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Foreword

The economics of networks is the study of what is the role of connections
among agents in determining their behavior and, in turn, how the connec-
tions mediate the way individual behavior gives rise to aggregate outcomes.
In this thesis, two kinds of connections are studied: the supplier-customer
relations among firms, and the network of social contacts. In the first two
chapters, I study how the supplier-customer relations among firms affect two
things that are crucial in modern economies: market power and the propa-
gation of shocks. The results from the first chapter suggest that competition
policy would benefit from taking into account the network structure. In the
third, I, with my coauthors, study how the social contacts among groups
of people with different perceptions about vaccination affect the diffusion of
an epidemic. The results suggest that policies that induce more segregation
across groups might make everyone worse off. In the fourth, with my coau-
thor, we show that a behavioral bias well documented in finance mitigates
the information externality in a sequential learning model.

Insofar as it makes sense to try to infer a general conclusion from these
works it would be that welfare considerations, and so policy outcomes, are
crucially affected by connections among agents. Hence, taking these into
account is an important step to refine our ability to understand and regulate
the economy.
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Chapter 1

Supply and Demand Function
Equilibrium: trade in a
network of superstar firms

This paper studies how input-output connections among firms determine the
distribution and the welfare impact of market power in a production network.
On all links firms compete, symmetrically, in unrestricted supply and de-
mand schedules. As a consequence, firms take strategically into account their
position in the network, and have market power on both input and output
markets. I show that the fact that firms take into account their position in
the network magnifies the welfare impact of oligopolies with respect to the
case in which firms ignore their position and take other sectors and markets’
prices as given. In input-output models is often assumed that firms have
market power only either on inputs or outputs. I show that this kind of as-
sumption adds constraints on the relative market power among firms. Using
supply and demand functions firms have market power on both inputs and
outputs, in an endogenously determined way. Thus, this model provides a
neutral framework to study welfare questions and evaluate competition pol-
icy. An equilibrium exists for any network under a technology that yields
quadratic profit functions, and I provide an algorithm to compute it. More-
over, horizontal mergers (in absence of synergies) are always harmful for
welfare. 1.

9



10 Chapter 1. Supply and Demand Function Equilibrium

1.1 Introduction

Production of goods in modern economies typically features long and in-
terconnected supply chains. Moreover, many sectors are characterized by
superstar firms, whose size is very large relative to their sector or even the
whole economy.2 How are prices formed in this setting? How is surplus split?
How efficient is the process? This paper provides a strategic non-cooperative
model of large firms interacting in an input-output network consisting of
many specific supply-customer relationships. The model satisfies two re-
quirements:

R1. Symmetric market power : all firms have market power over both
input and output goods, and no prices or quantities are taken as given.

R2. Global strategic interactions : firms strategically take into account
their position in the network.

To be concrete, consider a competition authority in charge of evaluating
merger proposals. Since evaluation takes time and effort, the authority wants
to decide on which sectors to focus on.3 In order to do this, we must be sure
not to build into our models assumption that privilege some sectors/firms
with respect to others. For example, Section 1.4 shows that in some simple
sequential models that have been customarily used ad-hoc differences in the
order of moves changes the answer completely. Hence, the importance of
requirement R1.

The quantification of the distortions that may arise due to market power
has attracted a lot of attention recently, with many scholars arguing that
competition is in fact decreasing and market power on the rise.4 In particular,
Baqaee and Farhi (2017b) find that taking the input-output connections into
account can dramatically increase the size of the implied misallocation in
the economy. This paper shows that, if firms take strategically into account
their position in the supply chain, the welfare loss is even larger. Hence,
requirement R2 is important to be able to correctly evaluate welfare losses.

The novelty of my approach is to incorporate both requirement R1 and
R2. Firms’ simultaneously commit to supply and demand functions (a uni-
form price double auction), a methodology first introduced in Grossman

2In the terminology of Autor et al. (2020).
3Indeed, this is a common issue: for example, in the USA, legislation requires firms

to report merger proposals to the relevant authorities, but only for mergers such that the
assets of the firms involved lie above some pre-specified thresholds (see e.g. Wollmann
(2019))

4De Loecker et al. (2020), Gutiérrez and Philippon (2016), Gutiérrez and Philippon
(2017).
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1.1. Introduction 11

(1981) and Klemperer and Meyer (1989). In this context, firms’ market power
is directly connected with the slope of the supply and demand schedule used,
with a mechanism similar to the usual inverse elasticity rule in monopoly
pricing. The slopes are endogenous and, by treating input and output goods
symmetrically, market power is hence solely determined by network position,
competition, and technology. This way, there is no need to introduce asym-
metries in the timing of firms’ choices and treatment of inputs with respect
to outputs. The split of the surplus is also endogenous, and there is no need
to introduce parameters connected to bargaining. What allows tractability,
in a similar way to most models using supply and demand schedules, are a
quadratic functional form for the technology and uncertainty in some (cost)
parameters. The quadratic functional form yields linearity of schedules in
equilibrium, while uncertainty pins down the best replies uniquely.

Theorems 1, 2 and 3 are the main results of the paper.
Theorem 1 provides an existence result for a Supply and Demand Func-

tion Equilibrium in linear strategies in any network. This approach does
does not need the assumption that the network is acyclic, as for example
the sequential models do.5 The proof relies on the strategic complementarity
property of the game: the best reply to a steeper supply curve is a steeper
supply curve, where “slopes”, being matrices of coefficients, are ordered in
the positive semidefinite sense. So in this context, when a firm has larger
market power, every other firm has more market power in turn.

Theorem 2 shows that in this setting mergers always increase market
power. If, in addition, there is a single aggregate final good, mergers increase
the final price. Strategic complementarities are key again: the merged firm
will face less competition and so choose a flatter schedule, triggering comple-
mentary responses from direct competitors, suppliers and customers, and all
firms connected through the network.

Theorem 3 shows that ignoring global strategic considerations (require-
ment R2) leads to less market power: in a similar model of competition in
supply and demand functions, in which firms ignore the rest of the network,
market power distortions are smaller. This is because if a firm does not in-
ternalize some reactions in the network, this amounts to the firm perceiving
a larger elasticity of demand.

The rest of the paper is organized as follows. The next paragraphs de-
scribe the related literature. Section 1.2 defines the model in full general-

5The relevance of cycles in real production networks is not yet very clear, but on strict
terms, they are not acyclic. For example, Tintelnot et al. (2018) estimates that no more
than 23% of the links in the Belgian firm-to-firm production network violate acyclicity.
This might justify neglecting acyclicity as a first approximation, but is a number distant
from zero.

11



12 Chapter 1. Supply and Demand Function Equilibrium

ity and then explains the parametric assumptions needed for the analysis.
Section 1.3 illustrates the solution and the existence theorem. Section 1.4
presents some of the benchmark models discussed above and clarifying the
differences with my approach. Section 1.5 illustrates the welfare impact of
mergers in Theorem 2. Section 1.6 presents the local version of the model
and Theorem 3. Section 1.7 explains how it is possible to solve the model
numerically. Section 1.8 concludes.

Related literature This paper contributes to three lines of literature: the
literature on competition in supply and demand functions, the literature
on production networks, and the literature on market power in networked
markets.

The use of supply schedules as choice variables in the analysis of oligopoly
was introduced in Grossman (1981), and in its modern form by Klemperer
and Meyer (1989). These studies feature market power on one side of the
market only, as typical in oligopoly models.6 Vives (2011) studies the case of
asymmetric information. Akgün (2004) studies mergers among firms compet-
ing in supply functions, without the network dimension, finding that mergers
are always welfare-decreasing. My results show that some of the mechanisms
extend not only to bilateral trade but to trade in any network. Among the
papers that have dealt with the problem of bilateral oligopoly, allowing for
market power on both sides of the market, Hendricks and McAfee (2010)
is a model of bilateral oligopoly where players compete through choosing a
capacity parameter: the elasticity of the demand and supply schedules is a
given. My contribution with respect to them is a setting in which the elas-
ticities (slopes) of demand and supply are themselves endogenous. Weretka
(2011) attacks the problem constraining the schedules to be linear (instead
of getting this as an equilibrium result), thus gaining traction in the analysis
for general functional forms.

The use of supply and demand schedules is common also in the finance
microstructure literature and in the literature on multi-unit auctions. In
finance it was introduced and popularized by Kyle (1989). From a technical
point of view, the closest paper to mine is Malamud and Rostek (2017), which
studies trade in interconnected financial markets: some of their results are
formally similar to the “local” version of the model discussed in Section
1.6. Ausubel et al. (2014) compare uniform price auctions with pay-as-bid
auctions and hybrid approaches.

6These techniques are customarily used in the study of competition in electricity mar-
kets, since Green and Newbery (1992). For a recent contribution, see Delbono and Lam-
bertini (2018).
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1.1. Introduction 13

It is convenient to divide the literature on market power in networks
in four parts: sequential models, local competition (sector-level), matching,
and bargaining. All differ from my approach, by departing from Require-
ments 1 and 2. Sequential models of supply chains have been studied in
the context of double marginalization by Spengler (1950), in the context of
vertical foreclosure by Salinger (1988), Ordover et al. (1990). Recently they
have been studied in Hinnosaar (2019) (price setting), Federgruen and Hu
(2016) (quantity setting), Kotowski and Leister (2019) (sequential auctions).
Carvalho et al. (2020) build a tractable model to identify “bottlenecks” in
real production network data. In their terminology bottlenecks are those
firms that, if removed, would increase welfare. This mechanism is crucially
different from mine, because in their model links have exogenous capacity
constraints, and removing a firm removes the capacity constraint. By con-
trast, in my approach the amount of trade is the result of the balance of
market powers, and removing a firm leads always to an increase in market
power.

Papers where competition is at the sector level assume that either the
markup is an exogenously given wedge between prices and marginal costs,
such as Baqaee and Farhi (2017b), Huremovic and Vega-Redondo (2016)); or
is determined by oligopolistic competition at the sector level : Grassi (2017),
De Bruyne et al. (2019), Baqaee (2018). My results suggest that care has
to be taken in using this models to analyze welfare: limiting strategic inter-
action at the sector level might make oligopolies less inefficient. Acemoglu
and Tahbaz-Salehi (2020) build a model where prices are formed through a
link-level bargaining process. This means that relative market power, though
affected by the network, will be crucially affected by the choice of bargain-
ing parameters. This means that, e.g., the relative market power across
sectors (hence the relative importance of mergers) is crucially affected by
these exogenous parameters: in my approach, the split of the surplus is in-
stead endogenous and depends only on the technology parameters and the
connections. Example 7 illustrates this point.

Also relevant are models that employ cooperative tools, such as stability
and matching. The literature started by Hatfield et al. (2013) and recent
contributions are Fleiner et al. (2018) and Fleiner et al. (2019). They consider
indivisible goods and firms that are price-takers. Fleiner et al. (2019) studies
the model in presence of frictions, that are exogenously given through the
utility functions, and not the result of the strategic use of market power.

Some papers study the interconnection of final markets of different firms,
without analyzing the input-output dimension. In this category fall Bimpikis
et al. (2019), Pellegrino (2019), Chen and Elliott (2019).

My paper is also connected to an older line of literature, called “general

13



14 Chapter 1. Supply and Demand Function Equilibrium

oligopolistic competition”, studying how to represent a full economy with
interconnected trades as a game (for a review see Bonanno (1990)).7 My
contribution is to achieve a fully strategic model of the production side of
the economy through the use of competition in supply and demand functions.
A recent paper expanding on these themes is Azar and Vives (2018), that
develop a model of firms having market power on output and input markets,
but without the input-output dimension.

1.2 The Model

In this section I first define the model in full generality, that is without
making parametric assumptions on the technology and the consumer utility,
to clarify the generality of the setting. In paragraph 1.2.2 I discuss the
parametric assumptions needed for the subsequent analysis.

1.2.1 General setting

Firms and Production Network There are N economic sectors, each
sector i = 1, . . . , N is populated by a finite number ni of identical firms.
Firms are denoted with greek letters α = 1, . . . , ni. Each sector needs as
inputs the goods produced by a subset N in

i of other sectors, and sells its
outputs to a subset of sectors N out

i . I denote the transformation function
available to all the firms of sector i as Φi. This is a function of the input and
output quantities, and also of a stochastic parameter εi that will have the
role of a technological shock. I denote the joint distribution of ε = (εi)i as
F .

I denote douti the out-degree and dini as the in-degree of sector i. Sectors
are connected if one is a customer of the other. E is the set of existing
connections, E ⊆ N ×N .

Inputs of firms in sector i are qiα,j, j = 1, . . . dini and outputs qk,iα, k =
1, . . . douti . Each of the inputs of sector i has an input-output weight ωij,
and the corresponding vector is denoted ωi = (ωi1, . . . , ωidini ). Firms in each

7The closer in spirit is Nikaido (2015), who uses the market clearing conditions to back
up quantities as functions of prices, but his method is limited to Leontief technology, and
Benassy (1988) which defines an objective demand by means of a fixprice equilibrium,
thus not limiting himself to constant returns technology, but as a drawback having to con-
template a rationing rule, and losing a lot in terms of tractability. These methods are the
analogous in their setting of the residual demand in 1.3.2. Other important contributions
are Dierker and Grodal (1986), Gabszewicz and Vial (1972), and Marschak and Selten
(2012).

14



1.2. The Model 15

sector may produce more than 1 good, but different sectors never produce
the same good.

Sectors and connections define a weighted directed graph G = (N,E)
which is the input output network of this economy. Its adjacency matrix
is Ω = (ωij)i,j∈N . Note that in this model the input-output network is a
sector-level concept.

Consumers Consumers are a continuum and identical, so that there is a
representative consumer.8 The labor market is assumed competitive, that in
particular means firms will have no power over the wage. Hence the wage
plays no role, so we are going to assume that the labor is the numeraire good,
and normalize it to 1 throughout. Similarly to the firms, I am going to assume
that the consumer utility depends on stochastic parameters εc = (εi,c)i, one
for each good consumed: U(c, L, εi,c). Denote the demand for good i derived
by U as Dci(pi, εc).

Notation I write i → j to indicate that a good produced by sector i is
used by sector j in production (or equivalently that (i, j) ∈ E). I write pouti

for the vector of all prices of ouputs of sector i, and pini for the vector of

input prices, and pi =

(
pouti

−pini

)
. uouti denotes a vector of ones of lenght douti ,

while uini a corresponding vector of ones of length dini , and ũi =

(
uouti

−ωi

)
.

Similarly, Ii is the identity matrix of size douti + dini , while I ini and Iouti have
respectively size dini and douti .

Unless specified differently, the inequality B ≥ C when B and C are
matrices denotes the positive semidefinite (Löwner) ordering. That is: B ≥
C if and only if B − C is positive semidefinite.

The Game The competition among firms take the shape of a game in
which firms compete in supply and demand functions. This means that the
players of the game are the firms, and the actions available to each firm α
in sector i are vectors of supply and demand functions (Sk1,iα, . . . , Skdout

i
,iα),

(Diα,j1 , . . . , Diα,j
din
i

), liα,j(·) defined over pairs of output price and realization

of sector level stochastic parameter (pi, εi).
The reason to introduce a stochastic parameter is that this type of mod-

eling has a classical multiplicity problem, as illustrated by Figure 1.1. The

8In particular, it is assumed that each infinitesimal consumer owns identical shares of
all the firms so that we avoid the difficulties uncovered by Dierker and Grodhal: see the
Introduction.
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16 Chapter 1. Supply and Demand Function Equilibrium

solution, both in the oligopoly and in the market microstructure literature,
consists in introducing some source of uncertainty, so that all feasible prices
can be realized in equilibrium for some realizations of the uncertainty, and
this pins down the full demand or supply schedules rather than just a point
on them.

Differently from the Klemperer and Meyer (1989) setting, where a stochas-
tic shock to the exogenous demand function is sufficient to pin down unique
best replies, in a supply chain, or more generally in a network economy, more
prices have to be determined. This means that the uncertainty in demand
alone is not able any more to solve the multiplicity problem. In a network
setting, we must add a source of uncertainty in every market, that is one for
every price to be determined. That will be the role of the productivity shock,
shifting the amount of good that a firm is willing to buy from its suppliers
and simultaneously the quantity that it is willing to sell.

The feasible supply and demand schedules must satisfie:

i) they are nonnegative;

ii) they must satisfy the technology constraint, that is for any possible
(pi, εi):

Φi(Siα(pi, εi), Diα(pi, εi), liα(pi, εi), εi) = 0 (1.1)

iii) the maps (Siα, Diα) must be continuously differentiable and have Jaco-
bian Ji,pouti ,−pini which is everywhere positive semidefinite and has rank

at least di − 1 (the maximum minus 1);9 note that the differentiation is
done with respect to the variables (pouti ,−pini );

iv) they have a bounded support.

These conditions allow us to define the realized prices p∗(ε) through the
market clearing equations. The function p∗ is the one implicitly defined by
the market clearing equations:∑

β

Djβ,k(p
out
j , pinj , εj) =

∑
α

Skα(poutk , pink , εk) if k → j

Dck(pck, εck) =
∑
β

Skβ(poutk , pink , εk) if k → c (1.2)

9The Jacobian might not be positive definite because the technology constraint implies,
by the chain rule: ∇Φi,SJSi +∇Φi,DJDi +∇Φi,lJli = 0. Depending on how labor enters
the technology this might become a linear constraint on the rows of the Jacobian: it is
indeed what happens under the parameterization introduced in 1.2.2, as will be clear in
the following.
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1.2. The Model 17

price of exchange p

quantity exchanged

Dr

p∗

Best replies of seller

(a) If optimal price for seller is p, all red lines represents best replies.

price of exchange p

quantity exchanged

Dr

p∗p∗(ε1)

Dr + ε1

NOT a best reply anymore

(b) Since the parameter ε1 is stochastic, the seller will adjust its supply function
in order to pin down the optimal price for any realization of ε1, thereby destroying
the multiplicity.

Figure 1.1: Multiplicity problem and solution in Supply Function Equilib-
rium.
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18 Chapter 1. Supply and Demand Function Equilibrium

To show that the regularity conditions indeed imply that the market clearing
system can be solved, the crucial step is to show that they translate to
regularity conditions on the Jacobian of the function whose zeros define the
system above, and then a global form of the implicit function theorem (Gale
and Nikaido (1965)) can be applied. This is done in the next Proposition.

Proposition 1. The market clearing conditions define a function:

p∗ : ×iEi → R|E|×|E|+

Note that p∗ is also differentiable, but since all the equilibrium analysis
and hence the optimizations, will be performed in the linear case, we do not
need this property: the goal of this section is simply to define the game.

Now that we built the prices implied by the players’s actions, we can
define the payoffs. These are the expected profits calculated in the realized
prices p∗:

πiα(Siα, Diα, liα) = E

(∑
k

p∗kiSk,iα −
∑
j

p∗ijDiα,j − liα

)
(1.3)

where to avoid clutter I omitted to write each functional variable.
Hence, formally, the game played by firms is: G = (I, (Aiα)(i,α)∈I , (πiα)(i,α)∈I , F ),

where I = {(i, α) | i = 1, 2, α = 1, . . . ni} denotes the set of firms, and Aiα is
the set of profiles of supply and demand functions that satisfie the assump-
tions above.

Example 1. Standard Supply Function Equilibrium
The model by Klemperer and Meyer (1989) can be seen as a special case of

this setting, in which there is only one sector and the network G is empty, as
illustrated in Figure 1.2. Their setting is a “partial” equilibrium one, in which
the consumers do not supply labor to firms but appear only through a demand
function D(·), and firms have a cost function for production C(·), that does
not explicitly represent payments to anyone. The strategic environment is
precisely the same though: if the setting of this section the transformation
function is Φα(qα, `α) = C−1(qα)− `α, and the consumer utility gives rise to
demand D, the game G played by firms is precisely the same as in Klemperer
and Meyer (1989).

The welfare of the consumer is U(C,L), where C(p∗, ε) = (Cci,α(pi, εi))i,α
is the vector of quantities of goods consumed in equilibrium, and L =∑

i,α li,α(p∗i , εi) is the total labor used in the economy10. The consumers, be-
ing atomic, take all prices as given and thus are a non-strategic component

10It is not necessary to impose a “labor market clearing” condition because it is re-
dundant with the budget constraint of the consumer, consistently with the decision to
normalize the wage to 1.
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1.2. The Model 19

1

C

Figure 1.2: The (degenerate) production network of Example 1: there is only
1 Sector whose firm sell to the consumer.

of the model, that enter in the game only through their aggregate demand
function.

Supply and Demand Function Equilibrium To compute the predic-
tions of the model I just need to specify the role of the stochastic parameters
ε. I will use it as a selection device, as made formal by the next definition.

Definition 1.2.1. A Supply and Demand Function Equilibrium is a profile
of prices and quantities of traded goods (pij, qij) for all (ij) ∈ E that realize

in a Nash Equilibrium of the game G for F
D−→ 0:

pij = p∗ij(0)

qij =
∑
α

D∗iα,j(p
∗
ij, 0) ∀(i, j) ∈ E (1.4)

So in practice I am using the stochastic variation to “identify” the equi-
librium schedules, but when computing the equilibrium predictions I am
considering the case in which the shock vanishes.

1.2.2 Parametric Assumptions

To obtain a tractable solution, I adopt parametric assumptions on the tech-
nology. Since firms may produce more than 1 good, I have to express the tech-
nology via a transformation function. Specifically, assume that the produc-
tion possibility set of each firm α in sector i be the set of (qk,iα)k, (qiα,j)j, (liα,kj)k,j
such that there exists a subdivision (ziα,kj) of inputs satisfying qiαj =

∑
k ziα,kj,

and:

qk,iα =
∑
j

ωij min{`iα,kj, ziα,kj} k = 1, . . . , douti (1.5)

The idea of this functional form is that intermediate inputs qiα,j have to
be first allocated to the production of one specific output good: ziα,kj is the
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20 Chapter 1. Supply and Demand Function Equilibrium

amount of input j allocated to the production of the output to be sold to
sector k. Moreover, each input needs to be complemented with a specific
amount of labor `iα,kj. `iα,kj represents a measure of “effective labor hours”,
and is equal to:

`iα,kj = −εi +
√
ε2
i + 2liα,kj

where liα,kj is the amount labor hired by the firm to deal with input j in the
production of output to be sold to k. εi is a sector-level labor productivity
shock. It changes the marginal product of labor: a large εi means that labor
is not very productive.

This functional form11 turns out to be particularly convenient because
at the optimum we must have −εi +

√
ε2
i + 2liα,kj = ziα,kj, so that liα,kj =

εiziα,kj + 1
2
z2
iα,kj, and the profit function becomes linear-quadratic:

πiα =
∑
k

pkiqk,iα −
∑
j

pijqiα,j − εi
∑

ziα,kj −
1

2

∑
z2
iα,kj (1.6)

where εi
∑
ziα,kj + 1

2

∑
z2
iα,kj is the cost paid to hire labor. This makes

it apparent that εi acts reducing the productivity of labor (effective labor
hours), and so increasing the amount of labor necessary to achieve the same
level of production. This will be crucial in achieving a linear best response.12

If a sector uses no intermediate inputs but only labor, the technology is
qki = lki = −εi+

√
ε2
i + 2liα,k, so that the profit becomes: πiα =

∑
k pkiqk,iα−

εi
∑
qk,iα − 1

2

∑
q2
k,iα.

The analogous assumptions on the utility function of the consumer are
that it be quadratic in consumption and (quasi-)linear in disutility of labor
L:

U((ci)i, L) =
∑
i

Ai,c + εi,c
Bc,i

ci −
1

2

∑
i

1

Bc,i

c2
i − L

This means that the consumer has demands of the form: Dci = max
{
Ai −Bc,i

pci
w
, 0
}

.

11 A more classical choice, especially in the macro literature, is the one of a production
function belonging to the Constant Elasticity of Substitution class. This does not yield
tractable expressions here. Notice, however, that the functional form in 1.5 can be seen
as the limit of a nested CES:

∑
j

ωij min{`iα,kj , ziα,kj} = lim
σ→∞,
ρ→0

∑
j

ωij

((
`iα,kj(εi)

ρ
(ρ−1) + z

ρ
ρ−1

iα,kj

) ρ−1
ρ

) σ
σ−1


σ−1
σ

12It is the analogous in our setting of the assumption of linear/quadratic cost func-
tion, common in standard supply function models (Klemperer and Meyer (1989), Delbono
and Lambertini (2018)), and the assumption of gaussian random variables and constant
absolute risk aversion in the finance setting (Malamud and Rostek (2017), Kyle (1989)).
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1.2. The Model 21

Example 2 (Standard Supply and Demand Function equilibrium –
parametric). Consider the setting of 1, that is the one sector model. The
parametric assumptions in this setting reduce to assuming that the firms
have a quadratic cost. Indeed by the same reasoning as above the profit
function becomes:

πi = pq − εiq −
1

2
q2 (1.7)

Graphical intuitions Before delving into the formal details, I will give a
graphical illustration of the main mechanisms of the model.

price of exchange p

quantity

Dr

MC
Supply of firm α

q

Markup

price of exchange p

quantity

Dr

MC

Supply of firm α

Markup if
no reaction

Markup
increase

Figure 1.3: Strategic complementarity among demand and supply.

Figure 1.3 illustrates the mechanics behind the strategic complementarity
mechanism. In the left panel, it is shown that the supply function (red line)
chosen by a firm as a best reply to the residual demand Dr (the blue line)
has to have larger slope than the marginal cost curve, which is the supply
function chosen by a firm under perfect competition. The gap between the
curves is the (absolute) markup charged by the firm. When the residual
supply shifts (right panel), firm α is facing a smaller elasticity, so it wants
to increase the markup. To do so it must choose a supply function that is
steeper.
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22 Chapter 1. Supply and Demand Function Equilibrium

1.3 Solution and Existence

In the following I will focus on S&D equilibria in symmetric linear schedules.

Definition 1.3.1. A Supply and Demand Function Equilibrium in sym-
metric linear schedules is a profile of functions σ = ((Siα)α, (Diα)α, (liα)α)i
defined on open sets (Pi,α)i,α × (Ei,α)i,α such that:

i) σ is a Nash Equilibrium of the game G;

ii) (Symmetry) in each sector i firms play the same schedules: Diα = Di,
Siα = Si, liα = li;

iii) a) (Inactive links) for each i there exists a subset of neighbors Ni,0 ⊆ Ni
such that the relative demand or supply function is identically 0; these
are called inactive links ; call the number of active links dai ≤ di, and
the prices relative to active links pai = (pout,ai ,−pin,ai );

b) (Linearity) for all i, for all active links e ∈ Ni/N0,i there exist a vector
Bi,ε ∈ Rdai and a matrix Bi ∈ Rdai×dai and for all (pi, εi) ∈ Ei × Pi:(

Si
Di

)
= Bip

a
i +Bi,εεi (1.8)

and both Si > 0 and Di > 0 hold.

iv) (feasibility) If p∗(0) is the solution of 1.2 for ε = 0, then p∗i (0) ∈ Pi for
any i.

Note that i implies that Bi is positive definite for all i, because it is the
Jacobian of the schedule with respect to (pouti ,−pini ).

This game is in principle very complex to solve, being defined on an
infinite-dimensional space. In practice however, things are simpler, because
a standard feature of competition in supply schedules, both in the finance and
IO flavors, is that the best reply problem can be transformed from an ex-ante
optimization over supply functions in an ex-post optimization over input and
output prices, as functions of the realizations of the parameter εi. In this
way the best reply computation is reduced to an optimization over prices
as in a monopoly problem. The crucial complication that the input-output
dimension adds to e.g. Malamud and Rostek (2017) is the way the residual
demand is computed. In an oligopoly without input-output dimension, as in
Example 1, the residual demand is the portion of the final demand that is
not met by competitors. In our context this remains true, but in computing
it, players have to take into account how a variation in quantity supplied
affects the balance of trades, hence the prices, in the rest of the network. Let
us first define the residual demand in this setting.
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1.3. Solution and Existence 23

1

2

C

Figure 1.4: A line production network.

Definition 1.3.2 (Residual demand). Given a profile of linear symmetric
schedules (((Siα)α)i, (Diα)α)i, define the residual demand, and the residual
supply of sector i as the amount of demand and supply remaining once all
market clearing conditions but those relative to sector i have been solved.
Formally:

Dr
ik(p

r,i
k , pi, εk, εi) = nkDki(p

r,i
k , εk)︸ ︷︷ ︸

demand from sector k

− (ni − 1)Ski(p
out
i , pini , εi)︸ ︷︷ ︸

supply by competitors

Srij(p
r,i
j , pi, εj, εi) = njSij(p

r,i
j , εj)︸ ︷︷ ︸

supply from sector j

− (ni − 1)Di(pi, εi)︸ ︷︷ ︸
demand by competitors

∀j, k ∈ Ni

where pr,i is the residual price function of sector i, and is:

i) just the price for all inputs and outputs of i: pr,iij = pij, p
r,i
ki = pki;

ii) for all other prices, it is the function of pi and ε defined by the market
clearing conditions 1.2, excluding those relative to the input and output
prices of i.

Example 3. (Line network)
The easiest setting in which to understand the mechanics of the residual

demand is a line network, as illustrated in Figure 1.4.
What is the residual demand (and supply) in this setting? to understand

this, consider a firm in sector 1 that needs to compute its best reply to the
schedules chosen by all others. (Details can be found in the Proof of Theorem
1). The demand curve faced by a firm in sector 1 is:

n2D2(p∗2, p1, ε2)︸ ︷︷ ︸
Direct demand from sector 2

− (n1 − 1)S1(p1, ε1)︸ ︷︷ ︸
Supply of competitors
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24 Chapter 1. Supply and Demand Function Equilibrium

for different choices of a supply function S1α, different prices p1 would realize,
as functions of the realizations of ε2. For the best-responding firm, it is
equivalent then to simply choose the price p1 it would prefer for any given
ε1, and then the function S1α can be backed up from these choices. But
naturally also p∗2 is determined in equilibrium, and this has to be taken into
account when optimizing. In particular, the market clearing conditions for
sector 2:

n2S2α(p2, p1, ε2) = D(p2) + εc

define implicitly p2 as a function of p1 and the shocks. This allows to inter-
nalize in the price setting problem of firm 1 the impact that the variation
in p1 is going to have on p2, for given supply and demand schedules chosen
by other players. The same reasoning holds for the supply function. If we
assume that all other players are using linear supply and demand schedules
S1(p1, ε1) = B1(p1−ε1), D2(p2, p1, ε2) = B2(p2−p1−ε2) we get the following
expressions for the residual demands:

Dr
1 =

n2B2

Bc + n2B2

(Ac + εc −Bcp1)− (n1 − 1)B1(p1 − ε1)

Sr2 =
n2B2

Bc + n2B2

(Ac + εc −Bcp1)− (n2 − 1)B2(p2 − p1 − ε2)

Dr
2 =Ac + εc −Bcp2 − (n2 − 1)B2(p2 − p1 − ε2)

(1.9)

(1.10)

(1.11)

which clarifies how, even if each firms acts ”locally” choosing its own input
and output prices, actually the problem depends from the parameters of the
whole economy.

Figure 1.5 illustrates how the strategic complementarity extends through
the residual demand when firms are indirectly connected through the sup-
ply chain. Consider the production network depicted in Figure 1.4. The
slope (and elasticity) of demand that firms in sector 1 face depends on how
a variation in price p1 implies an adjustment in price p0. A variation in price
p1 implies a shift in the supply curve of firms in sector 0, as the left panel
of Figure 1.5 shows. This implies an upward adjustment of the equilibrium
price. The resulting variation in demanded quantity depends on the demand
faced by the firms in sector 0, the downstream market : the steeper the slope
of demand the larger the price adjustment in the downstream market, the
smaller the variation in quantity demanded. Hence a large slope of the down-
stream demand propagates upstream, resulting in a larger slope of demand
faced by sector 1. The right panel illustrates that taking into account price
adjustment the demand slope perceived is always smaller: this is because all
variation is absorbed by quantity, and 0 by the price.
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Figure 1.5: Strategic complementarity across the supply chain.

1.3.1 The input-output matrix

Residual demand and supply are the curves against which each firm will
be optimizing when choosing its preferred input and output prices. It is
natural therefore that they embed the information about relative market
power. The key way through which the structure of the economy (i.e. the
network) impacts these functions is via the dependence of the prices p∗ on
the input and output prices of i. To understand this, consider the market
clearing equations.

The market clearing equations 1.2 define a system:

Sil = Dil ∀i, l ∈ N, i→ l

Si,c = Di,c ∀i ∈ N, i→ c (1.12)

If all other firms are using symmetric linear schedules with coefficients (Bi)i,
then this is a linear system, because all equations are linear in prices. We
care about the solution of the system, so the ordering of the equations does
not really matter. Let us rewrite the linear supply and demand schedules in
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26 Chapter 1. Supply and Demand Function Equilibrium

a block form as:(
Si
Di

)
= Bi

(
pouti

−pini

)
+ εiBi,ε =

(
BSouti BSini
BDout

i BDin
i

)(
pouti

−pini

)
+ εiBi,ε

(In case the sector employs only labor for production the matrices BD are
empty).

So we can rewrite the system 1.12 as:

nlBS
out
l,i· p

out
l − nlBDin

l,i·p
in
l − niBDout

i,l· p
out
i + niBD

in
i,l·p

in
i = 0 ∀i, l ∈ N, i→ l

niBS
out
i,c· p

out
i − niBDin

i,c·p
in
i +Bi,cpi,c = Ai,c ∀i ∈ N, i→ c

BSoutl,i· p
out
i −BDin

l,i·p
in
i ≥ 0 ∀i ∈ N, i→ l, p ≥ 0

(1.13)
To clarify the structure note that the market clearing equation for link

l→ i involves all prices of trades in which sectors l and i are involved.

Definition 1.3.3 (Market clearing coefficient matrix). The Market clearing
coefficient matrix corresponding to a profile of symmetric linear supply and
demand schedules (Si, Di)i is the matrix M of dimension |L| × |L|, where L
is the set of active links according to the profile (Si, Di)i, such that for all
active links the market clearing system 1.12 in matrix form is:

Mpa = A+Mεε (1.14)

(1.15)

The vector of constants A is zero but for the entries corresponding to links
to the consumer (that have value Aci = Aci).

