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Università Tor Vergata di Roma

clementi@mat.uniroma2.it

Riccardo Silvestri

Dipartimento di Informatica

Sapienza Università di Roma
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Abstract

We present a general approach to study the flooding time (a measure of how fast infor-
mation spreads) in dynamic graphs (graphs whose topology changes with time according
to a random process). We consider arbitrary ergodic Markovian dynamic graph process,
that is, processes in which the topology of the graph at time t depends only on its topol-
ogy at time t− 1 and which have a unique stationary distribution. The most well studied
models of dynamic graphs are all Markovian and ergodic.

Under general conditions, we bound the flooding time in terms of the mixing time of the
dynamic graph process. We recover, as special cases of our result, bounds on the flooding
time for the random trip model and the random path models; previous analysis techniques
provided bounds only in restricted settings for such models. Our result also provides the
first bound for the random waypoint model (which is tight for the most realistic ranges of
network parameters) whose analysis had been an important open question.
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1 Introduction

A dynamic graph is a probabilistic process that describes a graph whose topology changes with
time. Dynamic graphs are appropriate models of wireless networks, peer-to-peer networks,
social networks, and so on. There are several interesting problems on dynamic graph processes,
for example load balancing, studied in [16, 28]. Here, we are interested in the speed of
information spreading, a question that can model the spread of disease, the broadcast of files
on peer-to-peer networks, of memes in social networks, etc.

The simplest model of information spreading is the process of flooding [4, 10, 13, 15, 17,
18, 22, 26, 27], which begins with one node in the network being given a certain piece of
information, and then the application of a protocol in which, at each time step, every node
that has the information spreads it to its neighbors. Recall that the neighborhood of a node
changes with time, and so even though the flooding algorithm is deterministic, the process of
information spread is probabilistic.

The setting of wireless networks has motivated the study of this problem in geometric
models of dynamic graphs in which, at every time step, every node is mapped to a point
in a metric space, and two vertices are connected if their distance is smaller than a given
communication radius. The underlying metric space is usually a bounded portion of the
plane, for example a square or unit disk, and the dynamics come from independent random
walks performed by the individual nodes via local moves [20, 15, 11, 12, 26, 27, 23]. For
example, a representative model of this type is the random walk model: n nodes are placed
on a m×m grid; at each time step, every node v independently moves to a point in the grid
randomly chosen among the points adjacent to the one that v occupied at the previous time
step; at each time step, the edge (u, v) is present in the dynamic graph if u and v are located
within distance r in the grid. In such a model, the flooding time will depend on the initial
locations, on r, m and n. Usually, one is interested in a worst-case analysis with respect to
the initial locations, and in a bound dependent only on r, m and n. Known analyses of such
models rely rather strongly on the fact that, if we consider a fixed node v, the stationary
distribution of its location (i.e. the positional distribution) on the grid under the random
walk is essentially uniform.

The random waypoint model [7, 6, 8, 24] is another classic model of networks of mobile
agents, and it is probably the most well studied one. In this model, every node chooses a
random destination point in the mobility space, then he travels over the shortest path till
he reaches the destination, and so on. Some analytical properties of this model have been
derived such as the mixing time, the stationary node distribution, etc. [6, 8, 24]. However,
bounding its flooding time (or any basic communication tasks such as routing, data collection,
etc.) is still a fundamental open problem. The techniques adopted for the random walk model
do not work in the random waypoint model, mainly because of the presence of long periods
the node spends in deterministic trajectories and because of the strong difference between
their respective stationary positional distributions. For instance, the stationary positional
distribution of the random waypoint over a square is in fact far from the uniform one: it is
highly biased towards the center of the square.

The above two families of models define a probabilistic process over the nodes, which then
implies which pairs of nodes are connected by an edge. There are also models of probabilistic
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processes that are directly defined over the edges. A very general model is provided by
Markovian Evolving Graphs (MEGs) introduced in [2] (see later for a formal definition).
However, available techniques to analyze information spreading only concern very restricted
subclasses of MEGs, such as that studied in [10], where the state (i.e. on/off) of the edges is
ruled by independent copies of a simple two-state Markov chain.

Our Work

- General Dynamic Networks. We provide an upper bound to the flooding time of any sta-
tionary Markovian Evolving Graph (MEG) [2]. If we call Gt = (V,Et) the random variable
describing the dynamic graph at time t, the process is a MEG if the sequence of random
variables G([n], {Et}t>0) = G0, . . . , Gt, . . . is Markovian, that is, if the distribution Gt is com-
pletely determined by the distribution Gt−1, via a transformation independent of t. The class
MEG is extremely general and, in particular, it includes all above-mentioned network models
such as random walk and random waypoint: indeed, it is easy to verify that any of such mod-
els yields a sequence of random graphs G([n], {Et}t>0) which is Markovian. We require the
Markovian sequence to converge to a unique stationary distribution, for every initial choice
G0. This stationary distribution is a probability distribution over n-vertex graphs and it will
be called the stationary graph Gn.

Our upper bound to the flooding time is a function of: i) the edge-probability in Gn (that
determines the expected density of the stationary graph) ii) the degree of independence among
edges in Gn and, iii) the mixing time of the Markov chain G([n], {Et}t>0). More precisely,
given edge e, node i, and node subset A, let p(e) be the probability that e exists in Gn and
let e(i, A) be the binary random variable returning 1 iff an edge exists connecting i to some
node in A in Gn. Let M be an upper bound on the mixing time of G([n], {Et}t>0). Our result
states that if, for some arbitrary positive reals α and β, (i) p(e) > α for any link e and1

(ii) P (e(i, A) · e(j,A)) 6 βP (e(i, A)) · P (e(j,A)) for arbitrary nodes i, j and arbitrary node
subset A (not containing i or j), then the flooding time is w.h.p.2

O

(

M

(

1

nα
+ β

)2

log2 n

)

(1)

Our methods can be applied to non-Markovian processes as well, although the results are
more complex to state (see Sections 2, 3). Bounding the mixing time of dynamic networks has
been the subject of several studies in the last years [1, 24, 10]: our result allows to efficiently
exploit any (previous or future) bound on the mixing time for the flooding time of such
MEGs. In order to get an intuition of the real meaning of Conditions (i) and (ii) (i.e. how
mild they can be), we observe that mild bounds on the density and independence parameters,
say α = Ω(1/n) and β = O(polylogn), do not imply any good node/edge expansion of the
single snapshot graphs Gt of the process: In every Gt there could be a large subset of all nodes
(say half of them) that are isolated. In such sparse and disconnected topologies, thanks to our
bound, the flooding time can be just a poly-logarithmic factor away from the mixing time of

