denotes the gradient of a function,  u(a, b) = aE1(by), and C is the segment
in R2 connecting (↵1(A), b1) to (↵2(A), b2). We consider the parametrization s(t) =
(↵1(A) + t(↵2(A)� ↵1(A)), b1 + t(b2 � b1)). Since r u(a, b) = (E1(by),�a

b
e
�by), this is

equal to

Z +1

0

���
Z 1

0

⇣
E1(s2(t)u) s

0
1(t)�

s1(t)

s2(t)
e
�s2(t)u s

0
2(t)
⌘
dt

��� du


Z +1

0

Z 1

0

���E1((b1 + t(b2 � b1))u) (↵2(A)� ↵1(A))�

+
↵1(A) + t(↵2(A)� ↵1(A))

b1 + t(b2 � b1)
e
�(b1+t(b2�b1))u (b2 � b1)

���dt du

Since we have assumed w.l.o.g. that b1  b2,


Z +1

0

Z 1

0

⇣
E1((b1 + t(b2 � b1))u) |↵2(A)� ↵1(A)|+

+
↵1(A) + t(↵2(A)� ↵1(A))

b1 + t(b2 � b1)
e
�(b1+t(b2�b1))u (b2 � b1)

⌘
dt du
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We invert the integrals thanks to Fubini’s Theorem and use the fact that
R +1
0 E1(ax)dx =

1
a
, which is a standard result on exponential integrals (Geller & W. Ng, 1969). Thus,


Z 1

0

⇣ 1

b1 + t(b2 � b1)
|↵2(A)� ↵1(A)|+ ↵1(A) + t(↵2(A)� ↵1(A))

(b1 + t(b2 � b1))2
(b2 � b1)

⌘
dt.

By standard integration techniques, this amounts to

=
↵1(A)

b1
� ↵2(A)

b2
+ (0,+1)(↵2(A)� ↵1(A)) 2

↵2(A)� ↵1(A)

b2 � b1
log

b2

b1
.

2.6.5 Proof of Proposition 9

When c1 = c2 the result is immediate once we observe that E(µ̃(A)) = ↵(A) for every
µ̃ ⇠ Be(c,↵). We focus on the case ↵1 = ↵2, 0 < c1  c2. By reasoning as in the proof
of Proposition 8, W(µ̃1(A), µ̃2(A) is bounded from above by

↵(A)

Z 1

0

Z
s

0

Z
c2

c1

����
d

dc

✓
c (1� s)c�1

s

◆���� dc du ds

the derivative
�
(c (1 � s)c�1) s�1

�0
= (1 � s)c�1 (1 + c log(1 � s))s�1  (1 � s)c�1 (1 �

c log(1�s))s�1 for s 2 (0, 1). Thus by Fubini’s Theorem the previous integral is bounded
from above by

↵(A)

Z
c2

c1

Z 1

0
(1� s)c�1 (1� c log(1� s)) ds dc = 2↵(A) log

✓
c2

c1

◆
,

by standard integration techniques.

2.6.6 Proof of Lemma 10

Let {A1, · · ·An} in X be disjoint sets. Then for i = 1, . . . , n the random variables
µ̃f (Ai) =

R
Ai

f(x)µ̃(dx) are independent since f is deterministic and µ̃(A1), · · · µ̃(An)
are independent. This proves that µ̃f is a CRM. In order to find its Lévy intensity ⌫f ,
we consider the Laplace functional transform (1.5):

E
�
e
�

R
R g(y)µ̃f (dy)

�
= exp

n
�
Z

R+⇥R
[1� e

�s g(y)f(y)] ⌫(ds, dy)
o
=

= exp
n
�
Z

R+⇥R
[1� e

�s g(y)] (pf # ⌫)(ds, dy)},

where pf (s, y) = (sf(y), y).
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2.6.7 Proof of Theorem 13

The lower bound follows immediately from (2.3). As for the upper bounds, first of all
we observe that for any x, y 2 R+

|e�x � e
�y| = e

�x^y(1� e
�|x�y|). (2.27)

In order to derive the function gu,1 in the upper bound, we observe that since e�x^y  1,
the following upper bound holds for W(S̃1(t), S̃2(t)):

inf
C(H̃1(t),H̃2(t))

���e�H̃1(t) � e
�H̃2(t)

���  inf
C(H̃1(t),H̃2(t))

E
�
1� e

�|H̃1(t)�H̃2(t)|�.

Since 1 � e
�x is a concave function, by Jensen’s inequality, W(S̃1(t), S̃2(t)) is bounded

from above by

inf
C(H̃1(t),H̃2(t))

n
1� e

�E(|H̃1(t)�H̃2(t)|)
o
= 1� e

� inf
C(H̃1(t),H̃2(t))

E(|H̃1(t)�H̃2(t)|)
.

As for gu,2, combining (2.27) with e
�x^y  e

�x + e
�y and by Jensen’s inequality,

E
���e�H̃1(t) � e

�H̃2(t)
���

 E
�
e
�H̃1(t) + e

�H̃2(t) � e
�(H̃1(t)+|H̃1(t)�H̃2(t)|) � e

�(H̃2(t)+|H̃1(t)�H̃2(t)|)�

 E
�
e
�H̃1(t)

�
+ E

�
e
�H̃2(t)

�
� e

�E(H̃1(t)+|H̃1(t)�H̃2(t)|) � e
�E(H̃2(t)+|H̃1(t)�H̃2(t)|)

 E
�
e
�H̃1(t)

�
+ E

�
e
�H̃2(t)

�
�
�
e
�E(H̃1(t)) + e

�E(H̃2(t))
�
e
�E|H̃1(t)�H̃2(t)|.

By taking the infimum over all couplings in C(H̃1(t), H̃2(t)) we derive gu,2.

2.6.8 Proof of Theorem 15

The proof relies on �(y) being a decreasing continuous piecewise linear function. We
first include x1, . . . , xn in the set {th |h = 1, . . . , n(✏)}. Then, for every i = 1, . . . n
we iteratively include all points t 2 (xi, xi+1) such that the counterimage ��1(t) is at
distance ✏ from the previous point. We easily conclude by observing that on (xi, xi+1]
the function � is linear with coe�cient equal to �(n� i). See Figure 2.3.

2.6.9 Proof of Theorem 17

The proof is based on observing that h̃1 = h̃
⇤ and h̃2 = h̃

✏ are two kernel mixture
hazards with k1(y|t) = k2(y|t) = [0,t](y) and µ̃i extended gamma CRMs with scale
function �1(y) = �

⇤(y) and �2(y) = �
✏(y) and Lebesgue base measure on the positive

axis, i.e.

⌫i(ds, dy) =
exp

�
� s

�i(y)

 

s
[0,+1)(y) ds dy,

These kernel and Lévy measures satisfy both the conditions of Theorem 11 and of The-
orem 12. Since by construction �✏(y)  �

⇤(y) for every y 2 [0,+1), the Lévy densities
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of the the hazards and of the cumulative hazards are ordered. Thus the Wasserstein
distance reduces to the absolute di↵erence of their means:

W(h̃⇤(t), h̃✏(t)) =

����
Z

t

0
�
⇤(y)� �

✏(y) dy

���� 
Z

t

0
|�⇤(y)� �

✏(y)| dy  ✏
�
2

b2
t,

by (2.24). Similarly,

W(H̃⇤(t), H̃✏(t)) =

����
Z

t

0
(t� y)(�⇤(y)� �

✏(y)) dy

����  ✏
�
2

b2

Z
t

0
(t� y)dy = ✏

�
2

2b2
t
2
.

Finally, the bound for the survival function derives directly from the one on the cumu-
lative hazards, as in Theorem 13.
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Chapter 3

Measuring dependence in the

Wasserstein distance

The proposal and study of dependent Bayesian nonparametric models has been one of
the most active research lines in the last two decades, with random vectors of measures
representing a natural and popular tool to define them. Nonetheless a principled ap-
proach to understand and quantify the associated dependence structure is still missing.
In this chapter we devise a general, and non model-specific, framework to achieve this
task for random measure based models, which consists in: (a) quantify dependence of
a random vector of probabilities in terms of closeness to exchangeability, which cor-
responds to the maximally dependent coupling with the same marginal distributions,
i.e. the comonotonic vector; (b) recast the problem in terms of the underlying random
measures (in the same Fréchet class) and quantify the closeness to comonotonicity; (c)
define a distance based on the Wasserstein metric, which is ideally suited for spaces of
measures, to measure the dependence in a principled way. Several results, which rep-
resent the very first in the area, are obtained. In particular, useful bounds in terms
of the underlying Lévy intensities are derived relying on compound Poisson approxima-
tions. These are then specialized to popular models in the Bayesian literature leading
to interesting insights.

3.1 Introduction

A sequence of random elements (Xn)n�1 is exchangeable when its distribution is invari-
ant with respect to finite permutations of the indices. By de Finetti’s Representation
Theorem this intuitive symmetry requirement is equivalent to the finite–dimensional
distributions being conditionally independent and identically distributed. Partial ex-
changeability (de Finetti, 1938) is a natural generalization and corresponds to exchange-
ability holding within each of a finite number of blocks in which the random elements
are grouped. The corresponding representation theorem states that for partially ex-
changeable sequences {X1,j | j � 1}, . . . , {Xk,j | j � 1} on a Polish space X there exists
a random vector of probability measures (p̃1, . . . , p̃k) ⇠ Q s.t. for any ni 2 N and any
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Borel sets Ai ⇢ Xni , for i = 1, . . . , k,

P
✓ k\

i=1

{(Xi,1, · · · , Xi,ni
) 2 Ai}

◆
=

Z

P
k

X

kY

i=1

p
(ni)
i

(Ai)Q(dp1, . . . , dpk).

In particular, exchangeability is recovered when p̃1 = · · · = p̃k almost surely (a.s.). We
refer to Section 1.5 for further details.
In Bayesian nonparametric inference, the random elements {X1,j | j � 1}, . . . , {Xk,j | j �
1} are regarded as observables and a fundamental issue is the choice of the distribution
Q for the random vector of probability measures (p̃1, . . . , p̃k), the prior distribution. The
dependence between the random probabilities is of crucial importance, since it regulates
the dependence between groups of observations and, consequently, the borrowing of
information across groups. The first proposal of a dependent nonparametric prior dates
back to Cifarelli & Regazzini (1978), but it were the two seminal papers of MacEachern
(1999, 2000) which led to an impressive growth of research in this direction. Most classes
of priors are defined to select a.s. discrete p̃i’s, since this naturally allows for clustering
at either the observations’ or latent level. This is true also in the exchangeable case: an
a.s. discrete p̃ is obtained through either the stick–breaking construction (Sethuraman,
1994; Ishwaran & James, 2001) or a suitable transformation of a completely random
measure (CRM) µ̃ (Kingman, 1967; Lijoi & Prünster, 2010). The former approach
is particularly e↵ective for computational purposes, whereas the latter allows to derive
important distributional properties. In particular, by using CRMs as a unifying concept,
as showcased in (Lijoi & Prünster, 2010), one obtains popular classes of nonparametric
priors such as, e.g., normalized random measures (Regazzini et al., 2003), neutral-to-
the-right processes (Doksum, 1974) and kernel mixtures of random measures (Dykstra
& Laud, 1981; James, 2005). Correspondingly, in the general partially exchangeable case,
one may distinguish two approaches for building dependent priors: the first approach
models the dependence at the level of the atoms and/or the jumps of the stick–breaking
construction of each p̃i; the second models the dependence at the level of the CRMs
(µ̃1, . . . , µ̃k) to then obtain a dependent vector (p̃1, . . . , p̃k) via a suitable transformation.
See (Hjort et al., 2010; Müller et al., 2015; Ghosal & van der Vaart, 2017; Müller et al.,
2018) for extensive accounts.
A crucial gap in this vast literature is the understanding and quantification of the de-
pendence structure of a dependent nonparametric prior in order to both elicit prior
parameters to achieve the desired degree of dependence and compare di↵erent priors
themselves. The most natural way to approach the problem is to measure closeness to
exchangeability, which corresponds to the extreme case of maximal dependence between
populations. Within a parametric framework, already in 1938, de Finetti proposed to
use approximately exchangeable priors to deal with contingency tables (de Finetti, 1938).
Recently, Bacallado et al. (2015) enriched this class of examples and proposed ways to
use them to test for the exchangeability assumption. However, closeness to exchange-
ability is left as an essentially intuitive notion. To the best of our knowledge, the only
measure of dependence that has been used so far is the pairwise linear correlation of
(p̃i(A), p̃j(A)), for any given set A, which is certainly useful but reducing dependencies
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between random probabilities to linear correlation is hardly satisfying.
Here, we tackle the problem in a general nonparametric framework adopting a principled
approach in that we measure the distance to exchangeability in terms of the Wasser-
stein distance. Because of its intrinsically geometric definition, the Wasserstein distance
is the most appropriate choice for describing the similarity between distributions. As
explained in (Rachev, 1985), this distance was first introduced by Gini (1914) with this
exact scope. During the past century the Wasserstein distance was introduced and stud-
ied in many fields of research, including Optimal Transport Theory, Partial Di↵erential
Equations and Ergodic Theory. Recently, it has gained a renewed popularity in Proba-
bility, Statistics and the related fields of Machine Learning and Optimization, where the
distinguished theoretical properties are now supported by e�cient algorithms (Cuturi,
2013). See (Villani, 2008; Panaretos & Zemel, 2019) for detailed reviews. The first to
use the Wasserstein distance in a Bayesian nonparametric framework, for asymptotic
investigations, has been Nguyen (2013) who has convincingly argued for it as an e↵ec-
tive tool to handle discrete nonparametric priors. See also (Nguyen, 2016). From our
perspective, the Wasserstein distance is the ideal choice because it allows for a meaning-
ful comparison between distributions with di↵erent support and without density, as the
ones arising from transformations of CRMs. This property is not shared by the most
common distances and divergences, such as the total variation distance, the Hellinger
distance or the Kullback–Leibler divergence.
Our general setup is as follows. For simplicity, we consider the case k = 2, even though
most of our results may be extended to a generic k with no additional cost. Since our
leading purpose is to measure the closeness to exchangeability (i.e. p̃1 = p̃2 a.s), we

consider random vectors (p̃1, p̃2) with equal marginal distributions (p̃1
d
= p̃2). A crucial

observation is then the following: instead of measuring the distance from exchangeability
of (p̃1, p̃2), we work with completely random vectors (CRVs) (µ̃1, µ̃2), characterized by
jointly independent increments, and measure their closeness to the comonotonic case i.e.
µ̃1 = µ̃2 a.s. In fact, since most random vectors of discrete probabilities (p̃1, p̃2) are
obtained by a suitable component–wise transformation T of a CRV, (T (µ̃1), T (µ̃2)) (see
(Lijoi & Prünster, 2010) for details), comonotonic CRVs correspond to exchangeability.
Working directly with the random measures rather than their transformed versions has
two distinct advantages: (a) it provides a generic and non-model specific framework
for the analysis of dependence, which can then be tailored to the particular class of
models one is interested in, as we do in Section 3.7; (b) it significantly simplifies the
mathematical analysis. Closeness to the comonotonic case is then measured through the
following distance on CRVs, which will be shown in Section 3.2 to be well–defined,

dW

✓✓
µ̃1

µ̃2

◆
,

✓
⇠̃1

⇠̃2

◆◆
= sup

A2X
W
✓✓

µ̃1(A)
µ̃2(A)

◆
,

✓
⇠̃1(A)
⇠̃2(A)

◆◆
, (3.1)

where W denotes the 2–Wasserstein distance on the Euclidean plane. The main goal of
this work is then to provide an analytical expression for the distance dW in (3.1) with a
particular focus on the distance between a CRV (µ̃1, µ̃2) and the comonotonic random
vector (⇠̃1, ⇠̃2) in the same Fréchet class, i.e. with the same marginal distributions. We
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stress that our results, even though motivated by Bayesian nonparametric models, are
of independent probabilistic interest with reference to the theory of multidimensional
random measures and Lévy processes.
The two major challenges in the treatment of dW in (3.1) may be summarized as follows.
(i) The analytical computation of the Wasserstein distance needs the appointment of an
optimal transport map. While these are always known in explicit form for univariate
distributions, the general expression for multidimensional ones is still an open problem,
with only a few known cases. Knott & Smith (1984) characterized optimal mappings as
gradients of convex functions. By relying on a reformulation of this result by Rüschen-
dorf (1991), in Theorem 20 we find the optimal transport map to the comonotonic vector.
This allows to express the Wasserstein distance as an integral that requires the cumula-
tive distribution function (cdf) of µ̃1(A)+ µ̃2(A), which in some cases may be computed
directly, as for the Wasserstein distance between comonotonicity and independence. (ii)
The law of a CRV is usually provided through a bivariate Lévy measure, so that the cdf
of µ̃1(A) + µ̃2(A) is not available in closed form. In Theorem 23 we find tight bounds of
the distance that are expressed directly in terms of the Lévy measures. This is achieved
through suitable compound Poisson approximations of the random vectors and by finding
a new informative bound for the Wassserstein distance between multivariate compound
Poisson distributions (Proposition 24). Much e↵ort is then put in the computation of
the bounds for dW when (µ̃1, µ̃2) is taken to be equal to well–known priors in Bayesian
nonparametric models for partially exchangeable data, leading to meaningful insights
and a quantification of their dependence structure in terms of hyperparameters.
Our measure of dependence may be naturally extended to k > 2 groups by consider-
ing the Wasserstein distance on Rk from (⇠1(A), . . . , ⇠k(A)) such that ⇠1(A) = · · · =
⇠k(A) a.s., i.e. the comonotonic k-dimensional CRV corresponding to exchangeability.
The main techniques described in the previous paragraph continue to hold in the k–
dimensional case and for simplicity we focus on k = 2. We underline that the natural
extension to an arbitrary k provides a further benefit of our measure of dependence
compared to linear correlation, since it provides an overall quantification of dependence
without forcing pairwise comparisons.
Many of the techniques that we introduce may also be used to measure the dependence
directly on component-wise tranformations (T (µ̃1), T (µ̃2)) of a CRV. However, this re-
quires additional work and depends on the choice of T , since the Wasserstein distance
in not invariant with respect to transformations. We develop informative bounds for a
specific transformation that is widely used in Bayesian nonparametric models for time-
to-event data, where random hazards are often modeled as kernel mixtures over a CRM.
Since the hazards characterize the entire distribution, this provides a specification for
the de Finetti measure. The inferential properties of this prior were thouroughly studied
by Dykstra & Laud (1981); Lo & Weng (1989) and James (2005) for exchangeable ob-
servations and have seen interesting generalizations to a partially exchangeable setting
(Lijoi & Nipoti, 2014; Camerlenghi et al., 2020).

The chapter is structured as follows. In Section 3.2 we introduce necessary concepts
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and notation and prove that dW is actually a distance. In Section 3.3 we obtain an
integral representation of the Wasserstein distance between a random vector of measures
and the corresponding comonotonic one. In Section 3.4 we develop general bounds for
the distance between CRVs in the same Fréchet class, in terms of their bivariate Lévy
intensities. In Section 3.5 we focus on the distance from exchangeability and obtain
an explicit form for the bounds of the previous section. In particular, in Section 3.6
we use them to bound the distance between exchangeability and the other extreme
case, independence. Finally, in Section 3.7 the previous techniques are used to quantify
the dependence of three popular nonparametric priors for partially exchangeable data,
namely compound random measures (Gri�n & Leisen, 2017; Riva Palacio & Leisen,
2019), Clayton Lévy copula (Tankov, 2003; Epifani & Lijoi, 2010; Leisen & Lijoi, 2011)
and GM–dependence (Gri�ths & Milne, 1978; Lijoi et al., 2014; Lijoi & Nipoti, 2014).
In Section 3.8 we extend the measure of dependence to random hazards that are modeled
as kernel mixtures over a CRV, with a specific application to GM-dependence (Lijoi &
Nipoti, 2014) All proofs are deferred to Section 3.9.

3.2 Preliminaries

We first recall definitions and key properties of random vectors of measures and of the
Wasserstein distance. To fix notation, let R+ = (0,+1) and R2

+ := [0,+1)⇥ [0,+1) \
{(0, 0)}. Moreover, L(X) denotes the law of a random variableX and

d
= refers to equality

in distribution.
Let (X, dX) be a Polish space endowed with a distance dX and the Borel �-algebra X .
We denote by (MX,MX) the Borel space of boundedly finite measures on X endowed
with the topology of weak] convergence (Daley & Vere-Jones, 2002). A random vector
of measures is a measurable function µ̃ = (µ̃1, µ̃2) : ⌦ ! M

2
X, where (⌦,⌃⌦, P⌦) is a

generic probability space and M
2
X = MX ⇥MX is endowed with the product �–algebra.

We refer to the projections ⇡i � µ̃ = µ̃i : ⌦ ! MX, for i = 1, 2, as the marginals
of µ̃. Moreover, the random vectors of one–dimensional distributions are denoted as
µ̃(A) = (µ̃1(A), µ̃2(A)) : ⌦ ! [0,+1)⇥ [0,+1), for every A 2 X .