This matrix M is the fundamental source of network information in this
setting: it is a matrix indexed on the set of links of the network (which
correspond to prices and equations in 1.2), that has a zero whenever two
links do not share a node, and p is a vector that stacks all the prices. To
have an example, consider the graph in Figure 1.6 case in which sector 0 has
two suppliers: 1 and 2, and 1 itself supplies 2. If the profile of coefficients is
(Bi)i, the matrix M (when rows and columns are appropriately ordered) is:

p10 p20 p12 p0c


(1→ 0) B1,11 +B0,22 B0,23 B1,12 −B0,12

(2→ 0) B0,32 B0,33 +B2,11 −B2,12 −B0,13

(1→ 2) B1,21 −B2,21 B1,22 +B2,22 0
(0→ c) −B0,21 −B0,31 0 Bc +B0,11
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C0
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2

0C

20

10

21

Figure 1.6: (left) A simple production network: c represents the consumer
demand, while the other numbers index the sectors. (Right) The line graph
of the network nearby.

We can see that the only zero is in correspondence of the pair of links (0, c)
and (1, 2) which indeed do not share a node.

In network-theoretic language this is the (weighted and signed) adjacency
matrix of the line graph of the input-output network G. That is the adjacency
matrix of the network that has as nodes the link of G and such that two nodes
share a link if and only if the corresponding links in G have a common sector.
Note that this graph is undirected, which has the important implication that
if all the coefficient matrices Bi are symmetric then also the matrix M is.

To obtain the residual demand, the linear system 1.12 can be partially
solved to yield p∗−i – the vector of all the prices of transactions in which sector
i is not directly involved – as a function of pi:

pr,i−i = (M−i)
−1(−MCipi +A−i +Mεε)

where A−i refers to all the rows of matrix A that do not involve links entering
or exiting from node i, and MCi is the i-th column of M . This can be
substituted in the supply and demand functions of suppliers and customers
of i to yield the expression in the next proposition.

Proposition 2. If all firms in all sectors j 6= i are using symmetric linear
supply and demand schedules with symmetric positive semidefinite coefficients
(Bj)j, generically in the values of (Bj)j there exist a neighborhood of 0 Ei and
a set Pi ⊂ Rdai such that the residual supply and demand schedule for active
links of sector i is linear and can be written as:(

Dr
i

Sri

)
= −Ãi − ((ni − 1)Bi + Λ−1

i )pai − Λε,iε
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28 Chapter 1. Supply and Demand Function Equilibrium

Moreover, Λi is symmetric positive definite and equal to the matrix [M−1
i ]i,

where:

• Mi is the matrix obtained by M by setting Bi to 0;

• if A is a matrix indexed by edges, [A]i is the submatrix of A relative to
all the links that are either entering or exiting i.

The coefficient Λi can be thought as a (sector level) price impact13: the
slope coefficients of the (inverse) supply and demand schedules, describing
what effect on prices firms in sector i can have. It is a measure of market
power: the larger the price impact, the larger the rents firms in that sector
can extract from the market.

Now we can state the theorem. Define the perfect competition matrix for
sector i as

Ci =

(
ω′iωiI

out uouti ω′i
ωi(uout)

′
i douti I in

)
Appendix 1.A.3 shows that this is the matrix of coefficients of demands

and supplies chosen by a firm that takes prices as given.

Theorem 1. 1. If there are at least 2 firms per sector, generically in the
entries of Ω a non-trivial linear and symmetric Supply and Demand
Function equilibrium exists;

2. The equilibrium coefficients (Bi)i can be written as

Bi =

(
ũ′iB̃iũi ũ′iB̃i

B̃iũi B̃i

)
for a symmetric positive definite B̃i (hence they are positive semidefinite).
The equations that characterize them are:

B̃i =
(

[C−1
i ]−1 + ((ni − 1)B̃i + Λi)

)−1

(1.16)

where Λi is the constrained price impact:

Λi = [Λ−1
i ]−1 −

1

ũ′iΛ
−1
i ũi

[Λ−1
i ũiũ

′
iΛ
−1
i ]−1

and the equilibrium prices are all strictly positive: p > 0.

13Using a financial terminology. It is also the reason for the notation: from Kyle (1989)
it is common to denote Λ the price impact of traders.
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1.3. Solution and Existence 29

The equilibrium coefficients (Bi)i can be found by iteration of the best reply
map, starting:

• “from above”: the perfect competition matrix Ci;

• “from below”: any sufficiently small (in 2-norm) initial guess.

The trivial equilibrium in which every supply and demand function are
constantly 0, and so no unilateral deviation yields any profit because there
would not be trade anyway, is always present14. The condition that there
are at least two firms in each sector is sufficient but not necessary, indeed in
particular cases without the input output dimension it is sufficient that at
least three firms participate in any exchange (Malamud and Rostek (2017)).

Part 3) will be important for the numerical solution of the model, as
discussed in Section 1.7.

The constrained price impact that appears in equation 1.16 is the matrix
that represents the projection on the space of vectors that satisfy the tech-
nology constraint

∑
k qki =

∑
j ωijqij. It is thus the necessary adaptation of

the concept to an input-output setting: the technology constraint restricts
the degrees of freedom that firms have in impacting the market price.

The expression for the best reply highlights the role of the price impact.
If Λ = 0 then Bi = Ci and the outcome is perfect competition. Moreover,
we can see that also if ni → ∞ the model predicts the perfect competition
outcome, as it should.

The proof proceeds in two steps:

a) I prove that if a profile of matrices (B∗i )i satisfies equation 1.16 on a
subnetwork of the original one, and is such that for ε = 0 all implied
trades are positive, there exist domains (E∗i ,P∗i ) for the linear supply
and demand schedules (S∗i , D

∗
i ) with coefficients B∗i such that they are

a Nash Equilibrium;

b) I prove that such a profile of matrices exists.

The result can be only stated for generic values of the parameters, and
for neighborhoods of ε = 0 because the possibility of corner solutions means
that the residual demand in general will only be piecewise linear, and the

14This is a feature of the particular technology used, in which labor is a perfect com-
plement to intermediate inputs. In principle if this were not the case a firm producing
some final good might find profitable to deviate from the no-trade equilibrium using some
labor to sell to the consumers. This would break our assumption on the technology and
the linearity of the equilibrium though.
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30 Chapter 1. Supply and Demand Function Equilibrium

best reply to piecewise linear strategies in this setting might produce a dis-
continuous schedule (see Anderson and Hu (2008) for an example). To avoid
this technical problems, we consider locally defined schedules. In principle it
might be the case that precisely at ε = 0 and p = p∗(0) some best reply has
a change in slope: but this happens for non generic values of the parameters.

Step a) follows the same principles of Klemperer and Meyer (1989) and
Kyle (1989): the infinite dimensional optimization problem over supply and
demand functions can be reduced to a finite dimensional one of choosing
prices taking the stochastic parameters ε as given. The main difference is
that we have the input-output dimension, embodied by the residual demand.

Step b) takes advantage of the fact that the best reply equation for co-
efficient matrices 1.16 is increasing in the coefficients of others with respect
to the positive semidefinite ordering, hence a converging sequence can be
built. This allows to prove also Part 3). Care must be taken because the
positive semidefinite ordering does not have the lattice property, and so the
techniques of supermodular games cannot be applied directly. Similar tech-
niques are used in Malamud and Rostek (2017).

All proofs are in the Appendix.

Example 4. Networks with no corner solutions
If the network is a tree such that each sector has just one customer sector,

as in Figure 1.7, then it is easy to prove that in equilibrium there is trade on
all links. Indeed, by Theorem 1, equilibrium prices are all strictly positive.
Then, if i has 0 suppliers, then in equilibrium produces qi = Bipi > 0. If
sector j has only roots as suppliers, since they all produce strictly positive
quantities it follows that qj =

∑
ωjkqk > 0. Iterating the reasoning we obtain

that on all links there is positive trade.

To complete the section, I state two corollaries. The first concerns a
partial uniqueness result. Consider sector i, and consider given a profile of
coefficients of firms in other sectors, that is, consider the sector level price
impact Λi as given.

Corollary 1.3.1. If we consider the sector-level game played just by firms
in sector i, this has a unique linear symmetric equilibrium.

The next corollary shows that in an interior equilibrium we do not need
to worry about exit of firms: profits are never negative.

Corollary 1.3.2. In equilibrium, if quantities are nonnegative, profits can
be expressed as:

πi =
(
(pouti )∗,−(pini )∗

)(
Bi −

1

2
V ′i CiVi

)(
(pouti )∗

−(pini )∗

)
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where Vi = C̃iBi + 1
ki
ũiũ
′
iΛ
−1
i (Ii − C̃iBi)

In particular since Bi − 1
2
V ′i CiVi is positive semidefinite, so profits are

always nonnegative in equilibrium.

1.3.2 The role of the network

This section describes how the network of input-output relationships affect
the equilibrium of the model. The matrix of coefficients of the market clearing
system, M , contains the fundamental network information in this setting.
The next Proposition shows that the matrix M has a familiar Leontief form.

Proposition 3. In equilibrium, the matrix M is positive definite, and has
positive diagonal and nonpositive off-diagonal elements. In particular, we
can write:

M = D − L

where D is a positive diagonal matrix, and L a nonnegative matrix with 0
diagonal elements.

Proposition 3 together with the definition of M imply that L is an ad-
jacency matrix of the line graph L(G) of G, in the sense that it has a
nonzero entry only if the links corresponding to row and column share a
node. The weights are endogenous, and depend on the equilibrium profile of
demand/supply coefficients.

Inverting the matrix M and collecting the diagonal D on both sides we
get:

M−1 = D−1/2(I −D1/2LD1/2)−1D−1/2

which shows that M−1 is, modulo a normalization, has the familiar form of
a Leontief inverse matrix. It is standard that entries of matrices of this form
constitute a measure of the (weighted) number of undirected paths connecting
the nodes in the network.

Now with the help of Proposition 2, we can understand how the price
impact relates to the network. Indeed, according to Proposition 2, to obtain
the price impact of say node 2 first we have to eliminate the links of the line
graph connecting input and output links of 2. This is equivalent to building
the line graph of the reduced network G−2, from which we removed the node
2. Since this is a tree now we have two separate subnetworks. These are
illustrated in Figure 1.7 (right). Then, by a reasoning similar to Proposition
3 above, the entries of the matrix Λ2 count the number of weighted paths
between input and outputs of 2. But since in the reduced network input and
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Figure 1.7: Left: A production network shaped as a regular tree. c represents
the consumer demand, while the other numbers index the sectors. Right: the
reduced line graph with respect to sector 2.

output links are disconnected, the matrix is diagonal, and can be partitioned
into:

Λi =

(
D̃−1
i 0

0 S̃−1
i

)

where D̃−1
i is the (weighted) number of self loops of the output link in L(G),

and S̃−1
i is the matrix with on the diagonal the number of self loops of the

input links in L(G).

Figure 1.8 illustrates the network intuition between the decomposition of
Λ. It is very similar to the line network: the more upstream the sector is,
the larger the portion of the network in which the ”self-loops” have to be
calculated. Hence the more elastic the demand it is facing. This is because a
larger portion of the network is involved in the determination of the demand,
and each price variation will distribute on a larger fraction of firms. The
intuition is precisely the reverse for the supply coefficients, represented in
Figure 1.9

Similar reasonings are at work for other networks, with the difference that
in general inputs and outputs are not independent in the reduced network.
Consider for example the network in Figure 1.6. What is the price impact
of sector 2? In Figure 1.10 is represented the reduced network. Since now
input and output links of sector 2 are connected, this means that Λ2 is not
diagonal anymore.
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Figure 1.8: The relevant subnetworks of the line graph L(G) for the calcula-
tion of the price impact of sector 2. Left: output, right: inputs.
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Figure 1.9: The relevant subnetworks for the calculation of the price impact
for sector 0. Left: output, right: inputs.

1.4 Benchmarks

Before discussing the results on mergers and local strategic interactions, in
this section I am going to describe how some standard models fail to incor-
porate either Requirement 1 (Symmetric Market Power), or Requirement 2
(Global Strategic Considerations).

1.4.1 Asymmetric market power

The most-clear cut effect is in a line network as depicted in Figure 1.4. Below
I will consider more general networks.

Assume that goods in each sector are perfect substitutes, and at each
stage of the supply chain firms compete la Cournot, taking as given the
input price they face. In our setting this means that firms in sectors 1 and
2 play first, simultaneously, committing to supply a certain quantity. Then
firms in sector 0 do the same, taking the price of good 1 and 2 as given. The
model can then be solved by backward induction15.

15This is a version of the simplest setting e.g. in Salinger (1988). A similar model, in
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1c

21

31

23

Figure 1.10: The subnetwork of the line graph in Figure 1.6 for the calculation
of the price impact.

Call p0 the inverse demand of the consumer, and assume for simplicity
it is concave (this can be sometimes relaxed, as shown below). Assume the
technology is linear: f(q) = Aq. Capital letters mean sector level quantities,
lower case letters are used for firm level quantities.

The markups of firms in sector 0 is equal to the elasticity of the inverse
demand, in absolute value. Throughout, I denote elasticities by η:

µ0 = −ηp0

What is the markup of upstream sectors? The first order conditions of firms
in sector 0 imply that the inverse demand faced by firms in sector 1 is:

p1 = (p′0 (AQ1)AQ1 + p0 (AQ1))A

The markup of firms in sector 1 are then:

µ1 =− ηp1 = −
(

p′0AQ

p′0AQ+ p0

(ηp′0 + 1) +
p0

p′0AQ+ p0

ηp0

)
=
−p′0AQ

p′0AQ+ p0︸ ︷︷ ︸
>0

( ηp′0︸︷︷︸
>0

+1) +
p0

p′0AQ+ p0

µ0

>
p0

p′0AQ+ p0

µ0 > µ0

which puts in evidence that the optimization introduces a force that tends
to increase the markup, through the pass-through, represented by the term

p0
p′0f+p0

.

The reasoning can be similarly extended to a chain of any lenght.

prices, is Ordover et al. (1990)
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C

0

21

Figure 1.11: A simple supply chain. Firms in Sectors 1 and 2 sell their output
to sector 0 firms, which in turn sell to consumers, denoted by C.

More importantly, if there is no compelling physical reason for assuming
that firms in sector 1 have precedence over sector 0, an equally reasonable
option would be to assume that firms commit to input quantities (prices)
rather than their output equivalents. An analogous model can then easily
be constructed assuming firms in sector 0 decide first, then firms in sector 1.
To be more precise, we can compare two different competition structures:

Competition on outputs At t = 0 firms in sectors 1 and 2 decide their
output quantity; at t = 1 firms in sector 0 do the same. Firms in sector
0 face the inverse demand function p0(Q0) and all firms take their input
prices as given.

Competition on inputs At t = 0 firms in sector 2 decide their input quan-
tity; at t = 1 firms in sector 1 and 2 do the same. Firms in sectors 1
and 2 face the inverse labor supply function w(L) and all firms take
their output prices as given.

What happens if the network is more general? Consider the case in which
0 has 2 suppliers, as in Figure 1.11. Its production function would then be
f(q1, q2). Similarly as above we can derive the inverse demand faced by 1:

p1 = (p0f1 + p′0)f1
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36 Chapter 1. Supply and Demand Function Equilibrium

The markup of firms in sector 1 are then:

µ1 =−
(
ηp1 = ηf1 +

p′0f

p′0f + p0

(ηp′0ηf,1 + ηf,1) +
p0

p′0f + p0

ηp0ηf,1

)
=−ηf1︸︷︷︸

>0

+
−p′0f

p′0f + p0︸ ︷︷ ︸
>0

( ηp′0︸︷︷︸
>0

+1)ηf,1 +
p0

p′0f + p0

µ0ηf,1

>
p0

p′0f + p0

µ0ηf,1 > µ0ηf,1

which puts in evidence that the optimization introduces a force that tends
to increase the markup, through the pass-through, represented by the terms
ηf1 and p0

p′0f+p0
. The opposing force is the substitution effect, which is driven

by ηf,1, the output elasticity of good 1. If this is sufficiently close to 1 with
respect to the other terms, we have indeed µ1 > µ0. We can sum up the
result in a proposition.

We can sum these results up in a proposition.

Proposition 4. Consider the supply chain illustrated in Figure 11. Assume
the consumer has a concave and differentiable demand function, firms have
an identical, concave and differentiable constant returns to scale production
function f , and there is the same number of firms in each sector. More-
over, assume that at each step of the backward induction the inverse demand
remains concave.

Then:

1. if the network is a line: under competition in outputs firms in sector
1 have larger markup; under competition in inputs firms in sector 2
have larger markup.

2. if the output elasticity of 0 with respect to input i is close enough to 1,
then firms in sector i charge a larger markup than firms in sector 0.

The conditions are for example satisfied if the technology and utility are
quadratic as those used in the main model.

Example 5. (Markups – Linear-quadratic)
Assume the firms use the technology introduced in Section 1.2. Anal-

ogously, assume that the consumer demand be Q0 = A − Bp0. Then the
markups are:

µ0 =
1

B

Q0

p0n0

µ1 =
1

B1

Q1

p1n1
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where

B1 =

(
1

n0

+
ω2

01

B

(
1 +

1

n0

))−1

is the perceived slope of demand for upstream firms. This represents the
pass-through effect: for ω01 = 1 it is always smaller than B1, but for ω01

small (corresponding to a situation where 1 is less important in production),
the effect can even be reversed. this happens if:

B1 < B0 if and only if B < n0(1− ω2
01)− ω2

01

Now if ω01 = ω02, that is q0 = 1
2
(q1 + q2). Under this assumption, if

n0 = n1 = n2, in equilibrium, Q0 = Q1 = Q2, and p0 > p1 = p2. As a
consequence:

B1 < B0 ⇒
1

Bp0

>
1

B1p1

⇔ Q0

Bp0n0

>
Q1

B1p1n1

⇒ µ1 > µ0

To make things even more concrete, consider a policy maker that is in
charge of evaluating merger proposals. She is constrained in her resources,
so she wants to know which are the most important mergers she should focus
on. This is a concrete issue: for example in USA it is compulsory to report
to the Federal Trade Commission only mergers such that the assets of the
firms involved lie above some pre-specified thresholds16. On which sectors of
the economy should she focus? The next example shows that the choice of
competition in inputs vs outputs can radically change things.

Example 6. (Which is the key sector? – Cobb-Douglas)

Assume the utility of the consumer is
Q1−α

0

1−α −L, with α ∈ (0, 1)17, and the
technology available in sector 0 is Cobb-Douglas: f(q1, q2) = qω1

1 qω2
2 , ω1+ω2 ≤

1. This technology is a classical choice for production network models, it is
used (and generalized) among the others by Grassi (2017), Baqaee and Farhi
(2017a).

In this case the output elasticity of input 1 is ω1. The calculation above
applies, but notice that here the inverse demand p0 = Q−α0 is not concave

16Thresholds that recently changed: a change that e.g. Wollmann (2019) argues had a
large effect on mergers. This is evidence that the costs are substantial, enough to forgo
some regulation to reduce them.

17The utility would be well defined and concave for α ∈ R+, but for α > 1 the relative
demand function is inelastic, so cannot be used to model oligopoly because it would yield
an infinite price.
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38 Chapter 1. Supply and Demand Function Equilibrium

but convex. The markups are:

µ0 =
n0

n0 − α
µ1 =

n1

n1 − α+1
2

(1.17)

(1.18)

So, since α < α+1
2

, if n0 = n2 we get µ1 > µ0.
The (log) welfare impact of mergers is a weighted sum of the log variations

in markups:

lnC = − ln p0 = −
∑
j

Lij lnµj

where L is the Leontief inverse matrix of this economy.
We can see it analytically for “infinitesimal” mergers, that is small vari-

ations in the number nj treated as a continuum parameter18:

∂ lnC

∂nj
= −Lij

1

µj

∂ lnµj
∂nj

and we see that if α is small enough then mergers in sector 1 are more
welfare-damaging than mergers in sector 0. This is because the strategic
effect is larger the smaller the α. If it is small enough, it dominates the
substitution effect caused by the fact that sector 2 produces a substitute
good and its presence diminish the possibility of firms in sector 1 to enjoy
rents.

Figure 1.12 illustrates numerically that this is true also for non-marginal
mergers.

The competition in inputs does not yield itself to easy analytical char-
acterizations. Figure 1.13 shows numerically that for small α the sector
importance is reversed.

The next example explore a different modeling technique: a bargaining
model where the surplus is split according to a parameter δ, and shows that
the choice of δ crucially affects relative market power.

Example 7. (Bargaining)
In this example I present a simplified variant of the model in Acemoglu

and Tahbaz-Salehi (2020), that models the split of surplus between firms in

18Farrell and Shapiro (1990a) interpret infinitesimal mergers as changes in asset struc-
ture in an oligopoly. Another interpretation can be that of a small change of concentration,
in a context where nj is a reduced form of a measure of concentration in sector j. Farrell
and Shapiro (1990b) also use infinitesimal mergers as an analysis tool
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Merger in sector 0
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Figure 1.12: Relative welfare loss from a merger of 2 firms in the network of
Figure 1.11 under the competition in outputs with Cobb-Douglas technology.
α = 1/4.

an input-output network using a version of Rubinstein repeated offer game.
As a result the allocation and the relative market power depend crucially on
the parameters δij that capture the relative probability of making the first
offer. In this example I neglect the exit dimension that they analyze, to
simplify the discussion.

There are 2 firms arranged in a line as in Figure 1.4. Each firm produces
Q from Q inputs, and the consumer provides inelastically 1 units of labor.
Assume for simplicity that the relative bargaining power parameter is the
same for all input-output relationships, and is δ. The wage is normalized to
1. The solution of the bargaining problem implies that the prices satisfy (by
Equation (5) in the reference):

δ(p0 − p1) = (1− δ)(p1 − 1)

Ac −Bcp0 = 1

As shown in the Appendix, solving this equation we find that whether
µ0 is larger than µ1 depends crucially on δ. For example if 1 < Ac < 2 and
Bc = 1 then µ0 > µ1 if and only if δ > δ for a threshold δ.

1.4.2 Local strategic interactions

Most models, mainly in the macroeconomic literature, feature models with
local strategic interactions. In short, the assumption is that firms internalize
the effect of their action on own sector-level variables but not on the other
sectors (including suppliers and customers). The purpose of this section is to
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Merger in sector 1

Merger in sector 0
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Figure 1.13: Relative welfare loss from a merger of 2 firms in the network of
Figure 1.11 under the competition in inputs with Cobb-Douglas technology.
α = 1/4.

show that this assumption can greatly affect the welfare impact of oligopoly
power.

The modeling technique relies heavily on parametrical assumptions and
to the best of my knowledge there is no clear-cut non-parametric definition,
so I present it through an example.

Example 8. (Local strategic interactions – Cobb-Douglas)
Assume that the technology available to firms is Cobb-Douglas: fi(qi1, . . . , qin) =∏
q
ωij
ij , where qi is the amount of good i bought. In each sector firms are

identical and produce perfect substitutes. The local strategic interaction as-
sumption works in this way:

1. firm i chooses the bundle of inputs that minimize costs for any given
level of output:

qij = ωij
fiMCi
pj

2. the suppliers of i compete committing to output quantities internalizing
the inverse demand:

pj = ωij
QiMCi
Qij

(1.19)

where QiMCi is taken as given.

This procedure is common in production nework models, it is used among the
others by Grassi (2017), Baqaee and Farhi (2017a), Levchenko et al. (2016).

To clarify the difference with the sequential approach inspect equation
1.19: the perceived elasticity of demand that the suppliers of i face is 1.
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1.5. Market power and mergers 41

This imposes uniformity across the network, in a radically different way with
respect to the sequential approach. Indeed, markups are constant and are:

µi =
ni

ni − 1
(1.20)

and we can compare with 1.17 to see that they are always smaller. In the
sequential economy, taking strategic considerations into account, the original
elasticity of demand shrinks as one moves upstream, while here is artificially
fixed to 1.

The (log) welfare impact of mergers is a weighted sum of the log variations
in markups:

lnC = − ln p0 = −
∑
j

Lij lnµj

where L is the Leontief inverse matrix of this economy. It immediately follows
that in this economy the welfare loss due to market power is smaller than in
the sequential economy.

Not only: also the welfare impact of mergers is larger. As above, we can
study it formally for infinitesimal mergers:

∂ lnC

∂nj
= −Lij

1

µj

∂ lnµj
∂nj

So the information on the welfare impact of mergers is all contained in the
markups.

∂ lnµj
∂nj

is increasing in the elasticity parameter, so also the welfare

impact of a marginal merger is larger in the sequential model.
Moreover, the ratio of the increments under the two models can be arbi-

trarily large as α gets closer to 0, so the difference is sizable.
Figure 1.14 shows that also a finite (non-marginal) merger has similar

properties.

1.5 Market power and mergers

In this section I show how the model provides an answer to the question raised
in 1.4, and other examples. As before, a merger in this setting is simply a
decrease in the number of firms, ni. This is because firms are assumed to be
identical and to have no capital, hence the merged firm is ex-ante identical
to the non-merged firms, but for the fact that there is one firm less in the
market now.

First, I show in an example that revenues are not a sufficient statistics
for sector importance in this setting.

41



42 Chapter 1. Supply and Demand Function Equilibrium
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Sector 1, simultaneous
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Figure 1.14: Relative welfare losses from a merger of 2 firms in sector 1 in
the network of Figure 1.11 under the sequential and the local competition
with Cobb-Douglas technology. α = 1/4.

Example 9. (Revenues are not a sufficient statistics)

Consider a tree oriented differently than in Section 1.4, as in Figure 1.15,
consider the case in which the technology is such that ω1 = ω2 = ω01 = ω02

and all sectors have the same number of firms. In this case parameters are
balanced such that all sectors have the same revenues. Yet, as in the figure
nearby, the welfare loss from mergers is very different in sector 1 and sector
0: it is almost double in sector 0! This shows that a policy maker ignoring
the network dimension but focusing only on revenues would choose poorly
the sector on which to focus on.

The following Theorem explores the welfare impact of mergers in this
setting.

Theorem 2. Assume a merger does not change the set of active links. Then
in the maximal equilibrium it increases all price impacts.

If there is just one consumer good, any merger decreases the quantity
consumed.

Example 10. Tree-Total welfare

Consider a tree network such that each sector has only one customer, as
in Figure 1.7, and assume that for each sector all inputs are symmetric, that
is ωij = ωi. In this case we can prove that not only the final price increases
after a merger, but that also that total welfare decreases. This example is
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c

12

0

Figure 1.15: On the Left the network considered in the example, on the Right
the welfare loss from a merger for different initial numbers of firms.

particularly convenient because the symmetric structure implies that total
welfare can be expressed as a function of the consumption of final good only:

W =
Ac
Bc

Q0 −
1

2Bc

Q2
0 −

1

2
ΩQ2

0

where Ω is a constant that depends on the degree of each node, the number
of firms in each sector, and the input-output coefficients. This expression
depends only on market clearing and symmetry, so it is true also under
perfect competition. In particular, since there is just one consumer good,
we know that Q0 is maximal under perfect competition. But the expression
above is increasing if Q0 is smaller than the maximum, and from this it
follows that total welfare also decreases after a merger.

To explore an example, let us focus on the regular tree of Figure 1.7, and
let us assume ωij = 1

dini
, so that all inputs have the same relative weight in

production. Because this choice of technology, this setting allows particularly
sharp predictions. This is because, given the symmetry of the problem, all
the sectors in the tree will produce the same quantity of output qi, no matter
the mode of competition. Hence focusing on this case it is useful can abstract
from reallocation and size effects. In the Appendix 1.A.3 I show that in this
case under perfect competition profits are identical for all firms.

The results for the S&D equilibrium are numerically calculated in Figure
1.16. It turns out that the equilibrium price impacts are increasing as one
moves toward the root of the tree, hence the Corollary above applies in its
most useful form. The sector which is the most essential for connecting
the whole network is able to extract a larger surplus, and the other are
progressively less important the farther upstream one goes.
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44 Chapter 1. Supply and Demand Function Equilibrium

Figure 1.16: Profits for regular trees of height 2 (Left), and 4 (Right), for
different numbers of suppliers. Sector 0 is always making the larger profit
(except with 1 supplier, which is the case of the line). The number of firms
is set to 2 in each sector.

The importance for the regulator follows the same pattern. Figure 1.17
shows that the welfare loss from a merger that brings the number of firms
from 2 to 1 is larger in sector 0, and smaller the more we move upstream.

Figure 1.17: Welfare loss from a merger that brings the number of firms
from 2 to 1 in different sectors, for different number of suppliers. Left: tree
of height 2, Right: tree of height 4.

Example 11. (S&D Equilibrium vs Chain of Oligopolies)
The line network, as in Example 1 is a good setting to gain intuition

because sharper results can be obtained. In particular, we can characterize
the differences of the sequential competition models with the Supply and
Demand Function Equilibrium. Proposition 4 describes how the perceived
elasticity of demand tends to decrease as we get closer to the first mover,
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and why in that type of sequential model upstream firms tend to have larger
market power.

What is the analogous of the markup in the supply and demand function
equilibrium setting? to understand this, let us write the problem of the firm
in its general form (as in section 1.2.2):

max piD
r
i (pi)− pi−1S

r
i −

1

2
z2
i (1.21)

subject to:

Dr
i (pi, pi−1) = zi

Sri (pi, pi−1) = zi

(1.22)

(1.23)

this form is naturally redundant in the case of this simple network. Now
define µi, the marginal value of inputs as the Lagrange multiplier relative to
the second constraint, and λi, the marginal value of output, as the Lagrange
multiplier relative to the first constraint. Then we can define simultaneously
a markup and a markdown:

Mi = pi − λi mi = µi − pi−1 (1.24)

which are both zero under perfect competition. The next propostion charac-
terizes their behavior.

Proposition 5. In a symmetric Supply and Demand Function Equilibrium
for the line network, if ni = nj for any i, j, then markups are larger the more
upstream the sector is, while markdowns are larger the more downstream a
sector is.

This clarifies that the behavior of elasticities in sequential models does
not disappear: but here the bilateral nature of the game makes it possible to
both effects to manifest. How do they balance?

The profit of firms in the symmetric S&D equilibrium can be rewritten
as:

πi = (Mi +mi)qi +
1

2
q2
i

which makes the intuition transparent: remembering that qi is constant, the
profit in excess of the common component depends on the magnitude of the
sum of markup and markdown.

Proposition 6. In a symmetric Supply and Demand Function Equilibrium
for the line network, the sector with larger profit is the sector with the smallest
number of firms. In particular if ni = nj for any i, j, then all sectors have
the same profit.
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So, contrary to the sequential competition models, in a S&D equilibrium
in a supply chain no one is privileged with respect to others. This follows
from the fact that no sector can substitute away from others, they are all
essential to produce the consumer good. This allows to shed light on the
sequential competition shortcomings: when market power is bilateral one
needs to take into account simultaneously markup and markdown. When
doing so, the paradox disappears and the basic intuition is recovered.

1.6 Global vs Local Strategic Interactions

In this section I explore the question of how the strategic interactions along
the supply chains affect welfare. Taking strategically into account what hap-
pens in other sectors has in principle ambiguous effects. We could expect
more rational agents to be able to extract more surplus, but on the other
hand the effect of an increase in price may be larger because it affects all
the chain. Moreover, the firm can change the pattern of markups and mark-
downs charged, shifting market power towards more vulnerable connections,
and this may have non trivial distributional effects. Further, firms trade bi-
laterally, and their reaction makes in principle the problem hard. Strategic
complementarities provide a formidable tool to make welfare comparisons.

First, we need to define the equilibrium with short-sighted firms. The
idea is to modify Definition 1.2.1 and allow firms to neglect the portion of
the network they are not directly connected to.

Definition 1.6.1. A symmetric Local Supply and Demand Function equi-
librium is a profile of supply and demand schedules (Si, Di, li)i∈I such that:

1. the prices and quantities (p(ε), q(ε)) solve the market clearing condi-
tions when the realization of the shocks is ε;

2. for any firm i, (Si, Di, li) solves:

max
(Ski)k,(Dij)j ,(zi,kj)k,j

E

(∑
k

p∗kiSki −
∑
j

p∗ijDij − εi
∑

ziα,kj −
1

2

∑
k,j

z2
α,kj

)

(1.25)
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subject to:

Dki((p
out
k , pink )∗, ε) =

∑
k

zi,kj((p
out
i , pini )∗, εi), ∀i→ k

Sij((p
out
j , pinj )∗, ε) =

∑
j

ωijzi,kj((p
out
i , pini )∗, εi), ∀j → i

Dki(p
out
k , pink , ε) = Ski((p

out
i , pini )∗, εi), ∀i→ k

Sij(p
out
k , pink , ε) = Dij((p

out
i , pini )∗, εi), ∀j → i

(1.26)

(1.27)

(1.28)

(1.29)

for given actions chosen by the opponents (Sj, Dj, lj)j∈I{i}, and given prices
of other sectors (pj)j /∈Ni .

The basic difference with Definition 1.2.1 is that in the firms optimization
the prices of sectors not directly connected with i are taken as given. Indeed,
in the constraints of the optimization there are only the market clearing
conditions relative to the links directly connected to i. This is the analogous
in this setting of models such as Baqaee (2018), Grassi (2017), Levchenko
et al. (2016).

The next theorem explores the welfare implications of this behavioral
assumption.

Theorem 3. In a Local S&D equilibrium, all price impacts are smaller than
in the maximal S&D.

If there is just one consumer good, the quantity consumed is larger.

Example 12. (Welfare effect of Global Strategic Interactions)
Theorem 3 is a qualitative result. In this example I illustrate it quantita-

tively in the case of a line network, as in Figure 1.4, of length N . As we can
see from Figure 1.18, the gap is increasing in the complexity of the network,
and sizable: for a line of length 5 the welfare neglecting intersector strategic
effects is 25% larger.

Example 13. Welfare effect of mergers – Local vs Global
In this example I show that global strategic interactions are important

for the welfare impact of mergers too. I continue to focus on the line network
as in the previous example. In this case welfare is simple, because it is just
W = Ac

Bc
Q − 1

2Bc
Q2 − N

2
Q2, where N is the number of sectors. Hence the

welfare impact of an infinitesimal merger is:

∂W

∂ni
=

(
Ac
Bc

−
(

1

Bc

+N

)
Q

)
∂Q

∂ni
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48 Chapter 1. Supply and Demand Function Equilibrium

Figure 1.18: Welfare in the global and local versions of the model for different
lengths of the line network. Ac and Bc are fixed to 1, n = 2.

The first term represents the fact that the closer Q is to the efficient alloca-
tion, the smaller the welfare impact is.