1With an abuse of notation, event probabilities such as P (e(i, A) = 1) will be shortly denoted as P (e(i, A)).
2We say that an event holds with high probability if it holds with probability at least 1− 1/n.
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the MEG. This crucial fact has strong consequences on concrete network scenarios which are
discussed below.
- Node-MEGs. Our general approach finds a natural application in a subclass of MEGs that
we call node-Markovian Evolving Graphs, denoted as node-MEGs, where every node changes
its state independently according to a Markov Chain M. The state of a node can implement
several dynamic features of the node (such as geometric position and destination, trajectory
phase, social role, etc). Then the existence of a link between two nodes (only) depends on
the current states of the two nodes according to a fixed deterministic function. Observe that
node-MEGs are a relevant class of MEGs that includes every mobility model where nodes acts
independently over any discrete space (such as an arbitrary graph or any geometric region
discretized, for instance, by using a grid of suitable resolution3). Random walk, random
waypoint, and random trip models [7, 24, 14] have a natural realization as node-MEGs: for
instance, a realization of the random waypoint as a node-MEGs is described in Subsection 4.1.
Notice that in node-MEGs, nodes are indistinguishable so Condition (i) is easy-to-check: if it
is satisfied (in the stationary graph) for a specific edge then it is satisfied for all edges. We then
prove that if incident edges are almost pairwise independent in the stationary graph yielded
by a node-MEG then Condition (ii) is satisfied for some constant β: so, checking Condition
(ii) can here be reduced to check pairwise independence of incident edges in a generic node.
- Geometric Mobility Models. As for node-MEGs defined over geometric spaces (such as the
random waypoint), we state an easy-to-check condition implying Condition (ii): we transform
the pairwise-independence condition on incident edges into some mild uniformity conditions
on the single-node positional stationary distribution (see Corollary 4). We in fact show the
former properties are satisfied by a wide class of random mobility models such as the random
waypoint over a square: we thus get the first known upper bound for its flooding time.
Furthermore, when the stationary graph is sparse, the obtained bound is almost tight, i.e.,
O((L/v)polylogn) where L is the diameter of the square and v is the node speed. In particular,
our bound is almost tight whenever the transmission radius and the node speed are absolute
constants: this is surely the model setting that best fits opportunistic delay-tolerant Mobile
Ad-hoc Networks [18, 19, 27].
- Graph Mobility Models. Our upper bound holds even when the mobility space is an arbitrary
graph (the vertices of such graph are called points): in this case nodes choose randomly their
trajectories from some fixed families of simple paths of the mobility graph and the mixing time
is proportional to its hop-diameter. This mobility model is called random paths (on graphs).
The parameter β in Eq. 1 is here determined by the point congestion yielded by the feasible
paths of the mobility graph: informally speaking, β is small whenever the random paths do
not yield a high point congestion (again, we get a somewhat mild uniformity condition on the
(single-node) positional stationary distribution). If this is the case, the obtained bound on
the flooding time becomes almost tight. The random walk model on graphs can be seen as
a special case of the random paths on graphs: then the obtained bound on the flooding time
improves over the previous one [15] for the class of graphs where the mixing time of a random
walk is shorter than the meeting time of two random walks.

3The level of resolution does not affect the obtained bound on the flooding time, provided the resolution is
high enough.
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By concluding about mobile networks, we want to emphasize the impact of our general
method over classic models: the general conditions (i) and (ii) of our bound are transformed
into mild uniformity conditions over the positional stationary distribution which can be verified
by standard techniques [1, 24].
- Link-based Dynamic Networks. In appendix we show that our method can also be applied
to a subclass of MEGs in which each edge evolves independently according to an arbitrary
(hidden) Markov chain. Previously [10, 5], such link-based dynamic models had been studied
only in the case in which the edge Markov chain is very simple.

Previous Works. As mentioned before, information spreading in dynamic networks has been
extensively studied in the literature under a variety of scenarios and objectives (for a recent
good survey see [22]). For brevity’s sake, we restrict our attention to the results more directly
related to our work. Previous models and results can be roughly classified in two main classes:
link-based dynamic graphs and mobility models.

As for the first class, in [9], radio broadcasting is analyzed on a dynamic graph managed by
a worst-case dynamic adversary and on a sequence of independent Erdös-Rény graphs. In [10],
an upper bound on the flooding time for the restricted model edge-MEG has been derived.
The flooding time of another simple version of edge-MEGs has been studied in [5]. The general
MEG model has been introduced in [2] where some results are obtained for the cover time and
hitting time of random walks. Flooding time in stationary MEGs is studied in [11]; unlike our
method, the method in [11] only holds for stationary graphs which are connected and good
expanders. A worst-case model of dynamic graphs has been introduced in [21]. The analysis of
some communication tasks is presented under the strong stability condition called T -interval
connectivity (for T > 1) which stipulates that for every T consecutive steps a stable connected
spanning subgraph must exist.

As for mobility models, almost tight bounds on the flooding time for the random walk
model have been obtained in [20, 11, 12, 26, 27, 23]. As above discussed, their techniques
strongly rely on specific properties of the adopted version of the random walk. The case of
general mobility graphs has been considered in [15]: the obtained results are discussed and
compared to our results in Subsection 4.1. An upper bound on a variant of the random
waypoint model has been derived in [13]. In this version, nodes follows Manhattan paths.
Similarly to the works on the random walk models, the ad-hoc analysis in [13] strongly relies
on the particular node trajectories and on the specific positional distribution yielded by this
model. So, its contribution strongly departs from our general approach that obtains bounds
for any version of the random waypoint model.