Definition 6. A random vector of measures µ̃ is a completely random vector (CRV), if
given a finite collection of disjoint bounded Borel sets {A1, · · · , An}, the random vectors
{µ̃(A1), . . . , µ̃(An)} are independent.

In particular, this definition entails that the marginal distributions µ̃1, µ̃2 have inde-
pendent increments and are thus completely random measures (CRMs) in the sense
of Kingman (1967), as introduced in Section 1.4. We point out that the converse is
not necessarily true: a random vector of measures whose marginals are CRMs is not
necessarily a CRV. The joint independence of the increments guarantees that the distri-
bution of µ̃ is characterized by the distribution of the one–dimensional random vectors
{µ̃(A) |A 2 X}. Moreover, (Kallenberg, 2017, Theorem 3.19) ensures that, if µ̃ has no
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fixed atoms, there exists a Poisson random measure N on R2
+ ⇥X s.t. for every A 2 X ,

µ̃(A)
d
=

Z

R2
+⇥A

sN (ds1, ds2, dx), (3.2)

where s = (s1, s2). The mean measure ⌫(ds1, ds2, dx) = E(N (ds1, ds2, dx)) satisfies the
following properties: ⌫(R2

+ ⇥ {x}) = 0 for every x 2 X and

Z

R2
+⇥A

min{s1 + s2, ✏} ⌫(ds1, ds2, dx) < +1 (3.3)

for every bounded A 2 X and every ✏ > 0. We will focus on CRVs without fixed atoms
and refer to ⌫ as the intensity measure of µ̃. This will be further assumed to have no
atoms. Campbell’s Theorem ensures that from the Lévy intensity of µ̃ one derives the
Lévy intensities of the marginal CRMs µ̃1 and µ̃2, namely

⌫1(ds, dx) =

Z

[0,+1)
⌫(ds, ds2, dx), ⌫2(ds, dx) =

Z

[0,+1)
⌫(ds1, ds, dx).

We underline that the marginal CRMs are not forced to have the same atoms a.s. because
the measure ⌫ may have positive mass on the axes, as it will be clear from Section 3.6.
We say that µ̃ is infinitely active if for every A 2 X both the marginal CRMs are
infinitely active, i.e.

Z

R+⇥A

⌫1(ds, dx) =

Z

R+⇥A

⌫2(ds, dx) = +1. (3.4)

Since most applications of random measures in Bayesian nonparametrics deal with in-
finitely active random measures, we concentrate on these.

The distribution of a CRV is characterized by the distribution of the one–dimensional
distributions {µ̃(A) |A 2 X}. Thus any distance D on the space PR2 of probability
measures on R2 determines a distance on the laws of CRVs by considering

sup
A2X

D(L(µ̃1(A)),L(µ̃2(A))).

The distance dW defined in (3.1) fits in this general framework, by considering the
Wasserstein distance as metric D. Given ⇡1,⇡2 two probability measures on a Polish
space (X, dX), we indicate by C(⇡1,⇡2) the Fréchet class of ⇡1 and ⇡2, i.e. the set of
distributions on the product space whose marginal distributions coincide with ⇡1 and
⇡2 respectively. If Z1 and Z2 are dependent random variables on X such that their joint
law L(Z1, Z2) 2 C(⇡1,⇡2), we write (Z1, Z2) 2 C(⇡1,⇡2).

Definition 7. The Wasserstein distance of order p 2 [1,+1) between ⇡1 and ⇡2 is

Wp,dX (⇡1,⇡2) = inf
(Z1,Z2)2C(⇡1,⇡2)

�
E(dX(Z1, Z2)

p)
 1

p .
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By extension, we refer to the Wasserstein distance between two random elements Xi :
⌦ ! X, i = 1, 2, as the Wasserstein distance between their laws, i.e. Wp,d (X1, X2) =
Wp,d (L(X1),L(X2)). An element of C(L(X1),L(X2)) is referred to as a coupling be-
tween X1 and X2.

Throughout the work we set p = 2 and (X, dX) = (R2
, k·k), i.e. the Euclidean plane. We

will refer to such distance as the Wasserstein distance and denote it by W, i.e.

W(X,Y ) = inf
(ZX ,ZY )2C(X,Y )

�
E(kZX �ZY k2)

 1
2 ,

where we have used the vector notation X = (X1, X2) 2 R2. The parallelogram rule on
normed spaces ensures that

W(X,Y )2  2 (E(kXk2) + E(kY k2)). (3.5)

In particular, the Wasserstein distance between random elements on R2 with finite ex-
pected squared norm is finite. Thus, in order for dW in (3.1) to be finite, we restrict
to random vectors of measures with finite second moment E(kµ̃(X)k2) = E(µ̃1(X)2) +
E(µ̃2(X)2) < +1. Therefore, by standard properties of Poisson random measures, we
ask

E(µ̃(X)) =
Z

R2
+⇥X

s ⌫(ds1, ds2, dx) < +1, (3.6)

Var(µ̃(X)) =
Z

R2
+⇥X

s2 ⌫(ds1, ds2, dx) < +1, (3.7)

where s2 = (s21, s
2
2) and +1 = (+1,+1). We summarize our findings in the following.

Proposition 19. The function dW : P(M2
X) ⇥ P(M2

X) ! [0,+1) defines a distance on
the laws of CRVs whose Lévy intensities satisfy (3.6) and (3.7).

We conclude this section by recalling some properties of the Wasserstein distance to
be used in the sequel. Let X and Y be two random elements in R2. A coupling
(ZX ,ZY ) 2 C(X,Y ) is said to be optimal if W(X,Y ) = E(kZX � ZY k2)

1
2 . If an

optimal coupling satisfies ZX = �(ZY ) a.s. for some measurable function �, we refer
to � as an optimal (transport) map from X to Y . Optimal maps for the Wasserstein
distance on the Euclidean line always exist and are explicitly available; on the contrary,
on the Euclidean plane they are not guaranteed to exist if X gives non–zero mass to sets
of codimension greater or equal to 1. Moreover, even when the existence is established,
there is no explicit way to build such maps, except in few particular cases; see (Villani,
2008). However, Knott & Smith (1984) appointed a su�cient criterion to establish the
optimality of a map, namely to express it as the gradient of a convex function. We will
use this result in a reformulation provided by (Rüschendorf, 1991). When an optimal
transport map � is available, the Wasserstein distance amounts to an expected value
with respect to a degenerate distribution having support on a 2–dimensional subspace of
R4. Nonetheless, the evaluation of such an integral is still a di�cult task since bivariate
integrals can be di�cult to evaluate not only analytically but also numerically.

48



3.3. Distance from exchangeability

3.3 Distance from exchangeability

Having established conditions for dW in (3.1) to be a distance on completely random
vectors, we now use dW to compare CRVs µ̃, ⇠̃ in the same Fréchet class, i.e. with equally

distributed marginal random measures (µ̃1
d
= ⇠̃1; µ̃2

d
= ⇠̃2), and focus on the compari-

son between their dependence structures. To this end, we put particular emphasis on
the Wasserstein distance from comonotonic random vectors, which induce exchangeable
priors. In this section, we provide an analytical expression for the optimal transporta-
tion map from a generic CRV to the comonotonic one in the same Fréchet class. This
will then be used to evaluate the exact distance between exchangeability and the other
extreme case, independence.

Definition 8. A random vector of measures µ̃ is said to be completely dependent or
comonotonic if µ̃1 = µ̃2 a.s. We write µ̃ = µ̃co.

In particular, we point out that every random vector of measures µ̃ = (µ̃1, µ̃2) in the

same Fréchet class of µ̃co satisfies µ̃1
d
= µ̃2. For this reason, since our main interest lies in

exchangeability and thus in comonotonicity, throughout the work we deal with random
vectors of measures with equal marginal distributions. It should be stressed, though,
that many of our results and techniques could be easily extended to other settings.

Theorem 20. Let µ̃ and µ̃co be CRVs in the same Fréchet class s.t. condition (3.6) on
the Lévy intensities holds. Then,

W(µ̃(A), µ̃co(A))2 = 4 (E
�
µ̃1(A)2

�
� !µ̃,A), (3.8)

where !µ̃,A = E
�
µ̃1(A)F�1

µ̃1(A)(Fµ̃1(A)+µ̃2(A)(µ̃1(A) + µ̃2(A))
�
, with FX denoting the cu-

mulative distribution function (cdf) of X.

By defining Xi = µ̃i(A) for i = 1, 2, it may be clarifying to observe that the right hand
side of (3.8) is equal to 4(E(X2

1 )� E(X1F
�1
X1

(FX1+X2(X1 +X2)))). In particular, when

µ̃ = µ̃co, X1 = X2 = X, so that (3.8) becomes 4(E(X2) � E(XF
�1
X

(F2X(2X)))) = 0,
since F2X(2X) = FX(X). Moreover, when the distribution of µ̃ is symmetric, i.e.
L(µ̃1, µ̃2) = L(µ̃2, µ̃1), one finds the following alternative expression !µ̃,A in (3.8).

Lemma 21. Let µ̃ be a symmetric CRV satisfying the conditions of Theorem 20. Then

!µ̃,A =
1

2
E(F�1

µ̃1(A)+µ̃2(A)(U)F�1
µ̃1(A)(U)),

where U ⇠ Unif([0, 1]) is a uniform random variable on [0, 1].

Since µ̃co is symmetric, we may apply Lemma 21 to check that 4 (E
�
µ̃1(A)2

�
�!µ̃,A) = 0

when µ̃ = µ̃co. Indeed this follows by observing that F
�1
2X (U)F�1

X
(U)

d
= 2X2, where

X = µ̃1(A) = µ̃2(A).
The expression of !µ̃,A in Theorem 20 involves the dependence structure of µ̃ and is to
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3.3. Distance from exchangeability

be evaluated case-by-case. In some specific cases it can be computed directly leading to
the exact bivariate Wasserstein distance with respect to a comonotonic random vector
in the same Fréchet class, in short the Wasserstein distance from exchangeability. For
instance, consider a CRV µ̃ind whose marginals are independent gamma CRMs. Recall
that µ̃ is a gamma CRM with base measure ↵P0 if the Lévy intensity is

⇡(ds, dx) = ↵P0(dx)
e
�s

s
(0,+1)(s) ds, (3.9)

where ↵ > 0 and P0 is a probability distribution on X. This coincides with µ̃ ⇠
Ga(1,↵P0) defined in (1.6). We define

!↵,P0,A =
1

�(2↵P0(A) + 1)
Z +1

0
Inv�↵P0(A)

✓
�(↵P0(A))

�(2↵P0(A))
�(2↵P0(A), t)

◆
e
�t

t
2↵P0(A)

dt,

where �(a, s) =
R +1
s

e
�t

t
a�1

dt is the upper incomplete gamma function and Inv�a(·) is
the inverse function of �(a, ·).

Corollary 22. Let µ̃ind and µ̃co be in the same Fréchet class with marginal gamma
CRM with base measure ↵P0. Then,

W(µ̃ind(A), µ̃co(A))2 = 4↵P0(A) (1 + ↵P0(A)� !↵,P0,A).

Moreover,

!↵,P0,A =
1

2

Z 1

0
Inv�2↵P0(A)(t) Inv�↵P0(A)(t) dt.

For fixed values of ↵P0(A), we can evaluate this quantity numerically. For example,
Figure 3.1 corresponds to ↵ = 1 and A = X, so that numerical simulations yield !↵,P0,A ⇡
1.19. The analytical value is compared with the simulated Wasserstein distance between
the empirical measures, which is known to converge to the Wasserstein distance between
the underlying distributions as the size of the samples diverges. In many other cases the
evaluation of the expression in Theorem 20 is impossible in practice. For example, this
happens if the analytical expression for Fµ̃1(A) is not available in closed form, or when
the dependence between the random measures is modeled through the bivariate Lévy
intensity. Moreover, we observe that the quantities in Theorem 20 and Corollary 22
depend on A in a non–trivial manner, so that finding the supremum over all Borel sets
as in (3.1) may not be an easy task. This raises the need for informative and tractable
upper bounds on the distance, whose expression depends directly on the underlying Lévy
intensity. Note that the upper bound in (3.5) only depends on the marginal distributions
of the random vectors, and thus does not provide any information on their dependence
structures.

50



3.4. Bounds on Fréchet classes

Figure 3.1: Simulation of the empirical Wasserstein distance between a bivariate dis-
tribution with independent gamma marginals with shape = scale = 1 and a bivariate
distribution with a.s. equal gamma marginals of shape = scale = 1, based on 20 samples
of increasing sizes. Simulations were performed with the Python Optimal Transport
(POT) package (Flamary & Courty, 2017).

3.4 Bounds on Fréchet classes

Given the di�culty in evaluating the integral expression of Theorem 20 for the Wasser-
stein distance between a completely random vector and a comonotonic one in the same
Fréchet class, we aim at deriving suitable bounds. We first face the problem in general
and develop upper bounds for the Wasserstein distance between two CRVs. Then, in
the following sections, these general bounds will be specialized to the distance from ex-
changeability, which is the case of interest for Bayesian inference. Our general bounds
rely on a compound Poisson approximation of the CRVs, which are induced by certain
compatible families of neighborhoods of the origin. Henceforth we assume that µ̃ is an
infinitely active CRV s.t. condition (3.6) on the Lévy intensity ⌫ holds.

Definition 9. Consider a family B = {B(✏) | ✏ 2 (0, 1]} of measurable neighborhoods of
the origin in R2

+ s.t.

(B1) the family is increasing, i.e. ✏1  ✏2 implies that B(✏1) ⇢ B(✏2);

(B2) the Lévy intensity gives zero mass to their intersection, i.e. ⌫(\✏2(0,1]B(✏)⇥A) = 0
for every A 2 X ;

(B3) the sets D = {D(✏) = B(✏)c = R2
+ \ B(✏) | ✏ 2 (0, 1]} have continuously increasing

mass, i.e. there exists r0 = ⌫(\✏2(0,1]D(✏)) s.t. for every r > r0 there exists
✏r = ✏r,A s.t. ⌫(D(✏r)⇥A) = r.
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3.4. Bounds on Fréchet classes

Then we say that the family B is compatible with µ̃. By extension, we will also refer to
the family of complementary sets D as compatible.

Remark 2. Some technical comments are in order: (a) The choice of the index set to
be (0, 1] is arbitrary. Indeed, one could replace it with any neighborhood of the origin
in R+. (b) The uncountable intersection \✏2(0,1]D(✏) is measurable because the family
is increasing. One can find more on this in Section 3.9. (c) Property (B2) does not
contradict the continuity of the measure since ⌫ is an infinite measure.

(1) (2) (3)

Figure 3.2: Three families of neighborhoods of the origin:
(1) B+(✏) = {(s1, s2) | s1 + s2  ✏};
(2) BE1(✏) = {(s1, s2) |E1(s1)�✓ + E1(s2)�✓  ✏} with ✓ = 0.5;
(3) Bmin(✏) = {(s1, s2) | min(s1, s2)  ✏}.

Remark 3. A standard way to find a family of measurable neighborhoods of the origin
that satisfy (B1) is to consider the level sets

B
g(✏) = {(s1, s2) | g(s1, s2)  ✏}, (3.10)

where g : [0,+1) ⇥ [0,+1) ! R+ is a measurable function s.t. g(0, 0) = 0. See
Figure 3.2. Depending on the support of ⌫, properties (B2) and (B3) may hold. For
example, if g(s1, s2) = min(s1, s2), Bg is not compatible with ⌫ having mass on the axis,
whereas it is compatible with ⌫ being absolutely continuous (a.c.) w.r.t. the Lebesgue
measure.
As will be seen in the sequel, we will mostly be interested in Lévy intensities that are
a.c. w.r.t. the Lebesgue measure or have mass on lines passing through the origin. In
these cases, every continuous map g s.t. g(s1, s2) = 0 if and only if (s1, s2) = (0, 0)
induces a compatible family. In particular, we will be interested in the families B+ and
B

E1 appearing in Figure 3.2, where E1(s) = �(0, s) is the exponential integral.

Given a compatible family D, for every r > r0 and every A 2 X we define the probability
distribution ⇢r,A,D on R2

+ as

⇢r,A,D(ds1, ds2) =
1

r
⌫(ds1, ds2, A) D(✏r,A)(s1, s2), (3.11)
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3.5. Bounds on exchangeability

where we have used the notation ⌫(ds1, ds2, A) =
R
A
⌫(ds1, ds2, dy). As apparent from

the proof of the next theorem, this coincides with the distribution of the jumps of a
compound Poisson approximation of µ̃.

Theorem 23. Let µ̃1 and µ̃2 be infinitely active CRVs in the same Fréchet class s.t.
condition (3.6) on the Lévy intensities holds. Then,

W(µ̃1(A), µ̃2(A))  lim
r!+1

p
r W(⇢1r,A,D1

, ⇢
2
r,A,D2

),

for any Di compatible family for µ̃i, for i = 1, 2. Moreover, the upper bound on the right
hand side is finite and does not depend on D1 and D2.

Remark 4. Since any completely random vector µ̃ has infinitely many compatible
family, the above theorem holds also in the case µ̃1 = µ̃2 and D1 6= D2. Since the limit
does not depend on the families D1 and D2, we know that in such case it is equal to
zero.

The proof is detailed in Section 3.9 and is based on a bound on the Wasserstein distance
between compound Poisson distributions. A similar problem was treated in (Mariucci &
Reiß, 2018) for Lévy processes on R. Nonetheless, the extension to R2 needs a new bound
on the compound Poisson distributions in R2, summarized by the following proposition.
Indeed, the arguments used in (Mariucci & Reiß, 2018, Theorem 10) could be used to
bound the Wasserstein distance from above with

p
r + r2 W(⇢1

r,A,D1
, ⇢

2
r,A,D2

), which goes
to +1 as r ! +1.

Proposition 24. Let X
d
=
P

Nx

i=1X
i and Y

d
=
PNy

i=1 Y
i be two compound Poisson

processes in R2 s.t. Nx and Ny are Poisson random variables with mean r and {Xi | i �
1} and {Y i | i � 1} are sequences of independent and identically distributed random
elements in R2, independent from Nx and Ny respectively. Then

W(X,Y )2  rW(X1
,Y 1)2 + (r2 � r) kE(X1)� E(Y 1)k2.

Remark 5. Theorem 23 bounds the Wasserstein distance between the completely ran-
dom vectors with the Wasserstein distance between quantities that only depend on the
bivariate Lévy intensities. Yet, the Wasserstein distance between these two quantities
su↵ers from all the technical di�culties related to the Wasserstein distance in R2. Hence,
it is complicated to evaluate it, analytically and numerically. The next sections are de-
voted to this task.

3.5 Bounds on exchangeability

Our next goal is to measure the dependence of a given completely random vector as
the Wasserstein distance from exchangeability, which is induced by comonotonic CRVs.
For this reason, we now specialize the results of the previous section, which apply to all
completely random vectors in the same Fréchet class, to this particular framework of
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3.5. Bounds on exchangeability

great importance for Bayesian inference.
In order to evaluate the bound in Theorem 23 numerically, we first need an explicit
expression for the Wasserstein distance between the jumps of the compound Poisson
approximations. With this goal in mind, we first dwell on the Lévy intensity ⌫co of a
comonotonic random vector µ̃co.

Figure 3.3: Support of the Lévy intensity of a comonotonic completely random vector.

Proposition 25. For every A 2 X , the Lévy intensity ⌫co(ds1, ds2, A) has support on
the bisecting line of R2

+, i.e.

⌫
co(ds1, ds2, A) = �s1(ds2) ⌫1(ds1, A) = �s2(ds1) ⌫2(ds2, A).

It follows that every random vector µ̃ in the same Fréchet class of µ̃co has equal marginal
Lévy intensities ⌫1(ds, dx) = ⌫2(ds, dx), which we denote with ⇡(ds, dx). In particular
for every A 2 X , ⇡(ds,A) = ⇡(s,A) ds is a.c. w.r.t. the Lebesgue measure and infinitely
active. We denote with U

⇡

A
(t) =

R
[t,+1) ⇡(s,A) ds its tail integral.

The following theorem provides the exact expression of the limit appearing in Theorem
23 together with a class of upper bounds. The latter are useful when the exact expression
cannot be evaluated analytically or numerically, as will be seen in Section 3.7.2. We first
define some relevant quantities:

h
g

⌫,A
(s) =

Z

R2
+

(s,+1)(g(t1, t2)) ⌫(dt1, dt2, A); (3.12)

K
g

⌫,A
=

2X

i=1

Z

R2
+

|si � (U⇡

A)
�1(hg

⌫,A
(g(s1, s2)))|2 ⌫(ds1 ds2, A);

where g : R2 ! R is a measurable map. When g(s1, s2) = s1 + s2 we write h
+
⌫,A

and

K
+
⌫,A

. In particular, since g(s1, s2) = s1 + s2 is symmetric and ⌫ has equal marginal
measures

K
+
⌫,A

= 2

Z

R2
+

|si � (U⇡

A)
�1(h+

⌫,A
(s1 + s2))|2 ⌫(ds1 ds2, A). (3.13)
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3.5. Bounds on exchangeability

Theorem 26. Let µ̃ and µ̃co satisfy the conditions of Theorem 23 s.t. B
+ defined in

Remark 3 is compatible with µ̃. Then

lim
r!+1

rW(⇢r,A,D, ⇢
co
r,A,Dco)2 = K

+
⌫,A

. (3.14)

Moreover, for every continuously di↵erentiable g : R2 ! R s.t. B
g is compatible with µ̃,

K
+
⌫,A

 K
g

⌫,A
.