Moreover Q = Ac
Bc

(∑
j

1
njBj

)−1

, so that:

∂Q

∂ni
=
Ac
Bc

(∑
j

1

njBj

)−2∑
j

1

njB2
j

∂Bj

∂ni

To understand the mechanics, let us focus on the simplest case: ni = n for

any i. In this caseBi = B for all i, so that Q = Ac

(
1
Bc

+ N
nB

)−1

= Ac
nB

nB+NBc
,

and:
∂Q

∂ni
= Q

(
nBBc

nB +NBc

)∑
j

1

nB2

∂Bj

∂ni

= Q
Bc

(nB +NBc)

1

B

∑
j

∂Bj

∂ni

and in particular, we see that to compare welfare impacts we need to compare
the cumulative effect on the coefficients:

∑
j
∂Bj
∂ni

.
To do this, we differentiate the equilibrium conditions to get a fixed point

equation for derivatives. For the Global strategic interaction case:

∂Bj

∂ni
= (1−B)2

((
Bc

(N − 1)Bc + nB

)2
(
n
∑
k 6=j

∂Bk

∂ni
+ (1− δij)B

)
+ δijB + (n− 1)

∂Bj

∂ni

)
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while for the Local case:

∂Bj

∂ni
= (1−B)2

((
1

2

)2(
n
∂Bj−1

∂ni
+ n

∂Bj+1

∂ni
+ (δi,j+1 + δi,j−1)B

)
+ δijB + (n− 1)

∂Bj

∂ni

)

Comparing the expressions we see that there are 2 distinct effects at play:
one is a “crowding out” effect due to the number of sectors: if N is very
large, due to the (N − 1)Bc + nB factor in the denominator, in the global
version derivatives will tend to be smaller. The other is the strategic inter-
action effect: in the global case an increase in any of the other B coefficient
reverberates on any other. The following picture illustrates that the strategic
interaction effect can prevail in practice.

Figure 1.19: Welfare impact of a merger in the line network. On the right
the average (relative) impact for different lengths N , on the left the impact
differentiated by sectors for N = 9. Ac and Bc are fixed to 1, n = 2.

1.7 Numerical implementation

The solution by iteration of best reply makes the model numerically tractable
for medium sized networks. The main bottleneck is the inversion of the
market clearing matrix M , which being a matrix links-by-links, tends to
be huge, especially if the network is not very sparse. An application of
the Matrix inversion lemma (or Woodbury formula, see Horn and Johnson
(2012)) allows to invert the full matrix just once, and then at each step update
the inverse by just inverting a small matrix, of size equal to the degree of the
involved sector. The gain in this process is especially large when the network
is sparse because then the matrices to be inverted are small. The algorithm
for solving the model numerically is:
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50 Chapter 1. Supply and Demand Function Equilibrium

1. initialize all the matrices Bi,0 as Ci;

2. initialize all relative errors of all nodes to some large number, e.g. 1;

3. start from some node î. Compute the best reply, inverting the matrix
M , and save the inverse.

4. choose the node that has the maximum relative error Ei. Compute its
best reply. In doing so, update the inverse of the matrix M using the
Matrix Inversion Lemma;

5. Repeat 4 until all Ei are smaller than a threshold (I use 0.01).

In Figure 1.20 I show the computation time to reach the equilibrium for
Erdos-Renyi random graphs of 200 nodes, of different densities.

Figure 1.20: Time of model solution for ER random graphs, 200 nodes,
average degree =200p. Iteration stopped when maximum percentage error
< 0.1%

1.8 Conclusion

I build a model of trade among firms as a game in supply and demand
function, which allows to study the problem of how the exogenously given
network of firm interactions contributes to determine market power. In the
case of a tree network, it is possible to connect the endogenous matrix of

50



1.8. Conclusion 51

price impacts to the intuitive notion of Bonacich centrality. I conjecture
that the connection is general. Though Bonacich centrality appears often
in input-output economics, in this model I show that not only the size of a
firm depends on its position, but also its ability to affect prices. The size
of a firm (measured e.g. by revenues) will depend on centrality even under
perfet competition, as is well known. Here I am introducing another margin:
besides begin large, central firms will have more ability to affect market
prices. This is a result that can be of interest in the line of research that
explores misallocation and its welfare effects.

The results in Section 1.7 show that it is actually possible to use this
model in networks of a realistic dimension. A full exploration of the insights
that can be obtained from real data is an interesting area to develop further.
As I have shown through some examples, the model can in principle be used
to assess the market impact of mergers as a function of the position in the
network, which might be of interest for antitrust authorities.
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52 Chapter 1. Supply and Demand Function Equilibrium

Appendix

1.A Proofs of section 1.2

1.A.1 Proof of Proposition 1

The assumption that the consumer demand is zero for very large prices imply
that the set of feasible prices is bounded.

Now define the function F : R|E|×|E| → R|E|×N (indexed by links) as:

Fji(p, ε) = Sji(pi, εi)−Dji(pj, εj) ∀(j, i) ∈ E
Fci(p, ε) = Sci(pi, εi)−Dci(pc, εc)

(1.30)

(1.31)

so that the market clearing conditions 1.2 are equivalent to F (p, ε) = 0.
Now I prove that the Jacobian is nonzero, so that the implicit function

theorem applies.
Call

Ji =

(
JDout

i JDin
i

JSouti JSini

)
the blocks of the Jacobian matrix, where “in” and “out” refer to the differ-
entiation variables (prices), and S and D to supply and demand. To prove
that JF is positive definite, note that row (il) is composed by:

• JSl,ii + JDi,ll in position (il) (diagonal element);

• JSl,ik in position (kl);

• −JSl,ij in position (lj);

• −JDi,lk in position (ki);

• JDi,lj in position (ij).

Consider x ∈ R|E|×|E| and x′JFx. Write as usual xi for ((xki)k,i→k, (xij)j j→i).
Inspection of the matrix JF reveals that:

x′JFx =
∑
m

x′mĴmxm + x′cJcxc

where Ĵ =

(
JSouti −JSini
−JDout

i JDin
i

)
, that is again positive semidefinite under

our assumptions. Now the expression above is nonnegative because a sum of
nonnegative terms. The term x′cJcxc is zero only if xc is zero. Assume the
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1.A. Proofs of section 1.2 53

worst case, that all the Jacobians have rank dm− 1. Call ũm the vector that
nullifies Ĵm. To prove that x′Jx is positive, we have to prove that for any
non zero x at least one of the vectors xm or xc is non zero and xm 6= ûm. If
xm = ûm for all m, then the entries of xc are different from zero and so the
expression is positive. If the entries of xc are all zero, then there is at least 1
of the m such that xm has a zero entry, and so x′mĴmxm > 0. So we proved
that x′JFx > 0 if x 6= 0, so JF is positive definite.

1.A.2 Proof of Proposition 2

M is the Jacobian J of Proposition 1 specialized in this linear setting. By
the same Proposition, it is invertible and positive definite.

If the supply and demand functions satisfie the conditions of 1, then there
exists a set E such that the price map is defined.

There will be sets Ei and Pi, such that E ⊆ Ei p∗i (0) ∈ Pi, such that the
partial solution p∗−i(ε, pi) is linear. Hence, the residual demand is linear on
some set Ei × Pi.

Let us calculate it explicitly. we define p−i as the vector of all prices
but the prices incident to i. Now we reorder the entries of the matrix M to
have in the leading upper left position all the rows that represent equations
involving node i, and all the columns relative to prices of input and output
of i. Write Mi for the matrix M subject to this reordering. The matrix M
can then be partitioned as:

Mi =

(
niB̃i +BD

i MRi

MCi M−i

)
where M−i is M from which we cancelled all the rows and columns relative
to i, which are MRi and MCi , and BD

i is the matrix with on the diagonal the
elements nkB

out
k,ii or nkB

in
k,ii for all k that are connected to i. Now consider

the matrix:

M̃i =

(
BD
i M ′

Ci

MCi M−i

)
The same reasoning proving positive definiteness applied to source nodes
shows that at least 2 m are such that x′mB̂mxm > 0, so even setting some
Bm to zero would not affect invertibility. Hence M̃i is still positive definite.

In solving for the objective demand we solve first for p−i:

M−ip−i = −MCi

(
pouti

pini

)
+A−i =⇒ p−i = M−1

−i (−MCi

(
pouti

pini

)
+A−i)
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54 Chapter 1. Supply and Demand Function Equilibrium

and then we use it in the expression for objective supplies and demands. The
sector level residual demand is, from the market clearing conditions:

ni

(
Si
Di

)
=

(
(nkDk)k,i→k
(njSj)j,j→i

)
Reordering:

ni

(
−Si
Di

)
=

(
−(nkDk)k,i→k

(njSj)j,j→i

)
we can observe that the right hand side corresponds to the market clearing
equations 1.2 for inputs and outputs of i after removing the schedules of
sector i. That is, the left hand side corresponds to the first i rows of M̃ip,
that is:

[M̃ip][first i rows] = BD
i

(
pouti

pini

)
+M ′

Ci
p−i =

(BD
i −M ′

Ci
M−1
−iMCi)

(
pouti

pini

)
+M ′

Ci
M−1
−iA−i

and by block matrix inversion can be seen that (BD
i − MRiM

−1
−iMCi) =

[(M̃i)
−1]−1

i , and moreover is positive definite. To obtain the expression for
the residual supply and demand schedule, we have to reorder the signs of the
blocks of the coefficient matrix. Define: Λ−1

i = P [(M̃i)
−1]−1

i P , where:

P =

(
I 0
0 −I

)
and we obtain: (

Dr
i

Sri

)
= −Λ−1

i

(
pouti

−pini

)
+ Ãi

where Ãi = M ′
Ci
M−1
−iA−i

1.A.3 Perfect competition benchmark

If a firm takes prices as given will optimize:

max
qk,iα,qiα,j ,ziα,kj

∑
k

pkiqk,iα −
∑
j

pijqiα,j −
1

2

∑
z2
iα,kj

subject to:

qk,iα =
∑
j

ωijziα,kj, qiα,j =
∑
k

ziα,kj
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The FOC yield:

qk,iα =
∑
j

ω2
ijpki −

∑
j

ωijpij

qiα,j = ωij
∑
k

pki − douti pij

(1.32)

(1.33)

Or, in matrix form:

q =

(
ω′iωiI

out
i uoutω

′
i

ωiu
′
out douti I ini

)(
pouti

−pini

)
= Ci

(
pouti

−pini

)
Moreover, the profit is:

πi =
1

2

∑
k,j

(ωijpki − pij)2 =
1

2

∑
k,j

z2
i,kj

and we can see that if firms are all producing the same quantity, as in Section
1.4, the profits are the same for all.

1.B Proofs of Section 1.3

1.B.1 Proof of Theorem 1

Step a) - A profile of matrices satisfying 1.16 is a S&D Equilibrium

Rewrite best reply as a finite dimensional optimization Assume
all other firms in all other sectors are playing a profile of symmetric linear
schedules that for the prices relative to active links have coefficients (Bj)j
which are positive semidefinite. Consider the best reply problem of firm α in
sector i. This is:

max
(Ski)k,(Dij)j ,(zi,kj)k,j

E

(∑
k

p∗kiSki −
∑
j

p∗ijDij − εi
∑

ziα,kj −
1

2

∑
k,j

z2
α,kj

)

subject to the market clearing conditions 1.2. All the sums run over active
links: prices relative to inactive links do not affect the objective function
nor the constraints. I already used the fact that at the optimum it must be
liα,kj = εiziα,kj + 1

2
z2
iα,kj.

Using the residual demand, we can rewrite the optimization as:

max
(Ski)k,(Dij)j ,(zi,kj)k,j

E

(∑
k

p∗kiSki −
∑
j

p∗ijDij − εi
∑

zi,kj −
1

2

∑
z2
i,kj

)
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subject to:

Dr
ki((p

out
i , pini )∗, ε) =

∑
k

zi,kj((p
out
i , pini )∗, εi), ∀i→ k

Srij((p
out
i , pini )∗, ε) =

∑
j

ωijzi,kj((p
out
i , pini )∗, εi), ∀j → i

Dr
ki(p

out
i , pini , ε) = Ski((p

out
i , pini )∗, εi), ∀i→ k

Srij(p
out
i , pini , ε) = Dij((p

out
i , pini )∗, εi), ∀j → i

(1.34)

(1.35)

(1.36)

(1.37)

Now assume ε is in the set Ei where Proposition 2 applies. Then since Λ−1
i

is invertible the last two conditions in 1.34 define uniquely a function for the
prices of active links p∗i (ε) : Ei → Rdi . Then we can rewrite the optimization
as:

max
(Ski)k,(Dij)j ,(zi,kj)k,j ,p

∗
i

E

(∑
k

p∗kiD
r
ki −

∑
j

p∗ijS
r
ij − εi

∑
zi,kj −

1

2

∑
z2
i,kj

)

subject to:

Dr
ki((p

out
i , pini )∗, ε) =

∑
k

zi,kj((p
out
i , pini )∗, εi), ∀i→ k

Srij((p
out
i , pini )∗, ε) =

∑
j

ωijzi,kj((p
out
i , pini )∗, εi), ∀j → i

(1.38)

(1.39)

(1.40)

Now (S,D) do not appear explicitly in the problem any more. For the active
links, we can recover them using the information in the pricing function.
Indeed, for any x in the range of p∗i , define:

Ski(x, εi) = Dr
ki(x, ε), ∀i→ k

Dij(x, εi) = Srij(x, ε), ∀j → i

for some ε ∈ (p∗i )
−1(x). By definition of p∗i , the relation above must be

satisfied for all the elements in the counterimage. For all the non-active
links, they are both identically zero.

Finally, optimizing with respect to a function of the stochastic variable
is equivalent to optimizing ex-post, for any fixed value of ε, as in Klemperer
and Meyer (1989). Hence we can write the best reply problem in its final
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form:

max
(zi,kj)k,j ,pi∈Pi

∑
k

pkiD
r
ki(pi, ε)−

∑
j

pijS
r
ij(pi, ε)− εi

∑
zi,kj −

1

2

∑
z2
i,kj

(1.41)

subject to:

Dr
ki((pi, ε) =

∑
k

zi,kj, ∀i→ k

Srij((pi, ε) =
∑
j

ωijzi,kj, ∀j → i

zi ≥ 0

(1.42)

(1.43)

(1.44)

Optimization The problem 1.41 in the set Ei × Pi it is a simple concave
problem, and can be solved by first order conditions. Now I show that the
best reply, defined on Ei × Pi, is linear and has as coefficient matrix exactly
the B∗i as defined in 1.16.

Call λki and µij the multipliers for input and output constraints respec-
tively, and Ji = (ni − 1)Bi + Λ−1

i the firm level (inverse) price impact. J is
the derivative of the supply and demand schedule, and by Proposition 2 it is
positive definite.

The Hessian of the problem is a block diagonal matrix with blocks −(Ji+
J ′i) and minus the identity (with respect to the zs), so the problem is concave.

The FOCs are:

phi :
∑
k

∂Dr
ki

∂phi
(pki − λki)−

∑
j

∂Soij
∂phi

(pij − µij) +Dr
i = 0

pih :
∑
k

∂Dr
ki

∂pih
(pki − λki)−

∑
j

∂Soij
∂pih

(pij − µij)− Sri = 0

zi,kj : −εi − zi,kj + ωijλki − µij + t = 0

where t ≥ 0 is the multiplier relative to the constraint z ≥ 0.
The first set of equations in matrix form reads:

Ji

(
pouti − λi
−(pini − µi)

)
−
(
Dr
i

Sri

)
= 0

Since this must be true for any prices, and for any price the market clearing
conditions must be satisfied, we can rewrite these as:

J

(
pouti − λi
−(pini − µi)

)
=

(
Si
Di

)
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Now we can use the constraints to get rid first of the z. To do so, sum
the derivatives with respect to z to obtain:

Dobj
ki =

∑
j

ωijzi,kj =
∑
j

ω2
ijλki −

∑
j

ωijµij −
∑
j

ωijεi +
∑
j

ωijti,kj

Sobjij =
∑
k

zi,kj = ωij
∑
k

λki − douti µij − douti εi +
∑
k

ti,kj

Now notice that these equations have a linear dependence, because
∑

k

∑
j ωijzi,kj =∑

j ωij
∑

k zi,kj. This is not a problem, because
∑

kD
obj
ki =

∑
j ωijS

obj
ij is in-

deed a contraint of the problem, but it means that we need to eliminate one
equation to solve for the multipliers. Without loss of generality, I eliminate
λ1. If a is a matrix (vector), a−1 will denote the elimination of row and
column (element) 1. Call tij =

∑
k ti,kj, tki =

∑
j ti,kj. So we can write the

system as:(
Dobj
i,−1

Sobji − λ1ωi

)
=

(
ω′iωiI−1,out u−1,outω

′
i

ωiu
′
−1,out douti Iin

)(
λi,−1

−µi

)
+(

tik,−1

tij

)
− εi

(
(ω′iu

in
i )uouti,−1

douti uini

)
Notice that the matrix of the system is Ci,−1, the (1, 1)− minor of the perfect
competition matrix.

Solving we get:(
λi,−1

−µi

)
= C−1

i,−1

[(
Dobj
i,−1

Sobji − λ1ωi

)
−
(
tik,−1

tij

)
+ εi

(
(ω′iu

in
i )uouti,−1

douti uini

)]
and for the full vector of multipliers: λi1

λi,−1

−µi

 =

(
1 0
0 C−1

i,−1

) 0

Dobj
i,−1

Sobji

−
 0

tik,−1

tij

+ εi

 0
(ω′iu

in
i )uouti,−1

douti uini

+ λ1i

 1
0
−ωi


Now using the constraint (u′out,−ω′i)

(
Si
Di

)
= 0 we can rewrite:

(u′out,−ω′i)Ji
(

pouti

−pini

)
= (u′out,−ω′i)Ji

(
λi
−µi

)
and substituting the multipliers we get:

ũ′iJi

(
pouti

−pini

)
= ũ′iJi

(
1 0
0 C−1

i,−1

) 0

Dobj
i,−1

Sobji

− ti,−1 + εi

 0
(ω′iu

in
i )uouti,−1

douti uini

+ λ1i

 1
0
−ωi
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−λ1iũ
′
iJi

(
1 0
0 C−1

i,−1

) 1
0
−ωi

 =

ũ′iJi

( 1 0
0 C−1

i,−1

) 0

Dobj
i,−1

Sobji

− ti,−1 + εi

 0
(ω′iu

in
i )uouti,−1

douti uini

− ( pouti

−pini

)
Now the inverse of Ci,−1 can be calculated through block inversion and

Sherman-Morrison formula, and is:

C−1
i,−1 =

( 1
ω′iωi

(
Iout−1,i + u−1,outu

′
−1,out

)
− 1
ω′iωi

u−1,outω
′
i

− 1
ω′iωi

ωiu
′
−1,out

1
douti

(
Iin +

douti −1

ω′iωi
ωiω

′
i

) )

from which we get:

(
1 0
0 C−1

i,−1

) 1
0
−ωi

 =

(
uout
−ωi

)

and (
1 0
0 C−1

i,−1

) 0
(ω′iu

in
i )uouti,−1

douti uini

 =

(
0
uini

)
19

So that the coefficient of λ1i is ki = ũ′iJiũi > 0. Substituting this into the
expression for the multiplier: λi1

λi,−1

µi

 =

(
1 0
0 C−1

i,−1

)
×

 0

Dobj
i,−1

Sobji

− ti,−1 + εi

 0
(ω′iu

in
i )uouti,−1

douti uini



−1

k

 1
0
−ωi

 ũ′iJi

( 1 0
0 C−1

i,−1

) 0

Dobj
i,−1

Sobji

− ti,−1 + εi

 0
(ω′iu

in
i )uouti,−1

douti uini

− ( pouti

−pini

)
19This can be seen by the explicit calculation of: 1

0
−ωi

 =

(
1 0
0 Ci,−1

)(
uout
−ωi

)
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so the expression above becomes: λi1
λi,−1

µi

 =

(
Ii −

1

ki
ũiũ
′
iJi

)(
1 0
0 C−1

i,−1

) 0

Dobj
i,−1

Sobji

− ti,−1

+εi

(
0
uini

)

+
1

ki
ũiũ
′
iJi

(
pouti

−pini

)
So we can finally substitute and get the demand function (after using

market clearing to turn objective into supply and demand). So:(
Si
Di

)
= Ji

(
pouti

−pini

)
−

Ji

(Ii − 1

ki
ũiũ
′
iJi

)( 1 0
0 C−1

i,−1

) 0

Dobj
i,−1

Sobji

− ti,−1

+ εi

(
0
uini

)+
1

ki
ũiũ
′
iJi

(
pouti

−pini

)
Now to re-express everything in terms of supply and demand functions note
that:  0

Dobj
i,−1

Sobji

 =

 1 u′−1,out −ω′i
0 I−1,out 0
0 0 Iin

( Dobj
i

Sobji

)
call:

C̃i =

(
1 0
0 C−1

i,−1

) 1 u′−1,out −ω′i
0 I−1,out 0
0 0 Iin

 =

(
1 ũ′i,−1

0 C−1
i,−1

)
and eventually we get:(
Si
Di

)
=

(
Ii +

(
Ji −

1

ki
Jiũiũ

′
iJi

)
C̃i

)−1(
Ji −

1

ki
Jiũiũ

′
iJi

)((
pouti

−pini

)
− εi

(
0
uini

)
+ ti

)

where ti =

(
0

C−1
i,−1ti,−1

)
.

To obtain the expression in the text of the Theorem, notice that
(
Ji − 1

ki
Jiũiũ

′
iJi

)
is not invertible because not all equations are independent. Let us solve for
the last din + dout − 1 equations:(

Si,−1

Di

)
= (I + J−R1

(
I − 1

ki
ũũ′J

)
−C1

C̃i)
−1×
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J−R1

(
I − 1

k
ũũ′J

)((
pouti

−pini

)
+ ti − εi

(
0
uini

))
Now J − 1

k
Jũũ′J is positive semidefinite. To see this, note that x′(J −

1
k
Jũũ′J)x ≥ 0 if and only if (ũ′Jũ)(x′Jx) ≥ (ũ′Jx)(x′Jũ), which follows from

Cauchy Schwartz inequality20 Moreover canceling the first row and column
yields a positive definite matrix, because in that case 1− 1

ũJũ′
ũ−1J−1ũ

′
−1 > 0.

Inverting we get:(
Si,−1

Di

)
=

((
J − 1

ki
Jũũ′J

)−1

−1

+ C−1
i,−1

)−1

×

((
J − 1

C
Jũũ′J

)−1

−1

J−R1

(
I − 1

k
uu′J

)
C1

, I−1

)((
pouti

−pini

)
+ ti − εi

(
0
uini

))

=

((
J − 1

k
Jũũ′J

)−1

−1

+ C−1
i,−1

)−1(
J − 1

C
Jũũ′J

)−1

−1

J−R1

(
I − 1

k
ũũ′J

)
C1

pouti,1 +

((
J − 1

C
Jũũ′J

)−1

−1

+ C−1
i,−1

)−1((
pouti,−1

−pini

)
+ ti − εi

(
0−1

uini

))
Now the null space of J− 1

ũ′Jũ
Jũũ′J is parallel to ũ, since (J− 1

ũ′Jũ
Jũũ′J)u =

Jũ− Jũ = 0. Hence we have that

J−R1

(
I − 1

k
ũũ′J

)
C1

= −
∑
j

J−R1

(
I − 1

k
ũũ′J

)
Cj

= −
(
J − 1

k
Jũũ′J

)
−1

ũ−1

hence we get the final expression for supplies and demands:(
Si,−1

Di

)
=

((
Ji −

1

ki
Jiũiũ

′
iJi

)−1

−1

+ C−1
i,−1

)−1(
−pouti ũ−1 +

(
pouti,−1

−pini

)
+ ti − εi

(
0
uini

))
Finally, note that in equilibrium

B̃iũi = (Ii + (Ji −
1

ki
Jiũiũ

′
iJi)C̃i)

−1

(
Ji −

1

ki
Jiũiũ

′
iJi

)
ũi = 0

hence Ji − 1
ki
Jiũiũ

′
iJi = (ni − 1)Bi + Λi

20Which holds even if matrices are not symmetric. To see this:(
x− x′Ju

u′Ju
u

)′
J

(
x− x′Ju

u′Ju
u

)
= x′Jx+

(
x′Ju

u′Ju

)2

u′Ju− x′Ju

u′Ju
(x′Ju+ u′Jx)

= x′Jx− x′Ju

u′Au
u′Ju

which is nonnegative if J is positive semidefinite.
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Step b) - A profile of matrices satisfying 1.16 exists

Now I have to show that a non-trivial profile of matrices satisfying 1.16 exists,
exhibiting sequences that converge to it.

Increasing best reply Assume B and B′ are two profiles of schedules
such that B′i > Bi in the Loewner (positive semidefinite) order for any i.
The best reply is a function of Bi and Λi through a double inversion, so is
increasing in both. Hence, to prove that the best reply is increasing in the
positive semidefinite ordering we have to prove that Λi is increasing in the
profile B.

In the notation of Proposition 2, B̂i is increasing in the Loewner order.
Indeed:

B̂′i =

(
CSouti CSini
CDout

i CDin
i

)
>

(
BSouti BSini
BDout

i BDin
i

)
= B̂i

if and only if (
CSouti −BSouti CSini −BSini
CDout

i −BDout
i CDin

i −BDin
i

)
> 0

which is true if and only if(
CSouti −BSouti −(CSini −BSini )
−(CDout

i −BDout
i ) CDin

i −BDin
i

)
> 0

Since B̂i is increasing, also the market clearing matrix M is increasing, be-
cause remember from 2 that x′Mx =

∑
m x
′
mB̂mxm.

Now M̂−1 is decreasing. Canceling rows and columns does not change
the Loewner ordering, and so Λ−1

i = (M̂−1)−1
i is increasing.

Finally, I prove that Λi = Λ−1
i − 1

ki
Λ−1
i ũiũ

′
iΛ
−1
i is increasing in Λ−1

i . To

see this, assume J > K. This is equivalent to ‖KJ−1‖2 < 121. Then:∥∥∥∥∥
(
K − 1

u′Ku
Kuu′K

)(
J − 1

u′Ju
Juu′J

)−1
∥∥∥∥∥

2

=

∥∥∥∥∥
(
I − 1

u′Ku
Kuu′

)
KJ−1

(
I − 1

u′Ju
Juu′

)−1
∥∥∥∥∥

2

≤ ‖
(
I − 1

u′Ku
Kuu′

)
‖2‖2KJ

−1‖2‖2

(
I − 1

u′Ju
uu′J

)−1

‖2

21Cfr. e.g. Horn and Johnson (2012)
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Now I − 1
u′Ku

Kuu′ has one zero eigenvalue and all the others are 122, so
‖
(
I − 1

u′Ku
Kuu′

)
‖2 = 1 and similarly ‖

(
I − 1

u′Ju
uu′J

)
‖2 = 1. Finally, ‖KJ−1‖2 <

1 by assumption, so it follows that∥∥∥∥∥
(
K − 1

u′Ku
Kuu′K

)(
J − 1

u′Ju
Juu′J

)−1
∥∥∥∥∥

2

< 1

so that J − 1
u′Ju

Juu′J > K − 1
u′Ku

Kuu′K as I wanted to show.

Convergence We are going to need the following lemma.

Lemma 1. If a sequence of symmetric matrices Bn is monotone in the pos-
itive semidefinite ordering, and bounded in the 2-norm, then it converges.

Proof. Consider the case that the sequence is decreasing, that is Bn − Bn+1

positive semidefinite. The increasing case is analogous. Assume by contra-
position that it does not converge. Then since it is bounded, by compactness
there exists a converging subsequence Bnk . Then in particular this sequence
is also Cauchy, so:

∀ε∃K0 : k1, k2 > K0 ⇒ ‖Bnk1
−Bnk2

‖2 < ε

But then for any n,m > nK0 by the fact that the sequence is decreasing we
can find k1, k2 such that Bnk1

> Bn > Bm > Bnk2
. Now we can write:

Bnk1
−Bnk2

= Bnk1
−Bn +Bn −Bm +Bm −Bnk2

and we know that Bnk1
− Bn + Bm − Bnk2

is positive definite, hence the
maximum eigenvalue of the right hand side must be larger than the maximum
eigenvalue of Bn −Bm. But the maximum eigenvalue is the norm, so ‖Bn −
Bm‖2 ≤ ‖Bnk1

−Bnk2
‖2 which proves that the whole sequence is Cauchy and

so converges.

Define:

BRi,n+1 = ([C−1
i ]−1 + ((ni − 1)BRi,n + [Λi]−1)−1)−1

I will prove that the sequnce (BRi,n)n with the proper initial conditions
constitute a decreasing sequence in the positive semidefinite ordering. From
this, the fact that it is bounded as proven in the existence theorem, and the
previous lemma, it follows that they converge.

22Summing by the identity matrix results in all eigenvalues being shifted by 1, and
1

u′KuKuu
′ has rank 1 with eigenvalue 1, realized by eigenvector Ku.
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64 Chapter 1. Supply and Demand Function Equilibrium

From above Set BRi,0 = Ci,−1. I prove that BRi,0 − BRi,1 = Ci,−1(Λi +
2Ci,−1)−1Ci,−1 and so is positive definite.

Ci−BRi,1 = Ci,−1−((Ci,−1+Λi)
−1+C−1

i,−1)−1 = Ci,−1−(Ci,−1−Ci,−1(Ci,−1+Λi+Ci,−1)−1Ci,−1)

= Ci,−1(2Ci,−1 + Λi)
−1Ci,−1

where the last but one step is by Woodbury formula. The matrix on the
right hand side is positive definite because (2Ci + Λi)

−1 is.
But then, since the best reply map is increasing when all matrices are

symmetric, it follows that Bi,n > Bi,n+1 for each n, so the sequence is de-
creasing, which is what we wanted to show.

From below Now I prove that if B̃i has norm small enough, then BRi >
B̃i. From this, and the fact that the best reply is increasing will follow
convergence from below. Indeed:

BRi > B̃i ⇔ ‖B̃iBR
−1
i ‖2 < 1

and
‖B̃iBR

−1
i ‖2 = ‖B̃i

(
C−1
i,−1 + (Λi + (ni − 1)B̃i)

−1
)
‖2 =

6

‖B̃iC
−1
i,−1+(ΛiB̃

−1
i +(ni−1)I)−1‖2 ≤ ‖B̃i‖2‖(C−1

i,−1‖2+‖(ΛiB̃
−1
i +(ni−1)I)−1‖2

Moreover:

‖(ΛiB̃
−1
i +(ni−1)I)−1‖2 =

1

λn((ΛiB̃
−1
i + (ni − 1)I))

=
1

λn(ΛiB̃
−1
i ) + (ni − 1)I

<
1

ni − 1

where λn is the minimum eigenvalue of (ΛiB̃
−1
i + (ni− 1)I) and it is positive

because it is positive definite.
Now if ‖B̃i‖2 is smaller than ni−1

ni
‖C−1

i ‖−1
2 it follows:

‖B̃iBR
−1
i ‖2 < 1

which is what we wanted to show.

There exist a profile of coefficients implying positive trade The
previous paragraph prove that a profile of matrix coefficients satisfying 1.16
esits. Now I prove that there exist one that yields positive trade if we limit
ourselves to a subset of links - that will be the active links in equilibrium.

Start from the original network G = (N,E). Set n = 0 and L1 = E.
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1. Find the unconstrained equilibrium profile B∗n in the network Gi =
(N,Ln). Identify the set of links that have negative trade or negative
price En,0.

2. set Ln+1 = Ln/En,0;

The set of links shrink at each step, and when the network is empty there
are no negative trades. Hence there must exist an index ı̂ such that for all
i > ı̂ Li = Lı̂. The equilibrium B∗ı̂ , augmented with identically zero functions
for all excluded links, is an equilibrium of the original game.

Generic Equilibrium existence It remains to prove that the profile of
matrices (B∗i )i identified above constitute the coefficient matrices of a profile
of linear schedules for an open set P × E that contains (p∗(0), 0). To prove
this, consider the linear functions defined by (B∗i )i and extend them to the
whole price space. That is consider:

(S−1, D)i = B̃i(−p1ũ−1 + pi,−1 + ti) + εiBε,i,−1

where ti solves the Linear Complementarity problem:

B̃i(−p1ũ−1+pi,−1+ti)+εiBε,i,−1 ≥ 0 t′i,−1(B̃i(−p1ũ−1+pi,−1+ti)+εiBε,i) = 0 ti ≥ 0

This corresponds to the form of the solution of the Optimization 1.41, where
ti is a function of the Lagrange multipliers on the nonnegativity constraints.
Concavity proves that the solution is unique and so non-ambiguous.

Using this form we see that the market clearing conditions can be written
as a Linear Complementarity Problem:

Bij(pi + ti) + εiBε,i = Bij(pj + tj) + εiBε,j

Bi(pi + ti) + εiBε ≥ 0

t′i(Bi(pi + ti) + εiBε) = 0

ti ≥ 0

(1.45)

(1.46)

(1.47)

(1.48)

The first set of equations can be rewritten as M(p + t) = A + Mεε
and solved for p + t since M is invertible. So to compute which t variables
are not zero it is sufficient to use the complementary slackness condition.
Moreover, it is a standard result (Cottle et al. (2009), Proposition 1.4.6)
that the solution as a function of ε is piecewise linear.

Now the fact that we can express the residual demand as a linear function
for all i relies on the fact that (0, p∗(0)) lies in one of the regions where the
function is linear and not on one of the boundary regions. Now the boundary
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66 Chapter 1. Supply and Demand Function Equilibrium

regions are identified by a set of equations Fj((Bi)i, ε) = 0 for some indices
j, where the F are analytic functions (see Cottle et al. (2009), Prop. 1.4.6.).
This means that the set of profiles of coefficients such that 0 is in one of the
boundary regions:

BF = {(Bi)i | Fj((Bi)i, 0) = 0}

is rare. This follows from the fact that if there were an open set in BF then
since F is analytic it would have be identically zero, which it is not. Moreover
BF is closed, hence equal to its closure: hence its closure has empty interior,
so it is rare.

Now consider the map O : (ωi)i → (B∗i ) that maps the values of the
parameters to the B∗i that solve 1.16. I prove that this is one-to-one. To
see this, suppose O((ωi)i) = O((ω′i)i). Then by the construction of 2 we get
that Λi((ωi)i) = Λi((ω

′
i)i), and by the equation 1.16 we get that the perfect

competition matrices must agree too: (Ci)i = (C ′i)i. From this, inspecting
the matrix, it follows that (ωi)i = (ω′i)i. Moreover it is continuous (actually
analytic).

Since O si a homeomorphism the preimage of a rare set is rare, and so
we conclude that the property of existence of a linear eqilibrium is generic in
(ωi)i.