Paper Organization. Section 2 formalizes the general model of dynamic graph and the
flooding process. Section 3 provides the main theorem for the flooding time in the general
model. The node-MEG model is described in Section 4 where an upper bound on the flooding
time is given for this specific model. The representation of the random trip and the random
paths models as specific instances of the node-MEG model is given in Subsection 4.1: here,
the flooding-time bound for node-MEGs is transformed into two useful bounds on the flooding
time: the first one for the random trip and the second one for the random paths. Finally,
conclusions with open questions are discussed in Section 5. Due to lack of space, the application
of the main theorem to general edge-MEGs and all the proofs are given in the appendix.
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2 Preliminaries

In this section, we introduce the general model of dynamic graphs. For any positive n, [n] will
denote the set {1, 2, . . . , n}. A dynamic graph G([n], {Et}t>0), with node set [n], is a stochastic
process represented by a sequence of random variables E0, E1, . . . , Et, . . . such that, for every
t, Et is the set of edges of the dynamic graph at time t. The speed of information spreading
can be studied in terms of the flooding time. Given a dynamic graph G([n], {Et}t>0) and a
node s ∈ [n], the flooding process with source s is defined as follows. At time t = 0, s is
the only informed node; then a node v gets informed at time t + 1 iff an edge e ∈ Et exists
connecting some informed node to v. Flooding over a dynamic graph is represented by the
stochastic process {It}t>0 where

I0 = {s} and ∀t > 1 It = It−1 ∪ {j ∈ [n] | ∃i ∈ It−1 : {i, j} ∈ Et}
The random variable It is the set of informed nodes at time t. Clearly, it holds that

I0 ⊆ I1 ⊆ I2 ⊆ · · · It ⊆ · · ·
The flooding time with source s is the random variable F (G, s) = mint{It = [n]} and the
flooding time is the random variable F (G) = maxs F (G, s).
Given a dynamic graph G([n], {Et}t>0), we define the following random variables. For every
time t, for every pair of nodes i, j ∈ [n] and for every subset of nodes A ⊆ [n], let

eti,j =

{

1 if {i, j} ∈ Et

0 otherwise
and eti,A =

{

1 if ∃j ∈ A : {i, j} ∈ Et

0 otherwise

Moreover, for any binary random variable X, the notation P (X | Et6T ) 6 (or >) α stands
for

∀ sequence of edge subsets A0, . . . , AT , with P

(

T
∧

t=0

(Et = At)

)

> 0), it holds

P

(

X = 1

∣

∣

∣

∣

∣

T
∧

t=0

(Et = At)

)

6 (or >) α

3 Flooding in Dynamic Graphs

Our goal is to evaluate the flooding time of a dynamic graph as a function of some properties
of its edges. These properties are not required to show up at every snapshot, rather it suffices
that they hold at the beginning of every time “epoch”, where an epoch is a sequence of
consecutive time steps of suitable length. When the dynamic graph is a Markovian process
admitting a stationary graph, the properties above refer to the expansion properties of the
stationary graph and the epoch length refers to the mixing time. However, aiming at the
maximal generality, we introduce such concepts for general (non-Markovian) process.

Let M be a positive integer and let α and β be two positive reals. A dynamic graph
G([n], {Et}t>0) is (M ,α,β)-stationary if ∀τ > 1, ∀i, j ∈ [n] with i 6= j, ∀A ⊆ [n]− {i, j}, the
following two conditions hold
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1. P
(

eτMi,j
∣

∣ Et6(τ−1)M

)

> α (Density Condition)

2. P
(

eτMi,A · eτMj,A
∣

∣ Et6(τ−1)M

)

6 βP
(

eτMi,A
∣

∣ Et6(τ−1)M

)

P
(

eτMj,A
∣

∣ Et6(τ−1)M

)

(β-Independence
Condition)

The full proof of the following theorem is given in the Appendix.

Theorem 1 (Flooding Time) If G([n], {Et}t>0) is (M,α, β)-stationary then with high prob-
ability the flooding time in G is

O

(

M

(

1

nα
+ β

)2

log2 n

)

4 Node Markovian Evolving Graphs

We introduce the general class of Node Markovian Evolving Graphs (in short, node-MEGs)
where the behavior of the nodes is ruled by independent Markov chains. To every node is
associated a Markov chain whose states contain enough information to determine whether two
nodes are connected or not. Of course, this is an approach based upon hidden Markov chains
to model dynamic graphs.

Let M = (S,P ) be the Markov chain associated to every node, where S is the set of
states and P : S × S → R are the transition probabilities. The connections are determined
by a symmetric map C : S × S → {0, 1}: any two nodes i, j are connected at a given
time t if C(u, v) = 1, where u, v are the states of i and j at time t. The symmetric map
C(·, ·) is also called the connection graph of M. A node-MEG is denoted by NM(n,M, C).
Notice that the Markov chain M may depend on the number of nodes. The initial state of
each node i is random with a probability distribution ιi over the set of states S. We denote
by ι the global initial probability distribution determined by the product of the probability
distributions ιi. The state of a node i at time t is a random variable sti fully determined by the
initial distribution ιi and the Markov chain M. A node-MEG NM(n,M, C) together with
an initial probability distribution ι determines a dynamic graph G([n], {Et}t>0) where, for any
t > 0, Et = {{i, j} | C(sti, s

t
j) = 1} It is easy to verify that node-MEGs enjoy the following

property.

Fact 2 Consider any node-MEG NM = NM(n,M, C) in its stationary state, then the prob-
ability PNM that any fixed pair of nodes are connected and the probability PNM2 that two fixed
nodes are both connected to another fixed one do not depend on the choice of the fixed nodes:
they are functions only of the stationary distribution of M and of the symmetric map C(·, ·).

In Subsection 4.1, we will show that a wide class of mobility models turns out to be a special
instance of Node-MEGs.

Flooding in Node-MEGs. We now derive some simple properties ensuring that a node-
MEG NM(n,M, C) is a (M,α, β)-stationary dynamic graph. Since in a node-MEG, edges
are not independent, the crucial condition is the β-independence. The models at hand are
Markovian so the idea is to consider the model during its stationary state, that is, the time M
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between two consecutive epochs is proportional to the mixing time of the Markov chain M.
Moreover, the β-independence involves sets of incident edges of arbitrary size (i.e. the size of
subset A): instead, thanks to the independence of node evolutions and Fact 2, in node-MEGs
this condition can be relaxed to a parameterized pairwise independence among incident edges.

Theorem 3 Let NM = NM(n,M, C) be a node-MEG such that PNM > 1/nO(1) and PNM2 6

η(PNM)2, for some η > 1. Then, with high probability, the flooding time is

O

(

Tmix

(

1

nPNM
+ η

)2

log3 n

)

where Tmix is the mixing time of the Markov chain M.