Theorem 26 thus establishes that g(s1, s2) = s1 + s2 realizes the optimal bound in the
class {Kg

⌫,A
}. The expression for K+

⌫,A
resembles the one for the Wasserstein distance in

Theorem 20 and is derived in a similar way. Nonetheless, by working at the level of the
bivariate Lévy intensities rather than at the level of the one–dimensional distributions
µ̃(A), we overcome many of the di�culties related to its evaluation. In particular, when
the Lévy intensity ⌫( · , A) is a.c. w.r.t. the Lebesgue measure on R2 for any A in X ,
K

+
⌫,A

comes in a compelling form. In a such case we denote with ⌫(s1, s2, A) its Radon–
Nikodym derivative and define

K⌫,A =

Z +1

0
(U⇡

A)
�1(h+

⌫,A
(t))

Z
t

0
s ⌫(s, t� s,A) ds dt,

where h
+
⌫,A

is as in (3.12).

Theorem 27. Let µ̃ and µ̃co satisfy the conditions of Theorem 23. If the Lévy intensity
of µ̃ is such that, for any A 2 X , ⌫( · , A) is a.c. w.r.t. the Lebesgue measure on R2, then

lim
r!+1

rW(⇢r,A,D, ⇢
co
r,A,Dco)2 = 4

✓Z +1

0
s
2
⇡(ds,A) ds�K⌫,A

◆

Remark 6. We observe that the first integral in the bound only depends on the marginal
distributions and provides a general upper bound for the distance. This can be seen as
an improvement of the bound in (3.5), which amounts to

W(µ̃(A), µ̃co(A))2  4

✓Z +1

0
s
2
⇡(s,A) ds+

Z +1

0
s⇡(s,A) ds

◆
,

where ⇡ is the marginal Lévy intensity, as defined at the beginning of the section. On
the other hand, K⌫,A provides information contained in the dependence structure. In
Section 3.7.1 this will be specialized for a concrete example.

Remark 7. When the Lévy intensities are homogeneous, i.e.

⌫(ds1, ds2, dx) = ↵P0(dx) ⌫(ds1, ds2) (3.15)

where P0 is a probability distribution on X and ↵ > 0, also the marginal Lévy intensity
takes the form ⇡(dx, ds) = ↵P0(dx)⇡(s) ds and we denote by U⇡(t) =

R +1
t

⇡(s) ds the
tail integral. If the Lévy intensity is also di↵use, K+

⌫,A
= ↵P0(A)K⌫ , where

K⌫ =

Z +1

0
(U⇡)�1(h+⌫ (t))

Z
t

0
s ⌫(s, t� s) ds dt; (3.16)

h
+
⌫ (s) =

Z

R2
+

(s,+1)(t1 + t2) ⌫(t1, t2) dt1 dt2.
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3.6. Independence

In particular, this entails that

dW(µ̃, µ̃co)2  4↵

✓Z +1

0
s
2
⇡(ds) ds�K⌫

◆
.

3.6 Independence

In this section we will use Proposition 24 to bound the distance between exchangeability
and the other extreme case, independence. As we shall see, in this case the Lévy intensity
is not a.c. w.r.t. the Lebesgue measure and thus the results of Theorem 27 do not apply.

Figure 3.4: Support of the Lévy intensities of a completely random vector with inde-
pendent marginals.

Let µ̃ind be completely random vector with independent marginals and let ⌫ind denote
its Lévy intensity. An immediate adaptation of (Kallsen & Tankov, 2006, Lemma 4.1)
shows that the corresponding Lévy intensities ⌫ind(ds1, ds2, A) have support on the axis,
namely

⌫
ind(ds1, ds2, A) = �0(ds2) ⌫

ind
1 (ds1, A) + �0(ds1) ⌫

ind
2 (ds2, A).

In our setting, ⌫ ind1 (ds1, A) = ⌫
ind
2 (ds2, A) = ⇡(s,A) ds. Before stating the main result,

we introduce the following quantity, which only depends on the marginal distribution ⇡
of the completely random vectors:

K⇡,A =

Z +1

0
(U⇡

A)
�1(2U⇡

A(s)) s⇡(s,A) ds.

Theorem 28. Let µ̃ind and µ̃co be in the same Fréchet class s.t. the conditions of
Theorem 23 hold. Then

lim
r!+1

rW(⇢indr,A, ⇢
co
r,A)

2 = 4

✓Z +1

0
s
2
⇡(s,A) ds�K⇡,A

◆
.

Remark 8. Similarly to Remark 7, when the Lévy intensities are homogeneous, K⇡,A =

↵P0(A)K⇡, where K⇡ =
R +1
0 (U⇡)�1(2U⇡(s)) s⇡(s) ds.

We now apply Theorem 28 to the case where the marginal distribution is a gamma
CRM with base measure ↵P0, as in Corollary 22, which allows us to compare the exact
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Wasserstein distance with the relative bound. We first define the constant

� = 4� 4

Z +1

0
(E1)

�1(2E1(s)) e
�s

ds, (3.17)

where, as before, E1(s) = �(0, s) is the exponential integral. Numerical integration show
that � ⇡ 1.24.

Corollary 29. Let µ̃ind and µ̃co be in the same Fréchet class with marginal gamma
CRM with base measure ↵P0. Then,

W(µ̃ind(A), µ̃co(A))2  � ↵P0(A).

In particular, dW(µ̃ind
, µ̃co)2  � ↵.

In Figure 3.5 we present a graphical comparison between the exact distance in Corol-
lary 22, the simulated empirical distance in Figure 3.1 as the sample size increases and
the theoretical bound established in Theorem 29. We omit the non–informative bound
in Remark 6 from the figure because it is out of scale (equal to 8) and point out that
the theoretical bound appears to be very tight.

Figure 3.5: Simulations of the Wasserstein distance in Figure 3.1 compared with
the non–informative bound in Remark 6 and the informative bound in Theorem 29.
Simulations were performed with a growing sample size using the Python Optimal
Transport (POT) package (Flamary & Courty, 2017).

Similar results may be achieved for generalized gamma completely random measures,
as defined in (1.8) in Section 1.4, whose Lévy measure is

⇡(ds, dx) = ↵P0(dx) e
�b s

s
�1��

(0,+1)(s) ds,

for some ↵ > 0, P0 a probability distribution on X, b > 0 and � 2 (0, 1). In particular,
gamma random measures as defined in (3.9) are achieved when � = 0 and b = 1. We
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define

�b,� = 4� 4
1

b�(1� �)

Z +1

0
Inv���(2�(��, b s)) e�b s

s
��

ds, (3.18)

where �(a, s) =
R +1
s

e
�t

t
a�1

dt is the upper incomplete gamma function and Inv�a(·) is
the inverse function of �(a, ·). Clearly, �1,0 = � in (3.17).

Corollary 30. Let µ̃ind and µ̃co be in the same Fréchet class with marginal generalized
gamma CRM with parameters b,� and base measure ↵P0. Then,

W(µ̃ind(A), µ̃co(A))2  �b,� ↵P0(A).

In particular, dW(µ̃ind
, µ̃co)2  �b,� ↵.

The bounds in Corollary 30 shed light on the role of the hyperparameters in the distance
from exchangeability. In particular, Figure 3.6 shows that the distance increases linearly
as � increases and logarithmically as b increases.

Figure 3.6: Numerical integrations of �b,�. On the left, b = 1 and � varies from 0 to 0.7. On
the right, � = 0.5 while b varies from 1 to 10.

3.7 Measuring dependence in BNP models

We now analyze three popular procedures to model the dependence between CRMs
through the choice of an hyperparameter, namely compound random measures, Clayton–
Lévy copula and GM–dependence. These can be seen as the infinite–dimensional exten-
sion of the approximately exchangeable priors suggested by de Finetti (de Finetti, 1938)
for binary data, and further investigated in Bacallado et al. (2015). Our theoretical find-
ings allow for a formal quantification of the dependence in terms of a meaningful bound
on the distance from exchangeability. These bounds are expressed in terms of the mod-
els’ hyperparameters leading to intuitive results, which can also guide the parameters’
elicitation.
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3.7.1 Compound random measures

Compound random measures, introduced in Gri�n & Leisen (2017), provide a general
framework for building completely random vectors. As underlined in Section 1.6.4, these
may be used to model the dependence between CRMs with many di↵erent marginal
distributions, such as gamma, generalized gamma, beta and �-stable random measures.

Definition 10. A compound random measure µ̃ = (µ̃1, µ̃2) is a completely random
vector of the form ✓

µ̃1

µ̃2

◆
=

+1X

i=1

✓
m1,i

m2,i

◆
Ji �Xi

,

where ⌘̃ =
P+1

i=1 Ji �Xi
is a homogeneous CRM with Lévy intensity ↵P0(dx) ⌫⇤(ds) and

(m1,i,m2,i)
iid⇠ h, where h is a bivariate density.

In Gri�n & Leisen (2017) the authors prove that such µ̃ is a completely random vector
with bivariate Lévy intensity

⌫(ds1, ds2, dx) = ↵P0(dx)

Z

R+

1

u2
h

✓
s1

u
,
s2

u

◆
⌫
⇤(du) ds1, ds2.

Specific choices for ⌫⇤ and h lead to di↵erent marginal CRMs and dependence structures.
In particular, by taking h corresponding to the distribution of two independent gamma
(�, 1) random variables and ⌫⇤(du) = (1 � u)��1

u
�1

(0,1)(u) du, one achieves marginal
gamma random measures of shape parameter 1 and base measure ↵P0. We write µ̃ ⇠
CoGamma(�,↵, P0). Here we focus on the case of gamma marginal random measures,
though the techniques may be generalized. Our aim is to quantify dependence, which is
controlled by the parameter �. We first introduce some relevant quantities.

K� =

Z +1

0
E

�1
1 (e(�, t))� f(�, 2�, t) dt,

e(�, t) =
1

�(2�)

Z 1

0
�

✓
2�,

t

u

◆
(1� u)��1

u
�1

du, eN(�, t) =
2��1X

k=0

f(�, k, t)

f(�, x, t) =
t
x

�(x)

Z 1

0
e
� t

u (1� u)��1
u
�x�1

du.

fN(�, n, t) =
t
n

n!

��1X

j=0

✓
�� 1
j

◆
(�1)jg(n, j, t),

where g(n, j, t) is equal to

(
t
�n+j (n� j � 1)! e�t

P
n�j�1
h=0

t
h

h! if n > j

1
(j�n)!

�
e
�t
P

j�n�1
j=0 (�1)h (j � n� h� 1)!th + (�1)j�n

E1(t)
�

if n  j.
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Theorem 31. Let µ̃ ⇠ CoGamma(�,↵,P0) and let µ̃co denote the comonotonic random
vector in the same Fréchet class. Then,

W(µ̃(A), µ̃co(A))2  4↵P0(A) (1�K�).

In particular, dW(µ̃, µ̃co)2  4↵ (1�K�). Moreover, when � 2 N, e = eN and f = fN.

Theorem 31 allows to conveniently compute the Wasserstein distance from exchangeabil-
ity for � an integer value. Table 3.1 displays some numerical results for di↵erent values
of �. As � increases, the dependence between the induced marginal gamma random
measures also increases. Moreover, we stress that the case � = 1 is of particular interest
since it corresponds to the dependence structure discussed in (Leisen et al., 2013).

� 1�K� (⇡)
1 0.1426
5 0.0545
10 0.0241
30 0.0081

Table 3.1: Values of the constant 1 �K� appearing in the bound of Theorem 31 for
di↵erent values of �.

We may compare the theoretical upper bounds in Theorem 31 with the simulated Wasser-
stein distance, as in Figure 3.4 and 3.8. As in the previous cases, our upper bounds
appear to be tight and informative.

Figure 3.7: Simulation of the Wasserstein distance between a random vector
(µ1(X), µ2(X)) with marginal compound random measures of parameters (�,↵, P0),
where ↵ = 1 and � varies, and a bivariate distribution with a.s. equal gamma marginals
of shape = scale = 1. The simulations were performed with samples of 10000 observa-
tions.
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3.7. Measuring dependence in BNP models

3.7.2 Clayton–Lévy copula

This last section focuses on Lévy copulae, which provide another popular way to model
dependence between completely random measures, by separating the marginal compo-
nents of a bivariate Lévy measure from its dependence structure. Lévy copulae were
introduced in Tankov (2003) and Cont & Tankov (2004) to model the dependence struc-
ture between Lévy processes, and have been further used on completely random measures
(Epifani & Lijoi, 2010; Leisen & Lijoi, 2011). For details we refer to Section 1.6.5 and
Kallsen & Tankov (2006).
Lévy copulae provide another popular way to model dependence between CRMs. Stan-
dard copulae can be seen as a means to separate the marginal components of a bivariate
distribution from its dependence structure. The same happens for their generalization
to Lévy intensities, conceived in Tankov (2003) and Cont & Tankov (2004) to model
the dependence structure between Lévy processes. See also Section 1.6.5 and (Kallsen &
Tankov, 2006; Epifani & Lijoi, 2010; Leisen & Lijoi, 2011) for uses on CRMs. Given a bi-
variate Lévy intensity ⌫(ds1, ds2, A), we indicate by Ui,A(t) =

R1
t
⌫i(ds,A), for i = 1, 2,

its marginal tail integrals. An analogue of Sklar’s Theorem states that there exists a
Lévy copula c : [0,+1]2 ! [0,+1] s.t.

⌫((t1,+1)⇥ (t2,+1)⇥A) = c(U1,A(t1), U2,A(t2)).

When the Lévy copula c and the tail integrals U1,A, U2,A are su�ciently smooth, ⌫(ds1, ds2, A)
is recovered by

⌫(ds1, ds2, A) =
@
2

@u1@u2
c(u1, u2)

��
U1,A(s1),U2,A(s2)

⌫1(ds1, A) ⌫2(ds2, A). (3.19)

It follows that Lévy copulae are useful to build bivariate Lévy intensities, allowing to gain
insight into their dependence structure. Consider the Clayton–Lévy copula, which is a
smooth class of copulae with both independence and complete dependence as limiting
cases:

c✓(s1, s2) = (s�✓

1 + s
�✓

2 )�
1
✓ ,

for ✓ > 0. This was used, for example, in (Epifani & Lijoi, 2010; Leisen & Lijoi, 2011).
As ✓ ! +1 one achieves the complete dependence copula (Kallsen & Tankov, 2006)
which, by taking equal marginal Lévy intensities, corresponds to the exchangeability
assumption. We write µ̃ ⇠ Cl(✓,↵, P0) for a completely random vector with marginal
gamma random measures with base measure ↵P0 and Lévy copula c✓. Our goal is to
show that, as ✓ ! +1, µ̃ converges in the Wasserstein distance to the comonotonic
random vector with same marginal distributions and also to provide an upper bound for
the rate of convergence. Define

K✓ =
1 + ✓

✓2

Z 1

0

Z 1

y1

E
�1
1

�
y
� 1

✓

1

�
E

�1
1

✓
1 + ✓

✓
y
� 1

✓

2

◆
y
� 1

✓
�2

2 dy1 dy2.

Theorem 32. Let µ̃ ⇠ Cl(✓,↵, P0) and let µ̃co be in the same Fréchet class. Then

dW(µ̃, µ̃co)2  4↵ (1�K✓).

Moreover, as ✓ ! +1, K✓ goes to 1.

61



3.7. Measuring dependence in BNP models

3.7.3 GM–dependence

In the next nonparametric model we consider, introduced in (Lijoi et al., 2014; Lijoi &
Nipoti, 2014), the dependence between CRMs is induced by the bivariate Poisson process
proposed in Gri�ths & Milne (1978), which brings to the appealing additive structure
anticipated in Section 1.6.3.

Definition 11. A completely random vector ⇠ is GM–dependent if

✓
⇠̃1

⇠̃2

◆
d
=

✓
µ̃1 + µ̃0

µ̃2 + µ̃0

◆
, (3.20)

where µ̃0, µ̃1 and µ̃2 are three independent CRMs with Lévy intensities

v1(ds, dx) = v2(ds, dx) = ↵ z P0(dx) ⇢(s) ds

v0(ds, dx) = ↵ (1� z)P0(dx) ⇢(s) ds,

where ↵ > 0, z 2 (0, 1), P0 is a probability measure on R and ⇢ is a measurable function.

Set µ̃ind = (µ̃1, µ̃2) and µ̃co
0 = (µ̃0, µ̃0) to underline that they are, respectively, an

independent and a comonotonic completely random vector. The completely random
vector ⇠ has marginal Lévy intensity ⇡(ds, dx) = ↵P0(dx) ⇢(s) ds, but we are not given
the corresponding bivariate Lévy intensity. Nonetheless, the next result provides bounds
on its distance from the comonotonic and the random vector with independent marginals
in the same Fréchet class, in terms of the underlying random vectors µ̃ind

, µ̃co
0 .

Proposition 33. Let ⇠̃ be a GM–dependent CRV and let ⇠̃co denote the comonotonic
random vector in the same Fréchet class. Then

dW(⇠̃, ⇠̃co)  dW(µ̃ind
, µ̃co);

dW(⇠̃, ⇠̃ind)  dW(µ̃ind
0 , µ̃co

0 ),

where µ̃co is the comonotonic CRV in the same Fréchet class of µ̃ind and µ̃ind
0 is the

CRV with independent marginals in the same Fréchet class of µ̃co
0 .

When the marginals are generalized gamma CRMs, the specification of the previous
bounds together with Theorem 30 brings to the following. In particular, this covers the
case where the marginals are gamma random measures, as in (Lijoi et al., 2014; Lijoi &
Nipoti, 2014).

Corollary 34. Let ⇠̃ be a GM–dependent CRV with marginal generalized gamma random
measures with parameters b,� and total measure ↵. Then

dW(⇠̃, ⇠̃co)2  �b,� ↵ z, dW(⇠̃, ⇠̃ind)2  �b,� ↵ (1� z).

where �b,� is the constant defined in (3.18).
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3.8. Measuring dependence between random hazards

As one could expect from the construction in Definition 11, the larger the parameter
z, the closer one is to the situation of independence and the farther from the one of
exchangeability. Our techniques allow for the derivation of convergence rates for the
approximation of exchangeability as z ! 1, in terms of the Wasserstein distance.
Figure 3.8 below shows the comparison between the simulated Wasserstein distance and
our theoretical upper bound, as z increases, when the marginals are gamma CRMs
(� = 0, b = 1).

Figure 3.8: Simulation of the Wasserstein distance between a GM–dependent CRV
(µ1(X), µ2(X)) of parameter z with gamma marginals of shape = scale = 1 and a
bivariate distribution with a.s. equal gamma marginals of shape = scale = 1. The
simulations were performed with samples of 10000 observations.

In this section we have found tight upper bounds for the distance dW from comono-
tonicity for notable homogeneous CRVs, so to exploit the results in Remark 7. Since
the Lévy measure factorizes, the supremum of the Wasserstein distance over all Borel
sets is always attained on the entire sample space X. Though is it more common to find
homogenous CRVs as priors for Bayesian nonparametric models, it should be underlined
that finding the supremum could be considerably more complex for non homogeneous
CRVs.

3.8 Measuring dependence between random hazards

Most common specifications of the de Finetti measure for exchangeable sequences are
expressed as suitable transformations of CRMs. Popular methods include the normal-
ization of Regazzini et al. (2003), which leads to a direct prior on the random probability
measure, the exponential transformation of Doksum (1974), which specifies a nonpara-
metric prior for the random survival function, and the tail distribution of Hjort (1990),
which brings to a prior for the random cumulative hazards. In this section we focus on

63



3.8. Measuring dependence between random hazards

models for almost surely continuous hazards, which are of great interest in the context
of survival analysis and reliability theory. If F is an absolutely continuous cumulative
distribution function on [0,+1), we recall that the hazards are defined as h = F

0
/(1�F )

and represent the instantaneous risk of failure. Random hazards are often modeled as
kernel mixtures h̃(t) =

R
X k(t|x) dµ̃(x), where k : R+ ⇥ X ! [0,+1) is a measurable

kernel function and µ̃ is a CRM with Poisson random measure N that satisfies

lim
t!1

Z
t

0

Z

R+⇥X
k(u | y) s duN (ds, dy) = +1. (3.21)

Condition (3.21) ensures that the mean cumulative hazards go to +1 as time increases.
This model was initially proposed with a gamma random measure and a specific kernel
by Dykstra & Laud (1981), and has been further generalized to generic kernels (Lo &
Weng, 1989) and to generic CRMs (James, 2005). If µ̃ is a random vector of measures,

h̃(t) =

Z

X
k(t|x) µ̃(dx) (3.22)

defines dependent hazards, which may be used as de Finetti priors for partially exchange-
able sequences. Notable examples include hierarchical dependent structures Camerlenghi
et al. (2020) and GM-dependent structures Lijoi & Nipoti (2014). The results of Sec-
tion 3.5 and Section 3.7 may be adapted to quantify the dependence between the random
hazards when µ̃ is a CRV. This brings to a direct measure of dependence between the
de Finetti priors corresponding to di↵erent groups.
A first key result is Lemma 35 applied to the function f(·) = k(t|·), which brings to the

expression h̃(t)
d
= µ̃t(X) for an appropriate CRV µ̃t. Given two measure spaces X1 and

X2, we recall that if ⌫ is a measure on X1 and g : X1 ! X2 is a measurable function, the
pushforward measure g#⌫ on X2 is defined by (g#⌫)(A) = ⌫(g�1(A)).