1.B.2 Proof of Corollary 1.3.1

The fixed point equation 1.16 can be rewritten as:

(ni − 1)B̃iC
−1
i B̃i + (ΛiC

−1
i + (ni − 2)I)B̃i − Λi = 0 (1.49)

and premultiplying by C−1
i :

(ni − 1)(C−1
i B̃i)

2 + (C−1
i Λi + (ni − 2)I)(C−1

i B̃i)− C−1
i Λi = 0

Call X = C−1
i B̃i, b = 1

ni−1
(C−1

i Λi + (ni− 2)I) and c = − 1
ni−1

C−1
i Λi. We can

rewrite this as:

b2 − 4c = 4X2 + 4bX + 4b2

Now note that any solution of 1.49 commutes with b, because taking the
transpose of the equation we get that X must solve also X2 + Xb + c = 0,
and so −(X2 + c) = bX = Xb. Then the right hand side above is a square,
and we have the analogous of the classical quadratic formula:

X =
1

2

(
−b+

√
b2 − 4c

)
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and so:

Bi =
1

2
Ci

(
−b+

√
b2 − 4c

)
Now b2 − 4c is the sum of two symmetric positive definite matrices, so is

symmetric positive definite, and hence has a unique positive definite square
root (Horn and Johnson (2012), Theorem 7.2.6). Hence the equation 1.49 has
a unique positive definite solution, so the sector-level symmetric equilibrium
is unique.

1.B.3 Proof of Corollary 1.3.2

I omit the index i because all matrices are relative to sector i.
The quadratic labor cost of the profit is

∑
k,j(ωijλki − µij)

2. This can

be written in matrix form as
(
λ′, −µ′

)
U ′U

(
λ
−µ

)
where U = [Iout ⊗

ωi, uout ⊗ Iin].

Moreover

(
λ
−µ

)
= V

(
pout
−pin

)
. and:

π = p′
(
B − 1

2
V ′U ′UV

)
= p′

(
B − 1

2
V ′CV

)
and:

V ′CV = B

(
1 0
ũ−1 C−1

−1

)
C

(
1 ũ′−1

0 C−1
−1

)
B

since Cũ = 0 and ũ′C = 0. Moreover:

B

(
1 0
ũ−1 C−1

−1

)
C

(
1 ũ′−1

0 C−1
−1

)
B =

(
ũ′−1B−1C

−1
−1B−1ũ−1 ũ′−1B−1C

−1
−1B−1

B−1C
−1
−1B−1ũ−1 B−1C

−1
−1B−1

)
Now B − V ′CV has ũ in the null space, and is positive semidefinite if and
only if B−1 − 1

2
B−1C

−1
−1B−1 is. This is true because:

‖B−1C
−1
−1B−1B

−1
−1‖2 = ‖B−1C

−1
−1‖2 < 1

because we know that B−1 < C−1.

1.B.4 Proof of Proposition 3

I am going to prove that, in any equilibrium, B has the following form: it
is equal to PBP , where B is an M -matrix (a positive definite matrix with
positive diagonal and nonpositive off-diagonal entries), and:

P =

(
I 0
0 −I

)
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68 Chapter 1. Supply and Demand Function Equilibrium

is a matrix that changes signs to the off-diagonal blocks of B.
From the definition of M in 2 it is immediate to see that, if B has the

property above, then M is an M -matrix.
First, I prove that the best reply to a profile of coefficients (Bi)i∈I that

has the property above has still the property above.
From this, it follows that M is an M -matrix. Then, by 2 we know that

Λ−1 = PLP , where L is an M -matrix.23 Moreover, in equilibrium, since
Bũ = 0, we have Λ−1ũ = −Ãi ≥ 0. This is equivalent to LPũ = Lu > 0,
once we define u = Pũ. Then, we have that the matrix:

L− 1

u′Lu
Luu′L

is positive semidefinite and still an M -matrix. Then it follows that also Λ
−1

has the form Λ
−1

= PLP for an M -matrix L, because:

Λ
−1

=Λ−1 − 1

ũ′Λ−1ũ
Λ−1ũũ′Λ−1

=P (L− 1

u′Lu
Luu′L)P = PLP

(to get the expression, note that P 2 = I.)
Now, also the perfect competition matrix C has the same property: C =

PCP . Then, from the best reply equation we get:

(I+(Λ
−1

+(n−1)B)−1C)−1(Λ
−1

+(n−1)B) = P (I+(L+(n−1)B)−1C)−1(L+(n−1)B)P

so that the best reply preserves the property.
To prove that any equilibrium profile has this property, proceed similarly

to the proof of Theorem 1, step d). That is define B̃0 as C, and consider the
iteration:

B̃n = (C−1 + ((Λ
−1

i )−1 + B̃n−1)−1)−1

Notice that differently from Theorem 1 here Λ
−1

i is kept fixed. By an anal-
ogous argument this sequence is increasing and converges to the solution of
the best reply equation, which is unique by Corollary 1.3.2. Moreover, each
matrix of the sequence has the desired form, hence also the limit has. This
is true because weak inequalities are preserved in the limit, and we already
know that the limit is positive definite so it must have strictly positive diag-
onal. Hence it follows that any solution of the best reply equation must have
the desired property.

23This follows because the proof in 2 shows that L is the Schur complement of an
M -matrix, which is itself an M -matrix (see Horn et al. (1994)).
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1.C Proofs of Section 1.4

1.C.1 Calculations for Example 7

Solving the system we get that:

p0 = −1− Ac
Bc

p1 =− δ(1− Ac)−Bc(1− δ)
Bc

Setting Bc = 1 for simplicity we get:

µ0 − µ1 =
(Ac − 2)(δ((Ac − 2)δ + 2)− 1)

(Ac − 1)((Ac − 2)δ + 1)

and for Ac = 3 we get the analytical solution of:

µ0 > µ1 ⇔ δ < −1 +
√

2 = δ

1.C.2 Proof of Proposition 4

I prove the result for a supply chain (line network) of length K. Denote the
production function as f and the inverse demand at stage i of the chain as
Pi(·). Assume both are differentiable and concave, f ′ > 0 and P ′i < 0. For
every step of the chain but the first we have that firms optimize:

Pi(Qi)qiα − pi−1f
−1(qiα)

where Qi =
∑

α qiα. By concavity they do so through the first order condi-
tions24:

P ′i (Qi)qiα + Pi(Qi)−
pi−1

f ′(f−1(qiα))
= 0

so in the symmetric equilibrium:

P ′i (Qi)
Qi

ni
+ Pi(Qi)−

pi−1

f ′(f−1
(
Qi
ni

) = 0

24The second derivative of the profit function is:

P ′′i (Qi)qiα + 2P ′i (Qi) +
pi−1f

′′(f−1(qiα))

f ′(f−1(qiα))

pi−1
(f ′(f−1(qiα)))2

By concavity of Pi and f this is negative.
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and the markup is determined by the usual elasticity condition:

pi −MCi
pi

= −
P ′i (Qi)

Qi
ni

Pi(Qi)

The equation allows to write directly the inverse demand that sector i−1

is facing (using the market clearing Qi = nif
(
Qi−1

ni

)
) 25:

Pi−1(Qi−1) =

[
P ′i

(
nif

(
Qi−1

ni

))
f

(
Qi−1

ni

)
+ Pi

(
nif

(
Qi−1

ni

))]
f ′
(
Qi−1

ni

)
To compare the elasticities, first calculate the derivative of this:

P ′i−1(Qi−1) =

[
P ′′i

(
nif

(
Qi−1

ni

))
f ′
(
Qi−1

ni

)
f

(
Qi−1

ni

)

+

(
1 +

1

ni

)
f ′
(
Qi−1

ni

)
P ′i

(
nif

(
Qi−1

ni

))]
f ′
(
Qi−1

ni

)
+[

P ′i

(
nif

(
Qi−1

ni

))
f

(
Qi−1

ni

)
+ Pi

(
nif

(
Qi−1

ni

))]
1

ni
f ′′
(
Qi−1

ni

)
By concavity, the first and last terms are negative, so we conclude:

P ′i−1(Qi) < P ′i (f
′)2

(
1 +

1

ni

)
so

P ′i−1

Pi−1

Qi−1

ni−1

<
P ′i (f

′)2
(

1 + 1
ni

)
(Pi + P ′if)f ′

Qi−1

ni−1

=
P ′if

′
(

1 + 1
ni

)
Pi + P ′if

ni
ni−1

Qi−1

ni

moreover, we have that:

P ′if
′
(

1 + 1
ni

)
Pi + P ′if

ni
ni−1

Qi−1

ni
<
P ′i
Pi

Qi

ni

if and only if:

PiP
′
if
′Qi−1

ni

(
1 +

1

ni

)
ni
ni−1

< PiP
′
i

Qi

ni
+ (P ′i )

2 Qi

ni

Qi−1

ni

25 Differentiating this expression we immediately get that it is decreasing in Qi.
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PiP
′
i

(
f ′
Qi−1

ni

(
1 +

1

ni

)
ni
ni−1

− Qi

ni

)
< (P ′if)2

Now if ni and ni−1 are sufficiently close the parenthesis is positive by concav-
ity of f (which implies f ′Qi−1

ni
> Qi

ni
), hence the inequality is always satisfied.

In particular this is true if ni = ni−1. We can conclude that in equilibrium if
ni and ni−1 are sufficiently close:

P ′i
Pi

Qi

ni
<
P ′i−1

Pi−1

Qi−1

ni−1

and so firms in sector i− 1 have larger markup than firms in sector i.
For the case of markdowns, the exact analogous calculations hold, on

supply rather than demand functions.

1.C.3 Proof of Propositions 5 and 6

The proofs follow from the following lemmas.

Lemma 2. The profile B = (( DiSi
Di+Si

)i≥2, D1) is a symmetric function of the
“sector level” coefficients (niBi). That is B((niBi)i) = B(nπ(i)Bπ(i))i where
π is any permutation of indices.

Proof. By induction, I prove that B is equal to:

Dr
iS

r
i

Dr
i + Sri

=

∏
k 6=i nkBkBc∏

k 6=i nkBk +Bc

∑
j 6=i
∏

k 6=i,k 6=j nkBk

D1 =

∏
k 6=1 nkBkBc∏

k 6=1 nkBk +Bc

∑
j 6=1

∏
k 6=1,k 6=j nkBk

(1.50)

(1.51)

By induction on the size of the line N . If N = 2 it can be checked by
calculation. Assume it holds for a line of size N−1. To get the corresponding
expressions for a line of size N we must substitute Bc with the objective
demand of the last but one layer, which is nNBNBc

nNBN+Bc
. If we do it we get that

for i ≤ N − 1:

DiSi
Di + Si

=

∏
k 6=i nkBk

nNBNBc
nNBN+Bc∏

k 6=i nkBk + nNBNBc
nNBN+Bc

∑
j 6=i
∏

k 6=i,k 6=j nkBk

and reordering and simplifying the denominator we get the expression above.
Analogously can be done for D1. Moreover, always by induction we can find:

SN =

∏
k 6=N nkBk∏
k 6=N nkBk
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and DN = Bc, so substituting in the corresponding expression:

DNSN
DN + SN

=

∏
k 6=N nkBk∏
k 6=N nkBk

Bc

Bc +
∏
k 6=N nkBk∏
k 6=N nkBk

and simplifying we get the desired result.

Lemma 3. In equilibrium ni > nj implies B∗i > B∗j .

Proof. To apply the theory of monotone comparative statics, I will prove
that if ni ≥ nj then BRi(x,B−i,j) ≥ BRj(x,B−i,j), that is the best reply
of i dominates the best reply of j conditional on the coefficients of all other
sectors.

We have that BRi ≥ BRj if and only if:

Λ
−1

i + (ni − 1)x ≥ Λ
−1

j + (nj − 1)x

In particular, using the characterization of Λ
−1

i above, we have that this is
true if and only if:

BBcnjx

B(njx+ bC) + njxF
+ (ni − 1)x ≥ BBcnix

B(nix+ bC) + nixF
+ (nj − 1)x

where B and F are only functions of the coefficients B−i,j and their respective
number of firms. This is true if and only if

BBcnj
B(njx+ bC) + njxF

− (nj − 1) ≥ BBcni
B(nix+ bC) + nixF

− (ni − 1)

BBcnj − (nj − 1)(B(njx+BC) + njxF)

B(njx+BC) + njxF
≥ BBcni − (ni − 1)(B(njx+BC) + njxF)

B(nix+BC) + nixF

BBc − (nj − 1)(B(njx) + njxF)

B(njx+ bC) + njxF
≥ BBc − (ni − 1)(B(njx) + njxF)

B(nix+BC) + nixF

which is true if and only if ni ≥ nj because the function is decreasing.

Then we can conclude that if ni ≥ nj then BRi(x,B−i,j) ≥ BRj(x,B−i,j),
and so, using a result from Lazzati (2013) we can conclude that in equilibrium
B∗i ≥ B∗j .
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Proof of Proposition 5 Calculations reveal that:

Mi = pi − λi =
Sri

(Dr
i + Sri )(1 +Bi) + SriD

r
i

(pi − pi−1)

=

Sri
Dri+Sri

(1 +Bi) +
Dri S

r
i

Dri+Sri

(pi − pi−1)

mi = µi − pi−1 =

Dri
Dri+Sri

(1 +Bi) +
Dri S

r
i

Dri+Sri

(pi − pi−1)

Now by the previous lemma Bi = Bj for all sectors and so market clearing
conditions imply that pi−pi−1 is constant across sectors. Moreover by lemma
2 also

Dri S
r
i

Dri+Sri
. Now inspecting the right hand side of the expressions we see

that the markup is decreasing with Dr
i , which is itself decreasing as one goes

upstream. Then it follows that the markup is increasing going upstream, and
symmetrically for the markdown.

Proof of Proposition 6 We can rewrite the profits as:

πi =
1− 1

2
Bi

n2
iBi

c2

where c is the quantity consumed by the consumer. Now by lemma 3 we can
conclude.

1.D Proofs of Section 1.5

1.D.1 Proof of Theorem 2

I am going to prove that the best reply function is increasing in the param-
eters ni. By monotone comparative statics this implies that in the maximal
equilibrium coefficients B are larger, which means that price impacts are
smaller.

First, note that M is increasing in any ni. Indeed, if n′ ≥ n:

M(n′i)−M(ni) =
∑
m

x′m(n′m − nm)B̂mxm ≥ 0

Then by the calculations in the proof of 1 it means that the best reply
function is increasing in n, which is what we wanted to show.
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74 Chapter 1. Supply and Demand Function Equilibrium

Now assume that the consumer only buys one “final” good. The vector
c has a nonzero entry only in correspondence of the consumer price. This
means that Acpc = c′p = c′M−1c. Since M is increasing in each Bi is also
decreasing in each Λi, so it follows that the consumer price is increasing in
Λi.

1.E Proofs of Section 1.6

1.E.1 Proof of Theorem 3

The best reply matrix for each firm in sector i is:(
[C−1

i ]−1 + ((ni − 1)B̃i +Bi)
)−1

(1.52)

where Bi is the diagonal matrix that on the diagonal has the coefficient Bk,ii

for all the neighbors k of i.
Let us define two functions:

BRi(B̃−i, g) =
(

[C−1
i ]−1 + ((ni − 1)B̃i + Λi)

)−1

BRi(B̃−i, l) =
(

[C−1
i ]−1 + ((ni − 1)B̃i +Bi)

)−1

(1.53)

(1.54)

(1.55)

The equilibrium profiles of matrix coefficients in the local or global equi-
librium satisfie:

B̃g
i = BRi(B̃

g
−i, g)

B̃l
i = BRi(B̃

l
−i, l)

(1.56)

(1.57)

Now to apply the theory of monotone comparative statics, let us think
about the function BRi(·, ·) where the second argument belongs to the space
{g, l}, and consider on this space the ordering such that g � l. Then the best
reply equation is increasing in this parameter. This is because as calculated
in 2 Λ−1

i = Bi−MRiM
−1
−iM

′
Ri

and M−1
−i is positive definite. Hence Λ−1

i ≥ Bi.
By standard arguments now we can conclude that in the maximal equi-

librium B̃g
i < B̃l

i
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Chapter 2

Dynamic diffusion in
production networks

I analyze the dynamics of shocks propagating in a production network, us-
ing a variation of the classical Long Jr and Plosser (1983) DSGE. The key
feature that allows the dynamic analysis is time to build, which implies that
sector purchases and sales react with one period lag to a shock. I study the
properties of the transition to the new steady state (or the old, if the shock is
temporary). Contrary to the static versions of the model, preference shocks
diffuse downstream, similar to productivity shocks. Moreover, even for pro-
ductivity shocks the ranking of influence of sectors is different, weighing less
longer paths, and comovement is smaller. Finally, I provide bounds on the
recovery time of the economy hit by a shock.1

1I wish to thank Fernando Vega-Redondo and Basile Grassi for their comments and
advice. I also wish to thank the participants to the 4th NSF Conference on Network
Science in Economics at Vanderbilt University, the 7th Annual Workshop on Networks in
Economics and Finance at the IMT School for Advanced Studies in Lucca, and seminar
participants in Bocconi.
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76 Chapter 2. Dynamic diffusion in production networks

2.1 Introduction

How do shocks to some economic sectors impact the rest of the economy?
For many years a widespread view, exemplified by Lucas (1995)’ argument,
has been that when considering whole economies composed of a large num-
ber of agents, idiosyncratic shocks should average out and not have a sizable
aggregate impact. Recently, this view has been challenged, noting that the
averaging out might not happen if the connections between sectors are suffi-
ciently asymmetric, so that the very well connected sectors will have a sizable
impact on aggregate output, as argued in the seminal paper Acemoglu et al.
(2012). The understanding of such mechanisms is of crucial importance to
understand business cycles and to evaluate and design policies directed to
smooth or insure against shocks, such as bailouts or monetary policy.

A growing literature has indeed provided empirical grounding for the
importance of idiosyncratic shocks in shaping aggregate outcomes.2 Yet,
most of the analyses have focused on static general equilibrium models or
on steady states of the dynamics.3 While this has certainly allowed many
useful insights, production is essentially a dynamic phenomenon, as testified
by the sizable literature that studies time to build in its own right.4 It is,
therefore, to be expected that the temporal dimension of the propagation of
shocks contains many important features that a static analysis would miss.
Some are classical questions pertaining to dynamic environments, such as
what is the persistence of a shock, other are more specific to an input-output
level analysis: which sectors are more affected by the shock in the short run
rather than the long run? which sectors generate more short than long run
impacts on the welfare of the consumers? All these questions simply can’t
be answered in a static model.5

In this work, I want to address these issues, analyzing a model that gen-
erates a dynamic diffusion, namely a propagation of shocks over time as well
as over sectors. To generate a dynamic diffusion while keeping analytical
tractability, I will follow the original input-output model by Long Jr and
Plosser (1983) and in particular assume that the production of any good
necessitates 1 period of time. This implies that the reaction of each sector
to shocks will be lagged and diffusion will not be instantaneous: a shock to

2See section 2.2.
3There are exceptions, in particular Pasten et al. (2018), as explained in the literature

section.
4A classic contribution is Kydland and Prescott (1982), while more recently Meier

(2017).
5Note that, perhaps not surprisingly, also persistence will depend crucially on network

characteristics in this setting.
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a sector will trigger a reaction from the immediate neighbors, but in general
not from the others. This will generate a dynamic diffusion of the impact,
that will take time to spread to the whole economy, allowing us to analyze
it in details.

There are two perspectives from which we can analyze such an environ-
ment: focusing on the properties of the stationary stochastic process gen-
erated by the uninterrupted random disruptions that hit the economy, or
analyzing the impact of a single shock and the properties of the transition
to the (possibly new) steady state - the impulse response function.6

My results show that the properties of a dynamic diffusion can depart
substantially from a static benchmark, even in simple Cobb Douglas envi-
ronments: productivity shocks propagate exclusively downstream, and an
unexpected productivity shock has a cumulative welfare impact which is pro-
portional to a dynamic version of Bonacich centrality, that takes into account
the different value of consumption over time. Moreover, the cumulative im-
pact is equal to the share of sales of the respective sector, its Domar weight.
This is an analogous of Hulten (1978) theorem, stating that in an efficient
economy the first order contribution of a small shock to a sector to aggregate
GDP is exactly its sales share. The result, though, is not obvious: here I am
considering an unexpected shock, which a priori needs not behave as Hulten
theorem predicts.

Preference shocks, instead, have a radically different propagation behav-
ior, that can be summarized as such: their physical impact propagates down-
stream, while the information impact propagates upstream. By physical im-
pact I mean the impact working through the physical decrease in real output,
that through a change in prices causes the customers to vary their purchases
and so their production. The information impact is the update in expecta-
tions of future demand changes due to autocorrelations in preference shocks
over time. The comparative difference in preference shocks with respect to
productivity is a by-product of the Cobb-Douglas technology, that implies
that productivity shocks do not have nominal effects, and I do not expect it
to generalize.

Moreover, thanks to the linear nature of the problem, the dynamics is very
close to the iteration of a Markov chain. So we can apply the ergodic theory
of Markov chains to provide upper bounds on the time that the economy
takes to recover from a negative shock (or to scale down from a positive
one), in a spirit similar to Golub and Jackson (2012). These bounds depend

6Note that the transition I am referring to is always along an equilibrium path, although
the analysis of out of equilibrium responses to disruptions is of great interest, and I am
addressing it in ongoing work.
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78 Chapter 2. Dynamic diffusion in production networks

crucially on the network characteristics, such as (eigenvector) centrality, the
labor share of technology, and community structure.

Finally, I show that the dynamic model generates systematically less co-
movement, measured as lag 0 autocorrelation. This happens because shocks
take time to affect other sectors, so the effect can hit different sectors at
lagged times, not generating contemporaneous comovement.

Outline In the next section I present the related literature, then the model
and the implied diffusion dynamics. In section 4 I explore the welfare impacts,
in section 5 the long run stationary properties of the model. In section 6 I
present upper bounds on recovery time of the economy after a shock.

2.2 Related literature

The recent literature on the macroeconomic impact of idyosincratic shocks
stems from Acemoglu et al. (2012), which shows that in a competitive equilib-
rium model with input-output linkages the degree distribution of the network
may determine how individual idyosyncratic shocks aggregate into economy-
wide fluctuations. In an extended model with entry and exit, Baqaee (2018)
shows that individual shocks can be amplified and generate cascading be-
haviour. Grassi (2017) extends the framework in another direction, analyzing
non-atomic firms and how market power interact with the network. Hure-
movic and Vega-Redondo (2016) analyzes how the impact of price shocks
such as taxes depend on network-specific quantities.

All these models cited above belong to the family of general equilibrium
models, and the predictions come typically from a comparative statics or a
steady state exercise. This means that the properties of the dynamics cannot
be analyzed. On quite the opposite side is Contreras and Fagiolo (2014),
which analyzes empirically the implications of simple diffusion rules without
explicit microfoundations. Levchenko et al. (2016) studies the steady state
of an adaptive network, but the decisions of the firms and the adjustment of
equilibrium behaviour to shocks are instantaneous. The older contribution
by Bak et al. (1993), that study an adaptation of a model coming from
statistical physics to an input output environment, to prove that, even if
demand shocks are such that aggregate demand is deterministic, aggregate
(intermediate) production may not be. Similar to this work, the model is
intrinsically dynamic, and the effect relies on the cascade effects that the
shocks generate.

There is a handful of papers using a dynamic equilibrium approach. The
closest paper conceptually is Pasten et al. (2018), which analyzes analytically
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how the network affects the response of variables to monetary policy shocks.
Cienfuegos (2018) analyzes a similar monetary policy problem, focusing on
aggregate variables, and the empirical calibration. Atalay (2017) features a
dynamic model, but is concerned with estimating elasticities of substitution
in different sectors rather than in characterizing the dynamic properties of
diffusion.

On the empirical side, a growing number of papers confirms that the
network is an important driver of sizable fluctuations and a crucial propa-
gation mechanism. Notable examples are Carvalho et al. (2016), Barrot and
Sauvagnat (2016), Acemoglu et al. (2016), Tintelnot et al. (2018).

Finally, a growing literature is exploring the dynamics of the evolution
of production networks, or more in general endogenous production networks,
different from this work where the network is supposed fixed. Examples are,
among others, Levchenko et al. (2016), Carvalho and Voigtländer (2015),
Taschereau-Dumouchel (2017).

2.3 Model

The setup is the one in Long Jr and Plosser (1983), but I will depart from it
in the case of stochastic preferences. Its ingredients are:

1. Time is infinite and discrete. There are two vector Markov processes
At and γt, which are the sources of stochasticity in the model. For
simplicity I assume they have a finite state space S ⊂ RN

+ . I will denote
the history of realizations up to time t as ht = ((γ1, A1), . . . , (γt, At)).
All the endogenous variables should be indexed by histories. When the
context does not strictly require it, I abuse the notation by indexing
just with t, as in γt.

7

2. There is one infinitely lived representative consumer maximizing its
expected discounted utility. Instantaneous utility is the logarithm of
a Cobb-Douglas aggregator Ct =

∏
c
γi,t
i,t . The intertemporal utility

is a standard discounted sum U =
∑

t β
t lnCt =

∑
t β

t
∑

i γi,t ln ci,t,
where β < 1 is the discount factor. The consumer will maximize the
expectation of this intertemporal utility. She has an endowment of 1
unit of labor each period, and she supplies it inelastically.

7Note that the process for γt has to be such that the normalization
∑
i γi,t = 1 is true

for all t.
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3. There areN sectors, each producing a distinct good, acting as neoclassi-

cal firms, that maximize their intertemporal profits
∑

t

(
pi,tyi,t −

∑N
j=1 pj,tzij,t − wtli,t

)
8

subject to a constant returns Cobb Douglas technology, with the im-
portant feature described in the next point.

4. Inputs need to be purchased one period in advance. The specific form
of the production function is: Ai,t+1

∏N
j=1(ztij)

αωij l1−αi,t ; the parameters
ωij define a matrix Ω, that defines a directed weighted network which
we call the input-output network of the economy and represents the
strenghts of intersectoral linkages. In particular, due to the Cobb Dou-
glas assumption, ωij is the share of revenues of sector i spent on input
j.

5. The consumer owns the firms, and each period receives or pays the
necessary cash flow:

ft =
∑
i

fi,t =
∑
i

(
pi,tyi,t −

N∑
j=1

pj,tzij,t − wtli,t

)

Despite the Cobb-Douglas assumption, this is not zero, because it is
not the expected profit, for two reasons: it is a realized, not expected
quantity, and second it is the sum of earnings today from inputs bought
yesterday, and expenditure for inputs whose output will be sold tomor-
row. Hence there is no reason to expect this quantity to be 0;

6. The intertemporal budget constraint of the consumer is:∑
ht

∑
i

pi,htci,ht ≤
∑
i

pi,0ωi +
∑
ht

whtlht +
∑
ht

fht

where wtli,t is labor income, ft is the cash flow she receives from the
firms, and ωi is the endowment of the consumer at period 0. This
endowment has to be introduced in order for the model to ”kick off”,
otherwise in the first period there can be no production, but is otherwise
unimportant and will not appear in any result.

7. There are forward markets for any contingent commodity.

The equilibrium concept is the standard Arrow-Debreu equilibrium. I
report here the definition for further clarity.

8Note that the prices that appear in the profit expression are not in real terms, but are
intertemporal prices, so they include the interest rate.
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Definition 2.3.1 (Equilibrium). An equilibrium of this economy is a vector
of prices, consumptions, input demands for each history ht such that

1. The consumer chooses streams of consumption optimizing its expected
utility over its budget constraint, solving:

maxE0

∑
t

βt lnCt =
∑
t

βt
∑
i

γi,t ln ci,t

subject to:∑
ht

∑
i

p∗i,htci,ht ≤
∑
i

p∗i,0ωi +
∑
ht

whtlht +
∑
ht

fht

where fht is defined above.

2. Firms maximize their expected profits subject to the technology con-
straint:

max
(li,t)∞t=0,(zij,t)

n,∞
j=1,t=0

E0

∑
t

(
pi,tAi,t+1

N∏
j=1

(ztij)
αωij l1−αi,t −

N∑
j=1

pj,tzij,t − wtli,t

)

3. Prices clear the goods market and the labor market at each history:

yi,ht = ci,ht +
∑
j

zij,ht
∑
i

li,ht = 1 ∀ht

ωi = ci,0 +
∑
j

zij,0
∑
i

li,0 = 1

2.4 Dynamics

In this section, I report the solutions of the model, respectively for productiv-
ity and preference shocks. As in other production network models, Bonacich
centrality is crucial: we denote it as di(αβ, γ), where d(αβ, γ) is the vector
such that:

d = (I − αβΩ′)−1γ

This also corresponds to what Baqaee and Farhi (2017a) call the Domar
weight.9 When the coefficient is clear from the context I will omit the depen-
dence. The next proposition follows Long Jr and Plosser (1983).

9They distinguish between revenue and cost based Domar weights. Since the economy
studied here is efficient, the two coincide and there is no ambiguity.
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Proposition 7. If productivity parameters follow a Markov process, while
preferences are deterministic, in equilibrium the outputs follow:

ln yi,t+1 = consti + lnAi,t+1 +
∑
j

αωij ln yj,t

The sale shares are constant:
pi,tyi,t
GDPt

= di(αβ, γ), where GDPt =
∑

i pi,tci,t.

Proof. See Appendix.

So we can see from the above proposition that productivity shocks dif-
fuse through a very simple linear dynamics. In particular, the process of
logarithms of productivity is a filter of the process of the errors, increasing
its persistence. For example, if productivity shocks are i.i.d. across time,
ln y = (I − αΩL)(const + lnA), where L is the lag operator. That is, log-
output follows a VAR(1).

Moreover, sales share are constant in time and are equal to centralities, as
in the static model. Yet, there are significant differences in that the relevant
centrality here has as a discount coefficient αβ, as I will argue in section
2.5.1.

Proposition 8. If preference parameters follow a Markov process, in equi-
librium, the dynamics of output follows:

log yi,t+1 = consti + α
∑
j

ωij log yj,t − α
∑
j

ωij log(di,t)+

log(Etdi,t+1)

where di,t = γj,t +
∑

k α
kβk

∑
h ω

(k)
hj Et

[
γt+kh

]
The sale shares are:

pi,tyi,t
GDPt

= di,t
If γt are i.i.d., then:

di,t = ∆γi + di(αβ, γ)

where Eγt = γ. Hence the dynamics follows:

log yi,t+1 = consti+ln di(αβ, γ)+α
∑
j

ωij log yj,t−α
∑
j

ωij log(∆γj,t+dj(αβ, γ))

Proof. See Appendix.
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One of the features of static models such as Huremovic and Vega-Redondo
(2016) or Acemoglu et al. (2016) is that in a Cobb Douglas environment
preference (more in general: demand) shocks diffuse downstream. From the
dynamics above we can see that, contrary to the static model, here, despite
the Cobb-Douglas assumption, preference shocks diffuse also downstream.
This happens because when a positive taste shock hits any good j then
prices adjust. In particular the price of j increases and so firm i is able to
buy less of it, so it will have a (relative) negative impact on its production.
There is also a direct effect hitting all firms if shocks are correlated over
time: the anticipation of a future higher demand drives the sectors whose
demand depend more on the relatively more preferred good to increase their
production. Instead, when shocks are i.i.d, the realization of the shock does
not give any information on the future, hence the only impact is downstream.
Summing up: the impact of realized preference shocks acts downstream, while
the impact of anticipated shocks acts both upstream and downstream.

To understand better this behaviour, consider the case in which ∆γı̂ =
−∆γ̂ = ε, and all the other components are constant. Then:

log yt̂+1
i = −αωîı log

(
1 +

ε

dı̂

)
− αωî log

(
1− ε

d̂

)

∼ αε

(
ωî
d̂
− ωîı
dı̂

)
In this case we can see that the output of sector i increases if the good

less preferred because of the shock (and hence costs less) is more important
as an input than the good which is more preferred (and so costs more).

2.5 Welfare impact of shocks

In this section, I investigate the welfare impact of a productivity and a pref-
erence shock. As anticipated, productivity shocks behave in a way much
analogous to the static case, while preference shocks do not. Temporary and
permanent shocks behave alike.

2.5.1 Productivity shocks

In this section I investigate productivity shocks.

Definition 2.5.1 (Productivity shocks). In the following, by a permanent
shock at node ı̂ at time t̂ I define an unanticipated change in parameters
such that lnAı̂,t → lnA′ı̂,t, for all t ≥ t̂, and lnA′i,t = lnAi,t for all i 6= ı̂
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and for all t. By a temporary shock I define an unanticipated change in
parameters such that lnAı̂,t̂ → lnA′

ı̂,t̂
, and lnA′i,t = lnAi,t for all i 6= ı̂ and

for all t 6= t̂.

Proposition 9. Consider a permanent shock hitting node ı̂. The conse-
quent impact for the consumer is:

lim
∆ lnAı̂→0

∆ lnU

∆ lnAı̂
= β t̂vı̂(αβ) (2.1)

Consider a temporary shock hitting node ı̂. The consequent impact for
the consumer is:

lim
∆ lnAı̂→0

∆ lnU

∆ lnAı̂
= β t̂(1− β)vı̂(αβ) (2.2)

This result is an analogous of the well known Hulten Theorem: the im-
pact of the shock in (log) utility is (proportional to) the sales share of the
sector hit. Moreover, the dynamics of shocks is linear, so the impact of the
realization of the stochastic productivity is identical to a variation in the
parameter in a version without uncertainty. This feature depends heavily
from the Cobb-Douglas technology assumption, and we do not expect it to
be generalizable.

Nevertheless, there are significant differences with Acemoglu et al. (2012):
longer paths are more heavily discounted, at a rate αβ rather than β. This
happens because in this model the impact of the shock accrues over time,
hence the consumer will discount impacts that are further in the future with
its intertemporal discount factor. This can result in changes in the impor-
tance of nodes, as in the following example.

Consider the following network, on n (even) nodes:

1

2 3

︸ ︷︷ ︸
(n−3)/2

︸ ︷︷ ︸
(n−3)/2

Centralities:

d1 =
1

n
+ βα

2

n
+ β2α2n− 3

n

d2 = 1/n+ βα
n− 3

2n

(2.3)

(2.4)
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2.5. Welfare impact of shocks 85

If βα > 1/2 then in the static model a consumer prefers a shock to 2
rather than 1. In the dynamic model instead, the loss in utility are:

∆U1 =ε+ βε
2α
n + β2εα

2 n−3
n

∆U2 =ε+ βεα
n−3
2n

(2.5)

(2.6)

and, e.g. if n = 6, α = 0.6, β = 0.7, nodes 2 and 3 are more important than
node 1 in the dynamic version.

Another feature to be noted is that permanent and temporary shocks
behave very much alike. This is due to the fact that permanent shocks
converge to a different steady state, but the convergence process to the new
steady state is very similar to the convergence back to the old steady state
of a temporary shock.