4.1 Flooding in Classic Mobility Models

Geometric Mobility Models. Several mobility models can be represented as special cases
of node-MEGs. Many of these are continuous-space models [7, 24] in which nodes move
over a subset of R

d. Since node-MEGs are discrete, we approximate continuous space by
discretization. In the simplest and most common case, nodes move over a square of R2 of side
length L. The square can be discretized by taking a square grid Q formed by m ×m points
regularly spaced in the square region, where m can be arbitrarily chosen.

In the standard random waypoint [7], n nodes independently move over the square: every
node randomly chooses a speed in [vmin, vmax] where vmax = Θ(vmin) and a destination point
(‘waypoint’) in the square and moves with the chosen speed on a straight path to this point.
Then, it repeats the same process again and again. The destination points are uniformly
distributed on the square. At any time two nodes are connected if they are at distance not
larger than the transmission radius r.
The formal discretization of the random waypoint as a node-MEG can be done by simple and
standard arguments [14], so we here provide an informal description only. The generic state
of the Markov chain M must encode the destination point, the current point in the straight
point-path the node lies, and the node speed (the latter can be defined as the number of
points per time step). Then the transition matrix can be easily defined: when a node is in
some internal point of a path the choice of his next state is deterministic while when he arrives
at the end of a path, his next state is randomly chosen by selecting the next destination point
(and thus the next path to be followed) and the speed. As usual, the connection map C is
defined as follows: there is an edge between nodes u and v at time t iff their relative distance
at time t is not larger than r. The positional probability distribution in the stationary phase
is defined as the probability that a node is in point x (for any choice of x over the square)
when the state of the node is random with the stationary distribution of M. The density
function of this distribution (in short, positional function) yielded by the random waypoint
over the square will be denoted by Fwp(·). The random waypoint belongs to a general class
of geometric mobility models called the random trip model [24] where the mobility space R
can be any bounded connected region of Rd and the feasible node-trajectories can be any
family of continuous curves. Any random trip model can be discretized with any level of
“approximation” (in terms of grid resolution and time unit) by following the same procedure
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described above for the random waypoint. For this geometric class of node-MEGs, Theorem
3 can be rewritten in a very useful way.
For any r > 0, D(u, r) denotes the set of all the points that are at Euclidean distance at most
r from u. For any connected region B ⊆ R

d, define Br = {u ∈ B | D(u, r) ⊆ B} and vol(B)
as the volume of region B. The proof of the next bound is given in the Appendix.

Corollary 4 Let NM = NM(n,M, C) be a node-MEG yielded by a suitable discretization of
a random trip model T over a bounded connected region R ⊆ R

d with positional function FT .
If PNM > 1/nO(1) and for some δ > 1 and λ > 0 it holds that

(a) ∀u ∈ R, FT (u) 6
δ

vol(R)

(b) ∃B ⊆ R such that vol(Br) > λvol(R) and ∀u ∈ B, FT (u) >
1

δvol(R)

then, with high probability, the flooding time is O

(

Tmix

(

δ2vol(R)
λnrd

+ δ6

λ2

)2
log3 n

)

where Tmix

is the mixing time of the Markov chain M.

The useful novelty of the above corollary lies in the following fact: the pairwise-independence
condition in Theorem 3 is transformed into two mild “uniformity” conditions on the positional
function yielded by the mobility model. The latters only refer to the stationary positional
distribution of the single node and it is often much easier to verify with respect to the pairwise
condition. Indeed, a general method (the Palm Calculus) to derive explicit formulas of such
function for random trip models has been introduced in [24]. As for the random waypoint on
the square, the explicit positional function Fwp(·) has been derived in [25] and it is easy to
verify that the two conditions of the above corollary are satisfied for some absolute constants
δ and λ. Furthermore, the mixing time of the random waypoint over a square of side length L
is Θ(L/vmax) (remind we are assuming vmax = O(vmin)) [1, 29]. We thus obtain the following

bound on the flooding time O

(

L
vmax

(

L2

nr2
+ 1
)2

log3 n

)

Let us consider the case L ∼ √
n,

r = Ω(1), and r = O(vmax); notice that this standard setting yields a stationary mobile
network which is w.h.p. sparse and highly disconnected. Then the bound on the flooding time

becomes O
( √

n
vmax

log3 n
)

which almost matches the trivial lower bound Ω
( √

n
vmax

)

.

Graph Mobility Models. A natural generalization of random walks over a graph can be
defined by considering random paths over a graph. This clearly includes the random waypoint
over a graph. At every time step, a node moves along a path instead of on a single edge. More
precisely, the model is specified by a graph H(V,A) and a family P of feasible paths in H
satisfying the property: for every path h ∈ P, there is a path h′ ∈ P such that h′ starts where
h ends. For any u ∈ V , let P(u) be the set of paths in P that starts at point u. The mobility
model is as follows, a node at point u ∈ V chooses uniformly at random a path in P(u), then
it travels along the path (an edge at the time), when it reaches the end point v, it chooses
uniformly at random a path in P(v) and travels along that path, and so on. We assume that
two nodes are connected, at any given time t, if they are in the same point at time t. For
any path h, let ℓ(h) denote the number of points of h. The representation of a random path
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model RP = (H,P) as a node-MEG is straightforward. The Markov chain MRP = (S,P ) is
such that S = {(h, hi) | h ∈ P, 2 6 i 6 ℓ(h) and hi is the ith point of h}; the transition
probabilities are as follows

∀h ∈ P ∀i : 2 6 i < ℓ(h) P ((h, hi), (h, hi+1)) = 1

∀h, h′ ∈ P : hℓ(h) = h′1 P ((h, hℓ(h)), (h
′, h′2)) =

1

|P(hℓ(h))|
all other transition probabilities are equal to zero;

and the connection map is such that CRP((h, hi), (h
′, h′j)) = 1 iff hi = h′j . Observe that if P is

the set of edges of H then the mobility model is equivalent to the random walk over H (with
ρ = 1).

We say that a path h ∈ P passes through a point u if hi = u for some 2 6 i 6 ℓ(h). For
any point u ∈ V , let #P(u) be the number of paths in P that passes through point u. Notice
that if P is the set of edges of H, then #P(u) = degH(u). A random-path model RP = (H,P)
is said to be simple if every path in P does not pass through the same point more than once,
but the start and end points that may be equals. Moreover, RP is reversible if, for every path
h ∈ P, the reverse path of h also belongs to P. We say that a random path model (H,P) is
δ-regular if

∀u ∈ V #P(u) 6 δ

∑

v∈V #P(v)

|V |
Roughly speaking δ-regularity ensures that no point is a much busier crossroad than the aver-
age. Theorem 3 then implies the following useful result (the proof is given in the Appendix).