Lemma 35. Let µ̃ be a CRV with intensity measure ⌫ and let f : X ! R+ be a
measurable function. Then the random vector of measures µ̃f (dx) = f(x)µ̃(dx) is a CRV
with Lévy intensity equal to the pushforward measure ⌫f = pf # ⌫ where pf (s1, s2, x) =
(s1f(x), s2f(x), x).

Lemma 35 may be seen as a multivariate extension of Lemma 10 in Section 2.4. In
particular, we observe that the hazard rates h̃co induced by a comonotonic CRV µ̃co

through (3.22) are comonotonic, i.e. h̃
co
1 (t) = h̃

co
2 (t) a.s. for every t. Similarly, when

µ̃ind is the independent CRV, the induced hazards h̃ind are independent. We use this
observation to study the Wasserstein distance between the dependent hazards and the
two extreme cases of comonotonicity and independence. Corollary 36 deals with the
GM–dependent hazards of Lijoi & Nipoti (2014) when the marginals are gamma random
measures and the kernel of the type of Dykstra & Laud (1981), k(t|x) = �(y) [0,t](x),
which is a popular choice for modeling increasing hazards. For simplicity we restrict to
constant functions �(s) = �, which are the most common choice in applications. In such
scenario one usually considers the base measure of the gamma random measure to be
equal to the Lebesgue measure on a large time interval [0, T ], i.e. ↵P0(ds) = [0,T ](s) ds,
so that X = R.
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3.9. Proofs

Corollary 36. Let h̃ be dependent hazards as defined in (3.22) s.t. µ̃ is a GM–dependent
CRV (3.20) with marginal gamma CRM of base measure ↵P0(ds) = [0,T ](s) ds and

k(t|x) = � [0,t](x), with � > 0. If h̃co
, h̃ind are in the same Fréchet class as h̃, for every

t 2 [0, T ],

W(h̃(t), h̃co(t))2  �� t z; W(h̃(t), h̃ind(t))2  �� t (1� z);

where �� = ���1,0 defined in (3.18).

3.9 Proofs

3.9.1 Background results

We first recall some key results concerning the Wasserstein distance. See (Bickel &
Freedman, 1981, Lemma 8.6 and 8.8). If (X1

, . . . ,Xn) and (Y 1
, · · · ,Y n) are tuples of

independent random vectors on R2, then

W(X1 + · · ·+Xn
,Y 1 + · · ·+ Y n) 

nX

i=1

W(Xi
,Y i). (3.23)

Moreover, if X and Y are two random vectors on R2 with finite second moment, then

W(X,Y )2 = W(X � E(X),Y � E(Y ))2 + kE(X)� E(Y )k2. (3.24)

Next, if P1, P2, Q1, Q2 are probability measures, then for every ↵ 2 [0, 1]

W(↵P1 + (1� ↵)P2,↵Q1 + (1� ↵)Q2) 
↵W(P1, Q1) + (1� ↵)W(P2, Q2). (3.25)

Furthermore, we recall (Rüschendorf, 1991, Theorem 12) to establish the optimality of
a transport map.

Theorem 37 (Rüschendor↵ 1991). If X is a random object on R2 and � : R2 ! R2

is continuously di↵erentiable, then (X,�(X)) is an optimal coupling with respect to the
2–Wasserstein distance if and only if the following hold:

1. � is monotone, i.e. hx�y,�(x)��(y)i � 0 for every x,y 2 R2, where h·i indicates
the standard scalar product on R2;

2. The matrix D� =
�
@�i

@xj

�
i,j

is symmetric.

3.9.2 Proof of Theorem 20

The proof of Theorem 20 is based on the following result, which will also be instrumental
to further proofs. As before, FX denotes the cdf of X.
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3.9. Proofs

Theorem 38. Let X1, X2, X be possibly dependent random variables whose law is a.c. w.r.t. the
Lebesgue measure on R. Then, for every continuously di↵erentiable g : R2 ! R, the map

(x1, x2) 7!�g(x1, x2) = (F�1
X

� Fg(X1,X2) � g (x1, x2), F
�1
X

� Fg(X1,X2) � g (x1, x2)),

provides a transportation map between L(X1, X2) and L(X,X). Moreover,

(x1, x2) 7!�(x1, x2) = (F�1
X

� FX1+X2(x1 + x2), F
�1
X

� FX1+X2(x1 + x2)),

is an optimal transport map.

Proof. First observe that Fg(X1,X2) � g(X1, X2) ⇠ Unif([0, 1]). Since X is a.c. w.r.t. the

Lebesgue measure on R, F�1
X

� Fg(X1,X2) � g(X1 + X2)
d
= X. This ensures that �g is

indeed a coupling between (X1, X2) and (X,X). In order to prove that � is an optimal
transport map, we refer to the su�cient conditions described in Theorem 37. Note that

hx� y,�(x)� �(y)i =
= (x1 � y1 + x2 � y2) (F

�1
X

� FX1+X2(x1 + x2)� F
�1
X

� FX1+X2(y1 + y2)).

Since cdfs are non–decreasing functions, and the inverse of a non–decreasing function is
non–decreasing as well, F�1

X
is non–decreasing. Thus x1 + x2  y1 + y2 if and only if

F
�1
X

�FX1+X2(x1+x2)  F
�1
X

�FX1+X2(y1+ y2). It follows that the previous expression
is always non–negative, and the monotonicity condition holds. As for the symmetry, this
easily holds since the two components of � are the same and are symmetric in the two
arguments.

Now consider µ̃(A) = (X1, X2) and µ̃co(A) = (X,X). Theorem 38 guarantees that

W(µ̃(A), µ̃co(A))2 =
2X

i=1

E
���µ̃i(A)� F

�1
µ̃1(A)(Fµ̃1(A)+µ̃2(A)(µ̃1(A) + µ̃2(A))

���2

and note that F�1
µ̃1(A)(Fµ̃1(A)+µ̃2(A)(µ̃1(A) + µ̃2(A))

d
= µ̃1(A). Thus, we have

W(µ̃(A), µ̃co(A))2 = 4 (E
�
µ̃1(A)2

�
� !µ̃,A).

3.9.3 Proof of Lemma 21

Let µ̃(A) = (X1, X2), so that !µ̃,A = E(X1F
�1
X1

(FX1+X2(X1+X2))) . Since L(X1, X2) =
L(X2, X1),

E(X1F
�1
X1

(FX1+X2(X1 +X2))) =
1

2
E((X1 +X2)F

�1
X1

(FX1+X2(X1 +X2))).

We conclude with a change of variable U = FX1+X2(X1 +X2) ⇠ Unif([0, 1]).
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3.9.4 Proof of Corollary 22

The proof is based on Theorem 20. First observe that µ̃1(A) ⇠ gamma(↵P0(A)). Thus
E(µ̃1(A)2) = ↵P0(A)(1 + ↵P0(A)). Moreover, !µ̃,A can be rewritten as

E
�
µ̃1(A)S�1

µ̃1(A)(Sµ̃1(A)+µ̃2(A)(µ̃1(A) + µ̃2(A))
�
,

where SX denotes the survival function. Now, since µ̃1(A) and µ̃2(A) are independent,
µ̃1(A) + µ̃2(A) ⇠ gamma(2↵P0(A)). Thus, we have

!µ̃,A =

Z +1

0

Z +1

0
s1 Inv�↵P0(A)

✓
�(↵P0(A))

�(2↵P0(A))
�(2↵P0(A), s1 + s2)

◆
·

· ⇢↵P0(A)(s1) ⇢↵P0(A)(s2) ds1 ds2

with ⇢� the density function of a gamma(�,1). With a change of variables (t1, t2) =
(s1, s1 + s2) this is equal to

Z +1

0
Inv�↵P0(A)

✓
�(↵P0(A))

�(2↵P0(A))
�(2↵P0(A), t2)

◆
·

·
Z

t2

0
t1 ⇢↵P0(A)(t1) ⇢↵P0(A)(t2 � t1) dt1 dt2.

Now, t1 ⇢↵P0(A)(t1) = ↵P0(A) ⇢↵P0(A)+1(t1), so that

Z
t2

0
t1 ⇢↵P0(A)(t1) ⇢↵P0(A)(t2 � t1) dt1 dt2

is proportional to the convolution between two gamma random variables with parame-
ters, respectively, (↵P0(A) + 1,1) and (↵P0(A),1), evaluated in t2. This corresponds to
the density of a gamma(2↵P0(A) + 1,1) random variable evaluated in t2. Thus !µ̃,A is
equal to

↵P0(A)

�(2↵P0(A) + 1)

Z +1

0
Inv�↵P0(A)

✓
�(↵P0(A))

�(2↵P0(A))
�(2↵P0(A), t)

◆
e
�t

t
2↵P0(A)

dt.

3.9.5 Proof of Theorem 23

We show that for every real sequence {rn |n 2 N} s.t. limn!+1 rn = +1,

W(µ̃1(A), µ̃2(A))  lim
n!+1

p
rnW(⇢1rn,A,D1

, ⇢
2
rn,A,D2

). (3.26)

Since both complementary families D1, D2 have continuously increasing mass, there
exists n0 s.t. for every n > n0 there exist ✏1

n,A
, ✏

2
n,A

> 0 s.t.

rn = ⌫
1(D(✏1n,A)⇥A) = ⌫

2(D(✏2n,A)⇥A). (3.27)
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Before moving to the core of the proof, we show that

lim
n!+1

✏
i

n,A = 0. (3.28)

We reason by contradiction. Supposing (3.28) does not hold, there must be a subsequence
{✏i

hn,A
} converging to a (possibly infinite) limit ✏i⇤ 6= 0. Since limn!+1 rn = +1, also

limn!+1 rhn
= +1. Then there is at least one increasing subsequence {rkn |n 2 N} ⇢

{rhn
|n 2 N} s.t. limn!+1 ✏

i

kn,A
= ✏

i
⇤ and limn!+1 rkn = +1.

Since D is increasing and ⌫ is monotone, rkn  rkn+1 implies D(✏i
kn,A

) ⇢ D(✏i
kn+1,A

).
Thus by the monotone convergence theorem,

+1 = lim
n!+1

⌫
i(D(✏i

kn,A
)⇥A) = ⌫

i(D(✏i⇤)⇥A).

Given the Lévy intensity is finite outside of the origin by (3.3), ⌫i(D(✏i⇤) ⇥ A) < +1,
which is a contradiction. Thus (3.28) holds.
Now recall that by (3.2) there exist Poisson random measures N i s.t. for every A 2 X ,
µ̃i(A) =

R
R2
+⇥A

s N i(ds1, ds2, dx), for i = 1, 2. Since the evaluations of Poisson random

measures on disjoint sets are independent, by (3.23) for every n > 0,

W(µ̃1(A), µ̃2(A)) 

W
✓Z

B1(✏1n,A
)⇥A

s N 1(ds1, ds2, dx),

Z

B2(✏2n,A
)⇥A

s N 2(ds1, ds2, dx)

◆
(3.29)

+W
✓Z

D1(✏1n,A
)⇥A

s N 1(ds1, ds2, dx),

Z

D2(✏2n,A
)⇥A

s N 2(ds1, ds2, dx)

◆
. (3.30)

We prove that the first summand (3.29) goes to zero as n ! +1. By bounding the
Wasserstein distance with the second moments as in (3.5) and using the properties of
Poisson random measures, (3.29) is bounded from above by

 
2
X

i=1,2
j=1,2

Z

Bi(✏in,A
)
s
2
j ⌫

i(ds1, ds2, A) +
⇣Z

Bi(✏in,A
)
sj ⌫

i(ds1, ds2, A)
⌘2
! 1

2

Thanks to the finiteness of the integrals in (3.6) and (3.7), we may apply the dominated
convergence theorem and bring the limit as n ! +1 inside both integrals. In order to
prove that the above expression goes to zero we thus need to show that

Z

R2
+

\n2NBi(✏in,A
)(s1, s2) s

k

j ⌫
i(ds1, ds2, A) = 0,

where i, j, k = 1, 2. By absolute continuity of the integral it su�ces to show that
⌫
i(\n2NBi(✏in,A) ⇥ A) = 0. Now, by assumptions on the family B, we know that

⌫
i(\✏2(0,1]Bi(✏)⇥A) = 0. We then prove that

⌫
i(\n2NBi(✏

i

n,A)⇥A)  ⌫
i(\✏2(0,1]Bi(✏)⇥A) = 0, (3.31)
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by showing that \n2NBi(✏in,A) ⇢ \✏2(0,1]Bi(✏). Let x 2 \n2NBi(✏in,A). Since limn!+1 ✏
i

n,A
=

0 by (3.28), for every ✏ 2 (0, 1] there exists n s.t. ✏i
n,A

< ✏. Since Bi is an increasing

family, x 2 Bi(✏in,A) ⇢ Bi(✏). Thus x 2 \✏>0Bi(✏).
As for the second summand (3.30), since the Lévy intensities are bounded outside of
the origin by (3.3),

Di(✏in,A
)(s)N i(ds1, ds2, dy) is a Poisson random measure with finite

mean for i = 1, 2. Thus by (Sato, 1999, Proposition 19.5) their integrals have a com-
pound Poisson distribution on R2 with intensity measure

R
A Di(✏in,A

)(s) ⌫
i(ds1, ds2, dy)

and same total measure rn. Hence we have

Z

Di(✏in,A
)⇥A

s N i(ds1, ds2, dx)
d
=

N
iX

j=1

Xi

j ,

where N
i has a Poisson distribution with mean rn and is independent of {Xi

j
| j � 1},

which are iid random variables with distribution ⇢i
rn,A,Di

. Proposition 24 thus entails

W
 

N
1X

j=1

X1
j ,

N
2X

j=1

X2
j

!


p
rnW(⇢1rn,A,D1

, ⇢
2
rn,A,D2

) + (r2n + rn) kE(X1
1 )� E(X2

1 )k2.

Now, (r2n + rn) kE(X1
1 )� E(X2

1 )k2 is equal to

✓
1 +

1

rn

◆ X

i=1,2

����
Z

D1(✏1n,A
)
si ⌫

1(ds1, ds2, A)�
Z

D2(✏2n,A
)
si ⌫

2(ds1, ds2, A)

����
2

,

which as n ! +1 by the monotone convergence theorem converges to

X

i=1,2

����
Z

R2
+

si ⌫
1(ds1, ds2, A)�

Z

R2
+

si ⌫
2(ds1, ds2, A)

����
2

(3.32)

Since the vectors are in the same Fréchet class, (3.32) is equal to 0. The bound in (3.26)
hence follows by taking the limit as n goes to +1. In order to prove its finiteness it
su�ces to observe that by (3.5),

p
rnW(⇢1

rn,A,D1
, ⇢

2
rn,A,D2

) is bounded from above by the
square root of

2
2X

i=1

Z

R2
+

(s21 + s
2
2) ⌫

i(ds1, ds2, A) +

✓Z

R2
+

(s1 + s2) ⌫
i(ds1, ds2, A)

◆2

,

which is finite by (3.6) and (3.7).
We now show that the limit as n goes to +1 does not depend on the choice of com-
patible families D1 and D2. First we prove that given a bivariate Lévy intensity ⌫ with
compatible families D and D

⇤,

lim
n!+1

p
rnW(⇢rn,A,D, ⇢rn,A,D⇤) = 0. (3.33)
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For every n consider ✏n,A and ✏⇤
n,A

as in (3.27). Let then ⌦(n) = D(✏n,A)\D
⇤(✏⇤

n,A
) and

denote by qn = ⌫(⌦(n)⇥A). We define

P
0
n(ds1, ds2) =

1

qn
⌦(n)(s1, s2) ⌫(ds1, ds1, A)

Pn(ds1, ds2) =
1

rn � qn
D(✏n,A)\⌦(n)(s1, s2) ⌫(ds1, ds1, A)

P
⇤
n(ds1, ds2) =

1

rn � qn
D⇤(✏⇤

n,A
)\⌦(n)(s1, s2) ⌫(ds1, ds1, A)

and consider the decompositions

⇢rn,A,D =
qn

rn
P

0
n +

rn � qn

rn
Pn ⇢rn,A,D⇤ =

qn

rn
P

0
n +

rn � qn

rn
P

⇤
n .

By the convexity property in (3.25), since P
0
n is a shared component,

W(⇢rn,A,D, ⇢rn,A,D⇤)  rn � qn

rn
W(Pn, P

⇤
n).

Hence by (3.5),
p
rnW(⇢rn,A,D, ⇢rn,A,D⇤) is bounded from above by the squared root of

rn � qn

rn
4

✓Z

R2
+

(s21 + s
2
2) ⌫(ds1, ds2, A) +

✓Z

R2
+

(s1 + s2) ⌫(ds1, ds2, A)

◆2◆
,

Since D(✏n,A) \⌦(n) ⇢ D
⇤(✏⇤

n,A
)c, rn � qn = ⌫(D(✏n,A) \⌦(n)⇥A)  ⌫(D⇤(✏⇤

n,A
)c ⇥A).

Thus, by reasoning as in (3.31),

lim sup
n!+1

rn � qn  lim sup
n!+1

⌫(D⇤(✏⇤n,A)
c ⇥A) = ⌫(\n2NB

⇤(✏⇤n,A)⇥A) = 0.

Hence, limn!+1 rn�qn=0 and we conclude that limrn!+1
p
rnW(⇢rn,A,D, ⇢rn,A,D⇤)=0.

Now, consider two compatible families D
⇤
1 and D

⇤
2 for ⌫1 and ⌫2, respectively. By the

triangular inequality, W(⇢1
rn,A,D

⇤
1
, ⇢

2
rn,A,D

⇤
2
) is bounded from above by

W(⇢1
rn,A,D

⇤
1
, ⇢

1
rn,A,D1

) +W(⇢1rn,A,D1
, ⇢

2
rn,A,D2

) +W(⇢2rn,A,D2
, ⇢

2
rn,A,D

⇤
2
)

Then, thanks to (3.33) by taking the limit as n ! +1,

lim
n!+1

p
rnW(⇢1

rn,A,D
⇤
1
, ⇢

2
rn,A,D

⇤
2
)  lim

n!+1

p
rnW(⇢1rn,A,D1

, ⇢
2
rn,A,D2

)

Equality follows by changing the role of (D1, D2) and (D⇤
1, D

⇤
2) in the previous argument.
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3.9.6 Proof of Proposition 24

We rely on the key identity (3.24). First we observe that E(X) = rE(X1) and E(Y ) =
rE(Y1). By considering the couplings s.t. Nx = NY a.s.,

W(X � rE(X1),Y � rE(Y 1))2

 inf
C((Xi)i�1,(Y i)i�1)

E
✓����

NxX

i=1

Xi � rE(X1)�
NxX

i=1

Y i + rE(Y 1)

����
2◆

= inf
C((Xi)i�1,(Y i)i�1)

E
✓
Var

✓ NxX

i=1

X
i

1 � rE(X1
1 )�

NxX

i=1

Y
i

1 � rE(Y 1
1 )

����Nx

◆◆
+

+ E
✓
Var

✓ NxX

i=1

X
i

2 � rE(X1
2 )�

NxX

i=1

Y
i

2 � rE(Y 1
2 )

����Nx

◆◆

By considering couplings s.t. (Xi �Y i)i�1 are independent and identically distributed,

 inf
C(X1,Y 1)

E(NxVar(X
1
1 � Y

1
1 )) + E(NxVar(X

1
2 � Y

1
2 ))

= rW(X1
,X2)2 � r kE(X1 � Y 1)k2.

Finally, by applying (3.24) we conclude the proof.

3.9.7 Proof of Proposition 25

A CRV µ̃ = (µ̃1, µ̃2) is comonotonic if µ̃1 = µ̃2 a.s. By uniqueness of the Lévy in-
tensity is su�ces to show that ⌫co induces exchangeability. Consider the set D =
{(s1, s2) | (s1, s2) 2 R2

+, s1 6= s2}. By definition of Poisson random measure, for ev-
ery A 2 X

P(N (D ⇥A) = 0) = exp{�⌫co(D ⇥A)} = 1.