Short run and long run

A possible interpretation of the Hulten-like result above is that, once we know
the relative share of revenues, the specific network structure is irrelevant
to the impact of the diffusion. In a dynamic setting, though, the same
total impact can be achieved in very different ways: there can be shocks
whose impact is very strong in the time periods immediately following the
realization, but dies out quicly, and there can be shocks whose impact is
mild, but diffuses a lot through the network, thereby achieving a high total
impact over time nonetheless. The following example is meant to illustrate
such behavior.

Example Consider the following two production networks: a circle with n
nodes and a star with m leaves. In both cases, consider a temporary shock
to node 1.

1

︸ ︷︷ ︸
m

1 2

3

• a shock on node 1 in the star network exhausts after 1 period: impacts
more in the short run;
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86 Chapter 2. Dynamic diffusion in production networks

• a shock on node 1 in the circle remains active forever: most important
in the long run.

In particular, the welfare impacts are: 1+αβm
m+1

and 1
n(1−αβ)

in the second.
Parameters can be choosed such that the cumulative impacts are the same,
despite the two very different structures.

2.5.2 Preference shocks

Definition 2.5.2 (Preference shocks). In the following, by a permanent
shock at node ı̂, ̂ at time t̂ I define an unanticipated change in parameters
such that γ′ı̂,t − γı̂,t = −(γ′̂,t − γ̂,t) > 0, for all t ≥ t̂, and γ′i,t = γi,t for all
i 6= ı̂ and for all t. By a temporary shock I define an unanticipated change
in parameters such that γ′

ı̂,t̂
− γı̂,t̂ = −(γ′

̂,t̂
− γ̂,t̂) > 0, and γ′i,t = γi,t for all

i 6= ı̂ and for all t 6= t̂.

The next proposition describes the welfare impact of preference shocks.

Proposition 10. Following a permanent shock to γ at time t̂, the welfare
impact is:

lim
∆γı̂,t̂→0

∆U

∆γı̂,t̂
= β t̂(ln cı̂,t̂ − ln ĉ,t̂)

Following a transitory shock to γ at time t̂, the welfare impact is:

lim
γı̂,t̂→0

∆U

∆γı̂,t̂
= (1− β)β t̂(ln cı̂,t̂ − ln ĉ,t̂)

Proof. See Appendix.

Again, we see that transitory and permanent shocks behave in a similar
way. And again, shocks with a very similar cumulative impact can differ
greatly in the pattern of diffusion. Indeed, in the proof of the proposition we
get the following expression:

∆U temp = −
∑
j

(vj − γj) ln

(
∆γj
vj

+ 1

)
︸ ︷︷ ︸

diffusion term
as in productivity shocks

periods t ≥ 1

∆
∑

γi ln γi +
∑

γ′i ln

(
∆γi
vi

+ 1

)
︸ ︷︷ ︸

Direct impact trough revenues
specific to preferences shocks

period t = t̂
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2.6. Time to recovery 87

so we can see that the cumulative impact is the sum of two terms: one,
labeled diffusion term above, is the analogous of productivity shocks: the
variation in prices creates a chain reaction that affects all reached sectors
with the appropriate lag. More interesting is the impact at period t̂: this
term is due to the adjustment of prices due to produced quantities being
pre-determined. This is specific to the preference shock case: the price ad-
justment in the case of productivity shocks do not impact welfare.

Moreover, again as with productivity shocks, we see that once we know
consumption the global impact does not depend on the network anymore.
However, if we decompose the impact into a short and a long run impact, we
see that centrality is an important modulation factor. Interestingly, the effect
of centrality here is the reverse than with productivity shocks: very central
nodes will have a small variation in prices, hence have a small utility impact,
while nodes with a very low centrality will have a high impact because their
prices will be more volatile.

2.6 Time to recovery

One issue of great practical importance about the impact of shocks is how
much time does the economy take to absorb it and reach a new steady state
(possibly identical to the one it started from). This is what in the following
I call recovery or convergence time. It is a quantity of great interest to
policy makers or stakeholders interested in predicting economic variables.
One technical issue is that in a smooth equilibrium model as the one I am
analyzing, shocks never totally die out. Hence we define recovery time as the
time the economy takes to arrive ε-close to the steady state, as made precise
in the following definition.

Definition 2.6.1 (Recovery time). Given a shock to node k of magnitude
∆ lnAk = 1 and a bound ε, define the time to recovery of node i as the
smallest time after which the output of node i differs less than ε from the
new steady state. In formulas:

CTki(ε) = min{t : | ln yt′i − ln ySSi |< ε,∀t′ ≥ t}
Consider a shock, possibly to multiple sectors, satisfying the normaliza-

tion ‖lnA‖2 = 1. A global convergence time, independent of source and end
node is:

CT2(ε) = min{t : ‖ ln yt
′ − ln ySS‖2< ε,∀t′ ≥ t}

The particularly simple dynamics of the model allows to analyze the re-
covery time in detail. Indeed, since Ω is row stochastic, it can be seen as
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88 Chapter 2. Dynamic diffusion in production networks

the transition matrix of a Markov chain, and we can apply the rich theory
of mixing times of Markov chains to the task of bounding the recovery time.
In order to do this, I maintain throughout the section two assumptions:

Strongly connected network Assume that the production network is strongly
connected, meaning that for every pair of nodes i and j there exist a
directed path i1, . . . , ik such that i1 = i and ik = j.

Aperiodic network The minimum common denominator of the length of
all cycles is 1.

The first assumption assures that the network cannot be split into sep-
arate classes that do not influence each other. If there is a group of sectors
that sell output only to themselves a shock hitting one of them (directly or
following diffusion) can be analyzed inside the group as a shock on a reduced
production network formed just by those sectors, so this is without loss of
generality. In particular, rules out sectors that sell only to consumers (i.e.
they are not connected to other sectors in the production network). If such
a sector exist, a shock to it would just impact consumers and its effect would
disappear at the next time period (remember that labor supply is inelastic),
so it represents a rather non interesting case.

The second assumption assures that the diffusion of shocks does not fea-
ture cycles in such a way that the performance of nodes follows a

In the following, I present two simple results that provide bounds on the
convergence time: the first is a global bound that has the advantage of using
rather few assumptions, while the second is a sector specific bound, but has a
limitation with respect to the first: it requires the Ω matrix to be reversible.

Eigenvector centrality The stochastic process for the difference of output
from the steady state is defined by the iteration of a Markov chain: ∆yt =
αtΩt∆ lnA0 . Since we assume the matrix to be irreducible and aperiodic
the convergence theorem guarantees that the chain converges to the Perron
projection of the matrix Ω, that is the matrix with on the rows the leading
eigenvalue, which is also the stationary distribution. In formulas:

Ωt
ki → πi

where π is the vector such that π′Ω = π′. Since here Ω defines a network,
π is also the (left) eigenvector centrality. The previous discussion shows
that in the context of this model eigenvector centrality has the additional
interpretation of representing the flow of revenues from nodes that are very
far in the production network. Another interpretation can be the vector of
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2.6. Time to recovery 89

revenues that results in the limit as α goes to 1, and so the importance of
firms is given by purely network effects.

We note an interesting fact: the time of convergence is connected to
eigenvector centrality, while the cumulative impact is connected to Bonacich
centrality. These two measures are usually very correlated, but in this context
there is an important difference: eigenvector centrality depends only on the
technology parameters, while Bonacich centrality crucially depends also on
the preference parameters of the consumer.

Reversibility An assumption that will be needed for some result in the
following is reversibility. Consider Ω and π as above. Define Ω∗ij = Ωji

πj
πi

, the
reversibilization of Ω. A chain is called reversible if Ω∗ = Ω. These concepts
are well known in the literature on Markov chains.10 In this context, following
the interpretation of eigenvector centrality as the vector of revenues in an
economy where the share of labor goes to zero, reversibility asks that in the
same limit the flow of funds from sector i to j be the same as the flow from
j to i. This is a rather strong assumption in our context, as it assumes that
each link is reciprocal (Ωij and Ωji have to be both positive at the same time).
Unfortunately the sector-specific result relies on this assumption. That is the
reason why I present results for global bounds, which are weaker but do not
require reversibility.

2.6.1 Global bound

Adapting corollary 2.14 of Montenegro et al. (2006), we get:

Proposition 11. Assume Ω is strongly connected and aperiodic. Then:

CT2(ε) ≤ max

{⌈
1

1− ‖Ω∗‖
ln

1

εmini
√
πi

⌉
,

⌈
ln ε+1

ε

ln 1/α

⌉}
where Ω∗ij = Ωji

πj
πi

is the reversibilization of Ω.

The threshold is:

1. decreasing in ε;

2. increasing (weakly) in α;

3. increasing (weakly) in ‖Ω∗ij‖.
10In the context of Markov chains, this matrix represents the chain that would result

if time would go from the future to the past: i.e., the probability of observing first i and
then j is the same as the probability of observing first j and then i.
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90 Chapter 2. Dynamic diffusion in production networks

Property 1 is trivial. The second tells us that the more intermediate
inputs are important, the longer the recovery time. This is because firms
will rely more on produced goods, which are affected by the shock and its
propagation, rather than labor (which is not affected by the shock). The
third is harder to interpret in general. If Ω is reversible, though, it can be
shown that ‖Ω∗ij‖ = λ2, the second largest eigenvalue of Ω. Under some
specific network formation models, in which nodes are partitioned in groups
identified by some exogenous characteristics, this has been shown to represent
a measure of homophily, the tendence of nodes of different groups to be
connected together (Golub and Jackson (2012)) or, equivalently, a measure
of how strong is the community structure of the network. This is out of
this model, but a very interesting empirical as well as theoretical question:
is there a community structure in the sectors of an economy? this could
happen if for example more productive sectors tended to be comparatively
have more exchanges among themselves than with others.

2.6.2 Sector-specific bound

Next, we look for bounds on the convergence time that are sector dependent,
to answer the question: which sectors recover first in case of a disruption?
which recover later? Unfortunately, since our transition matrix is only sub-
stochastic, we can only obtain an upper bound on the convergence time, as
the following proposition shows.

Proposition 12 (Sector specific convergence time). Assume Ω is reversible,
aperiodic and irreducible. Then:

CTki(ε) ≤ max




ln
(√

πi
επk

)
ln 1/λ2

 ,
⌈

ln ε+πk
ε

ln 1/α

⌉
where λ2 is the second largest eigenvalue in absolute value of Ω and πi is the
eigenvector centrality of node i.

The threshold is:

1. increasing (weakly) in λ2;

2. (in general) u shaped in πk;

3. decreasing (weakly) in πi
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2.6. Time to recovery 91

The first property is just the adaptation of the result of the previous
section to the reversible case, as explained before. The following are more
interesting: they suggest that a shock to a more eigenvector central node will
take more time to be absorbed, but more central nodes will go back to steady
state quicklier than others. To quantify the heterogeneity across nodes, note
that variation in eigenvector centrality yields a difference in (the upper bound
on) convergence time that is proportional to the second eigenvalue/spectral
gap: fix the centrality of the source, if the centrality of the objective is
doubled, π′k = 2πk, then the convergence time is increased by CT ′ki−CTki =
1/2 ln 2/ ln(1/λ2), which can be arbitrarily high if λ2 is close to 1, or very
small if λ2 is far from 1.

Figure 2.1: The sector-specific upper bound on convergence time as a func-
tion of centrality of source node πk, for fixed centrality of end node πi.

2.6.3 Heterogeneous primary factor share

The bounds in the previous sections are likely to be strongly driven by α.
For this reason in this section we analyze the time of recovery in the case in
which the primary factor shares are heterogeneous. The precise meaning of
which is the following.

Model with heterogeneous primary factor shares By the model with
heterogeneous primary factor share, I mean the same model used until now,
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92 Chapter 2. Dynamic diffusion in production networks

Figure 2.2: The sector-specific upper bound on convergence time as a func-
tion of centrality of end node πi, for fixed centrality of source node πk.

with one modification, that is the technology is defined as:

yi,t+1 = Ai,t+1

N∏
j=1

(zij,t)
ωij l1−αii,t

where
∑

j ωij = αi. That is, the primary factors (labor) in the model are het-
erogeneous. All expressions and dynamics derived in the special case extend
to this case, with the only modification that the matrix αΩ is replaced by Ω.
All the same proofs and propositions go through with obvious modifications.
I just report the dynamics of the shock, since is our current object of interest:

ln yi,t+1 = lnAi,t+1 + const+
∑
j

ωij ln yj,t

which implies a deviation from the steady state of:

∆ ln yi,t+1 =
∑
j

ωij∆ ln yj,t

for periods following a productivity shock. Hence, the dynamics has a struc-
ture very similar to the one studied until now. In this section we exploit the
fact that, if Ω is substochastic, nonnegative and irreducible then its eigenvalue
maximum in absolute value is real, simple and has a positive left eigenvector
(called Perron vector), λ1π

L = πLΩ. Then:

P = λ−1
1 D−1Ω′D
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2.7. Long run properties 93

is row stochastic, where D = diag(πLi ) (see proof of the proposition). In this
section we differentiate the left and right Perron vectors πL and πR because
they are different and we will need them both.

Assumption: generalized reversibility The role of reversibility in the
substochastic case is played by the condition πRi Ωjiπ

L
j = πRj π

L
i Ωij. I will call

a matrix Ω reversible if it satisfies it. I could derive a global bound without
assuming it (see appendix), but since I think the sector-specific bound is
more interesting I show the sector specific bound here.

Proposition 13. Assume Ω is aperiodic, strongly connected and reversible.
Then:

CTki(ε) ≤ max




ln

(
1
ε

√
πRi π

L
i

πRk π
L
k

)
lnλ1/|λ2|

 ,


ln
(
πLi
πLk

ε+πRk π
L
k

ε

)
ln 1/λ1




where λ1 and λ2 are respectively the first and second largest eigenvalues in
absolute value of Ω, πL and πR are the left and right eigenvector centralities.

The intuitions are very similar to the homogeneous case. λ1 plays the
role of α, and is a measure of typical out-degree: it is a classical result that∑
αk/N ≤ λ1 ≤ maxk αk. |λ2|/λ1 is still a measure of community structure,

normalized by the typical degree.
Centralities role is more complex here. In most terms, we could consider

as the ”relevant” centrality measure πiLπ
R
i , which ranks nodes according to

the fact that they have both out and in-centralities high. This reasoning fails
due to the term

2.7 Long run properties

In this section, I assume the (log) productivity shocks are i.i.d. and have
mean 0. Then, because of the dynamics described above, (log) sectoral out-
put follows a VAR(1), and analyze the stationary, or long run, properties of
the output process, comparing with the static benchmark. To perform this
analysis, we need the technical assumption that time starts at −∞. This
is not possible in the model analyzed, so we interpret this as a synonym of
saying that we analyze the long run behavior of the model.

The aim is to show that the dynamic model generates sistematically less
comovement. Let us first see an extreme example.
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94 Chapter 2. Dynamic diffusion in production networks

2.7.1 Example

If

Ω =

 0 1 0
0 0 1
1 0 0


we have a cycle network. For any cycle network (indeed, any network whose
adjacency matrix is orthogonal), the covariance in the dynamic model is a
multiple of identity, while in the static model: in a connected network all
nodes are correlated.

Static 1 α(1+α+α2)
1+α2+α4

α(1+α+α2)
1+α2+α4

α(1+α+α2)
1+α2+α4 1 α(1+α+α2)

1+α2+α4

α(1+α+α2)
1+α2+α4

α(1+α+α2)
1+α2+α4 1


Dynamic 1 0 0

0 1 0
0 0 1


The reason is best understood by looking at the elementwise expressions:

Covstat(i, j) =
∑
k

mikmjk

so this covariance between sectors i, j is high when there are sectors k that
are very (out)-connected to both i and j, and other sectors that are less
connected (there needs to be asymmetry).

The dynamic covariance instead:

Covdyn(i, j) =
∑
n

α2n
∑
k

ω
(n)
ik ω

(n)
jk

is high if there are sectors that are connected to both i and j, at the same
distance. Otherwise shocks to k diffuse in the network but hit i and j at
different times, causing less covariation.

We can sum up the results in the following proposition.

Proposition 14. Assume the lnAt are a white noise process with covariance
matrix I. Then for each i and j Covdyn(i, j) ≤ Covstat(i, j).

2.8 Conclusion

In conclusion, if we model shocks as truly stochastic events and look at a
model where they gradually spread across the network, different mechanisms
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2.8. Conclusion 95

for diffusion are at play for preference shocks, while the diffusion of produc-
tivity shocks follows the same principles. Moreover, it is possible to derive
upper bounds on the recovery time of the economy after a shock, and these
apply to both productivity and preference shocks, in both the temporary and
permanent case.
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2.A Appendix

2.A.1 Proof of Proposition 7

To avoid clutter, I omit the explicit dependence on the history ht. All vari-
ables are to be intended history - dependent.

The firms problems’ are essentially static. FOCs:

ztji : αωij
∑
ht+1|ht

pt+1
i yt+1

i = ptjz
t
ji

lti : (1− α)
∑
ht+1|ht

pt+1
i yt+1

i = wtlti

The transversality is not needed for firms, because it’s a sequence of static
problems. (Or, equivalently said, the transversality is trivially satisfied.)

Consumer FOCs are:
βtπ(ht)γi = λptic

t
i

summing over goods and histories and using the budget constraint we get:

1

1− β
= λ

[∑
t

wt +
∑
i

p0
iωi +

∑
ht

fht

]
Let us write, for brevity, W for

∑
tw

t, E for
∑

i p
0
iωi and f for

∑
ht fht . From

the expression above since in the homogeneous case U = λ(W + E + f), we
get that in equilibrium U = 1

1−β . Then, substitute the multiplier above into
the demand:

cti = βt(1− β)
γi
pti

(W + E + f)π(ht)

Goods market clearing yields (for t > 0):

α
∑
ht+1|ht

∑
j∈N in

i

ωjis
t+1
j + βt(1− β)γi(W + E)π(ht) = sti (2.7)

Now, consider goods market clearing. We denote for simplicity the rev-
enues pi,tyi,t as si,t.

sti = π(ht)βt(1− β)(W + E + f)γti + α
∑
ht+1|ht

∑
j∈N in

i

ωjis
t+1
j

Normalize by the fraction of wealth allocated to time t and call dti =
sti

βtπ(ht)(1−β)(W+E+f)

the ”per-period” (revenue based) Domar weight:

dti =
sti

βtπ(ht)(1− β)(W + E + f)
= γi+α

∑
ht+1|ht

∑
j∈N in

i

ωji
βt+1π(ht+1)(1− β)(W + E + f)

βtπ(ht)(1− β)(W + E + Pro)
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×
st+1
j

βt+1π(ht+1)(1− β)(W + E + f)

= γi + αβ
∑
ht+1|ht

∑
j∈N in

i

ωjiπ(ht+1|ht)dt+1
j

So d follows this difference equation:

dti = γi + αβE

 ∑
j∈N in

i

ωjid
t+1
j |ht


iterating forward, since the expectation is bounded (because the state space
is finite) and all eigenvalues of Ω are smaller than 1 we obtain that:

dt = (I − αβΩ′)−1γ = d∗

are constant over time.

Wage

The amount spent by consumer each period is π(ht)βt(1 − β), normalizing
total wealth (W + E + f) = 1. This, by market clearing, has to come from
the wage and the profit of the firms.

π(ht)βt(1−β) =
∑
i

πi,t+w(ht) =
∑
i

(
pi,tyi,t −

∑
j

pj,tzji,t − w(ht)li,t

)
+w(ht)

note that profits are not zero because of two reasons: these are the realized,
not expected, profits, and moreover the profit is computed using contempo-
raneous values of sales and purchases. These are not related by optimization,
since purchases at time t will generate revenues next period, hence there is
no reason to think that profits will be zero.

Note also that:

π(ht)βt(1− β) =
∑
i

(
pi,tyi,t −

∑
j

pj,tzji,t

)
so first we see that wage payments and earnings (of course) cancel out. Hence
the consumer expenditure comes from the value added on intermediate in-
puts.

Moreover, using the FOCs:

π(ht)βt(1−β) = π(ht)βt(1−β)
∑
i

(
di − α

∑
j

ωijβdi − (1− α)βdi

)
+w(ht)
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π(ht)βt(1− β) = π(ht)βt(1− β)
∑
i

di (1− β) + w(ht)

hence:

w(ht) = π(ht)βt(1− β)
β(1− α)

1− αβ
and so:

fi,t = π(ht)βt(1− β)(1− β)di

where we can see that the profit is positive because of the intertemporal
dimension: the value of purchases equals the discounted value of revenues
tomorrow, which, being discounted, is smaller than the revenues accrued
today, even if Cobb-Douglas technology forces everything else to be constant.
Moreover, as expected, the profit of each firm is proportional to its dimension,
measured by revenues.

Moreover, call e = 1−αβ
β(1−α)

, we get that consumer expenses are: GDPi,t =∑
pici = w(ht)e = π(ht)βt(1 − β), total profit Prot = w(ht)(e − 1), and∑
pici = e

e−1
Prot, so that wage, profit, and GDP are all proportional.

In particular by the calculations above di =
pi,tyi,t

π(ht)βt(1−β)
=

pi,tyi,t
GDPt

Dynamics

Now, by FOCs input choices are:

zt−1
ji = αωij

∑
ht+1|ht d

∗
iβ

t+1π(ht+1)

pt−1
j

= αωij
d∗iβ

t+1π(ht)

pt−1
j

e

and in the same way:

lt−1
i = (1− α)

∑
ht+1|ht d

∗
iβ

t+1π(ht+1)

βtπ(ht)
= (1− α)d∗i

βπ(ht)

π(ht)
= (1− α)βd∗i e

So, output follows:

ln yt+1
i = lnAt+1 +

∑
j

αωij ln ztji + (1− α) ln lti =

lnAt+1+
∑
j

αωij lnαωij−
∑
j

αωij ln ptj+α ln βtπ(ht)+ln β+ln d∗i+(1−α) ln(1−α)+ln e =

lnAt+1+
∑
j

αωij lnαωij+(1−α) ln(1−α)−
∑
j

αωij ln d∗j+
∑
j

αωij ln ytj+ln β+ln d∗i+ln e =

and finally:

ln yt+1
i = lnAt+1

i + Ci +
∑
j

αωij ln ytj
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where Ci = Ci(γ, α,Ω, β) = ci−
∑

j αωij ln(d∗j) + ln d∗i + ln e, and ci = ln β +
(1− α) ln(1− α) +

∑
j αωij ln(αωij). Iterating, we can get the relationships

between any two outputs at different time periods.

2.A.2 Proof of Proposition 9

We first need a lemma.

Lemma 4. Be (ak)k∈N a sequence of nonnegative real numbers, and be ρ
and σ real numbers in the interval (0,1). If

∑∞
k=0 ak converges, then:

∞∑
k

ρk
k∑
n

σnak−n =
1

1− ρσ

∞∑
k

ρkak

∞∑
k

ρk
k∑
n

σnan =
1

1− ρ

∞∑
k

ρkσkak

The flow utility of the consumer is, because of homotheticity of the utility:

U(ct) =
∑
i

γi ln c
t
i = − lnP t + lnwt

hence:

U(ct) = −
∑
i

γi ln p
t
i+lnwt = −

∑
i

γi ln
pti

βtπ(ht)e
+ln

(
wt

βtπ(ht)e

)
= −

∑
i

γi lnP ti

Then it is:

U t = αt
∑
j

gtji logP0
j +

t−1∑
k=0

αk
∑
j

ωkij

(
− logAt−kj − cj

)
hence:

U =
∑
t

βtU t =
∑
t

βt

(
αt
∑
j

gtji logP0
j +

t−1∑
k=0

αk
∑
j

ωkij

(
− logAt−kj − cj

))

Consider a shock at 0. The impact on utility is:

∆U =
∑
t≥t̂

βt∆Ut =
∑
t

βt
∑
j

γj(c
shock to î
j,t − cj,t) =
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∑
t≥t̂

βt
∑
j

γj(ln y
shock to î
j,t − ln yj,t) =

∑
t≥t̂

(βα)t
∑
j

ω
(k)

jî
γj∆ lnAî

= β t̂~e′
î
(I − αβΩ′)−1γ∆ lnAî

because ln cshock to î
j,t − ln cj,t = −(ln pshock to î

j,t − ln pj,t) = ln yshock to î
j,t − ln yj,t.

So
∆U/U

∆ lnAı̂
= (1− β)β t̂vı̂(αβ) =

pt̂,̂ıyt̂,̂ı
U

lim
∆ lnAı̂→0

∆ lnU

∆ lnAı̂
= lim

∆ lnAı̂→0

∆U/U

∆ lnAı̂
= (1− β)vı̂(αβ)

Consider now the case of a permanent shock

∆U =
∑
t≥t̂

βt
∑
j

γj(ln y
shock to î
j,t − ln yj,t) =

∑
k=0

(β)k
∑
j

k∑
h=0

αhg
(h)

îj
γj∆ lnAî =

1

1− β
∑
h=0

(αβ)hω
(h)
jı̂ γj∆ lnAî

using the lemma 4.
Remember that utility U is exactly 1

1−β . Hence we get another analogous
to Hulten:

∆U/U

∆ lnAı̂
= vı̂(αβ) = pt̂,̂ıyt̂,̂ı

hence, taking the limit:

lim
∆ lnAı̂→0

∆U/U

∆ lnAı̂
= lim

∆ lnAı̂→0

∆ lnU

∆ lnAı̂
= vı̂(αβ)

Proof of Proposition 8

Consumer demand is:

cti = βt(1− β)
γi,t
pti

(W + E)π(ht)

FOCs:
ztji : αωij

∑
ht+1|ht

pt+1
i yt+1

i = ptjz
t
ji

lti : (1− α)
∑
ht+1|ht

pt+1
i yt+1

i = wtlti
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Hence market clearing:

ptiyi,t = βt(1− β)γi,t(W + E)π(ht) + α
∑
ht+1|ht

∑
j

ωjis
t+1
j

Normalize and get:

dti =
sti

βt(1− β)π(ht)(W + E)
= γi,t+α

∑
ht+1|ht

∑
j∈N in

i

ωji
βt+1π(ht+1)

βtπ(ht)

st+1
j

βt+1π(ht+1)(1− β)(W + E))

= γi,t + αβ
∑
ht+1|ht

∑
j

ωjiπ(ht+1|ht)dt+1
j

So d follows this difference equation:

dti = γi,t + αβE

[∑
j

ωjid
t+1
j |ht

]

and iterating forward and passing to the limit we get:

dti = γi,t +
∑
k

αkβk
∑
j

ω
(k)
ji E

[
γt+kj |ht

]

zji,t = αβωij
Etdi,t+1

dj,t
yj,t

The wage is

wt = (1− α)βEt
∑

dt+1
i =

(1− α)β

1− αβ
,

hence:

lti = (1− α)β
Etdi,t+1

wt
= (1− αβ)Etdi,t+1

so profits are:
Proi,t = di,t − βEtdi,t+1

General dynamics:

log yi,t+1 = const+α
∑
j

ωij log yj,t−α
∑
j

ωij log(γj,t+
∑
k

αkβk
∑
h∈N in

j

g
(k)
jh E

[
γt+kh |h

t
]
)+

log(
∑
k

αkβk
∑
j∈N in

i

g
(k)
ij E

[
γt+1+k
j |ht

]
)

101



102 Chapter 2. Dynamic diffusion in production networks

or

ln yi,t+1 = const+ α
∑
j

ωij log yj,t − α
∑
j

ωij ln di,t + lnEtdi,t+1

that for prices (in GDP units) yields:

ln pi,t+1 = const+ α
∑
j

ωij log pj,t + lnEtdi,t+1 − ln di,t+1

i.i.d. case

If γs are i.i.d.:

dti = γi,t +
∑
k=1

αkβk
∑
j∈N in

i

g
(k)
ij E [γ] = ∆γi,t + vi(αβ, γ)

Then plug this into the FOCS:

zji,t = αωij

∑
ht+1|ht p

t+1
i yt+1

i

pj,t
= αβωij

vi(αβ, γ)

∆γj,t + vj(αβ, γ)
yj,t

The wage is the same.

lti = (1− α)

∑
ht+1|ht p

t+1
i yt+1

i

wt
= (1− α)βvi(αβ, γ)

So the quantity dynamics becomes:

log yi,t+1 = ci + ln e+ ln vi + α
∑
j

ωij log yj,t − α
∑
j

ωij log(∆γj,t + vj)

where ci is defined as above. This captures the idea that when a positive
taste shock hits good j then its price increases and so firm i is able to buy
less of it, so it will have a (relative) negative impact on its production.

Dynamics of prices:

lnPi,t+1 = ln(∆γi,t+1 + vi) + α
∑
j

ωij lnPj,t − ci − ln e− ln vi

This captures the idea that current prices are directly affected by the real-
ization of γ of the corresponding sector.

profits:

Proi,t = di,t − βEtdi,t+1 = ∆γi,t + (1− β)vi(αβ, γ)
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2.A.3 Proof of Proposition 10

The expected utility is:

U =
∑
ht

βtπ(ht)

(∑
i

γti ln γti −
∑
i

γti lnPi,t + ci

)
Now assume to fix ideas that the only stochastic state is 1. All the others
are fixed to the average γ. The utility once at 1 has been realized state γ′ is:

U =
∑
t>1

βtπ(ht)

(∑
i

γi ln γi −
∑
i

γi lnPi,t + ci

)
+
∑
i

γ′i ln γ
′
i−
∑
i

γ′i lnPi,1+ci

Transitory preference shock The impact of a realization γ′ at time t is:

∆U = −
∑
t>1

βtπ(ht)γi
(
lnP ′i,t − lnPi,t

)
+
∑
i

γ′i ln γ
′
i−
∑
i

γi ln γi−
∑
i

(
γ′i lnP ′i,1 − γi lnPi,1

)
Now:

∆ lnPi,t = αt−1
∑
j

ωij∆ lnPj,1

lnP ′i,1 = ln(∆γi,1+vi)+α
∑
j

ωijPj,0−ci−ln e−ln vi = ln

(
∆γi,1
vi

+ 1

)
−ci−ln e =

ln

(
∆γi,1
vi

+ 1

)
+ lnPi,1

so:

∆ lnPi,1 = ln

(
∆γi,1
vi

+ 1

)
hence:

∆Ut>1 = −
∑
t

βt∆ lnPi,t = −
∑
t

γiα
t−1βt−1

∑
j

g
(t)
ji ∆ lnPj,1 = −

∑
j

(vj−γj) ln

(
∆γj
vj

+ 1

)

∼ −
∑
j

(vj − γj)
∆γj
vj

= −
∑
j

∆γj −
∑
j

γj∆γj =
∑
j

γj∆γj
vj

Instead the terms of the first period can be rewritten as:

∆
∑

γi(ln γi − ln pi,1) =

∆
∑

γi ln γi−
∑
i

(
γ′i lnP ′i,1 − γi lnPi,1

)
= +∆

∑
γi ln γi−

∑
γ′i∆Pi−

∑
∆γi lnPi
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so:

∆U = −
∑
j

(vj − γj) ln

(
∆γj
vj

+ 1

)
−
∑
j

γj ln

(
∆γj
vj

+ 1

)
+

∆
∑

γi ln γi −
∑

∆γi lnPi
∑

∆γi ln

(
∆γi
vi

+ 1

)
= −

∑
j

vj ln

(
∆γj
vj

+ 1

)
+∆

∑
γi ln γi−

∑
∆γi lnPi+

∑
∆γi ln

(
∆γi
vi

+ 1

)
Now note that: ∑

∆γi ln

(
∆γi
vi

+ 1

)
∼
∑

∆γ2
i /vi

is second order in the size of the shock, and always at the first order

−
∑
j

vj ln

(
∆γj
vj

+ 1

)
∼ −

∑
j

∆γj = 0

So at the first order:

∆U = −
∑

∆γi lnPi + ∆
∑

γi ln γi

= −
∑

∆γi lnPi +
∑

∆γi ln γi∑
∆γi ln ci

Permanent preference shock Note that the revenues have a direct im-
pact on the price dynamics only at the moment of the impact. Beyond that,
things are equivalent to a productivity shock, of size modified according to
centrality. So now:

∆U =
∑
t

βt

(
∆
∑

γi ln γi −
∑
i

(
γ′i lnP ′i,t − γi lnPi,t

))
The second part can be rewritten as before

∑
γ′i∆Pi,t +

∑
∆γi lnPi,t, that

is: ∑
γ′iα

t
∑
j

ωtij∆Pj,0 +
∑

∆γiα
t
∑
j

ωtij lnPj,0 + const

Apply lemma 4 to this and get:

1

1− β

(∑
j

vj(αβ, γ
′)∆ lnPj,0 +

∑
j

vj(αβ,∆γ) lnPj,0

)
+ const
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so in total we get:

∆U =
1

1− β
∆
∑

γi ln γi−
1

1− β

(∑
j

vj(αβ, γ
′)∆ lnPj,0 +

∑
j

vj(αβ,∆γ) lnPj,0

)

=
1

1− β
∆
∑

γi ln γi−
1

1− β

(∑
j

vj(αβ, γ
′) ln

(
vj(αβ,∆γ)

vj(αβ, γ)
+ 1

)
+
∑
j

vj(αβ,∆γ) lnPj,0

)
Also in this case, at the first order

∑
j vj(αβ, γ

′)∆ lnPj,0 =
∑

j vj(αβ, γ
′)(ln vi(αβ, γ

′)−
ln vi(αβ, γ)) ∼

∑
j vj(αβ, γ

′)
vj(αβ,∆γ)

vj(αβ,γ′)
= 0 (remember that the centrality is a

linear combination of the preference parameters).

2.A.4 Proof of Proposition 14

Assume the autocovariance function of lnA is ΓklnA, and its autocovariance
generating function is G(z) =

∑
ΓklnAz

k. Assume that ΓklnA is absolutely
summable (it is in our case, as the autocovariance generating function of a
white noise is G(z) = I).

ln yt is a filter of lnAt by the filter (I−αL)−1, where L is the lag operator.
Hence its autocovariance generating function is (Hamilton 10.3):

F (z) = (I − αzΩ)−1G(z)(I − αz−1Ω′)−1

From here, we can recover the autocovariance by integrating the spec-
trum: Γkln y =

∫ π
−π F (eiω)dω (recall that F (eiω) is the spectrum of ln y).