Corollary 5 Let NM = NM(n,M, C) be a node-MEG yielded by a random path model RP =
(H,P) that is simple, reversible, δ-regular, and |V | 6 nO(1). Then, w.h.p the flooding time is

O

(

Tmix

(

|V |
n + δ3

)2
log3 n

)

where Tmix is the mixing time of the Markov chain M.

If for every pair of points there is only one feasible simple path, then the mixing time of the
relative Markov chain is O(D), where D is the diameter of H. Moreover, if the model is
δ-regular for some δ = polylog(n) and |V | = O(npolylog(n)), then the above corollary implies
that the flooding time is O (D polylog(n)). This is within a poly-logarithmic factor from the
optimum, since a trivial lower bound is Ω(D). A basic instance of this case is when H is a
grid and the feasible paths are the shortest ones.

As mentioned in the Introduction, almost tight bounds for the flooding time on the random
walk model over grids have been recently obtained in [11, 12, 27]. In a general graph H(V,A),
every node randomly chooses his next position among all points in V that are within ρ hops
from his current position. The transmission radius r determines the maximal distance (again in
terms of number of hops in H(V,A)) within which a message can be successfully transmitted.
The most studied setting is ρ = 1 and r = 0: a node makes at most one hop per time step and
it can infect only nodes that lies in the same point. This natural setting in general graphs has
been studied in [15]: the flooding time is proved to be O(T ∗ log n) where T ∗ is the meeting
time between two independent random walks on H.
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In what follows we apply our analysis for the random path model to the special case of
random walks. The δ-regularity condition over paths is transformed into a simple condition
on the degree of the points. Given any δ > 1, a graph H(V,A) is said to be δ-regular if
(max{deg(v) |v ∈ V })/(min{deg(v) |v ∈ V }) 6 δ. Then, we can derive a simple adaptation
of Corollary 5.

Corollary 6 Let NM = NM(n,M, C) be a node-MEG yielded by the random walk over any δ-

regular mobility graph H(V,A). Then, w.h.p the flooding time is O

(

Tmix

(

δ2|V |
n + δ7

)2
log3 n

)

where Tmix is the mixing time of a random walk over H.

The above bound improves the result in [15] over a relevant and wide class of mobility graphs.
Indeed, given a symmetric graph, the meeting time of two random walks is asymptotically
equivalent to the first hitting time and can be much larger than the mixing time of a single
random walk [1]. A natural example is that of k-augmented grids: take a grid of s points and
add an edge between any pair of points whose hop-distance is not larger than k. While the
meeting time is not smaller than that of a standard grid Θ(s log s) [1, 27], the mixing time
decreases in k. For instance, if s ∼ npolylog(n) then the bound in [15] becomes O(npolylog(n))
while our bound is O((npolylog(n))/k2).

5 Conclusions

We believe that significant improvements are possible to the bound in Theorem 1 along some
interesting directions. We suspect that, under mild assumptions on the dynamic graph process,
the factor ( 1

nα + β)2 can be improved. A more challenging task is to avoid the dependency
of the bound on the mixing time of the graph process. The density and β-independence
conditions can be met even at a state in which the graph process is far from the stationary
distribution, and so a more refined analysis might be able to bound the flooding time without
having to“wait” for the process to achieve stationarity.
Our method may prove useful in the analysis of more refined communication protocols than
flooding. A simple example is a randomized protocol in which, at every step, a node that
possesses the information transmits it to a randomly chosen subset of neighbors. The analysis
of such a process can be reduced to the analysis of flooding in a “virtual” dynamic graph in
which a subset of the edges are removed. More general communication protocols might also
be reduced to flooding by folding the actions of the protocol into the dynamic graph process.
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A Generalized Edge-MEGs

The link-based dynamic model Edge-MEG has been introduced in [10] and successively studied
in [4, 11, 17]. In this restricted instance of MEGs, edges evolves independently. Every edge of
the n-node graph can be in two states only: on or off. At any time step, every edge changes
its state according to a two-state Markovian process with probabilities p (edge birth-rate) and
q (edge death-rate): if at time t an edge e exists then it will die with probability q while if e
does not exists then it will come up with proability p. In [10], the authors prove an almost
tight upper bound on the flooding time.

O(log n/ log(1 + np)) (2)

A more refined model with four states has been recently introduced and studied in [5].
Edge-MEGs do not explicitly model node’s mobility, rather they are more suitable to model
the link evolution in peer-to-peer networks or faulty networks.

Our main contribution here lies in the fact that Theorem 1 can be applied to the much
more general version of edge-MEGs where an arbitrary (hidden) Markov chain M = (S,P )
rules the behavior of every edge and by an arbitrary map χ : S → {0, 1} that determines, in
function of the state, whether the edge exists or not. This wide generalization of edge-MEG
will be denoted as EM(n,M, χ).
The initial state of each edge {i, j} is random with a probability distribution ι{i,j} over the
set of states S. We denote by ι the global initial probability distribution determined by the
product of the probability distributions ι{i,j}. The state of an edge {i, j} at any time t is a
random variable st{i,j} completely determined by the initial distribution ι{i,j} and the Markov
chain M.
Any model EM(n,M, χ) together with an initial probability distribution ι determines a dy-
namic graph G([n], {Et}t>0) where, for any t > 0,

Et = {{i, j} | χ(st{i,j}) = 1}
A crucial property of such generalized edge-MEGs is that edges are independent random
variables, so it always holds that the β-indpendence is satisfied with β = 1. Then, when the
Markov chain M admits a unique stationary distribution π, Theorem 1 implies that flooding
time is

O

(

Tmix

(

1

nα
+ 1

)2

log2 n

)

where Tmix is the mixing time of the Markov chain M and α is the probability an edge exists
in the stationary regime (i.e. according to π). For instance, in the basic edge-MEG model
with parameters p and q the mixing time is Θ(1/(p+ q)) and α = p/(p+ q) [10]. We thus get
an upper bound

O

(

1

p+ q

(

p+ q

np
+ 1

)2

log2 n

)

By comparing our bound to the (almost-tight) one in Eq. 2, we get that the former is almost
tight whenever q > np.
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B Some useful Inequalities

The Paley-Zigmund inequality. If X > 0 is a random variable with finite variance, and if
0 < θ < 1, then

P (X > θE [X]) > (1− θ2)
E [X]2

E [X2]
(3)

Lemma 7 (Lemma 3.1 in [3]) Let X1, . . . ,Xn be a sequence of random variables with val-
ues in an arbitrary domain, and let Y1, . . . , Yn be a sequence of binary random variables, with
the property that Yi = Yi(X1, . . . ,Xn). If

P (Yi = 1 | X1, . . . ,Xi−1) > p

then
P
(

∑

Yi 6 k
)

6 P (B(n, p) 6 k)

where B(n, p) is binomially distributed random variable with parameters n and p.