Thus with probability 1,

µ̃1(A) =

Z

R2
+⇥A

s1N (ds1, ds2, dx) =

Z

R2
+⇥A

s2N (ds1, ds2, dx) = µ̃2(A).

3.9.8 Proof of Theorem 26

Let (X1, X2) ⇠ ⇢r,A,D and (X,X) ⇠ ⇢
co
r,A,Dco . For every continuously di↵erentiable

function g, we define

K
g

r,⌫,A,D,Dco =
2X

i=1

Z

R2
+

|si � F
�1
X

� Fg(X1,X2) � g (s1, s2)|2 ⇢r,A(ds1 ds2).

Theorem 38 guarantees that W(⇢r,A,D, ⇢
co
r,A,Dco)2  K

g

r,⌫,A,D,Dco , and the equality holds

for g(s1, s2) = s1 + s2. In order to find the limit of rKg

r,⌫,A,D,Dco as r ! +1, we must

71



3.9. Proofs

establish the conditions for the monotone convergence theorem. Since by Theorem 23 the
limit does not depend on the compatible families D and D

co, we choose D = D
g = (Bg)c

defined in (3.10), and D
co = D

+ as in (1) of Figure 3.2. First rewrite the bound as

2X

i=1

Z

R2
+

|si � S
�1
X

� Sg(X1,X2)(g(s1, s2))|
2

(✏r,A,+1)(g(s1, s2)) ⌫(ds1, ds2, A),

where SX is the survival function of X. The choice D
co = D

+ guarantees that SX(t) =
1
r
U

⇡

A
(t) (✏/2,+1)(t); see Figure 3.3. Thus 8s 2 (0, 1], S�1

X
(s) = (U⇡

A
)�1(r s). On the

other hand, Sg(X1,X2)(t) = r
�1

h
g

r,⌫,A
(t), where

h
g

r,⌫,A
(t) =

Z

R2
+

(t,+1)(g(t1, t2)) (✏r,A,+1)(g(t1, t2)) ⌫(dt1, dt2, A).

Thus rKg

r,⌫,A,Dg ,D+ is equal to

2X

i=1

Z

R2
+

|si � (U⇡

A)
�1(hg

r,⌫,A
(g(s1, s2)))|2 (✏r,A,+1)(g(s1, s2)) ⌫(ds1, ds2, A).

Since for every (s1, s2) in the domain of integration g(s1, s2) > ✏r,A, every (t1, t2) s.t.
g(t1, t2) > g(s1, s2) satisfies g(t1, t2) > ✏r,A. Thus for every (s1, s2) in the domain of
integration,

h
g

r,⌫,A
(g(s1, s2)) =

Z

R2
+

(g(s1,s2),+1)(g(t1, t2)) ⌫(dt1, dt2, A) = h
g

⌫,A
(g(s1, s2)),

where h
g

⌫,A
is defined in (3.12). The statement in (3.14) follows by the monotone con-

vergence theorem as r ! +1.

3.9.9 Proof of Theorem 27

We first provide a preliminary result, whose proof we report because it does not seem
to be readily available in the literature.

Lemma 39. Let f : R+ ! R+ be an integrable non–increasing function and f
�1(x) =

sup{t | f(t)  x} its generalized inverse. Then

Z +1

0
f(x) dx =

Z +1

0
f
�1(z) dz.

Proof. Consider the change of variable z = f(x). Since f is integrable, limx!+1 f(x) =
0. Moreover since f is monotone its derivative is well defined almost everywhere. Thus

Z +1

0
f(x) dx = �

Z
f(0)

0
z

1

f
0(f�1(z))

dz = �
Z +1

0
z (f�1)

0
(z) dz
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having set f(0) = limx!0+ f(x) 2 [0,+1]. By integration by parts this is equal to

= �z f
�1(z)

��f(0)
0

+

Z
f(0)

0
f
�1(z) dz.

If f(0) < +1, the first summand is clearly 0. Otherwise, we observe that

�z f
�1(z)

��+1
0

= x f(x)
��+1
0

= 0,

because of the integrability assumption. Thus in either case,

Z +1

0
f(x) dx =

Z
f(0)

0
f
�1(z) dz =

Z +1

0
f
�1(z) dz,

since if f(0) < +1, f�1 is equal to zero on the interval (f(0),+1).

Theorem 26 ensures that the limit, as r ! +1, of rW(⇢r,A,D, ⇢
co
r,A,Dco) is equal to

2

Z

R2
+

����s1 � (U⇡

A)
�1

✓Z

R2
+

(s1+s2,+1)(t1 + t2) ⌫(t1, t2) dt1 dt2

◆����
2

⌫(s1, s2, A) ds1 ds2.

By expanding the square of the binomial, the integral is divided in three summands. We
treat them separately. First

Z

R2
+

s
2
1 ⌫(s1, s2, A) ds1 ds2 =

Z

R+

s
2
1 ⇡(s1, A) ds1.

Next, with a change of variable (z1, z2) = (s1, s1 + s2),

Z

R2
+

(U⇡

A)
�1

✓Z

{t1+t2>s1+s2}
⌫(t1, t2, A) dt1 dt2

◆2

⌫(s1, s2, A) ds1 ds2 (3.34)

=

Z +1

0
(U⇡

A)
�1

✓Z

{t1+t2>z2}
⌫(t1, t2, A) dt1 dt2

◆2✓Z z2

0
⌫(z1, z2 � z1, A) dz1

◆
dz2

Simple calculations on the derivative of an integral lead to

d

dz

Z

{t1+t2>z}
⌫(t1, t2, A) dt1 dt2 =

Z
z

0
⌫(t1, z � t1, A) dt1

Thus with a change of variable s =
R
{t1+t2>z2} ⌫(t1, t2, A) dt1 dt2, the integral in (3.34)

is equal to
R +1
0 (U⇡)�1(s)2 ds. The function U

⇡

A
(
p
s) is non–decreasing and has inverse

|(U⇡

A
)�1(s)|2. By applying Lemma 39, its integral on (0,+1) is equal to

Z +1

0
U

⇡

A(
p
s) ds =

Z +1

0

Z +1

p
s

⇡(dt, A) ds =

Z +1

0
t
2
⇡(dt, A)

Finally, the expression of the third summand, which is equal to K⌫,A in the statement,
derives from the same change of variables.
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3.9.10 Proof of Theorem 28

The proof is similar to the one of Theorem 27. By looking at the support of the Lévy in-
tensity in Figure 3.4, Theorem 26 ensures that the limit as r ! +1 of rW(⇢r,A,D, ⇢

co
r,A,Dco)

is equal to

2

Z

R2
+

|s1 � (U⇡

A)
�1(2U⇡

A(s1 + s2))|2 ⌫(s1, s2, A) ds1 ds2.

As in the previous proof, the integral is divided in three summands, which we treat
separately. Z

R2
+

s
2
1 ⌫(s1, s2, A) ds1 ds2 =

Z

R+

s
2
1 ⇡(s1, A) ds1.

Next, by looking at the support of the Lévy intensity,
Z

R2
+

(U⇡

A)
�1(2U⇡

A(s1 + s2))
2
⌫(s1, s2, A) ds1 ds2

= 2

Z 1

0
(U⇡

A)
�1(2U⇡

A(s))
2
⇡(s,A) ds.

Since d

ds
U

⇡

A
(s) = �⇡(s,A), with a change of variable s = 2U⇡

A
(s), it is equal toR +1

0 (U⇡)�1(s)2 ds. By reasoning as in Theorem 27, this is equal to
R
R+

s
2
1 ⇡(s1, A) ds1

as well. Finally, since the integrand is equal to zero on the vertical axis, we have
Z

R2
+

s1 (U
⇡

A)
�1(2U⇡

A(s1 + s2)) ⌫(s1, s2, A) ds1 ds2

=

Z 1

0
s1 (U

⇡

A)
�1(2U⇡

A(s1))⇡(s1, A) ds1.

3.9.11 Proof of Theorem 31

The proof is based on Theorem 27. Since the Lévy intensities are homogeneous, we
apply (3.16). The marginals are gamma random measures of shape parameter 1, thus
U

⇡(t) = E1(t) and Z +1

0
s
2
⇡(s) ds =

Z +1

0
s e

�s
ds = 1.

As for the other quantities appearing in (3.16), we observe that if ⇢� is the density of a
gamma(�, 1) distribution,

Z

R2
+

(t,+1)(z1 + z2) ⌫(z1, z2) dz1 dz2

=

Z 1

0

✓Z

R2
+

(t,+1)(z1 + z2) ⇢�

✓
z1

u

◆
⇢�

✓
z2

u

◆
1

u2
dz1 dz2

◆
(1� u)��1

u
du
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With a change of variables (v1, v2) =
�
z1
u
,
z2
u

�
,

=

Z 1

0

✓Z

R2
+

�
t

u
,+1

�(v1 + v2) ⇢�(v1) ⇢�(v2) dv1 dv2

◆
(1� u)��1

u
du

=

Z 1

0
P
⇢
X1 +X2 >

t

u

�
(1� u)��1

u
du,

where X1, X2
iid⇠ gamma(�, 1) random variables. Thus X1 +X2 ⇠ gamma(2�, 1) and its

survival function in t

u
is equal to

�
�
2�, t

u

�

�(2�) . Next, we observe that

Z
t

0
s ⌫(s, t� s) ds =

=

Z 1

0

(1� u)��1

u3

✓Z
t

0
s ⇢�

✓
s

u

◆
⇢�

✓
t� s

u

◆
ds

◆
du

With a change of variable v = s

u
,

=

Z 1

0

(1� u)��1

u

✓Z t

u

0
v ⇢�(v) ⇢�

✓
t

u
� v

◆
ds

◆
du.

Now, v ⇢�(v) = � ⇢�+1(v). Thus the inner integral is � times the convolution of ⇢� and
⇢�+1 evaluated in t

u
. Now, ifX ⇠ gamma(�, 1) is independent from Y ⇠ gamma(�+1, 1),

X + Y ⇠ gamma(2�+ 1, 1). Thus

Z t

u

0
v ⇢�(v) ⇢�

✓
t

u
� v

◆
ds =

�

�(2�+ 1)
e
� t

u

✓
t

u

◆2�

,

from which the final expression for the integral easily follows. We now sketch the proof
for � integer:

�

✓
2�,

t

u

◆
= (2�� 1)!e�

t

u

2��1X

k=0

1

k!

✓
t

u

◆
k

.

Thus e(�, t) is equal to

2��1X

k=0

t
k

k!

Z 1

0
e
� t

u (1� u)��1
u
�k�1

du,

which coincides with a sum over k of f(�, k, t). In order to derive the expression for
f(�, n, t) for a generic integer n, we apply the binomial formula

(1� u)��1 =
��1X

j=0

✓
�� 1
j

◆
(�u)j ,
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from which we easily derive

g(n, j, t) =

Z 1

0
e
� t

uu
�n�1+j

du = t
�n+j �(n� j, t).

The final expression derives from writing �(k, t) as a sum, both when k is a positive
integer and when it is a negative one.

3.9.12 Proof of Theorem 32

By resorting to (3.19), one derives the expression for ⌫(ds1, ds2, A):

↵P0(A) (1 + ✓) (E1(s1)
�✓ + E1(s2)

�✓)�
1
✓
�2

E1(s1)
�✓�1

E1(s2)
�✓�1 e

�(s1+s2)

s1s2
ds1ds2.

We obtain the bound by applying Theorem 26 to the function

g(s1, s2) = E1(s1)
�✓ + E1(s2)

�✓
,

which trivially satisfies the necessary conditions. Since g is symmetric, Kg

⌫,A
is equal to

2↵

Z

R2
+

����s1 � (U⇡)�1

✓Z
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+

[g(s1,s2),+1)(g(t1, t2)) ⌫(t1, t2) dt1 dt2

◆����
2

⌫(s1, s2) ds1 ds2.

With a change of variables (x1, x2) =
�
E1(s1)�✓

, E1(s2)�✓
�
,

Z
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+
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=
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0
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✓
�2

dt1 dt2 =
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✓
g(s1, s2)

� 1
✓

Then, with the same change of variable, the bound can be rewritten as
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0
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����E
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�
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✓

1
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✓
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✓
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y
� 1

✓
�2
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We expand the binomial and treat the three terms separately.
Z 1

0
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E
�1
1

�
y
� 1

✓

1

�2
y
� 1

✓
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2 dy1 dy2 =
✓
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�
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✓
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Similarly,
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✓
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y
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Thus dW(µ̃, µ̃co)2  4 c. In order to conclude it su�ces to show that

lim
✓!+1
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✓2
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✓
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✓
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✓
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y
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✓
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2 dy1 dy2 = 1.

Since for every a, b 2 R, (a � b)2 � 0, the integral is smaller or equal to 1. Thus it is
enough to prove it to be greater or equal to 1. We observe that since y1  y2,
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✓
y
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✓
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✓
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=
1

✓

Z 1

0
E

�1
1

�
y
� 1

✓

1

�
E

�1
1

✓
1 + ✓

✓
y
� 1

✓

1

◆
y
� 1

✓
�1

1 dy1

=
✓

1 + ✓

Z 1

0
E

�1
1

✓
✓

1 + ✓
x

◆
E

�1
1 (x)dx

� ✓

1 + ✓

Z 1

0
E

�1
1 (x)2dx =

✓

1 + ✓
,

which by taking the limit as ✓ ! +1 is equal to 1.

3.9.13 Proof of Proposition 33

We point out that ⇠̃
d
= µ̃ind+ µ̃co

0 and ⇠̃co
d
= µ̃co+ µ̃co

0 . Since by construction µ̃ind ? µ̃co
0

and µ̃co ? µ̃co
0 , by (3.23)

W(⇠̃(A), ⇠̃co(A))  W(µ̃ind(A), µ̃co(A)) +W(µ̃co
0 (A), µ̃co

0 (A)),

which is equal to W(µ̃ind(A), µ̃co(A)). By taking the supremum over A 2 X we achieve
the first statement. A very similar proof can be carried on for the second, by observing

that ⇠̃ind
d
= µ̃ind + µ̃ind

0 .

3.9.14 Proof of Lemma 35

Let {A1, · · ·An} in X be disjoint sets. Then for i = 1, . . . , n the random vectors
µ̃f (Ai) =

R
Ai

f(x)µ̃(dx) are independent since f is deterministic and µ̃(A1), · · · µ̃(An)
are independent. This proves that µ̃f is a CRV. The Lévy intensity ⌫f may be found

though the joint Laplace functional transform, E(e�
R
g1(x)µ̃1(dx)�

R
g2(x)µ̃2(dx)) for every
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pair of measurable functions g1, g2 : X ! R+, which characterizes the law of a CRV
µ̃ = (µ̃1, µ̃2):

E
�
e
�

R
X g1(x)µ̃f,1(dx)�

R
X g2(x)µ̃f,2(dx)

�
=

= exp
n
�
Z

R2
+⇥X

[1� e
�(s1g1(x)�s2g2(x))f(x)]⌫(ds1, ds2, dx)

o
=

= exp
n
�
Z

R2
+⇥X

[1� e
�s1g1(x)�s2g2(x)](pf#⌫)(ds1, ds2, dx)

 
,

where pf (s1, s2, x) = (s1f(x), s2f(x), x).

3.9.15 Proof of Corollary 36

Denote µ̃t = µ̃k(t|·) in the notation of Lemma 35, so that h̃(t)
d
= µ̃t(R). By definition of

GM–dependence, µ̃t(dy) = k(t|y)µ̃ind(dy) + k(t|y)µ̃co
0 (dy). If k(t|x) = � [0,t](x) and µ̃

is a gamma CRM, by Lemma 10 in Section 2.4, k(t|x)µ̃(dx) has Lévy measure

⇡(ds, dx) =
e
� s

�

s
(0,+1)(s) (0,t)(x) ds,

which corresponds to the generalized gamma CRM with parameters b = �
�1, � = 0,

↵ = t and P0 = Unif([0, t]). Thus, µ̃t is a special case of GM-dependent CRV with
generalized gamma marginals. We conclude by Corollary 34.
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Chapter 4

Posterior contraction rates of

mixtures over hierarchical

processes

Bayesian hierarchical models learn e↵ectively by finding common latent features among
multiple data sources. When the number of latent components can not be fixed or
bounded from above, most common procedures involve depedent nonparametric priors
such as the Hierarchical Dirichlet process (HDP). While the e�cacy of their finite sam-
ple performance is well–established, posterior asymptotic analysis is still at an early
stage and we aim at finding theoretical guarantees for the recovering of the true data
generating processes. In particular, we study the posterior contraction rates for data
distributions that are modeled as mixtures over the boosted hierarchical Dirichlet pro-
cess, a generalization of the HDP that accomodates for a faster growth in the number
of discovered latent features as the sample size increases. By extending Schwartz theory
to partially exchangeable sequences we uncover the interesting behavior that posterior
contraction rates depend on the relation between the numbers of observations in di↵er-
ent groups. If these are equal or at most related in a polynomial fashion, we recover the
minmax rates up to a logarithmic factor. As the relation becomes exponential, the rates
may deteriorate drastically.

4.1 Introduction

The hierarchical Dirichlet process (HDP, Teh et al. (2006)) is a powerful tool for the
unsupervised learning of unstructured data with a limited amount of observations. A
generative process encodes the original sample space into meaningful latent features or
categories. A typical example comes from information retrieval (Cowans, 2004), where
the content of a collection of documents is unraveled by assigning each word of a docu-
ment to one out of several topics, i.e. latent features. Topics are shared across di↵erent
documents and their number is learned directly from the data, providing an e↵ective
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nonparametric version of probabilistic topic models such as the latent Dirichlet alloca-
tion (LDA, Blei et al. (2003)). These key properties have spurred numerous applications
beyond information retrieval, including statistical genetics (Xing et al., 2007; Elliott
et al., 2019), computer vision (Haines & Xiang, 2011), cognitive science (Gri�ths et al.,
2007) and robotics (Nakamura et al., 2011; Taniguchi et al., 2018), where typically the
number of features can not be fixed or bounded from above. Each element of a group
or subpopulation is assigned to a latent feature with an unknown probability which is
learned from the data in a Bayesian way, allowing for mixed membership and borrowing
of information. This is achieved through a hierarchy of Dirichlet processes (DPs) by let-
ting the feature distribution in each subpopulation be a DP conditionally on a common
parent distribution that is also a DP. Using the DP in such a hierarchical fashion brings
to a slowdown in the number of new features discovered among the observations. As
showed in Camerlenghi et al. (2019b), this decreases from log(n) to log(log(n)), where
n is the total number of observations. To recover the log(n) growth, we consider a nat-
ural generalization of the HDP where the parent distribution is a Pitman-Yor process
(PY) instead of a DP. We name such extension the boosted hierarchical Dirichlet process
(bHDP) because of its ability of speeding up the growth rates of the number of features
though keeping the DP at the subpopulation level.
In this chapter we find conditions for the Bayesian learning of the bHDP mixture model
to recover the true generating processes of the multiple data sources. We fix the number
of subpopulations and check that each distribution estimator recovers the ground truth
as the number of observations diverge simultaneously at possibly di↵erent rates. Our
aim is to find conditions that ensure an optimal rate of convergence (up to a logarithmic
factor) according to metrics on the joint space that are built on popular distances such
as the total variation and the Hellinger. This provides an asymptotic validation of the
bHDP mixture model as the amount of information grows. As a by product, this brings
to a new frequentist validation of the HDP mixture model, which is a special case of the
bHDP. Up to our knowledge, only Nguyen (2016) dealt with this topic, though focusing
on the recovery of the parent mixing distribution rather than on the true data-generating
processes, and letting the number of subpopulations go to +1. In many applications
the number of groups is limited by the experiment, as for example for blood type or
logfiles, so that it is more reasonable to fix the number of groups and have the number
of observations within each group go to infinity.
The main results are achieved through an extension of Schwartz theory to partially ex-
changeable sequences. Exchangeable models arise naturally from iid observations when-
ever one accounts for uncertainty about the parameter. Indeed by de Finetti’s theo-
rem exchangeability is equivalent to being conditionally iid. When performing inference
about more than one population, the analogue of exchangeability is partial exchangeabil-
ity, which allows to perform robust analysis for each group of observations by exploiting
the information contained in the whole sample. Notable examples of partially exchange-
able models include the HDP (Teh et al., 2006; Camerlenghi et al., 2019b), the nested
Dirichlet process (Rodrguez et al., 2008; Camerlenghi et al., 2019a) and many other
models built on dependent random probability measures; see Quintana et al. (2020)
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for a recent review. The finite-sample performance of these Bayesian nonparametric
estimators for multiple populations is well-consolidated, whereas the analysis of their
asymptotic properties is still at early stage. An important frequentist validation of
Bayesian inference is posterior consistency, that is the convergence of the posterior to
the true distribution of the data. For exchangeable models, Schwartz theory (Schwartz,
1965) provides a general framework for dealing with consistency when the posterior dis-
tribution is not available in closed form. It relies on: (i) the existence of a sequence of
tests that separates the true distribution from those outside of any neighborhood with
exponentially small errors, as the number of observation grows (exponentially consis-
tent test); (ii) su�cient prior mass on neighborhoods of the true distribution defined by
the Kullback-Leibler divergence. As for (i), typically one needs to restrict to compact
subsets of the parameter space. The classical frequentist theory guarantees that many
notable distances, such as the Hellinger and the total variation, allow to test the true
distribution against any disjoint convex set. One then proceeds as follows. First, consid-
ers a compact subset of the parameter space with most of the prior probability; second,
covers the compact set with a finite number of convex balls and uses the existence of
tests for convex alternatives to find a global test whose errors depend on the number
of convex balls; third, shows that the number of convex balls does not grow too fast as
the compact set increases, so that the global test preserves exponentially small errors.
The sequence of compact subsets is usually referred to as sieve and the growing number
of convex balls that covers it is measured in terms of entropy. Summarizing, one finds
an exponentially consistent test by appointing a high-mass-low-entropy sieve. This is
then coupled with the Kulback-Leibler support to ensure consistency and contraction
rates as well. The above strategy was pioneered by Ghosal et al. (1999) to prove the
consistency of the Dirichlet process mixture model (Ferguson, 1983; Lo, 1984). Follow-
ing works dealt with contraction rates for densities on the real line (Ghosal & van der
Vaart, 2001; Ghosal & Van Der Vaart, 2007a) and corresponding results for multivariate
densities (Tokdar, 2006; Shen et al., 2013; Canale & De Blasi, 2017). As pointed out in
Wu & Ghosal (2010), the extension to the multivariate setting is highly non–trivial and
required the construction of a new sieve with low entropy and high mass.
Up to our knowledge, this chapter o↵ers the first extension of Schwartz theory to par-
tially exchangeable models. This proves crucial for finding fast contraction rates of the
multivariate bHDP mixture model. Our findings may be summarized as follows: (i) to
reproduce the distribution of all subpopulations simultaneously is very di↵erent from
reproducing them one at a time; (ii) if all groups have the same number of observations
(asymptotically), Schwartz theory for exchangeable sequences may be easily extended to
partially exchangeable sequences. (iii) if the groups have a di↵erent number of observa-
tions, one has to develop a non-trivial extension of the classical theory, by requiring the
prior to put su�cient mass on a reinforced multivariate Kullback–Leibler neighborhood,
as will be made clear in Section 4.3. This is of great interest in many applied settings
where the observations in each group grow at di↵erent rates. For an example concerning
the blood types, it is su�cient to think that patients with type 0+ are known to be
consistently more than the ones with type AB-, so that fixing to the same rate appears
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as a stretch. When applied to the bHDP mixture model, the fulfillment of the reinforced
Kullback–Leibler condition forces a maximum discrepancy between the smallest and the
largest cardinality of the subpopulations (n and n_ respectively). In particular when
the largest increases at most polynomially with respect to the smallest, i.e. n_ . n

k

for some k > 0, we find an optimal rate of convergence
p
n up to a logarithmic factor.