By expanding the three series and taking the Cauchy product (all are
absolutely summable) we get:

Fij(z) =
∞∑
n

∑
k

∑
m

n∑
h

(
h∑
l

αlω
(l)
ik z

lαh−lω
(h−l)
jm zl−h

)
Gn−h
km zn−h

Fij(e
iω) =

∞∑
n

∑
k

∑
m

n∑
h

αh

(
h∑
l

ω
(l)
ik ω

(h−l)
jm

)
Gn−h
km eiω(2(l−h)+n)

Now since we assume that the autocovariance is absolutely summable
then the series is finite and each partial sum is dominated by the total sum,
so by the dominated convergence theorem we can exchange series and integral
and then we are left with a combination of integrals of eiω(2(l−h)+n). These
integrals are all zero (integrals of trigonometric functions over multiples of
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the domain) except the ones for 2(l − h) + n = 0, or l = h − n/2, n even,
h ≥ n/2. Hence we can write:

Covdyn(i, j) = Γ0
ln y =

∫ π

−π
F (eiω)dω =

∞∑
n

∑
k

∑
m

n∑
h

αh

(
h∑
l

ω
(l)
ik ω

(h−l)
jm

)
Gn−h
km

∫ π

−π
eiω(2(l−h)+n)dω

∞∑
n even

∑
k

∑
m

n∑
h=n/2

αh
(
ω

(h−n/2)
ik ω

(n/2)
jm

)
Gn−h
km

now we can redefine n as n/2, and h as h− n/2 to get:

Covdyn(i, j) =
∞∑
n

∑
k

∑
m

n∑
h

αh+n
(
ω

(h)
ik ω

(n)
jm

)
Gn−h
km

Now we use the assumption that lnA is a WN(I). In this case the
autocovariance function satisfies Gk = 0 for any k 6= 0, G0 = I. Then the
only term surviving in the expression above is the one with h = n, hence:

Covdyn(i, j) =
∞∑

n even

∑
k

αn
(
ω

(n/2)
ik ω

(n/2)
jk

)
Now compare this to:

Covstatic(i, j) =
∞∑
n

αn
∑
k

n∑
l

ω
(l)
ik ω

(n−l)
jk

In the expression for the dynamic covariance all the terms are zero, moreover
the even terms are ω

(n/2)
ik ω

(n/2)
jk which is just one addend of the corresponding

term in the static expression
∑n

l ω
(l)
ik ω

(n−l)
jk . Hence, the dynamic is smaller

for any i and j.

2.A.5 Proof of Proposition 11

From standard techniques, see e.g. Montenegro et al. (2006) for any irre-
ducible, aperiodic Markov chain with stationary distribution π and transition
matrix Ω:

CTMarkov
2 (ε) ≤

⌈
1

1− ‖Ω∗‖
ln

1

εmini
√
πi

⌉
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These result applied to our setting yield:

CTMarkov
2 (ε) ≤

⌈
1

1− ‖Ω∗‖
ln

1

εmini
√
πi

⌉
here π is the eigenvector centrality.
So, if t > CTMarkov(ε), then:

αtωtki ≤ αt(πk + ε)

In turn, αt(πk + ε) is smaller than ε if and only if t > ln ε
ε+πk

/ lnα, so that:

CT (ε) = max{


ln
(
ε
√

πk
πi

)
lnλ2

 ,
⌈

ln
ε

ε+ πk
/ lnα

⌉
}

2.A.6 Proof of Proposition 12

From Levin and Peres (2017) for any irreducible, aperiodic, reversible Markov
chain :

CTMarkov
ki (ε) ≤


ln
(
ε
√

πk
πi

)
lnλ2


These results applied to our setting yield:

CTMarkov
ki (ε) ≤


ln
(
ε
√

πk
πi

)
lnλ2


So, if t > CTMarkov

ki (ε), then, repeating the reasoning above we get:

CTki(ε) = max{


ln
(
ε
√

πk
πi

)
lnλ2

 ,
⌈

ln
ε

ε+ πk
/ lnα

⌉
}

2.A.7 Proof of Proposition 13

For P defined as in the text:∑
j

Pij = λ−1
1

∑
j

Ωji

πLj
πLi

= λ−1
1

λ1π
L
i

πLi
= 1

107



108 Chapter 2. Dynamic diffusion in production networks

Note that the eigenvalues of P are those of Ω divided by λ1. Our goal is to
find t such that Ωt

ki < ε. But Ωt = λt1DP
tD−1, and the invariant distribution

of P is πRi π
L
i :

∑
i

πRi π
L
i Pij = λ−1

1

∑
i

πRi π
L
i Ωji

πLj
πLi

= λ−1
1

∑
i

πRi Ωjiπ
L
j = λ−1

1 λ1π
R
j π

L
j = πRj π

L
j

Moreover, P is irreducible and aperiodic if and only if Ω is irreducible and
aperiodic, since the powers of Ω are positive whenever the ones of P are.
Hence P t → πR(πL)

ᵀ
.

To proceed further we need P to be reversible, that is:

πRi π
L
i Ωji

πLj
πLi

= πRj π
L
j Ωij

πLi
πLj
⇐⇒ πRi Ωjiπ

L
j = πRj π

L
i Ωij

which is our assumption. So, reasoning as in Proposition 12 we get that for

t high enough P t
ik < πRk π

L
k + ε. So if λt1

πLk
πLi

(πRk π
L
k + ε) < ε then

Ωt
ki = λt1

πLk
πLi
P t
ik < λt1

πLk
πLi

(πRk π
L
k + ε) < ε

so get:

CTki(ε) ≤ max




ln

(
1
ε

√
πRi π

L
i

πRk π
L
k

)
lnλ1/|λ2|

 ,


ln
(
πLi
πLk

ε+πRk π
L
k

ε

)
ln 1/λ1
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Chapter 3

Is segregating anti–vaxxers a
good idea?

This chapter is joint work with Fabrizio Panebianco1 and Paolo Pin2

Some pro-vaccine policies (e.g., compulsory vaccination in public schools)
may have the effect of separating those in favor from those against vaccines,
inducing a segregating effect. We study an SI-type model, with the possibility
of vaccination, where the population is partitioned between pro-vaxxers and
anti-vaxxers. We show that, during the outbreak of a disease, segregating
people against vaccination from the rest of the population decreases the speed
of recovery, may increase the number of cases, and can make the disease
endemic. Then, we include endogenous choices based on the trade-off between
the cost of vaccinating and the risk of getting infected. We show that the
results remain valid under endogenous choices, unless people are very flexible
in determining their pro–vaxxers or anti–vaxxers identity.3

1Department of Economics and Finance, Università Cattolica, Milan, Italy
2Department of Economics and Statistics, Università di Siena, Italy, and IGIER &

Bidsa, Università Bocconi, Milan, Italy
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3.1 Introduction

We model an economy facing the possible outbreak of a disease, for which
a vaccine with temporary efficacy is available. This mimics what happens
every year for seasonal flu, but it could also be the case in the near future
for Covid19.4

Even before Covid19, vaccination has been almost unanimously consid-
ered the most effective public health intervention by the scientific community
(see e.g. Larson et al., 2016 or Trentini et al., 2017). However, in recent years
many people either refuse drastically any vaccination scheme or reduce or
delay the prescribed vaccination. This phenomenon has become more pro-
nounced in the last decades, especially in Western Europe and in the US,5

and many public health organizations have issued public calls to researchers
to enhance the understanding of the phenomenon and its remedies. Even in
the present times of Covid19 epidemic, the opposition to vaccination policies
is alive.6

The focus of this paper is on the effects of containment measures that
aim at reducing contacts between vaccinated and unvaccinated people, and
their interaction with vaccination choices of agents and the dynamics of
anti–vaxxer movements. During the Covid19 outbreak, governments have
implemented very strong and drastic temporary containment and quarantine
policies. However, such stringent policies cannot be permanent measures,
and in normal times the policy makers are able to implement only milder
policies that may segregate people in certain loci of activity. Typical milder
measures of this kind, often implemented in recent years, are limitations for
attending schools. In order to protect the public, in many countries recent
laws forbid enrollment of non vaccinated kids into public schools, and this
is believed to have brought to an increase in enrollment in more tolerant

4 At present, we know that the virus of Covid19 mutates very rapidly (Korber et al.,
2020; Pachetti et al., 2020) and that it seems to be seasonal (Carleton and Meng, 2020).
Scientists and politicians are considering the possibility that for the next year it could
become similar to a seasonal flu that deserves a new vaccine every year: for example, see
this report from April 2020. There is also another reason for which vaccination against
Covid19 may not be permanent: more recent studies like Seow et al. (2020) have shown
that Covid19 antibodies fall rapidly in our body so that it could be the case that people
will need to vaccinate regularly (e.g. every 2 years) against the virus.

5See Larson et al. (2016) for a general and recent cross country comparison. Most
studies are based on the US population: Robison et al. (2012), Smith et al. (2011), Nadeau
et al. (2015) and Phadke et al. (2016) are some of the more recent ones. Funk (2017) focuses
on measles in various European countries. Rey et al. (2018) analyzes the case of France.

6On this, see the recent reports of Johnson et al. (2020), Ball (2020) and Malik et al.
(2020).
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private schools.7,8 On an abstract level, this corresponds to a change in the
homophily of interactions: the policy has a segregating effect, incentivizing
people with anti-vaccination beliefs to interact more together.

First, we consider a mechanical model in which vaccination choices are
exogenous. The policy parameter that the policy-maker can tune is the
segregation between two groups of people: those that are against vaccination
and all the others, which we call for simplicity anti-vaxxers and pro-vaxxers
(or just vaxxers), respectively. The two groups differ in the judgment about
the real cost of vaccination, which is deemed higher by anti-vaxxers. This can
be thought of as a psychological cost, a sheer mistake, or any phenomenon
that may lead to a difference in perceived cost: we remain agnostic on the
cause of it: our aim is to study its consequences. We think of this difference
in the perceived cost as a basic cultural trait, which, as the literature on
cultural transmission, affects the preferences (or beliefs) of agents, who are
still free to choose to vaccinate or not, based on a heterogeneous component
of the cost. This means that an anti-vaxxer in our model may still vaccinate,
if the heterogeneous component of the cost is small enough. Through this, we
mean to capture not the extremists that would never take a vaccine, but the
much more general phenomenon of vaccine hesitancy, which is much more
widespread and, so, potentially much more dangerous (Trentini et al., 2017).

We model the segregation policy as a parameter h ∈ [0, 1], which is the
percentage of contacts that people cannot have with the other group (be-
cause, for example, their kids are not in the same schools, or they cannot
meet in the same job and leisure places). We think h as a number that is far
from one (which would be the case of total segregation). This partial segrega-
tion policy is implemented before the epidemic actually takes place. We show
that the policy may backfire: more segregation may cause the disease to die
out more slowly and cause more infection in the whole population, or even
more infection among vaxxers. In particular, our results suggest care both
to a social planner concerned with total infection in the population and to a
social planner concerned only with infection among the vaxxers. The choice
between the two approaches depends on the attitude toward society we want
to model, and in particular on the specific interpretation of the difference in

7This phenomenon is documented for California by Silverman and Yang (2019). Recent
evidence shows that similar trends happened in Italy and have been considered a cause of
the measles outbreak in Manhattan in April 2019.

8As another example, in light of the policies enforced during the Covid19 crisis, many
companies and other public and private organizations have applied rotation schemes to
limit physical interaction between people (on this, see the recent work by Ely et al., 2020):
it is admissible that a policy maker may want to include unvaccinated people all in the
same group.
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perceived cost, e.g., as a pure bias that the social planner should consider as
such, or as a form of real psychological cost that we may want to factor in
the welfare computation.9 As a consequence of these considerations, we re-
main agnostic on a general welfare criterion and explore instead the physical
outcome of the amount of infection, which in such an environment is likely
to be a prominent, if not the only, element of any welfare analysis.

The reason why an increase in h may generate more infection is that
homophily protects the group with less infected because it decreases the
contacts and so the diffusion of the disease across groups. Which group has
a larger infection rate will in turn depend on initial conditions and on the
difference in vaccination rates between the two groups. If the total number of
agents initially infected is the same across the two groups 10 then homophily
has no effect on total infection. Hence, a planner that cares only about the
infection among vaxxers has no clear choice: she will desire an increase of
h (e.g., in case of an outbreak among anti-vaxxers, but would have opposite
preferences in case of an outbreak among vaxxers).

If, instead, the two groups differ in the number of infected agents, the
effect on total infection depends on the interplay of initial conditions and
vaccinations. If the less vaccinated group happens to have more infections
(because suffered a larger share of the initial outbreak), we know homophily
further increases infections in such group. The crucial observation is that
it increases infections at a disproportionally larger rate than when the more
vaccinated group has more infections. As a result, if the outbreak is among
anti-vaxxers, total infection in the population increases with h, while if the
outbreak is among vaxxers it decreases.

In the second part of the paper, we endogenize the vaccination choices
of people. Vaccination choices are taken before the disease spreads out. We
view this as a classical trade-off between the perceived cost of vaccinating
and the expected cost of getting sick. In the model, the difference between
anti–vaxxers and pro–vaxxers is only in the perceived costs of vaccination.
We show that even if we endogenize these choices, the qualitative predictions
of the mechanical model are still valid: a policy that increases segregation is
counterproductive.

Finally, we endogenize the choice of agents on whether to be anti–vaxxer
or pro–vaxxer. This choice is modeled as the result of social pressure, with
the transmission of a cultural trait. There is a well-documented fact about
vaccine hesitancy that seems hard to reconcile with strategic models: the geo-

9These are complex issues at the forefront of research in behavioral economics, see
Bernheim (2009).

10This can happen, e.g., if the initial seeds are unequally distributed, and initially more
vaxxers are infected, see Section 3.3.
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graphical and social clustering of vaccine hesitancy. Various studies, reviewed
e.g. by Dubé and MacDonald (2016), find that people are more likely to have
positive attitudes toward vaccination if their family or peers have. This is
particularly evident in the case of specific religious confessions that hold anti-
vaccination prescriptions and tend to be very correlated with social contacts
and geographical clustering. These studies, though observational and mak-
ing no attempt to assess causal mechanisms, present evidence at odds with
the strategic model: if the main reason not to vaccinate is free riding, people
should be less likely to vaccinate if close to many vaccinated people, and not
vice versa. In addition, Lieu et al. (2015) show that vaccine-hesitant people
are more likely to communicate together than with other people. Edge et al.
(2019) document that vaccination patterns in a network of social contacts
of physicians in Manchester hospitals are correlated with being close in the
network. It has also been shown that, in many cases, providing more infor-
mation does not make vaccine-hesitant people change their minds (on this,
see Nyhan et al., 2013, 2014 and Nyhan and Reifler, 2015). However, people
do change their minds about vaccination schemes, but they do so under psy-
chological rules that look irrational, as documented recently by Brewer et al.
(2017), for example. In a review of the literature, Yaqub et al. (2014) finds
that lack of knowledge is cited less than distrust in public authorities as a
reason to be vaccine-hesitant. This is true both among the general public
and professionals: in a study of French physicians, Verger et al. (2015) finds
that only 50% of the interviewed trusted public health authorities. They
both find a correlation between vaccine hesitancy and the use or practice of
alternative medicine.

When we fully endogenize the choices of agents (both membership to
groups and vaccination choices), we find that the predictions of the simple
mechanical model remain valid only if the groups of the society are rigid
enough, and people do not change their minds easily about vaccines. If
instead people are more prone to move between the anti–vaxxers and pro–
vaxxers groups, then segregation policies can have positive effects. The sim-
ple intuition for this is that when anti–vaxxers are forced to interact more
together, they internalize the higher risk of getting infected and, as a result,
they are more prone to become pro–vaxxers.

We contribute to three lines of literature, related to three steps of our
analysis highlighted above: the analysis of the effects of segregation in epi-
demiological models, the economics literature on vaccination and its equilib-
rium effects, and the literature on diffusion of social norms and transmission
of cultural traits.

The medical and biological literature using SI-type models is wide, and
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a review of it is beyond our scope. We limit ourselves to note that recently
some papers have considered dynamic processes with superficial similarity to
ours. Jackson and López-Pintado (2013) and Izquierdo et al. (2018) are the
first, to our knowledge, to study how homophily affects diffusion. Pananos
et al. (2017) analyze critical transitions in the dynamics of a three equation
model including epidemic and infection.

The literature on strategic immunization has analyzed models where
groups are given and the focus is the immunization choice, as in Galeotti
and Rogers (2013), or both the immunization and the level of interaction are
endogenous, as in Goyal and Vigier (2015). At an abstract level, the differ-
ence with respect to our setting is that we endogenize the group partition
through the diffusion of social norms.11

The economics of social norms and transmission of cultural traits is a
lively field, surveyed by Bisin and Verdier (2011). Common to this literature
is the use of simple, often non-strategic, dynamic models of evolution of
preferences. We adopt this framework, finding it useful despite the differences
we discuss later. A paper close to ours is Panebianco and Verdier (2017), that
considers how social networks affect cultural transmission in a SI-type model,
with a more concrete network specification through degree distributions.

The paper is organized as follows. Section 3.2 describes the mechanical
model and shows its results. Sections 3.3 and 3.4 introduce respectively en-
dogenous choices and endogenous group membership, deriving our analytical
results for these cases. We conclude in Section 3.5. In the appendices we
consider extensions of the model (Appendices 3.A, 3.B and 3.C) and we prove
our results (Appendix 3.D).

3.2 Mechanical model

We consider a simple SIS model with vaccination and with two groups of
agents, analogous to the setup in Galeotti and Rogers (2013). To understand
the main forces at play, we start by taking all the decisions of the agents as
exogenous, and we focus on the infection dynamics. In the following sections,
we endogenize the choices of the players.

Our society is composed of a continuum of agents of mass 1, which is
partitioned into two groups of agents. To begin with, in this section this par-
tition is exogenous. Agents in each group are characterized by their attitude

11There is also a recent literature in applied physics that studies models where the
diffusion is simultaneous for the disease and for the vaccination choices. On this, see the
review of Wang et al. (2015), and the more recent analysis of Alvarez-Zuzek et al. (2017)
and Velásquez-Rojas and Vazquez (2017).
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towards vaccination. In details, following a popular terminology, we label
the two groups with a, for anti-vaxxers, and with v, for vaxxers. Thus, the
set of the two groups is G := {a, v}, with g ∈ G being the generic group. Let
qa ∈ [0, 1] denote the fraction of anti-vaxxers in the society, and qv = 1− qa
the fraction of vaxxers. To ease the notation, when this does not create
ambiguity, we write q for qa.

People in the two groups meet each other with an homophilous bias.
We model this by assuming that an agent of any of the two groups has a
probability h to meet someone from her own group and a probability 1 − h
to meet someone else randomly drawn from the whole society.12 This implies
that anti-vaxxers meet each others at a rate of q̃a := h + (1 − h)qa, while
vaxxers meet each others at a rate of q̃v := h+(1−h)qv = h+(1−h)(1−qa).
Note that h is the same for both groups, but if qa 6= qv and h > 0, then
q̃a 6= q̃v.

For each g ∈ G, let xg ∈ [0, 1] denote the fraction of agents in group
g that are vaccinated against our generic disease. It is natural to assume,
without loss of generality, that xa < xv, and by now this is actually the only
difference characterizing the two groups. Let µ be the recovery rate of the
disease, while its infectiveness is normalized to 1.

3.2.1 The dynamical system

Setting the evolution of the epidemic in continuous time, we study the frac-
tion of infected people in each group. When this does not generate ambiguity,
we drop time indexes from the variables. For each i ∈ G, let ρi be the share
of infected agents in group i. Since vaccinated agents cannot get infected,
we have ρa ∈ [0, 1− xa] and ρv ∈ [0, 1− xv], respectively.

The differential equations of the system are given by:

ρ̇a =
(
1− ρa − xa

)(
q̃aρa + (1− q̃a)ρv

)
− ρaµ;

ρ̇v =
(
1− ρv − xv

)(
q̃vρv + (1− q̃v)ρa

)
− ρvµ. (3.1)

For each g ∈ G,
(
1 − ρg − xg

)
∈ [0, 1] represents the set of agents who are

neither vaccinated, nor infected, and thus susceptible of being infected by
other infected agents. Moreover, the share of infected agents met by vaxxers

12h is the imbreeding homophily index, as defined in Coleman (1958), Marsden (1987),
McPherson et al. (2001) and Currarini et al. (2009). It can be interpreted in several ways,
as an outcome of choices or opportunities. As we assume that h can be affected by policies,
we can interpret it as the amount of time in which agents are kept segregated by group,
while in the remaining time they meet uniformly at random.
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and anti-vaxxers is given by
(
q̃aρa + (1− q̃a)ρv

)
and by

(
q̃vρv + (1− q̃v)ρa

)
,

respectively. Finally, ρaµ and ρvµ are the recovered agents in each group.

Result 1 (Homophily and endemic disease). The system (3.1) always admits
a trivial steady state: (ρa1, ρ

v
1) := (0, 0). For each h, there exists a µ̂(h) > 0

such that (i) if µ < µ̂(h), (0, 0) is unstable, whereas (ii) if µ > µ̂(h), (0, 0) is
stable.13

This result is obtained in the standard way, by setting to zero the two
right–hand side parts of the system in (3.1) and solving for ρa and ρv. The
formal passages are in Appendix 3.D, as those of the other results that follow.

In the remaining of the paper, we focus on the case in which µ > µ̂(h),
because it is consistent with diseases that are not endemic but show them-
selves in episodic or seasonal waves. For those diseases, society lays for most
of its time in a steady state where no one is infected. However, exogenous
shocks increase the number of infected people temporarily. Eventually, the
disease dies out, as it happens, for example, for the seasonal outbreaks of flu.

Note that µ̂(h) is increasing in h, so that we can highlight a first important
role for h in the comparative statics. If h increases, it is possible that a
disease that was not endemic, because µ > µ̂(h), becomes so because µ̂(h)
increases with h, and the sign of the inequality is reversed. Indeed, higher
homophily counterbalances the negative effect that the recovery rate µ has
on the epidemic outbreak.

3.2.2 Cumulative Infection

The main focus of our interest is to see what is the welfare loss due to the
epidemic, and how this depends on the policy parameter h. In our simple
setting, the welfare loss is measured by the total number of infected people
over time, that is cumulative infection. For analytical tractability, we will
approximate the dynamics of outbreaks with the linearized version of the
dynamics ρ̂, that satisfies:

˙̂ρt = J

(
ρ̂at
ρ̂vt

)
, ρ̂0 =

(
ρa0
ρv0

)
(3.2)

where J is the Jacobian matrix of (3.1) calculated in the (0, 0) steady state,
and (ρa0, ρ

v
0)′ is the initial magnitude of the outbreak. We can think of it as

13 Note that µ̂(h) := 1
2 (T + ∆) ∈ [0, 1], where T := q̃a(1 − xa) + q̃v(1 − xv) and

∆ :=
√
T 2 − 4h(1− xa)(1− xv). ∆ is always positive and it is increasing in q. Moreover

µ̂(h) ∈ [0, 1] and its value is 1− xv + q(xv − xa) for h = 0 and 1− xa for h→ 1.
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the number of infected agents at the beginning of a particular outbreak or
as the expected value of the initial number of infected agents according to
some probability distribution.

The cumulative infection in the two groups and in the overall population
is: 

CIa :=

∫ ∞
0

ρ̂a(t)dt

CIv :=

∫ ∞
0

ρ̂v(t)dt

CI := qaCIa + (1− qa)CIv
(3.3)

Note that, since qa is fixed, CI takes into account both the number of infected
agents of each group at each period and also the length of the outbreak.
In the range of parameters for which (0, 0) is stable, all the integrals are
finite, so here we do not add discounting, for simplicity. We will explore
the implications of introducing time preferences in Section 3.2.3 below. The
expressions can be found in Lemma 5 in the Appendix 3.D. To understand
the mechanics that regulates the share of agents that get infected during
the outbreak, let us consider three different types of initial conditions: The
epidemic starts (i) among vaxxers (ρv0 > 0 and ρa0 = 0), (ii) among anti-
vaxxers (ρv0 = 0 and ρa0 > 0), and (iii) in both groups symmetrically (ρv0 =
ρa0 > 0).

First, we analyze which group has more infected agents throughout the
epidemic.

Result 2 (Who is better off?). The cumulative number of infected agents is
such that CIa ≥ CIv if and only if:

ρv0(1− xa)− ρa0(1− xv) + µ(ρa0 − ρv0) ≥ 0 (3.4)

The result simply follows from comparing the explicit expressions for
CIa and CIv (we derive it in Lemma 5 in the Appendix 3.D). Inequality
(3.4) underlines the roles of the parameters in determining the welfare of
the groups. The left–hand side is increasing in xv and decreasing in xa: the
gap in vaccinations tends to penalize the less vaccinated group. Since the
cumulative infection is an intertemporal measure, the initial conditions also
concur in determining which group is better off: the difference is increasing
in ρa0 and decreasing in ρv0.14 µ regulates the importance of this effect in the
discrepancy of initial conditions: the larger µ, the shorter the epidemic, the
larger the importance of the initial conditions. In particular, we have:

14Because the stability assumptions imply −1 + xv + µ > 0 and −1 + xa + µ > 0.
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i) if the outbreak starts among vaxxers, vaxxers have a larger cumulative
infection;

ii) if the outbreak starts among anti–vaxxers, anti–vaxxers have a larger
cumulative infection;

iii) if the outbreak starts symmetrically in both groups, the group with
less vaccinated (anti–vaxxers, under our assumptions) has the largest
cumulative infection.

In particular, the evaluation of what group is better off in terms of in-
fections is independent of homophily. However, the levels of contagion do
depend on homophily, as the following result shows. It is obtained applying
definitions from (3.3) and taking derivatives.

Result 3 (Effect of h and qa).

a) CI and CIa are increasing (decreasing) in h if and only if CIa > CIv

(CIa < CIv); CIv is decreasing (increasing) in h if and only if CIa > CIv;

b) CI, CIa and CIv are increasing (decreasing) in q if and only if CIa > CIv

(CIa < CIv).

In particular, the marginal effects of h and qa for different outbreak types
are those reported in Table 3.1.

If the outbreak is among· · ·
vaxxers anti–vaxxers symmetric: ρa0 = ρv0

the effect ∂CIa

∂h
< 0, ∂CIv

∂h
> 0, ∂CIa

∂h
> 0, ∂CIv

∂h
< 0, ∂CIa

∂h
> 0, ∂CIv

∂h
< 0,

of h is: ∂CI
∂h

< 0 ∂CI
∂h

> 0 ∂CI
∂h

> 0

the effect ∂CIa

∂qa
< 0, ∂CIv

∂qa
< 0, ∂CIa

∂qa
> 0, ∂CIv

∂qa
> 0, ∂CIa

∂qa
> 0, ∂CIv

∂qa
> 0,

of qa is: ∂CI
∂qa

< 0 ∂CI
∂qa

> 0 ∂CI
∂qa

> 0

Table 3.1: Marginal effects of h and qa on CIa, CIv, and CI, when there is
an outbreak among vaxxers, anti–vaxxers, or symmetrically in both groups.

The previous results show how initial conditions and parameters con-
tribute to determining the effect of an increase in h. As anticipated in the
introduction, if the initial parameters are such that CIa = CIv, then both
the total infection, CI, and the group level ones, CIa and CIv, do not depend
on homophily. If instead, the initial parameters are such that CIa 6= CIv,
then homophily hurts the group with more infected, because it causes the
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infection to spread to more members of the group and less outside. Table 3.1
helps us understand the behavior in prototypical cases and analyze whether
a policy that increases h has the desired effect.

To better understand the mechanics, let us first focus on the effects of
homophily (first row of Table 3.1). First note that, if the outbreak happens
just in one of the two groups, homophily protects the group that is not
infected ex-ante. So, intuitively, the outbreak has the strongest effect in
terms of infected agents in the group in which the outbreak has taken place.
The effect of homophily on the overall CI is however ambiguous and depends
on the initial condition.

Consider first the case in which the outbreak takes place among vaxxers.
Then, at the beginning, the infection takes over among the group with the
highest vaccination rate, since xv > xa. The higher the homophily h, the
more vaxxers interact with each other, and thus the more the infection re-
mains within the group that is more protected against it. For this reason,
the higher h, the less the CI. For the opposite reason, if the outbreak takes
place in the anti-vaxxers group, homophily makes infection stay more in the
less protected group, and CI increases.

So the crucial message is that a policy having the effect of increasing
h cannot be considered unanimously beneficial neither from a planner con-
cerned with total infection, nor from a planner concerned with just infection
among vaxxers.

To understand the role of qa on the CI (second row of Table 3.1), recall
that a higher qa means a higher share of agents less protected against the
disease. Consider first the case in which the outbreak takes place in the
vaxxers group. Then, a higher qa means that the number of infected agents,
which are in the v group, is lower. Thus, all CI measures are decreasing in
qa. For the opposite reasoning, all CI measures are increasing in qa if the
outbreak takes place in the anti-vaxxers group. If the outbreak is symmetric,
then the two forces mix. However, if qa increases, the share of agents who are
not protected against the disease increases, and thus CI measures increase.

3.2.3 Time preferences

In this section we explore the implications of the degree of impatience of the
planner on the evaluation of the impact of homophily. Time preferences can
be crucial for the planner. As we have seen, for example, in the Covid19
epidemic, the planner, given a CI, may prefer not to have all infected agents
soon because of some capacity constraints of the health system.

For example, Figure 3.1 shows the time evolution of the infection of both
groups and the overall society in case of an outbreak among the vaxxers. In
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Figure 3.1: CI as a function of time in case the outbreak starts among
vaxxers (ρa0 = 0). Here ρv0 = 0.1, xa = 0.3, xv = 0.9, q = 0.3, h = 0.5, µ = 1.

this case, since the outbreak starts among the vaxxers, it is among this group
that infection is higher initially. In contrast, eventually infection becomes
larger among the anti–vaxxers, due to the lower vaccination levels. The
effects on cumulative infection depend on how the planner trades off today
and tomorrow infections: the more the planner is patient, the more the
infection among anti–vaxxers becomes prominent.

Moreover, since in our setting the impact of segregation policies depends
on the relative amount of infected agents in the two groups, as specified in
Result 3, in our context the time preference is also crucial for the evaluation
of the impact of homophily on the total cumulative infection.

Thus, we first define the discounted cumulative infection:
CIa :=

∫ ∞
0

e−βtρa(t)dt

CIv :=

∫ ∞
0

e−βtρv(t)dt

CI := qaCIa + (1− qa)CIv
(3.5)

where β > 0 is the discount rate. Analytically, things turn out to be very
simple, due to the exponential nature of the solutions, as the following ob-
servation lays out.

Result 4. Discounted cumulative infections are equivalent to cumulative
infections in a model with recovery rate µ′ = µ+ β.

This is not too surprising: µ is a measure of how fast the epidemic dies
out, and β is a measure of how fast the welfare loss dies out. The previous
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result carries on even when, as we do in the following sections, choices on
vaccination and on types are made endogenous.

The impact can be made more precise if we stick to exogenous choices,
as it is done below.

Result 5. In the model with discounting:
CIa ≥ CIv if and only if −ρa0(1− xv) + ρv0(1− xa) + (µ+ β)(ρa0 − ρv0) ≥ 0

The proof is immediate from the previous result and from Result 3.4. In
details:

1. An increase in the degree of impatience β makes initial conditions more
important in the welfare evaluation. For example, without time prefer-
ences, we may have that ρa0 < ρv0 but CIa > CIv, because the difference
in vaccinated agents dominates the difference in the initial outbreak.
However, if time preferences are introduced, or β gets larger, a planner
may evaluate that CIa < CIv because she is putting more weight on
the earlier moments of the epidemic.

2. An increase in the degree of impatience β can change the impact of
homophily, as illustrated in Figure 3.2. To understand this point, given
a population share q, there exists a β such that homophily does not
impact the CI (with time preferences). In this CI, groups get infected
at different rates over time. As we change β, the planner gives more
weight to the group getting infected earlier. As we have seen above,
homophily plays a role in this process, keeping the infection more into
each group. In Figure 3.2, we consider the case in which q = .3, so that
there are more vaxxers than anti-vaxxers, and vaxxers are also more
vaccinated. Thus, the more the planner is impatient, the more she is
satisfied by the fact that most agents (vaxxers) are less infected when
homophily increases.

3.2.4 Convergence time

In this section, we show that homophily slows down the diffusion dynamics, as
has already been studied in a different context by Golub and Jackson (2012).
We consider as a measure of convergence time the magnitude of the leading
eigenvalue, which in this case is the one with the smallest absolute value.
This is because the solution of our linear system is a linear combination of
exponential terms whose coefficients are the eigenvalues (which are negative
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Figure 3.2: Cumulative infection as a function of homophily for different
values of time preference. Here µ = 0.7, xa = 0.2, xv = 0.9, q = 0.3.

by stability). Hence, when t is large, the dominant term is the one containing
the eigenvalue which has smallest absolute value.15

Result 6. Consider a perturbation around the stable steady state (0, 0). The
time of convergence (as measured by the leading eigenvalue) back to (0, 0) is
increasing in h.

This result shows that homophily, by making the society more segregated,
makes the convergence to the zero infection benchmark slower once an out-
break occurs. This is obtained by analyzing the eigenvalues of the Jacobian
matrix, computed in the steady state. All results are obtained analytically
(see Appendix 3.D), and the resulting eigenvalues are decreasing in absolute
value in h.

If we look at the effects of other parameters, we have that the eigenvalues
are increasing in absolute value in both xa and xv. This is because a larger
number of vaccinated agents means a smaller space for infection to diffuse.
Finally, since xa < xv, then the smallest eigenvalue is decreasing (in absolute
value) in qa, while the largest eigenvalue is increasing. Since the long-run

15We should be careful, though, because this is true non–generically outside of the
eigendirection of the second eigenvector. Indeed, in our case the eigenvectors are:

e1 =

(
− (1− xv) q̃a + (xa − 1) q̃a + ∆

2 (1− xv) (1− q̃a)
, 1

)
and

e2 =

(
− (1− xv) q̃a − (xa − 1) q̃a + ∆

2 (1− xv) (1− q̃a)
, 1

)
.

So, we can see that the first eigendirection does not intersect the first quadrant, while
the second does. Hence, we should remember that the first eigenvalue is a measure of the
speed of convergence only generically, outside of the eigendirection identified above.
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dynamics (i.e. asymptotic convergence) depends on the smallest eigenvalue,
this means that the dynamics is asymptotically slower the larger the fraction
of the population with less vaccinated agents.

Results 3.1, 3 and 6 in this section provide clear implications that should
be taken into account when considering policies that affect the level of ho-
mophily h in the society. Any increase in segregation between vaxxers and
anti–vaxxers may induce the disease to become endemic. Additionally, a
larger h, if there is a temporary outbreak, will slow down the recovery
time, and in some cases (i.e. when the outbreak does not start only among
va,xxers), it may increase the cumulative infection caused by the disease.

When applied to the real world, the results of this section can be seen
as first-order effects because, in general, a policy that changes h may have
effects also on xa, xv, and qa. Indeed, in the following sections, we endogenize
the shares of vaccinated agents and the shares of vaxxers and anti–vaxxers
in the society. The outcomes then depend also on the second order effects:
the impact of homophily on the endogenous variables.