Lemma 8 (Chernoff Bound) Let X1, . . . Xn be independent binary random variables and
let X =

∑n
i=1Xi and µ = E [X]. Then, for any δ > 0,

P (X < (1− δ)µ) < exp

(

−δ
2µ

2

)

C Proof of Theorem 1

Expansion Properties. In what follows, we derive some expansion properties of (M ,α,β)-stationary
dynamic graphs. Such properties will be then exploited in the analysis of flooding.
The times τM will be called epochs and they will be abbreviated by τ (i.e. τ will stand for
τM , with respect to a fixed (M,α, β)-stationary dynamic graph G([n], {Et}t>0)). Thus, we
write Eτ , e

τ
i,j and eτi,A to denote EτM , eτMi,j and eτMi,A , respectively. These abbreviations will

be also used for other random variables.
Let degτi,A be the random variable counting the number of nodes in A connected to i at epoch
τ , i.e., degτi,A = |{j ∈ A | {i, j} ∈ Eτ}|. Observe that, thanks to Condition (1), the expected
value of degτi,A is at least |A|α; the following lemma provides a concentration result as function
of the “independence” parameter β.

Lemma 9 If G([n], {Et}t>0) is (M,α, β)-stationary then, ∀τ > 1, ∀i ∈ [n], and ∀A ∈ [n]−{i},

P

(

degτi,A >
|A|α
2

∣

∣

∣

∣

E6τ−1

)

>
|A|α

2 + 2|A|αβ
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Proof. Firstly we bound the expected square of the degree. For the sake of brevity, we omit
the conditioning by E6τ−1. It holds that

E
[

(

degτi,A
)2
]

= E









∑

j∈A
eτi,j





2



=
∑

j,k∈A
E
[

eτi,j · eτi,k
]

=
∑

j,k∈A,j 6=k

E
[

eτi,j · eτi,k
]

+E
[

degτi,A
]

(since (eτi,j)
2 = eτi,j)

6
∑

j,k∈A,j 6=k

βE
[

eτi,j
]

E
[

eτi,k
]

+E
[

degτi,A
]

(by Condition (2))

6 βE
[

degτi,A
]2

+E
[

degτi,A
]

Moreover, from Condition (1), it derives that

E
[

degτi,A
]

> |A|α

Thus, from the Paley-Zigmund inequality (with θ = 1/2) and the above bounds, we obtain

P

(

degτi,A >
|A|α
2

)

>
1

2

E
[

degτi,A
]2

E
[

(degτi,A)
2
]

>
1

2

E
[

degτi,A
]2

βE
[

degτi,A
]2

+E
[

degτi,A
]

=
E
[

degτi,A
]

2 + 2βE
[

degτi,A
]

>
E
[

degτi,A
]

2 + 2βE
[

degτi,A
]

Since function x
2+2βx is decreasing, we have that

P

(

degτi,A >
|A|α
2

)

>
E
[

degτi,A
]

2 + 2βE
[

degτi,A
] >

|A|α
2 + 2β|A|α

�

The next lemma extends Lemma 9 to the expansion of an arbitrary node subset. For every
epoch τ and for every A,B ⊆ [n], define the random variable counting the expansion from A
to B

degτA,B = |{j ∈ B | ∃i ∈ A : {i, j} ∈ Eτ}|

Lemma 10 If G([n], {Et}t>0) is (M,α, β)-stationary then, ∀τ > 1, ∀A ∈ [n], and ∀B ∈
[n]−A,

P

(

degτA,B >
|A||B|α

4 + 4|A|αβ

∣

∣

∣

∣

E6τ−1

)

>
|A||B|α

4 + 6|A||B|αβ
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Proof. The argument is very similar to that of the proof of Lemma 9. Firstly we bound the
expected square of the expansion. For the sake of brevity, we omit the conditioning by E6τ−1.

E
[

(degτA,B)
2
]

= E









∑

j∈B
eτj,A





2



=
∑

j,k∈B
E
[

eτj,A · eτk,A
]

6 E
[

degτA,B

]

+ β
∑

j,k∈B
E
[

eτj,A
]

E
[

eτk,A
]

(by Condition (2))

= E
[

degτA,B

]

+ βE
[

degτA,B

]2

Moreover, from Lemma 9 it derives that

E
[

degτA,B

]

=
∑

j∈B
E
[

eτj,A
]

=
∑

j∈B
P
(

degτj,A > 0
)

>
∑

j∈B

|A|α
2 + 2|A|αβ =

|A||B|α
2 + 2|A|αβ

From the Paley-Zigmund inequality (with θ = 1/2) and the above bounds, we have that

P

(

degτA,B >
|A||B|α

4 + 4|A|αβ

)

>
1

2

E
[

degτA,B

]2

E
[

(degτA,B)
2
]

>
E
[

degτA,B

]2

2E
[

degτA,B

]

+ 2βE
[

degτA,B

]2

=
E
[

degτA,B

]

2 + 2βE
[

degτA,B

]

>

|A||B|α
2+2|A|αβ

2 + 2β |A||B|α
2+2|A|αβ

>
|A||B|α

4 + 6|A||B|αβ

�

When the dynamic graph is sparse, the expansion rate obtained by considering a single snap-
shot of the process (i.e. the expansion of a node subset at time τ) does not suffice to get
a good number of new informed nodes. In this case, a “dynamic” version of the expansion
properties is required. For every epoch τ , for every T > 1, and for every A ⊆ [n], define

spreadτ,TA = |{j ∈ [n]−A | ∃τ ′∃i ∈ A : τ < τ ′ 6 τ + T ∧ {i, j} ∈ Eτ ′}|

That is, spreadτ,TA is the number of nodes outside A that get connected to nodes in A during
the epochs in the interval (τ, τ + T ].
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Lemma 11 If G([n], {Et}t>0) is (M,α, β)-stationary then, ∀τ > 1, ∀A ⊆ [n] with |A| 6 n/4,
and ∀t > 0,