If the increase is faster than polynomial, the contraction rate progressively deteriorates
and fails to converge whenever n_ & e

n
�

, where � is a constant that depends on the
dimension of the sample space and on the smoothness of the true distributions.

The chapter is organized as follows. In Section 4.2 we fix the notation and state the
main result (Theorem 40) on the contraction rates for the bHDP mixture model. The
following sections develop the analytical tools for achieving Theorem 40. In Section 4.3
we extend Schwartz theory to partially exchangeable models, with a particular focus on
the case of di↵erent cardinalities between groups. This is applied to the bHDP mixture
model in Section 4.4, whereas future applications are discussed in Section 4.5. All proofs
are deferred to Section 4.6.

4.2 Preliminaries and main result

In this section we define the boosted hierarchical Dirichlet process mixture model and
fix the notation for partially exchangeable models and their posterior convergence rates.
This will enable to state the main result of the chapter (Theorem 40), whose proof is
built in Section 4.3 and Section 4.4.
Let ↵, ✓ > 0 and F 2 P , where P = PX indicates the set of probability distribu-
tions on a Polish space X. We indicate with DP(✓, F ) the Dirichlet process (Fergu-
son, 1983) and PY(↵, ✓, F ) the Pitman–Yor process or two-parameter Poisson–Dirichlet
process (Pitman & Yor, 1997). The boosted hierarchical Dirichlet process (Fi)mi=1 ⇠
bHDP(✓,↵⇤

, ✓
⇤
, F

⇤) is defined as

(Fi)
m

i=1|F̃
iid⇠ DP(✓, F̃ ); (4.1)

F̃ ⇠ PY(↵⇤
, ✓

⇤
, F

⇤),

where ✓, ✓⇤ > 0, ↵⇤ � 0 and F
⇤ 2 P. By letting ↵⇤ = 0 we recover the hierarchical

Dirichlet process (HDP) as a special case. We consider the bHDP as nonparametric
prior for the following Gaussian mixture model. Let m,n1, . . . , nm 2 N\{0}. A sequence
X = (Xi,j)(i,j) with i = 1, . . . ,m and j = 1, . . . , ni on a Polish space X satisfies X ⇠
bHDPM(G, ✓,↵

⇤
, ✓

⇤
, F

⇤) if

(Xi,1, . . . , Xi,ni
)mi=1|(Fi)

m

i=1, (⌃i)
m

i=1 ⇠ P
(n1)
F1,⌃1

⇥ · · ·⇥ P
(nm)
Fm,⌃m

, (4.2)

((Fi)
m

i=1, (⌃i)
m

i=1) ⇠ ⇧ := bHDP(✓,↵⇤
, ✓

⇤
, F

⇤)⇥G
(m)

,

where PFi,⌃i
probability distribution of the multivariate Gaussian mixture, whose density

function pF,⌃ is defined as follows. Let �⌃ be the density of the d–dimensional Gaussian
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distribution centered in the origin and with covariance matrix ⌃, where ⌃ is a positive–
definite matrix of dimension d⇥ d and let F 2 PRd . Then,

pF,⌃(x) =

Z

Rd

�⌃(x� y) dF (y) = (�⌃ ⇤ F )(x), (4.3)

where x = (x1, . . . , xd) and y = (y1, . . . , yd). We call F the mixing distribution.
The bHDPM model induces partially exchangeable observations. We recall that X is
partially exchangeable if there exists an m–dimensional vector of random probabilities
(P̃1, . . . , P̃m) such that

(Xi,1, . . . , Xi,ni
)mi=1|(P̃1, . . . , P̃m) ⇠ P̃

(n1)
1 ⇥ · · ·⇥ P̃

(nm)
m , (4.4)

(P̃1, . . . , P̃m) ⇠ ⇧,

where P̃
(n) =

Q
n

i=1 P̃ indicates the product probability and ⇧ is a probability on the
product space of probabilities Pm = Pm

X . In particular, each group of observations is
exchangeable and satisfies (Xi,1, . . . , Xi,ni

)|P̃ ⇠ P̃ ; P̃ ⇠ ⇧i, where ⇧i is the i-th marginal
distribution, i.e. ⇧i(A) = ⇧(P i�1 ⇥ A ⇥ Pm�i) for any measurable A ⇢ P , with the
convention P0 = ;.
We focus on partially exchangeable models (4.4) such that ⇧ has support over absolutely
continuous distributions with respect to some measure � on X, so that P̃i has density p̃i

almost surely, for every i = 1, . . . ,m. We indicate by ⇧(·|X) a version of the posterior

distribution according to model (4.4). We then assume that (Xi,1, . . . , Xi,ni
)m
i=1 ⇠ P

(n1)
0,1 ⇥

· · ·⇥P
(nm)
0,m are m independent groups of observations, where P0,i is absolutely continuous

with respect to � with density p0,i, for i = 1, . . . ,m. We analyze the properties of
⇧(·|X) as an estimator of (P0,i)mi=1, as the number of groups is fixed and the number of
observations goes to +1 in each group, with possibly di↵erent orders of magnitude. To
this end, we define n = min(n1, . . . , nm) and take the limit as n ! +1.
We recall that every topology on P is inherited by the product space Pm through the
product topology. We say that a metric d

(m) on Pm is a product metric whenever it
metrizes the product topology. If d is a metric on P defined on densities, one of the
most notable classes of product metrics are the `p–metrics, for 1  p < +1:

dp((pi)
m

i=1, (qi)
m

i=1) =

✓ mX

i=1

d(pi, qi)
p

◆ 1
p

. (4.5)

Definition 12. A sequence ✏n is a posterior contraction rate at (P0,i)mi=1 with respect
to dp in (4.5) if

⇧(dp((pi)
m

i=1, (p0,i)
m

i=1) � Mn✏n|X) ! 0

in (
Q

m

i=1 P
(1)
0,i )–probability, for every Mn ! +1, as n ! +1.

We find contraction rates towards supersmooth density function. Denote by [�z, z]d =Q
d

i=1[�z, z] be the d-dimensional cube of side [�z, z].
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Definition 13. A density function p0 on Rd is said to be supersmooth if there exist
(F0,⌃0) such that p0 = pF0,⌃0 and 1�F0([�z, z]d) . e

�c0z
r0 for every z > 0, with c0 > 0

and r0 � 2. We refer to r0 as the smoothness parameter.

We make the following standard assumption on the parameters F ⇤ and G of the bHDPM
model in (4.2): there exist positive constants ak, Ck, bk, for k = 1, 2, 3, such that

1� F
⇤([�z, z]d)  b1e

�C1z
a1
, (4.6)

G(⌃ : eigd(⌃
�1) � s)  b2e

�C2s
a2
, G(⌃ : eig1(⌃

�1)  s)  b3s
a3 .

Theorem 40 (Main result). Let ⇧(·|X) indicate the posterior distribution according to
the model X ⇠ bHDPM(G, ✓,↵

⇤
, ✓

⇤
,F⇤) in (4.2) such that conditions (4.6) hold. Let

p0,i = pF0,i,⌃0,i be a supersmooth density with ⌃0,i in the support of G and smoothness r0,i,
for i = 1, . . . ,m and denote by r0 = min(r0,1, . . . , r0,m). Assume that there exists 0 < � <

(d+ d/r0 + 2)�1 such that n_ . e
n
�

for n large enough. Then n
�1/2 log(n_)(d+d/r0+2)/2

is a posterior contraction rate at (p0,i)mi=1 with respect to dp for every p � 1, where d is
the Hellinger or the total variation distance.

Theorem 40 focuses on a partially exchangeable model whose marginal exchangeable
sequences have optimal rates of convergence up to a logarithmic factor, as shown in the
proof of Theorem 40. We observe that the marginal exchangeable sequences are not
mixtures over a Dirichlet process, since the prior in this context is rather

⇧i(·) = E(DP
✓,F̃

(·)) =
Z

PX
DP

✓,F̃
(·) dPY↵⇤,✓⇤,F ⇤(F̃ ),

where DP
✓,F̃

= DP(✓, F̃ ) and PY✓⇤,↵⇤,F ⇤ = PY(✓⇤,↵⇤
, F

⇤). As a by product, we have
thus found optimal convergence rates for a new set of exchangeable sequences with non-
parametric priors. Moreover, Theorem 40 provides contraction rates for the partially
exchangeable sequence given by the bHDPM process defined in (4.2) as the number of
observations in each group grow at di↵erent speeds. In particular, we observe that if
the largest group grows at a polynomial speed with respect to the smallest group, i.e.
n_ . n

k for some k > 0, the contraction rate is optimal up to a logarithmic factor
with respect to the cardinality of the smallest group, i.e. n

�1/2 log(n)(d+d/r0+2)/2 is a
contraction rate. However, when the growth becomes exponentially fast the contraction
rate deteriorates progressively, becoming non–informative whenever n_ & e

n
1/(d+d/r0+2)

.
It is of interest to underline the doubly positive e↵ect of the smoothness parameter: as r0
increases, it makes both the contraction rate faster and the range of growth rates of n_
wider. As an illustrating, consider two groups of observations having cardinality n1, n2

respectively. Assume that (Xi,1, . . . , Xi,ni
)2
i=1 ⇠ Norm(a1,⌃1)(n1) ⇥ Norm(a2,⌃2)(n2),

where Norm(a,⌃) is a bivariate Gaussian distribution with mean vector a and covari-
ance matrix ⌃, so that d = 2 and r0 = +1. Then as n1 and n2 diverge, assuming without
loss of generality that n1 . n2, the posterior distribution of the densities corresponding
to the bHDPM model contracts towards the vector of true Gaussian distributions when-
ever n2 . e

n1
1/4

, with a rate of contraction equal to
p
log(n2)4/n1. On the contrary,
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when n2 & e
n1

1/4
, the convergence to the truth is not ensured.

We underline that in general our results hold when the true distributions are super-
smooth, though these could be adequately extended to smooth densities by placing
some Hölder conditions on the derivatives. We decided to focus on supersmooth func-
tions because all the crucial elements in the asymptotic analysis of partially exchangeable
models are already present in this simplified context. Hopefully, this allows to untangle
the technicalities due to the presence of multiple populations from the ones due to the
smoothness assumptions on the true densities.

We conclude this section with some further notation. If P 2 P and � : X ! R is a
measurable function, P (�) indicates the expected value of � with respect to the prob-

ability P 2 P. We use the symbol
ind⇠ for independent random variables and

iid⇠ for
independent and identically distributed ones. Let (an)n2N, (bn)n2N two sequences on R.
We write an ⇣ bn if they are of the same order as a function of n, i.e. anb

�1
n ! K as

n ! +1, where K is a constant di↵erent from zero. If K = 0, we use the notation
an ⌧ bn. Moreover, we write an . bn if an is smaller than bn up to an irrelevant con-
stant. Similarly for an & bn. The Lebesgue measure on A ⇢ Rn is denoted by Ln(A).
The negative part of log(·) is denoted by log�(·) = max(� log(·), 0). The ascending
factorial of � 2 R is �[n] = �(� + 1) . . . (� + n � 1). Given a vector (a1, . . . , am), we
write a = min(a1, . . . , am), a_ = max(a1, . . . , am) and a+ = a1 + · · · + am. Given two
sets A ⇢ B, we indicate with A

c = B \ A the complement of A in B. The cardinality
of A is denoted by |A|. The Kullback–Leibler divergence between two densities p1, p2 is
KL(p1; p2) = P1(log(p1/p2)); the Hellinger distance is dH(p1, p2) =

R
(
p
p1 �

p
p2)2 d�;

the total variation distance is TV(p1, p2) = 2�1
R
|p1� p2| d�. The Lp–norm of a density

q is kqkp = (
R
|q|p d�)p�1

, so that TV(p1, p2) = 2�1kp1 � p2k1. Similarly, the `p–norm in

Rn is k(qi)ni=1kp = (
P

n

i=1 |qi|p)p
�1
. The convolution of two measurable functions f1, f2

is denoted by (f1 ⇤ f2)(x) =
R
f1(x � y)f2(y) dy. For any ✏ > 0, a subset S of a metric

space (T, d) is an ✏-net if for every t 2 T there exists s 2 S such that d(s, t) < ✏. We
call the ✏-covering of T the minimal cardinality of ✏-nets S and denote such number by
N (✏, T, d). We refer to a test as any measurable function � : Xk ! [0, 1] for some k 2 N.

4.3 Contraction rates for partially exchangeable sequences

In this section we prove a general Schwartz theorem for partially exchangeable sequences
that we apply to the boosted hierarchical Dirichlet process in Section 4.4. In Theorem
41 we find general conditions for the convergence rate of (pi)ni=1|X to be deduced from
the marginal ones of pi|Xi,1, . . . Xi,ni

, for i = 1, . . . ,m, which is particularly delicate
whenever the cardinalities of the groups do not all grow at the same rate. We observe
that the connection between marginal convergence rates and joint ones is not trivial,
since in general posterior consistency for the marginal exchangeable sequences does not
imply the one for the partially exchangeable ones, as it is evident from Example 6.

Example 6. We focus on consistency with respect to the weak topology. Let m = 2 and
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let⇧ be a prior whose support is {p1 s.t. KL(p0,1, p1) � ✏̃}⇥P[P⇥{p2 s.t. KL(p0,2, p2) �
✏̃} for some ✏̃ > 0 such that the following holds for every ✏ > 0:

Z

{KL(p0,1,p1)<✏}⇥P
⇧(dp1, dp2) > 0,

Z

P⇥{KL(p0,2,p2)<✏}
⇧(dp1, dp2) > 0. (4.7)

Let U0 = {KL(p0,1, p1) < ✏̃} ⇥ {KL(p0,1, p1) < ✏̃}. Since ⇧(U0) = 0, the posterior ac-
cording to the partially exchangeable model (4.4) satisfies ⇧(U0|X) = 0, L(X)–almost
surely, for every n1, n2 2 N \ {0}. Since L(X) is absolutely continuous with respect

to the Lebesgue measure on Rn1+n2 , ⇧(U0|X) = 0
�
P

(n1)
0,1 ⇥ P

(n2)
0,2

�
–almost surely and

thus also in probability. As U0 is a neighborhood of (P0,1, P0,2) according to the weak
topology, ⇧ is not consistent at (P0,1, P0,2). However, (4.7) guarantees that the marginal
random measures ⇧1 and ⇧2 satisfy the KL–property of Schwartz theorem for exchange-
able sequences, ensuring marginal consistency (see e.g. Ghosal & van der Vaart (2017,
Example 6.20)).

We assume that the base metric of the `p–metric dp defined in (4.5) satisfies the basic
testing assumption: given p0 2 P, for every n 2 N, ✏ > 0 and p1 2 P such that
d(p0, p1) > ✏, there exists a test �̃n : Xn ! [0, 1] and some universal constants ⇠, C > 0
such that

P
n

0 (�̃n)  e
�Cn✏

2
; sup

d(p,p1)<⇠✏

P
n(1� �̃n)  e

�Cn✏
2
. (4.8)

This standard requirement holds for the Hellinger distance (Le Cam, 1986). More gen-
erally, it holds for any metric d  dH that generates convex balls (cfr. Proposition D.8
in Ghosal & van der Vaart (2017)), including the total variation distance. We define the
reinforced Kullback–Leibler variation neighborhood

V0,✏,n =

⇢
KL(p0,i; pi), V (p0,i; pi) .

n

ni

✏
2 for i = 1, . . .m

�
, (4.9)

where V (p; q) = P | log(p/q) � KL(p; q)|2 is the Kullback–Leibler variation. We observe
that (4.9) di↵ers from the standard definition of Kullback–Leibler variation neighborhood
V0,✏ = {KL(p0,i; pi), V (p0,i; pi) . ✏

2 for i = 1, . . .m} � V0,✏,n, introducing an explicit
dependence on the cardinality of the samples (not only through the convergence rate),
which has the e↵ect of shrinking each component {KL(p0,i; pi), V (p0,i; pi) . ✏

2} of the
neighborhood proportionally to the ratio between n = min(n1, . . . , nm) and ni. We
added a subscript n in the notation V0,✏,n, though technically it also depends on the
whole vector (n1, . . . , nm). We observe that when ni ⇣ ni0 for every i 6= i

0, V0,✏,n and
V0,✏ coincide.

Theorem 41. Given a distance d that satisfies the basic testing assumption (4.8), sup-
pose that there exist Pn ⇢ P and a constant C > 0, such that for ✏̄n  ✏n sequences of
real numbers such that n✏̄2n ! +1, the following hold for su�ciently large n:

1. ⇧(V0,✏̄n,n) � e
�Cn✏̄

2
n;
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2. log(N (⇠✏n,Pn, d))  n✏
2
n;

3. ⇧i(Pc
n)  e

�(C+2m+1)n✏̄2n for i = 1, . . . ,m.

Then ✏n is a posterior rate of contraction at (p0,i)mi=1 with respect to dp, for every p � 1.

The proof of Theorem 41 may be found in Section 4.6 but we give some intuition on the
role of the conditions and their relation with the exchangeable case. The basic testing
assumption (4.8) and conditions 2 and 3 of Theorem 41 are standard assumptions for
building marginal frequentist tests �ini

: Xni ! {0, 1} that separate the true distribution
P0,i from the complementary of any neighborhood with exponentially small errors with
respect to the number of observations. In the statement of Theorem 41 we considered the
same sieve (Pn)n�1 for every marginal distribution ⇧i for simplicity, since in most com-
mon frameworks, including the boosted hierarchical Dirichlet process in (4.1), ⇧i = ⇧i0

for every i, i
0. However, we point out that the result may be generalized to account for

di↵erent subsets Pn,i ⇢ P, as showed in Section 4.6, which is of particular interest when
the marginal exchangeable models with respect to ⇧i require di↵erent sieves.
Condition 1 on the reinforced Kullback–Leibler variation neighborhood is needed be-
cause one can not directly build a frequentist test � : Xn+ ! {0, 1} that separates the
true distributions (P0,i)mi=1 with exponentially bounded errors with respect to the total
number of observations n+, unless ni ⇣ ni0 for every i, i

0. However, in Lemma 42 we
manage to build an exponentially bounded test with respect to n. Given tests {�i}m

i=1,
we define

� :=
mX

k=1

(�1)i�1
X

I2Im,k

Y

i2I
�
i

ni
,

where Im,k = {I ⇢ {1, . . . ,m} : |I| = k}.