3.3 Vaccination choices

In this section we start introducing elements of endogeneity. First of all we
consider vaccination choices, to make the shares xa and xv endogenous. To
begin with, we still consider the partition of our society in anti-vaxxers and
vaxxers, qa and qv, as exogenously fixed (we will relax this assumption in the
next section). In our approach, people take vaccination decisions ex-ante,
before an epidemic actually takes place, and cannot update their decision
during the diffusion. This mimics well diseases, like seasonal flu, for which
the vaccine takes a few days before it is effective, and the disease spreads
rapidly among the population.

We model the behavior of agents who consider the trade-off between pay-
ing some fixed cost for vaccinating or incurring the risk of getting infected,
and thus paying with some probability a cost associated with health. We
need to set some assumptions about vaccination costs and agents’ percep-
tion of the risk of being infected. Now that xa and xv are endogenous, it
is the difference in the perception of costs that characterizes the difference
between the two groups.16

16See, for example, Bricker and Justice (2019) and Greenberg et al. (2019) for a recent
analysis of the anti–vaxxers arguments: Those are mostly based on conspiracy theories
that attribute hidden costs to the vaccination practice and not so much on minimizing the
effects of getting infected. Our model would not change dramatically if we attribute the
difference in perception on the costs of becoming sick (see equations (3.8) and (3.9)), but
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Vaccination costs Vaxxers and anti-vaxxers have different perceptions
about vaccination costs. For vaxxers we assume that vaccination costs are
cv ∼ U [0, 1], while for anti-vaxxers ca ∼ U [d, 1 + d], with d > 0. This is to
say that anti-vaxxers perceive a higher cost of getting a vaccine than vaxxers
do.

Risk of infection We assume that agents think about the risk of infection
as proportional to the fraction of unvaccinated people that they meet. This
is reasonable, because they form a belief before the actual outbreak occurs
(e.g., agents decide to vaccinate against flu a few months before winter).
Agents multiply this fraction of unvaccinated people by a factor k > 0, that
represents the perceived damage from the disease, which is the same for the
two groups. Let σv be the share of unvaccinated people met by vaxxers, then

σv = q̃v(1− xv) + (1− q̃v)(1− xa) , (3.6)

so that vaxxers perceive the risk of infection to be kσv. Similarly

σa = q̃a(1− xa) + (1− q̃a)(1− xv) , (3.7)

so that anti–vaxxers perceive the risk of infection to be kσa. Now, only those
for which costs are lower than perceived risk decide to vaccinate. So:

x∗v = min{kσv, 1} , (3.8)

whereas, for an anti–vaxxer, we have

x∗a = max{0,min{kσa − d, 1}} . (3.9)

The two solutions are both interior, for any value of the other parameters,
whenever d < min

{
1
k2
, k
k+1

}
, and we call this the interiority condition, which

is analyzed in depth in Appendix 3.A. We use interiority condition as a
maintaned assumption for the remainder of the paper. In this case, equations
(3.6)–(3.9) imply a system that provides

xa = 1− 1 + dqa

1 + k
− d(1− qa)

1 + hk

xv = 1− 1 + dqa

1 + k
+

dqa

1 + hk
. (3.10)

we stick to the first interpretation because it makes the computations cleaner.
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In what follows, we focus on the interior solutions. In Appendix 3.B we
analyze numerically the case in which xv = 0, and we see that the qualitative
results are analogous to those that we present here.

First of all, we note that (i) xv > xa - since vaxxers perceive a lower
vaccination costs than anti-vaxxers; (ii) xa is increasing in h whereas xv is
decreasing in h - since a higher homophily makes vaxxers more in contact
with agents who are less susceptible than anti-vaxxers and, as a consequence,
(xv − xa) is decreasing in h; (iii) xa and xv are increasing in qa - since the
higher the share of anti-vaxxers, the more agents are in touch with other
subjects at risk of infection; (iv) the total number of vaccinated people is
qaxa+(1−qa)xv = k−dqa

1+k
, it is independent of h, but decreasing in qa - this is

due to a Simpson paradoxical effect: both groups vaccinate more, but since
anti-vaxxers increase, in the aggregate vaccination decreases.

We can also examine cumulative infection rates in a neighborhood of
the stable steady state (0, 0). We limit ourselves to the symmetric initial
condition ρa0 = ρv0, that can be compared with Result 3, looking at the
third column of Table 3.1. Also, analytical tractability is obtained only
for values of h that are small, as would be the effect of a policy that limits
contacts between vaxxers and anti-vaxxers only in a few of the daily activities
(e.g. only in schools).

Proposition 15. Consider a perturbation around (0, 0), such that ρa0 = ρv0 >
0. Then, there exists h̄ > 0 such that, if h < h̄:

(i) ∂xa/∂h = −∂xv/∂h;

(ii) CI is increasing in h;

(iii) CI is increasing in qa (but the marginal effect is lower than in the
exogenous case of Result 3).

This proposition analyzes what happens for an outbreak that is symmetric
in the two groups when homophily is low enough. We have already seen above
that the effect of homophily is opposite for xa and xv. Here we find that the
magnitude of the effects is the same for both groups and that the higher the
homophily, the higher CI. Thus, homophily policy does not seem to be a
good policy to be implemented in these cases. At the same time, the more
the anti-vaxxers, the more the number of infected agents.

To complete our analysis of endogenous choices, in the next section we
also endogenize the partition between the two groups.
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3.4 Endogenous groups

In the previous section we have illustrated the trade-off faced by agents be-
tween two different costs: the act of vaccinating, and the risk of being in-
fected, which is based on the fraction of unvaccinated agents they expect
to meet, σv and σa. We now consider how the shares of vaxxers and anti-
vaxxers change with time, that is how q is determined. In the real world,
this decision does not seem to be updated frequently, and can be considered
as fixed during a single flu season. So, in the model, we assume that this
decision is taken before actual vaccination choices, which are in turn taken
before the epidemic eventually starts. Our aim here is to offer a simple and
flexible theory of the diffusion of opinions to be integrated into our main epi-
demic model. As explained in the Introduction, the empirical observations
that important drivers of vaccination opinions are peer effects and cultural
pressure leads us to discard purely rational models, where the decision of not
vaccinating descends from purely strategic considerations. Given the com-
plex pattern of psychological effects at play, we opt for a simple reduced form
model capturing the main trade-offs. In particular, we are going to assume
the diffusion of traits in the population to be driven by expected advantages :
the payoff advantage that individuals in each group estimate to have with
respect to individuals in the other group. This is made precise by the next
definition.

Definition 3.4.1 (Expected advantage). Consider an individual in group a.
Define ∆Ua as the Expected advantage individual a estimates to have with
respect to individuals in group v. Specifically:

∆Ua = Ua→a − Ua→v

Ua→a = −Ec [(c+ d)1kσa−d<c + kσa1kσa−d≥c]

Ua→v = −Ec [(c+ d)1kσv<c + kσv1kσv≥c]

(3.11)

(3.12)

(3.13)

where Ua→a is the payoff of individuals with trait a evaluated by an individual
with trait a, while Ua→v is the payoff of individuals with trait v evaluated
by individuals with trait a. ∆U v is defined analogously, and can be found in
Appendix 3.C.2.

Agents in each group perceive a differential in expected utilities from
being of their own group and being of the other group. Note that, apart
from the bias d, agents correctly evaluate all other quantities, including the
risks from the disease of the two groups, kσv and kσa. Indeed, even if both
groups evaluate the choice of the other group as suboptimal, this perceived
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difference can be negative for anti–vaxxers, because they understand that
vaxxers have less chances of getting infected.

To clarify Definition 3.4.1, consider Figure 3.3. The black line is the
disutility of agents in groups a, as a function of the cost c, as perceived by
agents in group a. The shape of this line mirrors the fact that an agent
in group a undertakes vaccination only if her costs are in the [0, kσa − d]
interval, in which a agents incur in a disutility c+ d. If c > kσa− d, a agents
do not vaccinate, and the disutility is the risk of infection, which is kσa. The
grey area below this curve is then Ua→a. Consider now the red line. This
represents the disutiliy of agents in group v as perceived by agents in group
a. In particular, agents in group v have a different perception of costs with
respect to agents in group a, and so take different choices. In particular,
they vaccinate in the [0, kσv] interval, while if they are in the [kσv, 1] interval
they do not vaccinate and incur a risk of infection. Note, however, that this
is the evaluation from the perspective of agents in group a, and thus the
cost of vaccination is c + d instead of c. Hence Ua→v is the area below the
red curve. The difference ∆Ua is given by the red area minus the blue area.
U v→v and U v→v are computed accordingly. The details of the calculation and
the corresponding figure are in Appendices 3.C.1 and 3.C.2.

cost c

disutility

d

kσa

1kσa − d kσv

kσv Disutility of v as perceived by a

Disutility of a as perceived by a

Figure 3.3: Composition of ∆Ua. The graph represents the disutility incurred
by an individual as a function of its cost c. ∆Ua is the red area minus the
blue area.

To ease notation, let q = qa. Then, we make the following assumption
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over the population dynamics

Assumption 1. Given an α ∈ R, the level of q increases when qα∆Ua >
(1− q)α∆U v and it decreases when qα∆Ua < (1− q)α∆U v.

Clearly, the implication of the previous assumption is that the resting
points of the dynamics are such that qα∆Ua = (1−q)α∆U v, but stability has
to be addressed. The simplest example of dynamics satisfying Assumption 1
is:

q̇ = q(1− q)[qα∆Ua − (1− q)α∆U v] ,

but we allow also for any non linear generalization.
The dynamics obtained from Assumption 1 generalizes the standard workhorse

model in cultural transmission, the one by Bisin and Verdier (2001), in two
ways: (i) endogenizing the socialization payoffs, as from Definition 3.4.1,
and (ii) introducing a parameter α regulating the stickiness agents have in
changing their identity via social learning. Indeed, at the limit α → ∞,
q̇ = 0 and types are fixed. Note also that α regulates the strength of cultural
substitution, a phenomenon often observed in cultural transmission settings:
the tendency of members of minorities to preserve their culture by exerting
larger effort to spread their trait.17 Thus, we are able to encompass different
types of social dynamics. (i) If α = 0 this is a standard replicator dynamics
(see e.g. Weibull, 1997). (ii) If α < 0, the model displays cultural substi-
tution, as most standard cultural transmission models. Moreover, the more
α is negative, the more there is substitution. In particular, if α = −1 the
dynamics has the same steady state and stability properties as the dynamics
of Bisin and Verdier (2001).18 (iii) If α > 0, the model displays cultural
complementarity, so that the smaller the minority, the less the effort exerted,
and the less the minority survives. Note that cultural complementarity is
increasing in α.

The environment of social influence is not only shaped by physical con-
tacts and it is not the same of the epidemic diffusion of the actual disease
(because in the real world many contacts are online and are channeled by
social media). Hence, any policy on h can have a limited effect on it, be-
cause for us h is a restriction on the physical meeting opportunities. As a
consequence, h does not appear explicitly in Assumption 1.

If ∆Ua = 0, naturally there will be no anti–vaxxers. This will happen if
for example the bias d is very high, or homophily is very high, so that the

17See Bisin and Verdier (2011).
18To be precise, the model by Bisin and Verdier (2001) refers to intergenerational trans-

mission. In the Appendix 3.C we show how a similar equation can be recovered in a
context of intragenerational cultural transmission
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increased infection risk from being an anti-vaxxer (the blue area in Figure
3.3) is so large that no one wants to be an anti-vaxxer. This is of course an
uninteresting case, so from now on we are going to assume the following:

Assumption 2 (Interiority conditions). xa, xv, and ∆Ua are interior
(details in terms of exogenous parameters are in the Appendix 3.A).

The following result shows that only the case α < 0 is of some interest
for the analysis, because in the other cases the population become all of one
type, with q∗ = 0 or q∗ = 1.

Proposition 16. Under the interiority conditions: (i) If α ≥ 0 there are no
interior stable steady states of the dynamics for q. (ii) If α < 0, there exists
a q∗ ∈ (0, 1) such that q∗α∆Ua = (1 − q∗)α∆U v. Moreover, there is always
an interior stable steady state and there exists a threshold h such that, for
h < h, the steady state is unique and stable.

Again, the proof of this result is obtained with standard methods, ap-
plying the implicit function theorem to the condition from Assumption 1,
looking at results for h→ 0, and using the continuity of the system to prove
that results hold in an interval [0, h̄) for h. The equilibrium level of q can be
computed analytically only in the case α = −1 (which is the case in which
the dynamic is equivalent to Bisin and Verdier, 2001) and for h = 0, since
the differences in payoffs across groups become null, and q∗ = 1

2
.

We are now interested in the effect of an increase in homophily on q∗.
Figure 3.4 shows, on the basis of numerical examples with α = −1

2
, α = −1,

and α = −3, that homophily has a negative effect on q∗ and that this result
seems to extend to any α < 0.

We can actually prove it analytically for small values of h.

Proposition 17. Under the interiority conditions, and if α < 0 there exists
a threshold h such that, for h < h, q∗ is decreasing in h in the unique and
stable steady state.

The intuition is that a larger h magnifies the negative effects of being
anti-vaxxers in terms of infection, relatively to vaxxers. This is internalized
in the cultural dynamics, via the ∆Us. This long run effect of h on anti-
vaxxers share is one of the few positive effects of segregating policies.
As we have done in the preliminary model with exogenous choices, we can
analyze the effects of homophily on the cumulative infection, when the initial
perturbation is symmetric across both groups (see Result 3, summarized in
the third column of Table 3.1). We find that the effects depend on the
magnitude of α, the parameter regulating how agents are rigid/prone towards
social influence.
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α=-0.5
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q

Figure 3.4: q as a function of h. d = 0.5, k = 1, µ = 1. The range of h is
restricted as prescribed by the interiority conditions 3.A

Proposition 18. Consider the model with endogenous q, α < 0 and interi-
ority conditions. Consider an outbreak affecting both groups symmetrically,
starting from the unique stable steady state and h = 0. Then, there exists a
threshold α such that:

• if α < α, CI is increasing in h
(

dCI
dh

∣∣
h=0

> 0
)
;

• if α > α, CI is decreasing in h
(

dCI
dh

∣∣
h=0

< 0
)
.

With this proposition we consider the effects of the introduction of some
form of segregation policy, taking also into account the cultural dynamics.
This means that if α is large in magnitude (the first bullet point, since
α is negative) then the society is rigid in its opinions, and the effects are
qualitatively the same that we would have if types and vaccination choices
were fixed (Result 3). If instead α is small in magnitude (the second bullet
point), then the reaction of q∗ to a policy change of h is large, and this reverts
the effect: cumulative infection is decreasing in homophily. In this last case,
the effects of a policy based on partial segregation will be the desired ones. In
this respect, how agents are subjected to social influence can revert the effects
of a policy based on homophily. Figure 3.5 shows this effect for two values
of α < 0. These are also compared with what would happen, with the same
parameters, under the assumptions of Result 3 (all choices are exogenous)
and Proposition 15 (only vaccination choices are endogenous, but groups are
fixed). The figure shows that, only when α is negative and small in absolute
value, the cumulative infections decreases in homophily. In all the other cases
a policy based on homophily can increase the cumulative infection at various
degrees.
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Figure 3.5: Cumulative infection in the three models. Whenever exogenous,
q, xa and xv are set using the median value of h = 0.1. The other parameters
are set at k = 2, d = 0.5, µ = 1, ρa0 = ρv0 = 0.1.

The intuition for the different marginal effects of h on cumulative in-
fection seems to lie on the marginal effects on the speed of the dynamics,
via the first eigenvalue (see Result 6), as Figure 3.6 illustrates: the cases in
which cumulative infection increases with h are those in which the leading
eigenvalue is decreasing in magnitude, and vice versa.

Note that Result 4 about the discount rates of a policy maker are still
valid with endogenous choices, as we discussed in Section 3.2.3.

3.5 Conclusion

The problem of vaccine skepticism is a complex one, that requires analysis
from multiple angles: psychological, medical, social. In this paper, we pro-
pose an analysis of the trade-offs faced by a policy maker interested in mini-
mizing infection in a world with vaxxers and anti–vaxxers, having available a
policy inducing some degree of segregation, or homophily, h. The key obser-
vation is that reducing contact with anti–vaxxers may be counterproductive
both from the perspective of vaxxers and the society as a whole because it
slows down the dynamics of the disease to its steady state, if there is an
outbreak. Homophily may actually increase the duration of the outbreaks,
and depending on the time preferences of the planner this might crucially
change the impact of the policy. Further, if cultural types are endogenous,
the intensity of cultural substitution is key in determining the impact of the
policy. Our results suggest that the study of policy responses to the spread
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Figure 3.6: Left panel: Cumulative infection as function of homophily in
the interior equilibrium. The other parameters are set at k = 2, d = 0.5,
µ = 1, ρa0 = ρv0 = 0.1. Right panel: corresponding leading eigenvalue of
dynamical system as a function of h.

of vaccine-hesitant sentiment would benefit from trying to pin down more
precisely the intensity of these mechanisms.
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Appendices

3.A Interiority conditions

In Section 3.3 we have included endogenous choices about vaccinations, using
two parameters, d and k, for the beliefs about the expected costs of vaccina-
tion and of becoming infected. We assume interiority conditions, which are
essentially the conditions for which ∆Ua > 0 (from (3.11)). The conditions

under which ∆V a is positive is 2hk(hk+1)
k+1

< d. For this to be compatible

with xa and xv being interior, we need d < min{ 1
k
, 1
k(1+k)

}, hence we need

also 2h(1 + hk) < 1
k2

. So in addition to k high enough we also need h
small enough. Figure 3.7 shows the regions in the h–d plane for which the
interiority conditions are satisfied, depending on the value of k.

k=0.5

k=1

k=2

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

h

d

Figure 3.7: Region of parameters where all endogenous variables are interior.
µ is fixed to 1.

3.B Analysis of corner solution xa = 0

In this section we explore the case in which the interiority conditions are
not satisfied, and d is large enough so that the unique equilibrium in the

133



134 Chapter 3. Is segregating anti–vaxxers a good idea?

vaccination game is:

xa = 0 ,

xv =
k

(h− 1)kq + k + 1
,

(3.14)

(3.15)

provided d < 1/k so that xv 6= 0.19 Indeed, if both xa = 0 and xv = 0 , then
everything is exogenous and we are back to the mechanical model.

Note that xv maintains the properties we expect: it is decreasing in h
and increasing in q, as can be directly seen from the expression above.

Cumulative infection

Consider a symmetric initial conditions. Since xv is decreasing in h, it means
that now when h increases we have the direct effect on CI which is increasing,
plus a decrease in vaccination, which further increases the effect on CI. The
effect of xa, which is of the opposite sign, disappears in the computations, so
we have exactly the same behavior as in the interior solution, and, moreover,
in this case the negative effect of h on CI is even stronger. The derivatives
are:

∂CI

∂h
= − k2(q − 1)qρv0

2µ(k(h(µ− 1)q + µ− µq) + µ− 1)2

∂CI

∂qa
=

kρv0((h− 1)kq + k + 1)

2(k(h(µ− 1)q + µ− µq) + µ− 1)2

∂CI

∂xa
= − qρv0((h− 1)kq + k + 1)2

2(k(h(µ− 1)q + µ− µq) + µ− 1)2

∂CI

∂xv
=

(q − 1)ρv0((h− 1)kq + k + 1)2

2(k(h(µ− 1)q + µ− µq) + µ− 1)2

(3.16)

(3.17)

(3.18)

(3.19)

19This is possible if hk2+k
hkq−kq+k+1 < d < 1

k and either k < 1 or(
1 < k < 1

2

(
1 +
√

5
)
∧ 0 < q < −k2+k+1

k ∧ 0 < h < −k2−kq+k+1
k3−kq

)
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Endogenous cultural types

The socialization payoffs are:

∆Ua = −kσa + dkσv +
1

2
k2σ2v + kσv (1− kσv)

=
k(2(d− hk)((h− 1)kq + k + 1)− k)

2((h− 1)kq + k + 1)2

∆U v = kσa − 1

2
k2σ2v − kσv (1− kσv)

=
k2(2h((h− 1)kq + k + 1) + 1)

2((h− 1)kq + k + 1)2

(3.20)

(3.21)

(3.22)

(3.23)

We can apply the intermediate value theorem provided ∆Ua does not become
negative. ∆Ua(q = 0) = −k(2(k+1)(hk−d)+k)

2(k+1)2
. If h < 1

2
, this is positive under

the condition hk2+k
hkq−kq+k+1

< d. So for h small enough we get an interior
solution for α < 0.

It is not possible to obtain analytical results in the case of q endogenous.
Nevertheless, numerical simulations reveal a picture very similar to the one
described in the case of interior solution, in the main text. Specifically, the
magnitude of α is crucial to determine the effect of an increase in homophily,
as illustrated in Figure 3.8. Again, the main mechanism through which
homophily acts is via the increased length of the outbreak, as measured by
the leading eigenvalue, as shown in Figure 3.9.
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Figure 3.8: Cumulative infection as function of homophily in the equilibrium
where xa = 0. The other parameters are set at k = 1, d = 0.6, µ = 0.7,
ρa0 = ρv0 = 0.1.
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Figure 3.9: Eigenvalues in the equilibrium where xa = 0. The other param-
eters are set at k = 1, d = 0.6, µ = 0.7, ρa0 = ρv0 = 0.1
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3.C Endogenous groups

3.C.1 A simple model of intragenerational cultural trans-
mission

In this section we illustrate how equation (1) with α = −1 can arise from a
simple adaptation of the Bisin and Verdier (2001) model to an intragenera-
tional context.

At each time period, each agent meets another agent selected randomly.
When they meet, they are assigned two roles: the influencer and the target.
The incentive for the influencer is based only on other–regarding preferences,
for two reasons: it is consistent with some survey evidence (Kümpel et al.
2015, Walsh et al. 2004), and in this economy every agent has negligible
impact on the spread of the disease, so socialization effort cannot be driven
by the desire to minimize the probability of infection, or similar motivations.
The timing of the model is as follows.

• Before the matching, agents choose a proselitism effort level τat , τ vt ;

• When 2 agents meet, if they share the same cultural trait nothing
happens. Otherwise, one is selected at random with probability 1

2
to

exert the effort and try to have the other change cultural trait.

The fraction of cultural types evolves according to:

qat+1 = qat P
aa
t + (1− qat )P va

t , (3.24)

where the transition rate P aa
t is the probabilities that an agent a is matched

with another agent who, next period, results to be of type a and P va
t is

the probabilities that an agent v is matched with another agent who, next
period, results to be of type a. These probabilities are determined by efforts
according to the following rules:

P aa
t = q̃at + (1− q̃at )

1

2
+ (1− q̃at )

1

2
(1− τ vt ),

P va
t =

1

2
(1− q̃at )τ vt ,

(3.25)

(3.26)

(P vv
t and P av

t are defined similarly) which yield the following discrete time
dynamics:

∆qat = qat (1− qat )(1− h)∆τt, (3.27)

where ∆τt := τat − τ vt .
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Effort has a psychological cost, which, as in Bisin and Verdier (2001), we
assume quadratic. Hence, agents at the beginning of each period (before the
matching happens) solve the following problem:

max
τat
−(τat )2

2︸ ︷︷ ︸
cost of effort

+ qatU
a→a
t + (1− qat )

1

2
(τat U

a→a
t + (1− τat )Ua→v

t )︸ ︷︷ ︸
expected social payoff

, (3.28)

which yields as a solution:

τat = (1− qat ) (Ua→a
t − Ua→v

t )︸ ︷︷ ︸
”cultural intolerance”

,

τ vt = (1− qvt )(U v→v
t − U v→a

t ).

(3.29)

(3.30)

Hence, the dynamics implied by our assumptions is:

∆qat = qat (1− qat )((1− qat )∆Ua − qvt ∆U v). (3.31)

The steady state of this dynamics is determined by the equation:

(1− qat )∆Ua = qvt ∆U
v (3.32)

which is precisely the steady state implied by (1) when α = −1.

3.C.2 Socialization payoffs

We have:

U v→v =−
∫ k·σv

0

c dc−
∫ 1

k·σv
(k · σv) dc ;

Ua→a =−
∫ k·σa−d

0

(c+ d) dc−
∫ 1

k·σa−d
(k · σa) dc ;

U v→a =−
∫ k·σa−d

0

c dc−
∫ 1

k·σa−d
(k · σa) dc ;

Ua→v =−
∫ k·σv

0

(c+ d) dc−
∫ 1

k·σv
(k · σv) dc .

(3.33)

(3.34)

(3.35)

(3.36)
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cost c

disutility

kσv Disutility of v as perceived by v

1kσa − d kσv

kσa
Disutility of a as perceived by v

Figure 3.10: Composition of ∆U v. The area below the black line is U v→v,
the are below the red line is U v→a, ∆U v is the red area.

Integration and the use of 3.10 yields:

∆Ua =
1

2
(xv − xa)2 − (d− (xv − xa)) (1− xv)

=
d (d (−2(h− 1)hk2q + k + 1)− 2hk(hk + 1))

2(k + 1)(hk + 1)2

∆U v =
1

2
(xv − xa)2 + (d− (xv − xa)) (1− xa)

=
d(d(2hk((h− 1)kq + k + 1) + k + 1) + 2hk(hk + 1))

2(k + 1)(hk + 1)2

(3.37)

(3.38)

(3.39)

(3.40)

Figure 3.10 shows the composition of ∆U v = U v→v − U v→a. It is the
analogous of Figure 3.4.1 for ∆Ua.
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3.D Proofs

Proof or Result 1

Proof. To analyze stability, we need to identify the values of parameters for
which the Jacobian matrix of the system is negative definite when calculated
in (0, 0). The matrix is:

J =

(
(1− xa) q̃a − µ (xa − 1) (q̃a − 1)

(xv − 1) (q̃v − 1) (1− xv) q̃v − µ

)
We can directly compute the eigenvalues, which are:

e1 = µ̂− µ
e2 = µ̂− µ−∆.

where µ̂ := 1
2

(T + ∆) ∈ [0, 1], T := q̃a(1 − xa) + q̃v(1 − xv), and ∆ :=√
T 2 − 4h(1− xa)(1− xv).
The eigenvalues are real and distinct because, given (x+y)2 > 4xy when-

ever x 6= y, we get

∆2 = T 2 − 4h(1− xa)(1− xv) ≥ 4q̃a(1− xa)q̃v(1− xv)− 4h(1− xa)(1− xv)

Now q̃aq̃v = h2 + h(1− h) + (1− h)2q(1− q) ≥ h, so we conclude ∆2 > 0.
Since eigenvalues are all distinct, the matrix is diagonalizable, and it

is negative definite whenever the eigenvalues are negative. Inspecting the
expression, this happens whenever µ > µ̂.

Cumulative infection

Lemma 5. Let (ρa0, ρ
v
0) be the infected share for each group at the outbreak.

Then in the linearized approximation around the (0,0) steady state:

CIa =
2 [ρa0 (µ− (1− xv)q̃v) + ρv0 (1− xa) (1− q̃a)]

(T − 2µ−∆)(T − 2µ+ ∆)
;

CIv =
2 [ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a)]

(T − 2µ−∆)(T − 2µ+ ∆)
;

CI =
2 [ρa0 (µ+ (1− xv)(1− 2q̃v)) + ρv0 (µ+ (1− xa)(1− 2q̃a))]

(T − 2µ−∆)(T − 2µ+ ∆)
.

(3.41)

(3.42)

(3.43)

Proof. The linearized dynamics is:
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ḋρ(t) = Mdρ(t)

dρ(0) = ρ0

where ρ0 = (ρa0, ρ
v
0), and:

M11 =
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xaq̃a + q̃a − µ+

1

2
(2µ− T )

)
+

1

2
∆ cosh

(
∆t

2

))
M12 =

1

∆
(1− xa) (1− q̃a) sinh

(
∆t

2

)
e

1
2
t(T−2µ)

M21 =
1

∆
(1− xv) (1− q̃v) sinh

(
∆t

2

)
e

1
2
t(T−2µ)

M22 =
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xv q̃v + q̃v − µ+

1

2
(2µ− T )

)
+

1

2
∆ cosh

(
∆t

2

))
The cumulative infection in time in the two groups can be calculated

analytically by integration, since it is just a sum of exponential terms. Inte-
gration yield, for CIv:

CIv =

∫ ∞
0

dρv(t)dt

=
2 (ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )
+

lim
t−>∞

e
1
2
t(T−2µ)

(
2∆ cosh

(
∆t

2

)
(ρa0 (xv − 1) (q̃v − 1) + ρv0 ((1− xv)q̃v + µ− T )) +

sinh

(
∆t

2

)(
ρv0
(
(T − 2µ) (2 (xv − 1) q̃v + T ) + ∆2

)
− 2ρa0(T − 2µ) (xv − 1) (q̃v − 1)

))
and the limit is zero if µ > µ̂ because the leading term is Exp

(
1
2
t(T − 2µ) + ∆

2

)
=

µ̂− µ. An analogous reasoning for CIa yields:

CIa =

∫ ∞
0

dρa(t)dt =
2 (ρa0 (µ− (1− xv)q̃v) + ρv0 (1− xa) (1− q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

CIv =

∫ ∞
0

dρv(t)dt =
2 (ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

(3.44)

(3.45)

The total CI in the population is CI = qaCIa + (1− qa)CIv

CI =
2

(−∆− 2µ+ T )(∆− 2µ+ T )
(qa (ρa0 (µ− (1− xv)q̃v) + ρv0 (1− xa) (1− q̃a)) +

(1− qa) (ρ0
a (1− xv) (1− q̃v) + ρ0

v (µ− (1− xa)q̃a)))
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= ρa0
2 (qa (µ− (1− xv)q̃v) + (1− qa) (1− xv) (1− q̃v))

(−∆− 2µ+ T )(∆− 2µ+ T )
+

ρv0
2(qa (1− xa) (1− q̃a) + (1− qa) (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

Proofs for Result 3

First, note that µ > µ̂ implies:

µ >1− xa > h(1− xa)
µ >1− xv > h(1− xv)

µ >
h(1− xa)

1− (1− h)q

µ >
h(1− xv)

1− hq

The expressions of the derivatives are:

∂CIa

∂h
=

(q − 1) (xa − 1) (µ+ xv − 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂qa
=

(h− 1) (xa − 1) (h (xv − 1) + µ) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂xa
=

((h− 1)q (xv − 1) + µ+ xv − 1) (µ(h(q − 1)− q) (ρa0 − ρv0)− hρa0 (xv − 1)− µρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂xv
=

(h− 1)(q − 1) (xa − 1) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂h
=

q (xv − 1) (xa + µ− 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂qa
=

(h− 1) (xv − 1) (h (xa − 1) + µ) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂xa
= − (h− 1)q (xv − 1) (hρa0 (µ+ µ(−q) + xv − 1) + µqρa0 + (h− 1)µ(q − 1)ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂xv
=

(h(q − 1) (xa − 1) + q (−xa)− µ+ q) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2
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and combining them, we get:

∂CI

∂h
=

µ(q − 1)q (xa − xv) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂qa
=

(h− 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1)) (h (xa − 1) (xv − 1) + µ (q (xa − xv) + xv − 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂xa
= − q (h (xv − 1) + µ) (hρa0 (µ+ µ(−q) + xv − 1) + µqρa0 + (h− 1)µ(q − 1)ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂xv
=

(q − 1) (h (xa − 1) + µ) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

Note that all the denominators are positive, so to control the sign from
now on we focus on the numerators. In particular, recognising the numerators
of the first two as precisely the terms arising in 3.4 we can conclude that CI
is increasing in h if and only if CIa > CIv and CI is increasing in q if and
only if CIa > CIv.

If initial conditions are symmetric:

∂CIa

∂h
> 0⇐⇒− (q − 1)ρa0 (xa − 1) (xa − xv) (µ+ xv − 1) > 0

∂CIa

∂qa
> 0⇐⇒− (h− 1)ρa0 (xa − 1) (xa − xv) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− ρa0 (h (xv − 1) + µ) (µ− (1− h)(1− q) (1− xv)) > 0

∂CIa

∂xv
> 0⇐⇒(h− 1)(q − 1)ρa0 (xa − 1) (h (xa − 1) + µ) > 0

Now, using the first four inequalities presented above, we can conclude that
∂CIa

∂h
> 0, ∂CIa

∂qa
> 0, ∂CIa

∂xa
< 0 and ∂CIa

∂xv
< 0. Similarly, if ρa0 = 0:

∂CIa

∂h
> 0⇐⇒− (q − 1) (xa − 1) ρv0 (xa + µ− 1) (µ+ xv − 1) > 0

∂CIa

∂qa
> 0⇐⇒− (h− 1) (xa − 1) ρv0 (xa + µ− 1) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− (1− h)(1− q)ρv0 (µ− (1− q)(1− h)(1− xv)) > 0

∂CIa

∂xv
> 0⇐⇒(h− 1)(q − 1) (xa − 1) ρv0 (h (xa − 1) + µ ((h− 1)q + 1)) > 0

and we conclude that ∂CIa

∂h
< 0, ∂CIa

∂qa
< 0, ∂CIa

∂xa
< 0 and ∂CIa

∂xv
< 0.
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If ρv0 = 0:

∂CIa

∂h
> 0⇐⇒(q − 1)ρa0 (xa − 1) (µ+ xv − 1) 2 > 0

∂CIa

∂qa
> 0⇐⇒(h− 1)ρa0 (xa − 1) (µ+ xv − 1) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− ρa0 (µ− (1− q)(1− h)(1− xv)) (h (µ− (1− xv)) + µ(1− h)q) > 0

∂CIa

∂xv
> 0⇐⇒− (h− 1)2µ(q − 1)qρa0 (xa − 1) > 0

and we conclude that ∂CIa

∂h
> 0, ∂CIa

∂qa
> 0, ∂CIa

∂xa
< 0 and ∂CIa

∂xv
< 0.

The other cases are analogous.

Proof of Result 4

The linearized dynamics is (from Lemma 5):

ρ̇a =
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xaq̃a + q̃a − 1

2
T

)
+

1

2
∆ cosh

(
∆t

2

))
ρa0

+
1

∆
(1− xa) (1− q̃a) sinh

(
∆t

2

)
e

1
2
t(T−2µ)ρv0

ρ̇v =
1

∆
(1− xv) (1− q̃v) sinh

(
∆t

2

)
e

1
2
t(T−2µ)ρa0

+
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xv q̃v + q̃v − 1

2
T

)
+

1

2
∆ cosh

(
∆t

2

))
ρv0

In particular, it depends on µ just through the exponential term e
1
2
t(T−2µ).