P
(

spreadτ,TA < |A|
∣

∣

∣
E6τ

)

< exp(−t)

where

T = 256

(

1

|A|n2α2
+

β

nα
+

|A|β2
n

)

+

(

4

|A|nα + 3β

)

t

Proof. For brevity’s sake, we omit the conditioning by E6τ . Let St be the set of nodes outside
A that get connected to nodes in A during the epochs in (τ, τ + t]. Formally,

S0 = ∅ and St = St−1 ∪ {j ∈ [n]−A | ∃i ∈ A : {i, j} ∈ Eτ+t}

Clearly, |ST | = spreadτ,TA . Let

γ =
|A|nα

8 + 8|A|αβ
Define

Yt =

{

1 if |St−1| > |A| or |St| > |St−1|+ ⌈γ⌉
0 otherwise

Observe that Yt = ft(Eτ+1, . . . , Eτ+t) for a suitable function ft. From the inequalityP (A ∨B | H) >
P
(

B | H ∧ A
)

it derives that

P (Yt = 1 | Eτ,t−1) = P ( |St−1| > |A| ∨ |St| > |St−1|+ ⌈γ⌉ | Eτ,t−1)

> P ( |St| > |St−1|+ ⌈γ⌉ | Eτ,t−1 ∧ |St−1| < |A|) (4)

whereEτ,t−1 stands for Eτ+1, . . . , Eτ+t−1. Assume that |St−1| < |A| and letW = [n]−A−St−1.
Since |A| 6 n/4, it holds that |W | > n

2 and

|St| > |St−1|+ ⌈γ⌉ ⇔ degτ+t
A,W > γ (5)

From Lemma 10, we have that

P
(

degτ+t
A,W > γ

∣

∣

∣
E6τ+t−1 ∧ |St−1| < |A|

)

> P

(

degτ+t
A,W >

|A||W |α
4 + 4|A|αβ

∣

∣

∣

∣

E6τ+t−1 ∧ |St−1| < |A|
)

>
|A||W |α

4 + 6|A||W |αβ

> p =
|A|nα

8 + 6|A|nαβ (6)

Thus, from Ineq.s 4, 5, and 6 we get

P (Yt = 1 | Eτ,t−1) > p

We can now apply Lemma 7 to the r.v. Eτ+1, . . . , Eτ+T and r.v. Y1, . . . , YT

P

(

T
∑

t=1

Yt <
|A|
γ

)

6 P

(

B(T, p) <
|A|
γ

)
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Since spreadτ,TA < |A| ⇒ ∑T
t=1 Yt <

|A|
γ , from the above inequality we obtain

P
(

spreadτ,TA < |A|
)

6 P

(

B(T, p) <
|A|
γ

)

By applying Chernoff’s Bound (Lemma 8), after some calculations, we get

P

(

B(T, p) <
|A|
γ

)

6 exp(−t) for T = 256

(

1

|A|n2α2
+

β

nα
+

|A|β2
n

)

+

(

4

|A|nα + 3β

)

t

�

The next result still concerns the “dynamic” expansion of any subset of nodes. It will be
applied when the subset of informed node is large (say at least n/2) in order to get a good
bound on the completion time of the last phase of the flooding process. Let us define the
following r.v.

eτ,Ti,A =

{

1 if ∃τ ′ ∃j ∈ A : τ < τ ′ 6 τ + T and {i, j} ∈ Eτ ′

0 otherwise
(7)

Lemma 12 If G([n], {Et}t>0) is (M,α, β)-stationary then, ∀τ, t > 1 it holds that, for every
A ⊆ [n] and for every i ∈ [n] \ A, it holds that

P
(

eτ,Ti,A = 0
∣

∣

∣ E6τ

)

6 exp(−t), where T = 2

(

1

|A|α + β

)

t

Proof. For brevity’s sake, we omit the conditioning by E6τ . For every s = 1, . . . , T , define r.v.

Ys = eτ+s
i,A

Observe that Ys = fs(E6τ+s) for a suitable function fs. Lemma 9 implies

P (Ys = 1 | Eτ+s−1) = P
(

degτ+s
i,A > 0

∣

∣

∣ Eτ+s−1

)

> p =
|A|α

2 + 2|A|αβ

By applying Lemma 7 to Eτ+1, . . . , Eτ+T and Y1, . . . , YT , we get

P

(

T
∑

s=1

Ys = 0

)

6 P (B(T, p) = 0) = (1− p)T 6 exp(pT ) = exp(−t)

�

C.1 Flooding in Dynamic Graphs

In what follows, we bound the time required to obtain at least n/2 informed nodes. This is
the spreading phase.
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Lemma 13 (Spreading Phase) If G([n], {Et}t>0) is (M,α, β)-stationary then, ∀τ > T̂ with

T̂ = O
(

(

1
nα + β

)2
log2 n

)

it holds that

P
(

|Iτ | <
n

2

)

6
1

n2

Proof. (Sketch of). Observe that, for any |A|, the bound on T for t = Θ(log n) in Lemma 11
satisfies

T = Θ

((

1

|A|n2α2
+

β

nα
+

|A|β2
n

)

+

(

4

|A|nα + 3β

)

log n

)

= O

(

(

1

nα
+ β

)2

log n

)

From Lemma 11, after every time interval of T epochs, the size of the set of informed nodes at
least doubles as far it is smaller than n/2, with high probability (say 1 − 1/n2). By a simple
application of the Union Bound, we get that, after a O(log n) number of such time intervals,
with high probability the number of informed nodes is at least n/2. �

Lemma 14 (Saturation Phase) Let G([n], {Et}t>0) be (M,α, β)-stationary and assume the
flooding process is in some epoch τ such that |Iτ | > n/2. Then, w.h.p. all nodes get informed
within O

((

1
nα + β

)

log n
)

epochs.

Proof. (Sketch of). Assume that we are in some epoch τ where |Iτ | > n/2, then by choosing
A = Iτ and t = Θ(log n), Lemma 12 implies that, with high probability, every node gets in-
formed within O

((

1
nα + β

)

log n
)

epochs. Then, by the Union Bound, all nodes gets informed
after the same number of epochs.