Lemma 42. Let X1, . . .Xm be Polish spaces and let P0,i 2 PXi
for i = 1, . . . ,m. Given

a neighborhood Ui of P0,i and a measurable subset Pi ⇢ PXi
, assume that there exists a

constant ai and a test �i : Xi ! [0, 1] such that

P0,i(�i) < e
�ai , sup

p2Pi\Uc

0,i

P (1� �i) < e
�ai ,

for i = 1, . . . ,m. Then � :
Q

m

i=1Xi ! [0, 1] is a test and satisfies

1.
�Q

m

i=1 P0,i
�
(�) < me

�a;

2. sup(pi)mi=12P(m)\Uc

0

�Q
m

i=1 Pi

�
(1� �) < e

�a;

where P(m) = P1 ⇥ · · ·⇥ Pm, U0 = U0,1 ⇥ · · ·⇥ U0,m and a = min(a1, . . . , am).

We apply Lemma 42 to marginal frequentist test �ini
: Xni ! {0, 1} that are expo-

nentially bounded with respect to the number of observations ni. The fact that � is
exponentially bounded with respect to n instead of n+ brings to the need of the re-
inforced Kullback–Leibler condition, which coincides with the standard one whenever
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4.4. Boosted hierarchical Dirichlet process

ni ⇣ ni0 for every i, i
0. Indeed, one can show that in such case Lemma 43 holds, whereas

with the standard Kullback–Leibler variation one would only retain a lower bound in
n+.

Lemma 43. Consider model (4.4) when ⇧ is supported on dominated distributions.
Then for any ✏, D > 0, for n su�ciently large,

Z mY

i=1

niY

j=1

pi

p0,i
(Xi,j) d⇧(p1, . . . , pm) � ⇧(V0,✏,n)e

�m(D+1)✏2n
, (4.10)

with
�Q

m

i=1 P
(1)
0,i

�
–probability at least 1� (mD

2
✏
2
n)�1.

4.4 Boosted hierarchical Dirichlet process

In this section we apply Theorem 41 to find the contraction rates of the multivariate
Gaussian bHDPM process defined in (4.1) towards the true vector of densities (p0,i)mi=1.
The conditions of Theorem 41 are divided in two separate blocks: (i) the Kullback–
Leibler variation neighborhood must have su�cient mass (condition 1); (ii) one must
find an appropriate sieve for the marginal exchangeable model (condition 2 and 3).
Lemma 44, Proposition 45 and Proposition 46 deal with (i), Proposition 47 deals with
(ii).
In order to prove that condition 1 of Theorem 41 holds, we first show that the prior
puts su�cient mass on a family of neighborhood B✏ that contains the Hellinger ball
(Lemma 44 and Proposition 45) and then show that this is su�cient to ensure that
the Kullback–Leibler variation neighborhood has su�cient mass with respect to ✏̄n2 =
n
�1 log(n_)� (Proposition 46), for some � > 1, which is optimal up to a logarithmic

factor.

Lemma 44. Let p0,i = pF0,i,⌃0,i be a supersmooth density on Rd of smoothness r0,i, as
defined in (13), and let pi = pFi,⌃i

be Gaussian mixture densities as defined in (4.3), for

i = 1, . . . ,m. Then for i = 1, . . . ,m there exist measurable subsets {Ui,j}Ni

j=1 ✓ Rd and

weights {!i,j}Ni

j=1 2 SNi�1 such that the following hold for su�ciently small ✏ > 0:

1. Ni . log�(✏)
d+d/r0;

2. Ui,j \ Ui0,j0 6= ; if and only if i 6= i
0 and Ui,j = Ui0,j0;

3. diam(Ui,j) � ✏
2 for i = 1, . . . ,m and j = 1, . . . , Ni;

4. {dH(p0,i, pi) . ✏ for i = 1, . . . ,m} ◆ B✏,

where B✏ = {
P

Ni

j=1 |Fi(Ui,j) � !i,j |  ✏
2
, k⌃i � ⌃0,ik  ✏ for i = 1, . . . ,m} and r0 =

min(r0,1, . . . , r0,m).
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Proposition 45. Let ⇧ = bHDP(✓,↵⇤
, ✓

⇤
,F⇤) ⇥ G(m) as in (4.2). Let p0,i = pF0,i,⌃0,i

be a supersmooth density on Rd of smoothness r0,i such that ⌃0,i belongs to the support
of G, for i = 1, . . . ,m. Let B✏ be the set defined in Lemma 44. Then there exists a
constant C > 0 such that for su�ciently small ✏ > 0, ⇧(B✏) � e

�C log�(✏)d+d/r0+1
, where

r0 = min(r0,1, . . . , r0,m).

We state Proposition 46 for the bHDP. However, the result holds true for a generic
prior ((Fi)mi=1, (⌃i)mi=1) ⇠ ⇧m ⇥ G

(m). One may thus use Proposition 46 to find the
convergence rates of other dependent random probabilities, going beyond the bHDP
and other hierarchical processes.

Proposition 46. Let ⇧ = bHDP(✓,↵⇤
, ✓

⇤
,F⇤)⇥G(m) as in (4.2) and let p0,i = pF0,i,⌃0,i

be a supersmooth density on Rd, for i = 1, . . . ,m. Assume that there exists � > 2 and
C > 0 such that, for su�ciently small ✏ > 0, ⇧(B✏) � e

�C log�(✏)� , where B✏ is the set
defined in Lemma 44. If ✏̄n2 = n

�1 log(n_)� ! 0 as n ! +1, then there exists C
0
> 0

such that, for su�ciently large n, ⇧(V0,✏̄n,n) � e
�C

0
n✏̄

2
n, where V0,✏,n is the Kullback–

Leibler variation neighborhood defined in (4.9).

The next proposition provides a sieve that satisfies the desired conditions, in the same
spirit of Shen et al. (2013). We point out that this holds for hierarchical models with
conditionally Dirichlet marginals and mean measure F

⇤(A) = E(F̃ (A)) in general, re-
gardless of the prior on F̃ . First of all we define some relevant quantities.

FN,a =

⇢ +1X

j=1

!j�zj

����
+1X

j=N+1

!j < ✏
2
n, z1, . . . , zN 2 [�a, a]d

�
;

S�,M = {⌃ : �2  eig1(⌃)  eigd(⌃) < �
2(1 + ✏

2
n)

M};

✏̄n
2 = n

�1 log(n_)
� ; ✏

2
n =

K
2
✏̄
2
n log(n)

log(n✏̄2n)
; Nn =

Kn✏̄
2
n

log(n✏̄2n)
;

an = (n✏2n)
1
↵1 ; �

�1
n = (n✏2n)

1
2↵2 ; Mn = n.

Proposition 47. Let ((Fi)mi=1, (⌃i)mi=1) ⇠ ⇧ = bHDP(✓,↵⇤
, ✓

⇤)⇥G(m) as in (4.2) such
that conditions (4.6) hold. Define Pn = {pFn,⌃n

: F 2 FNn,an ,⌃ 2 S�n,Mn
} for K > 0.

If ✏̄n2 = n
�1 log(n_)� ! 0 as n ! +1, then log(N (✏n,Pn, d))  n✏

2
n and for every

C > 0 there exists K > 0 such that ⇧i(Pc
n)  e

�Cn✏̄
2
n for every i = 1, . . . ,m.

Putting together Lemma 44, Proposition 45, Proposition 46 and Proposition 47, we ob-
tain the proof of Theorem 40.

Proof of Theorem 40 Let ✏̄2n = n
�1 log(n_)d+d/r0+1 and ✏

2
n = n

�1 log(n_)d+d/r0+2.

We point out that if n_  e
n
�

, ✏̄n, ✏n ! 0 as n ! +1. By relying on Proposition 45,
Condition 1 on the reinforced Kullback–Leibler variation holds by Proposition 46. Con-
sider now Pn as in Proposition 47 and denote with ✏̃n the value of ✏n therein. For n large
enough, ✏̃n . ✏n, so that condition 2 holds by Proposition 47. Finally, ⇧i(Pc

n)  e
�Cn✏̄n

for every i = 1, . . . ,m and C > 0. In particular, condition 3 holds as well.
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4.5. Future developments

4.5 Future developments

In this chapter we have laid the groundwork for the analysis of the frequentist proper-
ties of models involving dependent random probability measures, such as the boosted
hierarchical Dirichlet process. In principle the same techniques can be used for the en-
tire class of hierarchical Pitman–Yor mixture models (Camerlenghi et al., 2019b), where
both the child and the parent distribution are PYs instead than DPs. However, in order
to treat this class we first need an exhaustive asymptotic theory for the exchangeable
Pitman–Yor mixture model, which is currently missing in the multivariate scenario. The
sieve proposed in Shen et al. (2013) for the multivariate Dirichlet process mixtures is
inherently dependent on fast decreasing weights, leaving the Pitman–Yor case currently
unresolved. Still, we may use Theorem 41 to derive contraction rates in this class of mod-
els by adding more restrictive assumptions, such as real-valued observations (Scricciolo,
2014) or multivariate distributions with compact support.

4.6 Proofs

4.6.1 Proof of Theorem 41

We prove a more general statement of Theorem 41, which accounts for potentially dif-
ferent sieves for each marginal distribution.

Theorem 48. Given a distance d that satisfies the basic testing assumption (4.8), sup-
pose that there exist Pi = Pn,i ⇢ P and a constant C > 0, such that for ✏̄n  ✏n sequences
of real numbers such that n✏̄2n ! +1, the following hold for su�ciently large n:

1. ⇧(V0,✏̄n,n) � e
�Cn✏̄

2
n;

2. log(N (⇠✏n,Pi, d))  ni✏
2
n for i = 1, . . . ,m;

3. ⇧i(Pc

i
)  e

�(C+2m+1)n✏̄2n for i = 1, . . . ,m.

Then ✏n is a posterior rate of contraction at (p0,i)mi=1 with respect to dp, for every p � 1.

Proof. Let Bn = {(pi)mi=1 2 Pm : dp((pi)mi=1, (p0,i)
m

i=1) > M✏n}. Since convergence in
expected value implies convergence in probability, we shall prove that E(⇧(Bn|X) ! 0
as n ! +1. We observe that Bn ✓

Q
m

i=1{d(pi, p0,i)  m
�1/p

M✏n}c. Moreover, by
Theorem D.5 in Ghosal & van der Vaart (2017) and condition 2., the basic testing
assumption (4.8) entails that for i = 1, . . . ,m there exists test �ni

with error probabilities

P
(ni)
0,i (�ni

)  e
✏
2
nni

e
�m

�2/p
KniM

2
✏
2
n

1� e�m�2/pKniM
2✏2n

;

sup
p2Pi\{d(p,p0,i)>m�1/pM✏n}

P
(ni)(1� �ni

)  e
�m

�2/p
KniM

2
✏
2
.
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For Km
�2/p

M > 1, by Lemma 42, there exists a test � that satisfies

✓ mY

i=1

P
ni

0,i

◆
(�)  2e✏

2
nn

e
�m

�2/p
KM

2
✏
2
nn

1� e�m�2/pKM2✏2nn
;

sup
(pi)mi=12(P1⇥···⇥Pm)\Bn

✓ mY

i=1

P
(ni)
i

◆
(1� �)  e

�m
�2/p

KM
2
✏
2
nn.

Let An = {
R Q

m

i=1

Q
ni

j=1 pi(Xi,j)p0,i(Xi,j)�1
d⇧(p1, . . . , pm) � e

(C+2m)✏̄2nn}. By Bayes’
formula, the posterior probability of Bn is bounded above by

�+ Ac
n
+ e

(C+2m)✏̄2nn
Z

Bn

mY

i=1

niY

j=1

pi(Xi,j)

p0,i(Xi,j)
d⇧(p1, . . . , pm)(1� �).

The expected value of the first term goes to zero by the previous argument. The one of
the second term goes to zero by Lemma 43 with D = 1 and condition 1. The expected
value of the third term is bounded above by

e
(C+2m)✏̄2nn

�
⇧((P1 ⇥ · · ·⇥ Pm)c) + e

�m
�2/p

KM
2
✏
2
nn
�
.

Since ⇧((P1⇥ · · ·⇥Pm)c) 
P

m

i=1⇧i(Pc

i
), we conclude by condition 3 and by considering

m
�2/p

KM
2
> C + 2m.

4.6.2 Proof of Lemma 42

First of all we prove that � is a test, i.e. a measurable function between 0 and 1. Sum
and product of measurable functions are indeed measurable. For every xi 2 Xi, �i(xi) 2
[0, 1]. We may assume that there exists independent events {Ai}mi=1 and a probability
measure P such that P(Ai) = �i(xi) for i = 1, . . . ,m. Then �n(x1, . . . , xm) = P([m

i=1Ai),
which is clearly between 0 and 1. To prove condition 1, we reason in a similar way.
We observe that P0,i(�i) 2 [0, 1] and consider independent events {Ai}mi=1 such that
P(Ai) = P0,i(�i). Then P([m

i=1Ai) 
P

m

i=1 P(Ai)  mmax(P(A1), . . . ,P(Am))  me
�a.

Finally, for condition 3 we consider independent events {Ai}mi=1 such that P(Ai) = Pi(�i).
Then (

Q
m

i=1 Pi)(1 � �) = P(([m

i=1Ai)c) = P(\m

i=1A
c

i
). Since (pi)mi=1 2 Uc

0 , there exists
ī 2 {1, . . . ,m} such that pī 2 U0,̄i. Then P(\m

i=1A
c

i
)  P(Ac

ī
) < e

�a
ī . We conclude by

observing that aī � a.

4.6.3 Proof of Lemma 43

Define d⇧0,✏(p1, . . . , pm) / V0,✏,n(p1, . . . , pm) d⇧(p1, . . . , pm) the restriction of⇧ to V0,✏,n.
The logarithm of the left side of (4.10) is bounded from below by

log(⇧(V0,✏,n) + log

✓Z mY

i=1

niY

j=1

pi

p0,i
(Xi,j) d⇧0,✏(p1, . . . , pm)

◆
.
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Thus by Jensen’s inequality the probability of the complement of the event in (4.10) is
smaller or equal to the probability of

Z
log

✓ mY

i=1

niY

j=1

pi

p0,i
(Xi,j)

◆
d⇧0,✏(p1, . . . , pm)  �m(D + 1)✏2n.

Define Zi =
R
log(

Q
ni

j=1 pi(Xi,j)p0,i(Xi,j)�1) d⇧0,✏(p1, . . . , pm). Then the expected value

E(Zi) = �niKL(pi; p0,i) > ✏
2
n because of the definition of V0,✏,n. Thus the probability

of the complement of the event in (4.10) is smaller or equal to the one of

⇢ mX

i=1

Zi � E
✓ mX

i=1

Zi

◆
 �mD✏

2
n

�
,

which is bounded from above by (mD✏
2
n)�2Pm

i=1 E(|Zi � E(Zi)|2) by the triangular
inequality and Markov’s inequality. The Marcinkiewicz–Zygmund inequality guarantees
that E(|Zi � E(Zi)|2)  niV (p0,i; pi), which is smaller or equal than ✏2n by definition of
V0,✏,n.

4.6.4 Proof of Lemma 44

We approximate the distributions p0,1, . . . , p0,m with convolutions over discrete mixing
measure whose atoms are supported on a compact set. Let a0 = k0 log�(✏)

1/r0 , where
k0 is a large constant. Define F̃0,i the restriction of F0,i to [�a0, a0]d for i = 1, . . . ,m.
Then by Lemma A.3 of Ghosal & van der Vaart (2001), kp0,i � p

F̃0,i,⌃0,i
k1  2✏2. We

argue that for i = 1, . . . ,m there exists a discrete distribution F
⇤
i
=
P

Ni

j=1 !i,j�zi,j on

[�a0, a0] with Ni . log�(✏)
d+d/r0 such that kp0,i � pF ⇤

i
,⌃0,ik1  ✏

2. To see this, we apply

Corollary B1 of Shen et al. (2013) with ✏̄ satisfying ✏2 = ✏̄ log�(✏̄)
d/2 and we observe

that as ✏ ! 0, log�(✏) ⇣ log�(✏̄) up to a multiplicative constant. Since z 7! �⌃(x � z)
is Lipschitz continuous with constant equal to the inverse of the smallest eigenvalue of
⌃ with respect to the L1–norm, the points {zi,j : j = 1, . . . , Ni} may be chosen ✏

2–
separated, with possible ties across di↵erent groups. We define Ui,j ✓ [�a, a]d to be
a neighborhood of zi,j of diameter ✏2 such that if zi,j 6= zi0,j0 , then Ui,j \ Ui0,j0 = ;, if
zi,j = zi0,j0 , then Ui,j = Ui0,j0 .
By Lemma B1 in Shen et al. (2013), which extends Lemma 5 in Ghosal & van der Vaart
(2007b) in d dimensions, if

P
Ni

j=1 |Fi(Ui,j) � !i,j |  ✏
2, then kpF ⇤

i
,⌃0,i � pFi,⌃0,ik1 . ✏

2.

Moreover, if k⌃i � ⌃0,ik  ✏ then dH(pFi,⌃0,i , pFi,⌃i
)  ✏. Since d

2
H

 k · k1, we easily
conclude.

4.6.5 Proof of Proposition 45

We first recall a known property of the Dirichlet distribution (Lemma 49) and prove an
upper bound for the mixed moments of the Pitman–Yor process (Lemma 50). Lemma
49 can be easily deduced by the proof of Lemma 6.1 in Ghosal et al. (2000). The proof
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heavily relies on the density of the Dirichlet distribution being bounded from below
whenever the parameters are smaller than one. For N, k 2 N and � 2 R, let {�}k
denote the k–dimensional vector with components equal to � and let JN,k = {(i, j) : i =
1, . . . N ; j = 1, . . . , k}.

Lemma 49. Let (X1, . . . , Xk) be a random object on Sk�1 and let (u1, . . . , uk) 2 Sk�1.
Without loss of generality assume uk = max((ui)ki=1). Then for every ✏  k

�1,

P
✓ kX

i=1

|Xi � ui|  2✏

◆
� P(|Xi � ui|  ✏

2 for i = 1, . . . , k � 1)

In particular, let (Y1,1, . . . , Y1,k, . . . , YN,1, . . . , YN,k) ⇠ Dir({�1}k, . . . , {�N}k with �i  1.
Then for every ✏  (kN)�1 and {ui,j} s.t.

P
(i,j)2IN,k

ui,j = 1,

P
✓ X

(i,j)2Jk,N

|Yi,j � ui,j |  2✏

◆
� �

✓
k

NX

i=1

�i

◆
✏
2(kN�1)

NY

i=1

�
k

i ,

where � indicates the gamma function.

Lemma 50 yields an upper bound on the mixed moments of the Pitman–Yor process.
The proof relies on the relationship between the Pitman–Yor process and the stable
completely random measure, together with some convenient tools for evaluating the
mixed moments of normalized random measures with independent increments, as first
developed in James et al. (2006). For this reason in model (4.1) we focused on ✓⇤ > 0.

Lemma 50. Let p̃ ⇠ PY(↵, ✓,F) with ↵, ✓ > 0 and F 2 PX, where X is a Polish space.
The for any A1, . . . , Ak disjoint Borel sets on X, and n1, . . . , nk 2 N,

E(p̃(A1)
n1 · · · · · p̃(Ak)

nk) � �(✓ + 1)

↵�(✓/↵+ 1)

�(k + ✓/↵)

�(n+ + ✓)

kY

i=1

↵F (Ai),

where n+ = n1 + · · ·+ nk and � is the gamma function.

Proof. Let P↵,F be the law of an ↵–stable completely random measure with base measure
F . We define P↵,✓,F as an absolutely continuous probability with respect to P↵,F with
Radon–Nikodym derivative,

dP↵,✓,F

dP↵,F

(m) =
�(✓ + 1)

�(✓/↵+ 1)
m

�✓(X).

As shown in Pitman & Yor (1997), the Pitman–Yor process PY(↵, ✓, F ) may be obtained
by normalizing a random measure µ̃ ⇠ P↵,✓,F , i.e.

µ(·)
µ(X) ⇠ PY(↵, ✓, F ).

93
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This relationship between the Pitman–Yor process and the stable completely random
measure may be conveniently used to derive the mixed moments, as shown in Canale
et al. (2017). In particular, E(p̃(A1)n1 · · · · · p̃(Ak)nk) is equal to

�(✓ + 1)

�(✓/↵+ 1)

1

�(n+ + ✓)

Z +1

0
u
n++✓�1

e
�u

↵

kY

i=1

niX

`=1

F (Ai)
`
⇠ni,`

(u) du, (4.11)

where ⇠n,` is defined as

⇠n,`(u) =
↵
`

un�`↵`!