So we can rewrite it as:

ρ̇a = e
1
2
t(T−2µ)A(t)

ρ̇v = e
1
2
t(T−2µ)V(t)

where A(t) and V(t) do not depend on µ. Now the discounted cumulative
infection for anti–vaxxers is equal to:

CIa =

∫ ∞
0

e−βte
1
2
t(T−2µ)A(t)dt =

∫ ∞
0

e
1
2
t(T−2(µ+β))A(t)dt

which is precisely the expression for the non discounted cumulative infection
in a model where the recovery rate is µ′ = µ+ β.
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Proof of Result 6

From the proof of Result 1, the eigenvalues are:

e1 = µ̂− µ
e2 = µ̂− µ−∆.

Moreover, they are both decreasing in absolute value as h increases (this is
easy to see for e1, given that µ̂ is positive and increases in h, but it holds
also for e2).

Proof of Proposition 15

We have:(
dCI

dq

)∣∣h=0

=

(
∂CI

∂q

)∣∣h=0

+

(
∂CI

∂xa
∂xa

∂q
+
∂CI

∂xv
∂xv

∂q

)∣∣h=0

The first term can be obtained setting h = 0 in the expressions from the
proof of Result 3:(

∂CI

∂q

)∣∣h=0

=
(k + 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2(k + 1) (q (xa − xv) + µ+ xv − 1) 2

The correction term instead is:(
∂CI

∂xa
∂xa

∂q
+
∂CI

∂xv
∂xv

∂q

)∣∣h=0

=
dk ((q − 1)ρv0 − qρa0)

2(k + 1) (q (xa − xv) + µ+ xv − 1) 2

which is negative: so endogenizing the vaccination choices always yields a
smaller effect of a change in q. Moreover, if the initial conditions are sym-
metric the numerator of the derivative becomes:

(k + 1)(xv − xa)− dk = (k + 1)d− dk = d > 0

so CI is still increasing in q, but at a lower rate.
Similarly, the derivative with respect to h is:(

dCI

dh

)∣∣h=0

=

(
∂CI

∂h

)∣∣h=0

+

(
∂CI

∂xa
∂xa

∂h
+
∂CI

∂xv
∂xv

∂h

)∣∣h=0

and the correction term is null:(
∂CI

∂xa
∂xa

∂h
+
∂CI

∂xv
∂xv

∂h

)∣∣h=0

=

−dkq (q − 1) (ρv0 − q (ρv0 − ρa0))

2 (q (xa − xv) + µ+ xv − 1) 2
−dk(q−1)

q (µqρa0 − µ(q − 1)ρv0)

2µ (q (xa − xv) + µ+ xv − 1) 2
= 0

so the derivative is exactly the same as in Result 3.
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Proof of Proposition 16

Consider the function F (q) = qα∆Ua−(1−q)α∆U v. Both ∆Ua and ∆U v are
bounded from above and bounded away from 0, so when q → 0 the negative
term remains bounded while qα →∞ (because α < 0). The reverse happens
when q → 1. By the intermediate value theorem, there exist a solution
q∗ ∈ (0, 1).

Concerning stability, we can calculate the derivative of the function F :

dF

dq
=

d

2(k + 1)(hk + 1)2
×

(
aqa−1

(
d
(
−2(h− 1)hk2q + k + 1

)
− 2hk(hk + 1)

)
− 2d(h− 1)hk2 (qa + (1− q)a)

+a(1− q)a−1
(
2d(h− 1)hk2q + d(k + 1)(2hk + 1) + 2hk(hk + 1)

))
If q → 0, dF

dq
→ −∞, whereas if q → 1 dF

dq
→ +∞, so that, by continuity,

there must be a stable steady state. If if h→ 0, dF
dq
→ αd221−α < 0, so for h

in a neighborhood of 0 the steady state is unique and stable.

Proof of Proposition 17

For h = 0 we have that q = 1
2
. We can compute the derivative using the

implicit function theorem. The first derivative is above. The second is

dF

dh
=

d

2(k + 1)(hk + 1)2
×

dk ((1− q)a(hk(d(−(k + 2)q + k + 1)− 1) + dkq − 1)

−qa(d(kq(h(k + 2)− 1) + k + 1) + hk + 1))

so that:
dq

dh

∣∣∣∣
h=0

= −
dF
dh
dF
dq

=
2k + dk

α(2d+ 2dk)

and we can see that q is always decreasing with homophily, but with a dif-
ferent level of intensity according to the magnitude of α.

Proof of Proposition 18

Using the implicit function theorem, we can analyze the behavior of cumu-
lative infection for h close to 0:

dCI

dh

∣∣∣∣
h=0

=
(k + 1)

4(dk − 2(k + 1)µ+ 2)2

(
4(d+ 2)k(dρv0k + (k + 1)µ(ρa0 − ρv0)− ρa0 + ρv0)

ad(k + 1)
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+
dk (ρa0 (dk2 + 2(k + 1)µ− 2) + ρv0(dk(k + 2)− 2(k + 1)µ+ 2))

µ

)
With a symmetric initial condition we get:

dCI

dh
∣∣∣h=0

=
ρa0k

2 (ad2(k + 1)2 + 2(d+ 2)µ)

2aµ(dk − 2(k + 1)µ+ 2)2

which is positive if α < −2dµ−4µ
d2k2+2d2k+d2

and negative otherwise.
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Chapter 4

Learning, Over-reaction and
the Wisdom of the Crowd

This chapter is joint work with Daniele D’Arienzo1

We study the classical sequential social learning problem in a setting where
agents depart from the standard Bayesian updating rule. We consider the
case of over-reacting - as well under-reacting - individual posterior beliefs,
two well known biases in beliefs updating (Benjamin (2019)). Agent posterior
beliefs over-react (or under-react) to the current information according to how
much it is surprising relative to past information. We study the interplay of
distorted posterior beliefs and social learning. We find that in a context with
fine grained signals the biases do not impact on the eventual learning, while
in a context with coarse signals, such as in the cascades setting of Banerjee
(1992), over-reaction can make it easier for agents to learn, because past
actions of others become more informative, hence a moderate level of over-
reaction is socially optimal.

1Università Bocconi.
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4.1 Introduction

Departures from the standard Bayesian updating rule are well documented
using both experiments and survey data (e.g. Benjamin (2019)). For ex-
ample, in financial markets, the typical departure is that of over-optimistic
beliefs, when good news are observed (e.g. Bordalo et al. (2018)). How-
ever, much of the literature focuses on decisions taken by agents in isolation,
abstracting away from another fundamental economic fact: interaction. On
the other hand, the study of interaction in the formation of expectations
and learning has been widely studied (Golub and Sadler (2017)), both un-
der Bayesian behavior (Banerjee (1992), Acemoglu et al. (2011), Bala and
Goyal (1998)) and under simple mechanical updating rules, such as averaging
neighbors beliefs (e.g. Golub and Jackson (2010)). The literature on social
networks has focused on how the network structure of interactions facilitates
or forbids reaching consensus and learning. Recently, departures from the
Bayesian paradigm has been investigated in the context of social learning.
For example, Molavi et al. (2018) consider the case of beliefs updating with
imperfect recall.

Here we bridge the gap by considering a simple model of sequential learn-
ing where agents - due to information processing limitations - depart from
full Bayesian rationality. Agents exhibit under/over-reaction to signals. Our
main contribution is to characterize the information externalities caused by
departures from Bayesian rationality. Specifically, we find that over-reaction
to news entails a positive externality, which partially heals the informational
cascade phenomenon, thereby increasing social informational efficiency. This
is surprising because one may expect individual biases to be socially ineffi-
cient.

We first introduce a model of non Bayesian updating, which features two spe-
cific observed biases: over-reaction or under-reaction to information. While
the origin of the two mechanisms is thought to be different in nature 2 our
model includes both cases. In the case of over-reaction, our model is a learn-
ing analog of the diagnostic expectation model of Bordalo et al. (2018), which
is a model of extrapolative predictions. We then apply the model to study
the learning problem of an isolated agent. We find that in the long-run limit,
the agent learns the true state of the world as in the Bayesian case. We show
that however the mean square loss of biased agents - a measure of individ-

2Under-reaction to information can be rationalized by costly information acquisition.
On the contrary, over-reaction to information may be grounded in the Tversky and Kah-
neman (1974) representativeness heuristic.
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ual inefficiency - is not symmetric: under-reaction to information leads to
greater losses than over-reaction to information. In both cases, however, it
is sub-optimal to have biased expectations.
What happens instead when agents interact? We focus on the stylized case
of a sequential decision task, as in the cascade literature started by Banerjee
(1992) and Bikhchandani et al. (1992). At each time step, an agent is born
and she has to take a binary action (e.g. buy or sell a financial asset) which
corresponds to guess the true state of nature, which is binary as well (e.g.
the fundamental value of the asset). Her information set consists of a private
signal and past actions of other agents (e.g. past buy/sell orders). In the
Bayesian setting, this framework leads to the phenomenon of informational
cascades : when the actions of previous agents are aligned enough, then future
private signals become irrelevant and each future agent is stuck in a specific
action. This may result in a cascade of wrong guesses. This is so because the
mapping between private signals and the history of actions (which is what is
observed by future agents) is highly non injective. Much of the information
in the economy remain unexploited. We consider our model of non Bayesian
updating and we find that over-reaction helps injecting more information into
the history of actions, which is then exploited by future agents. We find that
there exists a unique socially optimal level of over-reaction, which maximizes
the probability of learning the true state of the world.
This insight also clarify that departures from Bayesian rationality - overreac-
tion in particular - may be seen from an evolutionary perspective as optimal
with respect to the objective of social informational efficiency.

4.2 A non Bayesian learning model

Consider an agent that has to learn the state of the world ω, on which she
has a prior belief, with density p0(ω). The agent observes a signal X, whose
likelihood is known to be l(X|ω). The Bayesian updating operator takes as
inputs the prior density, the likelihood function and the observed signal and
it prescribes to move beliefs about ω from p0(ω) to the Bayesian posterior:

BU(l, p0)(ω) :=
l(X|ω)p0(ω)∫
l(X|ω′)p0(ω′)dω′

. (4.1)

We propose the following distorted updating rule:

BU θ(l, p0)(ω) =
l(X|ω)1+θp0(ω)∫
l(X|ω′)1+θp0(ω′)dω′

. (4.2)
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The scalar parameter θ > −1 controls the departure from the Bayesian case.
When θ > 0 the model delivers over-reaction to information and it is a
learning analog of the diagnostic expectation model of Bordalo et al. (2018).
To see this point, consider the case θ > 0 and rewrite expression (4.2) as:

BU θ(l, p0)(ω) =
1

Z
BU(l, p0)(ω)

(
BU(l, p0)(ω)

p0(ω)

)θ
, (4.3)

where Z is a normalization constant. The previous formula says that
states ω which are more likely under BU(l, p0)(ω) than under p0(ω), i.e.
representative states, are over-weighted. On the contrary, states ω which are
less likely under BU(l, p0)(ω) than under p0(ω), are under-weighted. Thus,
we say that for θ > 0 posterior beliefs over-react to information. On the
contrary, for −1 < θ < 0, posterior beliefs under-react to information. When
facing multiple data, X1, . . . , Xt, agents can update beliefs sequentially: in
at each step, the prior belief is the precious step distorted posterior belief.
Alternatively agents could update their beliefs only once, after observing the
string X1, . . . , Xt. Define the distorted updating given t observations as:

BU θt (l, p0)(ω) =
l(X1, . . . Xt|ω)1+θp0(ω)∫
l(X1, . . . Xt|ω′)1+θp0(ω′)dω′

.

Then, the following consistency result shows that it is irrelevant which of
the two strategy is implemented.

Theorem 1. For k ∈ {1, . . . , t− 1}:

BU θt (l, p0)(ω) = BU θt−k(l,BU θk(l, p0))(ω)

Does learning take place? Expression (4.3) suggests the the Bayesian and
the diagnostic distribution are connecting by a continuous transformation,
which preserve convergence.

Theorem 2. Call ω∗ the true value of ω.
Learning occurs under Bayesian updating, i.e. BU t(l, p0)

d→ δω∗ as t→∞ if

and only if it occurs under distorted beliefs, i.e. BU θt (l, p0)
d→ δω∗ as t→∞.

We now characterize the loss from using distorted posterior beliefs. As-
sume that the goal of the agent is to minimize the sum of future discounted
losses:

152



4.2. A non Bayesian learning model 153

∞∑
t0

βtEt(ω − Eθtω)2.

Then, the following results characterizes the losses occurring with dis-
torted beliefs.

Theorem 3. Under the updating model (4.2), the (cumulative) mean square
error reads:

− log(1− β) +
∞∑
t=1

βt(Etω − Eθtω)2.

As expected, distorted beliefs are, in general, sub-optimal since (Etω −
Eθtω)2 > 0. Thus, in a world with distorted beliefs, an isolated agents even-
tually learn (or does not) if the only if the Bayesian agent does. We now
move to a concrete example to gain more intuition.

4.2.1 Learning the mean from Gaussian i.d.d. draws

Suppose that an agent observes iid realizations of X ∼ N (µtrue, σ2). She
knows the variance σ2 and she has to learn the mean. Given X ∼ N (µtrue, σ2)
and prior p0(µ) ∼ N (µ0, σ

2
0), and t observations X1, . . . , Xt, we have:

pt(µ) := BU t(l, p0) ∼ N

((
1

σ2
0

+
t

σ2

)−1(
µ0

σ2
0

+

∑t
i=1Xi

σ2

)
,

(
1

σ2
0

+
t

σ2

)−1
)
.

The distorted posterior distribution is:

pθt (µ) = BU θt (l, p0) = N

((
1

σ2
0

+
t(1 + θ)

σ2

)−1(
µ0

σ2
0

+
(1 + θ)

∑t
i=1Xi

σ2

)
,

(
1

σ2
0

+
t(1 + θ)

σ2

)−1
)
,

since the only effect of the distortion is to modify the variance of the like-
lihood function from σ2 to σ2

1+θ
. Thus, the variance of the posterior diagnostic

distribution is:

V[µθt ] =

(
1

σ2
0

+
(θ + 1)t

σ2

)−1

∼ σ2

(θ + 1)t
,

which is smaller then the variance of the Bayesian posterior. Also, for
large t, convergence to the truth is guaranteed by theorem (2). What about
the mean square error? As shown in Appendix, in the Gaussian case the loss
reads:
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(Eθtω − Etω)2 ∼ 1

t2
θ2

(θ + 1)2

(
(µ0 − ω)2 + σ2

t

)
.

The bias term depends on: the initial prior, the variance of the posterior
under the bayesian updating, and the term θ2

(θ+1)2
, which is asymmetric:

under-reaction makes it increase very fast above 1, while even for strong
over-reaction it is always smaller than 1. Hence it seems that underreaction
is much worse in terms of learning than overreaction. Inspection of the cal-
culations reveal that the numerator comes from the error in prediction, while
the denominator from the precision. So the error tends to increase with bias,
while the precision is increasing in overreaction. With one agent, though,
the numerator always prevails, so that the optimal θ is 0. We now introduce
social interactions.

4.3 Sequential learning and efficiency

In this section, we apply our behavioral model of learning to a simple social
learning environment, to show that overreaction can be more socially efficient
than bayesian updating.

Let us consider the simplest model of informational cascades, analogous
to Banerjee (1992). There is a binary state of the world ω ∈ {0, 1} which
agents have to guess. Formally, agents are infinite and indexed with natural
numbers i = 1, 2, . . .. They act sequentially, first observing a private signal
si and then choosing a public action ai. Both actions and signals are binary
ai, si ∈ {0, 1} and we assume that Pr(si = 1|ω = 1) = q > 1

2
(i.e. signals are

informative). Symmetrically (for convenience) let Pr(si = 0|ω = 0) = q > 1
2
.

Agents have a common prior Pr(ω = 1) = p.
Agent i information set includes all actions of past agents (a1, . . . , ai−1)

and his own private signal si. Each agent has a utility v1 from choosing
action ai = 1 if the correct state is ω = 1 and v0 from choosing the correct
action when the state is ω = 0, and they want to maximize their expected
payoff. This means that, e.g., Mr 1, when observing signal s1 will form the
following posterior:

Prθ(ω = 1|s1 = 1) = Pr(ω = 1|s1 = 1)

(
Pr(ω = 1|s1 = 1)

Pr(ω = 1)

)θ
1

Z(θ, s1 = 1)
=

p

p+ (1− p)
(

1−q
q

)1+θ

and he will choose action a1 = 1 if and only if:

v1Pr
θ(ω = 1|s1 = 1) > v0Pr

θ(ω = 0|s1 = 1),
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which is equivalent to:

Prθ(ω = 1|s1) >
v0

v0 + v1

.

In the following, we will be interested in regions in the parameter space, so
we do not need to specify tie-breaking rules. We define τ = v0

v0+v1
.

We defined over and under-reaction relative to the estimation of the pa-
rameter done with past information. When considering interacting agents,
we have two sources of information: private signals and actions of others. In
the following, we are treating actions of others and the private signal in a
symmetric way, as past information. This means that Mr 2 will compute his
posterior as:

Prθ(ω = 1|s1, a1, s2) = Pr(ω = 1|s1, a1, s2)

(
Pr(ω = 1|s1, a1, s2)

Pr(ω = 1, s1, a1)

)θ
1

Z(θ, s1, a1, s2)

To understand what are the implications of the distortion for cascades
and learning, let us start with the following definition.

Definition 4.3.1. The Informational efficient region (IE) is the set of pa-
rameters given by the union of:

θ + 1 ≥
ln
(

p
1−p

(
1
τ
− 1
))

ln 1−q
q

p ≥ τ

and

θ + 1 ≤
ln
(

p
1−p

(
1
τ
− 1
))

ln q
1−q

p < τ

The Informational efficient region is the region of parameters such that
Mr 1 plays a1 = s1 and therefore ”communicate” his private signal to future
agents. Outside the efficient region, agent 1 instead chooses the action consis-
tent with his prior regardless the signal. This is crucial in characterizing the
behavior of the model. The following proposition describes such behavior.

Proposition 19. If the parameters are in the Informational efficient region,
then:

If p ≥ τ If the first signal is 1, there is a cascade on 1. If the first two signals
are (0, 0) there is a cascade on 0. If the first two signals are (0, 1), then
the third agent faces the same problem of agent 1. The probability of

learning is Pr(a∞ = ω) = pq+(1−p)q2
1−q(1−q) .
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If p < τ There is a cascade on 1 if the first signals are (1, 1), there is a
cascade on 0 if the first signal is 0. If the first two signals are (1, 0),
then the third agent faces the same problem of agent 1. The probability

of learning is Pr(a∞ = ω) = pq2+(1−p)q
1−q(1−q) .

If the parameters are outside of the Informational efficient region, then:

1. If τ > p, then all agents play 0 with probability 1 and the probability of
learning is 1− p.

2. If τ ≤ p, then then all agents play 1 with probability 1, and the proba-
bility of learning is p.

By the form of the results, we can already see that a larger θ creates
more room for learning, by enlarging the Informational efficient region. In
the following, we make this argument formal. For simplicity in this section
we fix τ = 1

2
.

A way to quantify the size of the parameter space is to think of the
parameters p and q as drawn before the process starts. from a distribution
µ, with full support on (0, 1) × (1

2
, 1). Denote a∞ = limt→∞ at. Consider

regions as R1 = IE ∪ {p > τ}, R2 = IE ∪ {p ≤ τ}, N1 = IE ∪ {p > τ}, and
N2 = IE ∪ {p ≤ τ}. Then the ex-ante probability of learning the correct
state of the world is:

Pr(a∞ = ω) =

=

∫ (
pIN1 + (1− p)IN2 +

pq + (1− p)q2

1− q(1− q)
IR1 +

pq2 + (1− p)q
1− q(1− q)

IR2

)
dµ,

where I(·) represents the indicator function.
Let us define a level of θ ex-ante efficient if it achieves the maximum of

this probability. The following figures illustrate the situation. In figure 4.1 we
draw the region where Mr1 playing a1 = s1 is socially efficient, and the region
where (Bayesian) Mr1 playing a1 = s1 is individually efficient (i.e. optimal).
As is clear from the figure, a Bayesian updating rule does not maximize the
learning probability: there is a region where it would be socially efficient
that Mr1 plays a1 = s1, but a Bayesian agent, since he does not internalize
the information externality on other agents, does not. In figure 4.2, we plot
instead the informational efficient regions for different values of the parameter
θ: we can see that there are moderate values of overreaction that increases
the probability of learning. In the following proposition, we show that there
is a value of θ that actually achieve ex-ante efficiency.
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Revealing is efficient
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Figure 4.1: The areas of the parameter space where revealing is efficient, and
the area where a Bayesian agent reveals. The figure shows that the Bayesian
updating fails to be socially efficient: there is a region where agent 1 does
not reveal but it would be socially optimal to do so.
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Figure 4.2: The areas of the parameter space where revealing is efficient, and
the area where agent with different degree of distortion reveal. It is clear that
underreaction is always worse than Bayesian, while a moderate overreaction
can be socially better than Bayesian.
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Theorem 4. If the parameters p, q are drawn from a distribution µ with
full support on (0, 1) × (1

2
, 1), the distorted updating with θ = 1 is ex-ante

efficient.

Given the importance of the result, we report the proof here in the main
text.

Proof. Let us focus on the subset of the parameter space where {p > τ}, the
reasoning for p < τ is analogous. The the ex-ante probability of learning is:

∫ pI
θ + 1 ≤

ln
(

p
1−p

)
ln q

1−q

+
pq + (1− p)q2

1− q(1− q)
I

θ + 1 >
ln
(

p
1−p

)
ln q

1−q

 dµ.

In the Informational efficient region IE, the probability of learning is
pq+(1−p)q2
1−q(1−q) , while outside is just p. The probability of learning is higher inside

the Revelation region if and only if:

p <
pq + (1− p)q2

1− q(1− q)
,

which is equivalent to:

p <
q2

(1− q)2 + q2
.

Now we can rewrite the condition defining the IE region:

p <
qθ+1

(1− q)θ+1 + qθ+1
.

Depending on θ, q2

(1−q)2+q2
can be larger or smaller than qθ+1

(1−q)θ+1+qθ+1 , with

equality for q = 1
2
q = 1, and for all q if θ = 1.

If θ < 1, it means that there is a region outside the IE region (with
positive mass, because of the full support assumption on µ) with probability
of learning p, strictly smaller than the corresponding probability if it belonged
to the IE, hence by increasing θ the probability of learning would increase.
If θ > 1, on the contrary, there is a region that belongs to IE where the
probability of learning is smaller than p. Hence, the maximum is achieved
for θ = 1.
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4.A Proofs

4.A.1 Theorem (1)

Proof.

BU t(l, p0)(ω) =
l(X1, . . . , Xt|ω)p0(ω)∫
dω′l(X1, . . . , Xt|ω′)p0(ω′)

=
l(Xτ , . . . , Xt|ω,X1, . . . , Xτ−1)l(X1, . . . , Xτ−1|ω′)p0(ω)∫
l(Xτ , . . . , Xt|ω′, X1, . . . , Xτ−1)l(X1, . . . , Xτ−1|ω′)p0(ω′)dω′

×
∫
l(X1, . . . , Xτ−1|ω′)p0(ω′)dω′∫
l(X1, . . . , Xτ−1|ω′)p0(ω′)dω′

=
l(Xτ , . . . , Xt|ω,X1, . . . , Xτ )BU τ (l, p0)(ω)∫
l(Xτ , . . . , Xt|ω′, X1, . . . , Xτ )BU τ (l, p0)(ω′)dω′

= BU t−τ (l,BU τ (l, p0)(ω))(ω)

Remaining close to the diagnostic expectations literature, we can assume
that the reference group for representativeness be the information collected
until period t. The diagnostic Bayesian operator is defined for t = 1 as:

BU θ1(l, p0)(ω) =
1∫

BU1(l, p0)
(
BU1(l,p0)(ω′)

p0(ω′)

)θ
dω′
BU1(l, p0)

(
BU1(l, p0)(ω)

p0(ω)

)θ
.

For t > 1 it is defined as:

BU θt (l, p0)(ω) =
1∫

BU t(l,BU θt−1(l, p0))(ω′)
(
BUt(l,BUθt−1(l,p0))(ω′)

BUθt−1(l,p0)(ω′)

)θ
dω′
BU t(l,BU θt−1(l, p0))(ω)

(
BU t(l,BU θt−1(l, p0))(ω)

BU θt−1(l, p0)(ω)

)θ

.

Note that this can be rewritten as:

BU θt (l, p0)(ω) ∝ BU t(l,BU θt−1(l, p0))(ω)

(
BU t(l,BU θt−1(l, p0))(ω)

BU θt−1(l, p0)(ω)

)θ

∝ BU t(l,BU θt−1(l, p0))(ω)

(
l(Xt|X1, . . . , Xt−1, ω)θBU θt−1(l, p0)(ω)

BU θt−1(l, p0)(ω)

)θ

∝ l(Xt|X1, . . . , Xt−1, ω)1+θBU θt−1(l, p0)(ω)

∝ BU t(l1+θ, p0)(ω).

It turns out that this is a model of over-inference. The prior is corrected
processed by the diagnostic operator, while the likelihood is over-weighted.
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Note that for any 1 < τ < t:

BU θt−τ (l,BU θτ (l, p0)(ω))(ω) = BU t−τ (l1+θ,BU τ (l1+θ, p0)(ω))(ω) = BU(l1+θ, p0)(ω) = BU θt (l, p0)(ω).

This says that sequential updating or ”one shot” updating are equivalent.

4.A.2 Theorem (3)

Proof. One way to state the optimality of the Bayesian updating is to say
that the Bayesian posterior mean µt is the best predictor according to the
quadratic loss function, (ω−µt)2. This means that if an agent uses a different
predictor, say µθt = Eθtω, then this is not the correct posterior mean, hence
the expected utility of such an agent is:

−Et(ω − Eθtω)2 ≤ −Et(ω − Etω)2.

This is a reduced form reasoning, in that it uses just the conditional expecta-
tions. If, as it is used in standard learning exercises, we assume that agents
myopically optimize their quadratic utility at each time period (or any utility
which has the conditional expectation of Xt+1 as the optimal point), then we
get that their intertemporal utility is in expectation smaller at every period:

−E0

∑
t

βt(ω − Eθtω)2 ≤ −E0

∑
t

βt(ω − Etω)2.

We can understand better this discrepancy. First of all, applying the law
of iterated expectations we can show that:

−E0

∑
t

βt(ω − Eθtω)2 = −E0

∑
t

βtEt(ω − Eθtω)2.

Consider the time t term:

(ω − Eθtω)2 = (ω − Etω)2 + (Eθtω − Etω)2 + 2(ω − Etω)(Eθtω − Etω)

and in expectation:

Et(ω − Eθtω)2 = Vtω + Et(Eθtω − EPt ω)2,

which shows that the disutility of an error has two components: the (im)precision
of the rational posterior plus the discrepancy of the diagnostic from the
bayesian posterior.
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MSE for Example 1.

Eθtω − Etω =
θ(tµ0 −

∑tXs)

(t+ 1)(t(θ + 1) + 1)

and so, if t large:

(Eθtω−Etω)2 =
θ2

(t(θ + 1) + 1)2
Et
(
tµ0 −

∑tXs

t+ 1

)2

∼ θ2

(t2(θ + 1))2
Et
(
µ0 −

∑tXs

t

)2

.

Moreover:

Et
(
µ0 −

∑tXs

t

)2

= Et (µ0 − ω)2 + Et
(
ω −

∑tXs

t

)2

.

4.A.3 Proof of Proposition 19

Mr 1 will play action a1 = 1 after observing signal s1 = 1 if and only if his
posterior is higher than τ , that is:

pq1+θ

pq1+θ + (1− p)(1− q)1+θ
≥ τ

⇐⇒ 1 +
1− p
p

(
1− q
q

)1+θ

≤ 1

τ

⇐⇒ (1 + θ) log

(
1− q
q

)
≤ log

(
1

τ
− 1

)
p

1− p

⇐⇒ θ + 1 ≥
ln
(

p
1−p

(
1
τ
− 1
))

ln 1−q
q

=
− ln

(
p

1−p

)
+ ln

(
τ

1−τ

)
ln q

1−q
.

In the last line we used q > 1
2

to change the inequality sign. This condition
is always true if p ≥ τ , given that θ > −1. Its interpretation is that if Mr
1 is ex ante indifferent or in favor of alternative 1, then if he observes signal
s1 = 1, he plays a1 = 1 for any value of θ. On the contrary if p < τ , meaning
that the agent is ex ante in favor of alternative 0, when he observes signal
s1 = 1 he might or might not play action a1 = 1, depending on the parameter
values. The condition above says that the bigger θ is, the bigger the set of
parameters under which Mr1 revises the prior and plays action a1 = 1.
Similarly, after seeing s1 = 0, Mr 1 will play action a1 = 1 if and only if:

p(1− q)1+θ

p(1− q)1+θ + (1− p)q1+θ
≥ τ
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⇐⇒ θ + 1 ≤
ln
(

p
1−p

(
1
τ
− 1
))

ln q
1−q

=
ln
(

p
1−p

)
− ln

(
τ

1−τ

)
ln q

1−q
.

This is never the case never if p < τ , which means that if the agent is in
favor of alternative 0 and then he sees the signal s1 = 0, he never revises his
opinion. On the contrary, depending on θ, the opposite case may be true.
Call the above condition 2. Note that the space of parameter such that con-
dition two is violated increases with θ.
Summing up: if the agent sees s1 = 1, then he plays a1 = 1 the if either
τ ≤ p or τ > p and condition 1 is satisfied. If the agent sees s1 = 0, then he
plays a1 = 0 if τ > p or τ ≤ p and condition 2 is violated.

The behavior of Mr 2 will depend on which conditions are satisfied. Consider
the informationally efficient region IE (for agent 1) defined as:

IE = {(p, τ) ∈ [0, 1]× R+| (τ ≤ p and condition 2 is true) or (τ > p and condition 1 is true )}.

If the parameters lie inside IE, then Mr 2 can perfectly infer Mr1 signal
by observing his action, since a1 = s1. Thus Mr 2 effectively observes two
signals.
Consider first the case p > τ , namely the prior is in favor of 1. In this
case if s1 = 1 than Mr2 will do his Bayesian updating, leading him to play
action a2 = 1 regardless of his signal. Similarly for subsequent agents: a
cascade therefore starts on state 1 in this case. If instead a1 = s1 = 0, then if
s2 = 0 Mr2 will do his Bayesian updating, leading him to play action a2 = 0
regardless of his signal. Similarly for subsequent agents: a cascade therefore
starts on state 0 in this case. Finally if a1 = s1 = 0 and s2 = 1, then Mr2
will do his Bayesian updating, leading him to play action a2 = 1. However
in this case a cascade does not start immediately, as Mr 3 faces the same
problem of Mr1. Here the intuition is straightforward: opposite signals s1

and s2 cancel out, and therefore Mr2 only relies on his prior belief. The case
p < τ is symmetric.
Resuming the dynamics is characterized as follows:

• if p > τ then the probability of learning is:

Pr(a∞ = ω) = pPr(a∞ = 1)+(1−p)Pr(a∞ = 0) =
(
pq + (1− p)q2

)( ∞∑
i=0

(q(1− q))i
)

;

• if p < τ then the probability of learning is:

Pr(a∞ = ω) = pPr(a∞ = 1)+(1−p)Pr(a∞ = 0) =
(
pq2 + (1− p)q

)( ∞∑
i=0

(q(1− q))i
)

;

162



4.A. Proofs 163

Resuming, if s1 = s2, then a2 = s2; if instead s1 6= s2 then M2 2 will stick
to his prior belief. In the former case Mr 3 will also play a3 = s2 regardless of
his signal (if s3 = s2 = s1 this is true since IE1 ⊆ IE2 ⊆ IE3; if s3 6= s2 = s1

then Mr3 problem is the same problem of Mr1, therefore a3 = a3); in the
latter case Mr3 problem is the same problem of Mr 1, therefore a3 = s3.
Therefore, if the parameters lie IE1, then i

plays 1 if p ≥ τ , and 0 viceversa. This means that if p ≥ τ and the first
agent revealed his signal to be 1, then the second agent will always play 1,
and this will not be informative for Mr 3, which will act as if he observed only
the signal of the first agent. On the contrary, if the first agent revealed his
signal to be 0 and still p ≥ τ , the second agent reveals his signal, and Mr 3
updates consequently. Hence, if the conditions on θ for Mr 1 are satisfied, the
first agent reveals and the second follows if observes the same, and if observes
a different signal it depends on the prior, as should be. If the conditions are
satisfied for the first but not the second agent, it means that the first agent
actually does not reveal information, hence the second agent actually behaves
as the first, and it means that he will not reveal anything either, and we have
the applicable cascade (because all subsequent agents will follow).

f Mr 1 plays 1 regardless of the signal s1 observed, then Mr 2 has no
updating to do, and will act as if she were the first of the line. This happens
with probability 1− q.

Hence, if agents are all homogeneous, there is a trivial cascade on 1, and
the probability of learning is p.

Mr 3 if he observes 2 identical zeros will ignore his private signals, and
we have a cascade on 0 (the conditions on θ are trivially satisfied). If he
observes 3 different signals, will follow the most frequent. Anyway, the first
2 signals are sufficient to determine which cascade we have.
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4.B Additional Material

Large deviations

In the calculations above only the variance and the error matter. If we con-
sider general concave utility functions u(−(a − ω)2) (or general ”risk aver-
sion”), instead we have that the term t of the sum is:

EPt u
(
−(EP ′t ω − ω)2

)
= EPt u

(
−
(

(ω − EPt ω)2 + (EP ′t ω − EPt ω)2 + 2(ω − EPt ω)(EP ′t ω − EPt ω)
))

≤ u
(
−EPt

(
(ω − EPt ω)2 + (EP ′t ω − EPt ω)2 + 2(ω − EPt ω)(EP ′t ω − EPt ω)

))
= u

(
−V arPt ω − Et(EP

′

t ω − EPt ω)2
)

so now the expression obtained above in this case are just useful as upper
bounds on the utility. The correct utility involves the term EP ′t ω−EPt ω. We
know that as n becomes large, by the large deviations principle P (|

∑
Yn −

µ0| > a) ∼ e−
a2

2 if the Y are standard normal i.i.d. Hence:

P (|EP ′t ω − EPt ω|) = P (
θ(tµ0 −

∑tXs)

(t+ 1)(t(θ + 1) + 1)
> a) =

P (|µ0 −
∑tXs

t
| > a

(t+ 1)(t(θ + 1) + 1)

tθ
) ∼ e−

1
2σ2

(a (θ+1)
θ )

2
t2

so the variance of the distribution of large deviations is proportional to θ2

(θ+1)2
,

the same term as before, with same intuitions: underreaction leads to much
worse large deviations.
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