X

q

✓
n

q1 · · · q`

◆ `Y

r=1

(1� �)qr�1,

where (·)q indicates the Pochammer function and the sum is over all vectors q =
(q1, . . . , q`) of positive integers such that q1+· · ·+q` = n. We observe that

P
ni

`=1 F (Ai)`⇠ni,`
(u) �

F (Ai)⇠ni,1(u) = F (Ai)↵u↵�ni . Thus we can bound (4.11) from above with

�(✓ + 1)

�(✓/↵+ 1)

1

�(n+ ✓)

✓ kY

i=1

↵F (Ai)

◆Z +1

0
u
✓+k↵�1

e
�u

↵

du.

We conclude by observing that the integral in the previous expression is equal to ↵�1�(k+
✓/↵).

We now prove Proposition 45. Conditionally on F̃ , F1, · · · , Fm are independent. Thus,

⇧(B✏) = E
✓ mY

i=1

⇧

✓ NiX

j=1

|Fi(Ui,j)� !i,j |  ✏
2
���F̃
◆◆ mY

i=1

⇧(k⌃i � ⌃0,ik  ✏).

Since G has continuous and positive density on its support and ⌃0,i belongs to the
support of G, ⇧(k⌃i � ⌃0,ik  ✏) � ✏

q, where q depends on the dimension of the

support of G. Next, let U0,i = Rd \ ([Ni

j=1Ui,j), so that Fi(U0,i), . . . , Fi(UNi,i
)|F̃ ⇠

Dir(✓F̃ (U0,i), . . . , ✓F̃ (UNi,i
)). Let d✓e = min{n 2 N : n � ✓} and let ⌘ = ✓d✓e�1  1.

The aggregation properties of the Dirichlet distribution guarantee that, conditionally on

F̃ , Fi(Ui,j) =
Pd✓e

h=1 Yi,j,h, where

((Yi,1,h)
d✓e
h=1, . . . , (Yi,Ni,h

)d✓e
h=1) ⇠ Dir({⌘F̃ (Ui,1)}d✓e, . . . , {⌘F̃ (Ui,Ni

)}d✓e),

with {�}k denoting the k–dimensional vector with components equal to �. Define

!i,0 = 0. Then
P

Ni

j=1 |Fi(Ui,j) � !i,j | 
P

Ni

j=0

Pd✓e
h=1 |Yh,j,i � !i,jd✓e�1|. Lemma 49

thus guarantees that

⇧
⇣ NiX

j=1

|Fi(Ui,j)� !i,j |  ✏
2
���F̃
⌘
� �(✓)(✏/

p
2)2(d✓e(Ni+1)�1)

⌘
Ni+1

NiY

j=0

F̃ (Ui,j)
d✓e

.
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We observe that
Q

m

i=1 �(✓)(✏/
p
2)2(d✓e(Ni+1)�1)

⌘
Ni+1 � e

�C1 log�(✏)d+d/r0+1
for some C1 >

0, since Ni . log�(✏)
d+d/r0 . Thus it su�ces to show that E(

Q
m

i=1

Q
Ni

j=0 F̃ (Ui,j)d✓e) �
e
C2 log�(✏)d+d/r0+1

for some C2 > 0. We indicate by {Uh : h = 1, . . . , N} the set of distinct
neighborhoods and by kh = |{i : Uh = Ui,j for some j}| the number of groups containing

a copy of Uh, so that k1+· · ·+kh = N1+· · ·+Nm =: N+. Define U0 = Rd\([m

i=1[
Ni

j=1Ui,j),

so that (Uh)Nh=0 forms a partition of Rd and set k0 = m. Since U0 ✓ U0,i for i = 1, . . . ,m,

E
✓ mY

i=1

NiY

j=0

F̃ (Ui,j)
d✓e
◆

� E
✓ NY

h=0

F̃ (Uh)
khd✓e

◆
.

In order to compute the expected value on the right, we distinguish two ranges for the
parameters. We first deal with the case ↵⇤ = 0, so that (F̃ (Uh))Nh=1 has a Dirichlet
distribution on Rd. Thus, by known properties of the Dirichlet distribution,

E
✓ NY

h=0

F̃ (Uh)
khd✓e

◆
=

Q
N

h=0(✓
⇤
F

⇤(Uh))[khd✓e]

(✓⇤)[(m+N+)d✓e] , (4.12)

where [·] is the ascending factorial. Denote by N0 = d✓e(m + N+) . log�(t)
d+d/r0 .

Since F
⇤ is continuous and positive, ✓⇤F ⇤(Ui) & ✏

2 for i = 1, . . . , N . Moreover, since
b
k  b

[k]  (b+ k� 1)k, for ✏ su�ciently small the right side of (4.12) is greater or equal
to a constant multiplied by

✓
✏
2

✓⇤ +N0 � 1

◆
N0

� ✏
3N0 � e

�3 log�(✏)d+d/r0+1
.

When ↵⇤
> 0, the expression of the mixed moments is available thanks to the relation-

ship between the Pitman–Yor process and the stable completely random measure. By
Proposition 50,

E
✓
F̃ (U0)

md✓e
NY

h=1

F̃ (Uh)
khd✓e

◆
& �(N + ✓

⇤
/↵

⇤)

�(N0 + ✓⇤)

NY

h=0

↵
⇤
F

⇤(Uh).

As ✏ ! 0, N ⇣ N0. Thus, since ↵⇤
F

⇤(Ui) & ✏
2 for i = 1, . . . , N , the right side of the

previous expression is bounded from above by ✏2N = e
�2 log�(✏)d+d/r0+1

.

4.6.6 Proof of Proposition 46

First of all we show that we can reformulate the Kullback–Leibler variation neighbor-
hood in terms of the Hellinger distance (Lemma 51). The proofs follow the lines of
Proposition 9.14 in Ghosal & van der Vaart (2017).

Lemma 51. Let p1 = pF1,⌃1 be a supersmooth density function as defined in (13) and
let p2 = pF2,⌃2 be a normal mixture density as defined in (4.3). Then for su�ciently
small ✏ > 0,

{KL(p1; p2) . ✏
2
, V (p1; p2) . ✏

2} ◆ {dH(p1, p2) log(dH(p1, p2)) . ✏}
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4.6. Proofs

Proof. By Lemma B.2 of Ghosal & van der Vaart (2017), which builds on Lemma B2 of
Shen et al. (2013), both KL(p1; p2) and V(p1; p2) are bounded from above by a multiple
of dH(p1, p2)2 log(dH(p1, p2))2 if, for su�ciently small �, P1((p1p

�1
2 )�) is bounded. For

every F2 and ⌃2 with minimum eigenvalue �2, p2(x) is greater or equal to

1

�
d

2

Z

kzka

e
�kx�zk2/(2�2

2)dF2(z) &
(
�
�d

2 e
2da2/�2

2F2([�a, a]d), kxk1  a

�
�d

2 e
2dkxk2/�2

2F2([�a, a]d), kxk1 � a

Since p1 is uniformly bounded, there exist constants C1 and C2 depending on � and p1,
such that P1((p1p

�1
2 )�) is smaller or equal to the sum of C1(2a)d��d2 e

��2da2/�2
2F2([�a, a]d)��

and

C2�
�d

2 F2([�a, a]d)��

Z

kxk1�a

e
��dkxk2/�2

2p1(x) dx.

Since F1 has sub–Gaussian tails, also p1 has sub–Gaussian tails. Thus for � su�ciently
small the integral above is finite. We easily conclude by applying a square root trans-
formation.

For every i = 1, . . . ,m, p1 = p0,i and p2 = pi satisfy the hypotheses of Lemma 51. By
taking ✏2 therein equal to nn

�1
i
✏̄
2
n, we deduce that ⇧(V0,✏̄n,n) is greater or equal to

⇧

✓
dH(p0,i, pFi,⌃i

)2 log(dH(p0,i, pFi,⌃i
))2 . n

ni

✏̄
2
n for i = 1, . . . ,m

◆
. (4.13)

We observe that nn
�1
i
✏̄
2
n � n

�1
_ log(n_)� , which goes to zero as n ! +1. Since � �

2, the probability in (4.13) is greater or equal to ⇧(dH(p0,i, pFi,⌃i
)  n

�1/2
_ for i =

1, . . . ,m). By Lemma 44, ⇧(V0,✏̄n,n) & ⇧(B
n
�1/2
_

), which by hypothesis is greater than

e
�C log�(n

�1/2
_ )� = e

�C
0
n✏̄

2
n , where C

0 = C2�� .

4.6.7 Proof of Proposition 47

In order to prove that logN (✏n,Pn, dH)  n✏
2
n, we show that there exist constants

C1, C2 not depending on n such that logN (C1✏n,Pn, dH)  C2n✏
2
n. Indeed, one then

defines ✏̃n = ✏nmax(
p
C1, C2) and obtains the desired bound. By Lemma 9.15 in Ghosal

& van der Vaart (2017), there exists a large constant A such that logN (A✏n,Pn, dH) is
smaller or equal to a constant multiplied by

Nn log

✓
5

✏2n

◆
+ dNn log

✓
3an
�n✏

2
n

◆
+ d

2 log

✓
5

✏2n

◆
+Mnd

2 log(1 + ✏
2
n) + d log(Mn).

We show that all summands are bounded from above by n✏
2
n up to a constant. First of

all we observe that n✏2n > log(n) for su�ciently large n. Thus the last term is smaller or
equal to d2n✏2n. The fourth one is easily bounded by d

2
n✏

2
n. Moreover, log(5✏�2

n ) < log(n)
for n large enough. Thus, the third term is bounded by d

2
✏
2
nn. As for the first term, we

observe that Nn(n✏2n)
�1 = (K log(n))�1. Thus Nn log(5✏�2

n )(n✏2n)
�1

< K
�1 for large n.
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Similarly, since an�
�1
n  n

↵
�1
1 +(2↵2)�1

, log(3an��1
n ✏

�2
n ) < (↵�1

1 + (2↵2)�1 + 1) log(n) for
large n. Thus Nn log(3an��1

n ✏
�2
n )(n✏2n)

�1
< (↵�1

1 + (2↵2)�1 + 1)/K.

We now prove that for every C > 0 there exists K > 0 such that ⇧i(Pc
n) � e

�Cn✏̄
2
n .

We observe that ⇧i(Pc
n)  ⇧(Fi 2 Fc

Nn,an
) + ⇧(⌃i 2 Sc

�n,Mn
) and ⇧(Fi 2 Fc

Nn,an
) =

E(⇧(Fi 2 Fc

Nn,an
|F̃ )). Since Fi|F̃ is distributed as a Dirichlet process, by Proposition 2

in Shen et al. (2013), this is bounded from above by
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✓✓

2e✓ log�(✏n)

Nn

◆
Nn

+Nn(1� F̃ ([�an, an]
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which is equal to (2e✓ log�(✏n)N
�1
n )Nn + Nn(1 � F

⇤([�an, an]d). On the other hand,
G(Sc

�n,Mn
)  G(eig1 � �

2
n(1 + ✏

2
n)) + G(eigd  �

2
n). Putting these together, ⇧i(Pc

n) is
bounded from above by
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2e✓ log�(✏n)
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2
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We show that that for C > 0 arbitrarily large, all summands are bounded from above
by e

�Cn✏̄n . The second and third summand are easily bounded by e
�C

0
n✏

2
n  e

�KC
0
n✏̄

2
n ,

for some constant C
0. The last summand is bounded by e

�2�1
↵3n✏

2
n  e

�K2�1
↵3n✏̄

2
n ,

by using 1 + x  e
x. As for the first summand, we first observe that, for large n,

(2e✓ log�(✏n))
�1

Nn � (n✏̄2n)
1�� for � > 0. Thus for n su�ciently large,
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2
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log((n✏̄
2
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log(n✏̄
2
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By taking K large enough we thus derive the desired upper bound.
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Appendix A

Wasserstein distances

If the notion of topology formalizes the concept of convergence, the one of distance al-
lows for its quantification. Since in this thesis we are primarily interested in convergence
results for probability laws, we make use of many di↵erent distances that, depending
on the setting, may capture di↵erent properties of the underlying space of probabili-
ties. Among these, the Wasserstein distance plays a predominant role in Chapter 2 and
Chapter 3. In this appendix we review some of its defining properties that we repeatedly
use throughout the thesis. For a complete reference on the subject we refer to Villani
(2008).
Let X be a Polish with respect to the metric dX with corresponding Borel �-algebra.
For any pair ⇡1,⇡2 of probability measures on (X, dX), we indicate by C(⇡1,⇡2) the
Fréchet class of ⇡1 and ⇡2, i.e. the set of distributions on the product space X2 whose
marginal distributions coincide with ⇡1 and ⇡2 respectively. If Z1 and Z2 are depen-
dent random variables on X such that their joint law L(Z1, Z2) 2 C(⇡1,⇡2), we write
(Z1, Z2) 2 C(⇡1,⇡2).

Definition 14. The Wasserstein distance of order p 2 [1,+1) between ⇡1 and ⇡2 is

Wp,dX (⇡1,⇡2) = inf
(Z1,Z2)2C(⇡1,⇡2)

�
E(dX(Z1, Z2)

p)
 1

p .

Let (⌦,⌃,P) be a probability space. By extension, we refer to the Wasserstein dis-
tance between two random elements X1, X2 : ⌦ ! X as the Wasserstein distance be-
tween their laws, i.e. Wp,d (X1, X2) = Wp,d (L(X1),L(X2)). An element of C(X1, X2) =
C(L(X1),L(X2)) is referred to as a coupling between X1 and X2.

In this work we will focus on Wasserstein distances on Rd with respect to the Euclidean
distance k ·kd. In particular we will mainly deal with the Wasserstein distance of order 1
on R (W1) and the Wasserstein distance of order 2 on R2 (W2), which are arguably the
most common choices in the literature. In the main text we denote both these choices
by W, hoping that the context clarifies which one we are referring to.

Proposition 52. The Wasserstein distances on Rd with respect to the Euclidean distance
k · kd enjoy the following properties:
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1. Let X,Y : ⌦ ! R be random variables. Then,

|E(X)� E(Y )|  W1(X,Y )  E(|X|) + E(|Y |). (A.1)

2. Let FX denote the distribution function of X. Then (Dall’Aglio, 1956),

W1(X,Y ) =

Z +1

�1
|FX(u)� FY (u)| du. (A.2)

3. Let (X1
, . . . ,Xn) and (Y 1

, · · · ,Y n) be n-uples of independent random vectors on
Rd, for d 2 N+. Then by Lemma 8.6 in Bickel & Freedman (1981), for p � 1,

Wp,k·kd(X1 + · · ·+Xn, Y1 + · · ·+ Yn) 
nX

i=1

Wp,k·kd(Xi, Yi). (A.3)

In particular, (A.3) holds for both W1 and W2.

4. Let d 2 N+ and let X and Y be two random vectors on (Rd
, k · kd) with finite

second moment. Then by Lemma 8.8 in Bickel & Freedman (1981),

W2(X,Y )2 = W2(X � E(X),Y � E(Y ))2 + kE(X)� E(Y )k2. (A.4)

5. Let P1, P2, Q1, Q2 be probability measures on Rd, for d 2 N+. Then for every
↵ 2 [0, 1],

W2(↵P1 + (1� ↵)P2,↵Q1 + (1� ↵)Q2) 
↵W2(P1, Q1) + (1� ↵)W2(P2, Q2). (A.5)

Let X and Y be two random elements in Rd. A coupling (ZX ,ZY ) 2 C(X,Y ) is

said to be optimal if W(X,Y ) = E(kZX � ZY k2)
1
2 . If an optimal coupling satisfies

ZX = �(ZY ) almost surely for some measurable function �, we refer to � as an optimal
(transport) map from X to Y . We point out that (A.2) guarantees that optimal maps
for the Wasserstein distance on the Euclidean line always exist and are available in an
explicit form: if X,Y 2 R, � = F

�1
Y

�FX is an optimal transport map from X to Y . On
the contrary, in dimension d > 1, optimal maps are not guaranteed to exist if X gives
non–zero mass to sets of codimension greater or equal to 1. Moreover, even when the
existence is established, there is no explicit way to build such maps, except few particular
cases; for more details see Villani (2008). Fortunately, there are some su�cient criteria
to establish the optimality of a map, as in Theorem 12 of Rüschendorf (1991), which we
here specialize to the case d = 2.

Theorem 53. If X is a random object on R2 and � : R2 ! R2 is continuously di↵eren-
tiable, then (X,�(X)) is an optimal coupling with respect to the 2–Wasserstein distance
if and only if the following hold:

1. � is monotone, i.e. hx�y,�(x)��(y)i � 0 for every x,y 2 R2, where h·i indicates
the standard scalar product on R2;

2. The matrix D� =
�
@�i

@xj

�
i,j

is symmetric.
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de Finetti, B. (1938). Sur la condition d’équivalence partielle. Actual. Sci. Ind. . 10,
42, 43, 58

De Iorio, M., Johnson, W. O., Müller, P. & Rosner, G. L. (2009). Bayesian
nonparametric nonproportional hazards survival modeling. Biometrics 65, 762–771.
16

Doksum, K. (1974). Tailfree and neutral random probabilities and their posterior
distributions. The Annals of Probability 2, 183–201. 9, 23, 43, 63

Donnet, S., Rivoirard, V., Rousseau, J. & Scricciolo, C. (2018). Posterior con-
centration rates for empirical Bayes procedures with applications to Dirichlet process
mixtures. Bernoulli 24, 231–256. 17

Dudley, R. (1976). Probabilities and metrics: convergence of laws on metric spaces,
with a view to statistical testing. Lecture notes series. Aarhus Universitet, Matematisk
Institut. 17

Dykstra, R. L. & Laud, P. (1981). A Bayesian nonparametric approach to reliability.
The Annals of Statistics 9, 356–367. 9, 16, 23, 27, 28, 31, 35, 43, 45, 64

Elliott, L. T., De Iorio, M., Favaro, S., Adhikari, K. & Teh, Y. W. (2019).
Modeling population structure under hierarchical Dirichlet processes. Bayesian Anal.
14, 313–339. 80

Epifani, I. & Lijoi, A. (2010). Nonparametric priors for vectors of survival functions.
Statistica Sinica , 1455–1484. 14, 46, 61

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The
Annals of Statistics 1, 209–230. viii, 3, 4, 6, 8

Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distribu-
tions. In Recent Advances in Statistics, M. H. Rizvi, J. S. Rustagi & D. Siegmund,
eds. Academic Press, pp. 287 – 302. 9, 81, 82

102



Bibliography

Ferguson, T. S. & Klass, M. J. (1972). A representation of independent increment
processes without Gaussian components. The Annals of Mathematical Statistics 43,
1634–1643. 31

Flamary, R. & Courty, N. (2017). POT Python Optimal Transport library. 22, 51,
57
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, 90–110. 81

Trippa, L. & Favaro, S. (2012). A class of normalized random measures with an exact
predictive sampling scheme. Scandinavian Journal of Statistics 39, 444–460. 10

Villani, C. (2008). Optimal Transport: Old and New. Grundlehren der mathematischen
Wissenschaften. Springer Berlin Heidelberg. 17, 19, 44, 48, 98, 99

Wolpert, R. L. & Ickstadt, K. (1998). Poisson/gamma random field models for
spatial statistics. Biometrika 85, 251–267. 31

Wu, Y. & Ghosal, S. (2010). The L1-consistency of Dirichlet mixtures in multivariate
Bayesian density estimation. Journal of Multivariate Analysis 101, 2411 – 2419. 81

Xing, E. P., Jordan, M. I. & Sharan, R. (2007). Bayesian haplotype inference via
the Dirichlet process. Journal of Computational Biology 14, 267–284. 80

Zhou, H., Hanson, T., Jara, A. & Zhang, J. (2015). Modeling county level breast
cancer survival data using a covariate-adjusted frailty proportional hazards model.
The Annals of Applied Statistics 9, 43–68. 17

108


	List of Symbols
	Introduction
	Random measures in Bayesian nonparametrics
	The Bayes–Laplace paradigm
	Exchangeability and de Finetti's Theorem
	The Dirichlet process
	Definition
	Properties
	Extensions

	Completely random measures
	Definition
	Uses in Bayesian Nonparametrics
	Approximation

	Partial exchangeability
	Dependent random probabilities
	Hierarchical processes
	Nested processes
	Additive processes
	Compound random measures
	Lévy copulae

	Measuring dependence

	Approximation of Bayesian models for time-to-event data
	Introduction
	Convergence of completely random measures
	Wasserstein bounds for completely random measures
	General result
	Examples

	Hazard rate mixtures
	Bounds for hazard rates
	Bounds for survival functions
	Examples

	Posterior sampling scheme
	Proofs

	Measuring dependence in the Wasserstein distance
	Introduction
	Preliminaries
	Distance from exchangeability
	Bounds on Fréchet classes
	Bounds on exchangeability
	Independence
	Measuring dependence in BNP models
	Compound random measures
	Clayton–Lévy copula
	GM–dependence

	Measuring dependence between random hazards
	Proofs

	Posterior contraction rates of mixtures over hierarchical processes
	Introduction
	Preliminaries and main result
	Contraction rates for partially exchangeable sequences
	Boosted hierarchical Dirichlet process
	Future developments
	Proofs

	Wasserstein distances
	Bibliography