�

Proof of Theorem 1. Thanks to Lemma 13, w.h.p., after O
(

M
(

1
nα + β

)2
log2 n

)

steps the

set of informed nodes will be at least n/2. Then, from Lemma 14, we have that, after further
O
(

M
(

1
nα + β

)

log n
)

steps, w.h.p. all nodes will get informed.
�

D Flooding in Node-MEG: Proof of Theorem 3

We firstly need some notations. For every x ∈ S, define

Γ(x) = {y ∈ S | C(x, y) = 1}

In words, Γ(x) is the set of states that are at one hop from state x. For any node i ∈ [n], let νi
be a probability distribution over the set of states S. The symbol ν (without subscript) will
denote the product probability distribution over

∏

i∈[n] S. Assuming that nodes are random
with the probability distribution ν, for every i, j ∈ [n] and for every A ∈ [n] − {i}, define
binary random variables eνi,j and eνi,A,

eνi,j = 1 if nodes i and j are connected

eνi,A = 1 if node i is connected to some node in A
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It is easy to verify that the followings hold

P
(

eνi,j
)

=
∑

x∈S
νi(x)νj(Γ(x))

P
(

eνi,A

)

=
∑

x∈S
νi(x)

∏

j∈A
(1− νj(Γ(x)))

where, for any binary random variable X, X is the complementary random variable defined
as X = 1 iff X = 0. Notice that νj(Γ(x)) is the probability that node j is connected to a
fixed node in state x. Let π be the stationary probability distribution of the Markov chain
M. With an abuse of notation, we denote by π also the probability distribution over

∏

i∈[n] S
given by the product of πs. For the sake of simplicity, we omit the explicit dependence on π
of random variables and probabilities. Thus, we write ei,j , ei,A to mean, respectively eπi,j, e

π
i,A.

Lemma 15 Let NM = NM(n,M, C) be a node-MEG such that

PNM2 6 η (PNM)2 for some η > 1

Then,
∀i, j ∈ [n]∀A ⊆ [n]− {i, j} P (ei,A · ej,A) 6 17ηP (ei,A)P (ej,A)

Proof. For the sake of convenience, let q(x) and q(x, y) denote, respectively, π(Γ(x)) and
π(Γ(x) ∪ Γ(y)). Define

V =

{

x ∈ S | q(x) > 1
√

|A|

}

Claim 1 For every k ∈ [n]−A, it holds that

P (ek,A) >

√

|A|
2

(

PNM −
∑

x∈V
π(x)q(x)

)

+
1

2
π(V )

Proof. We upper bound P (ek,A). Clearly, it holds that

P (ek,A) =
∑

x∈V
π(x)(1− q(x))|A| +

∑

x∈S−V

π(x)(1− q(x))|A| (8)

If x ∈ V , then

(1− q(x))|A| 6 e−q(x)|A| 6 e−
√

|A| 6 e−1 (9)

If x ∈ S − V , then

(1− q(x))|A| 6 e−q(x)|A| 6 1− q(x)|A|
2
√

|A|
= 1−

√

|A|
2

q(x) (10)
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where we used the inequality e−x 6 1 − x/(2α) (that holds for α > 1 and any
0 6 x 6 α). By combining Inequalities (8), (9), and (10), we obtain

P (ek,A) 6
1

e

∑

x∈V
π(x) +

∑

x∈S−V

π(x)

(

1−
√

|A|
2

q(x)

)

=
1

e
π(V ) +

∑

x∈S
π(x)

(

1−
√

|A|
2

q(x)

)

−
∑

x∈V
π(x)

(

1−
√

|A|
2

q(x)

)

=
1

e
π(V ) + 1−

√

|A|
2

PNM −
∑

x∈V
π(x) +

√

|A|
2

∑

x∈V
π(x)q(x)

= 1−
(

1− 1

e

)

π(V )−
√

|A|
2

(

PNM −
∑

x∈V
π(x)q(x)

)

6 1− 1

2
π(V )−

√

|A|
2

(

PNM −
∑

x∈V
π(x)q(x)

)

and the thesis immediately follows. �

We distinguish two cases. First we assume that the following holds

∑

x∈V
π(x)q(x) >

1

2
PNM (11)

It holds that

1

π(V )

(

∑

x∈V
π(x)q(x)

)2

6
∑

x∈V
π(x)q(x)2 (by Jensen’s inequality)

6 η (PNM)2 (by lemma’s hypothesis)

< 4η

(

∑

x∈V
π(x)q(x)

)2

(by Assumption (11))

From this, it is immediate to derive that

π(V ) >
1

4η

Thus, thanks to Claim 1 we obtain

P (ek,A) >

√

|A|
2

(

PNM −
∑

x∈V
π(x)q(x)

)

+
1

2
π(V ) >

1

8η

It follows that

P (ei,A · ej,A) 6 P (ei,A)
8η

8η
6 8ηP (ei,A)P (ej,A)
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Now, we consider the opposite case:

∑

x∈V
π(x)q(x) 6

1

2
PNM (12)

For any two binary r. v. X and Y , it holds that X · Y = (X ∨ Y ) and thus P (X · Y ) =
P
(

X · Y
)

+ 1−P
(

X
)

−P
(

Y
)

. Hence,

P (ei,A · ej,A) = P (ei,A · ej,A) + 1−P (ei,A)−P (ej,A) (13)

First, we focus on upper bounding P (ei,A · ej,A). It holds that

P (ei,A · ej,A) =
∑

x∈S

∑

y∈S
π(x)π(y)

∏

h∈A
π(S − (Γ(x) ∪ Γ(y)))

=
∑

x,y∈S
π(x)π(y) (1− π(Γ(x) ∪ Γ(y)))|A|

Define
R = {(x, y) ∈ S × S | Γ(x) ∩ Γ(y) 6= ∅} and R = S × S −R

Observe that if (x, y) ∈ R then q(x, y) = q(x) + q(y). Thus, it holds that

P (ei,A · ej,A) =
∑

(x,y)∈R

π(x)π(y)(1 − q(x, y))|A| +
∑

(x,y)∈R
π(x)π(y)(1 − q(x, y))|A|

=
∑

(x,y)∈R

π(x)π(y)(1 − q(x)− q(y))|A| +
∑

(x,y)∈R
π(x)π(y)(1 − q(x, y))|A|

= Λ1 + Λ2 (14)

where

Λ1 =
∑

x,y∈S
π(x)π(y)(max{1− q(x)− q(y), 0})|A|

Λ2 =
∑

(x,y)∈R
π(x)π(y)

[

(1− q(x, y))|A| − (max{1− q(x)− q(y), 0})|A|
]

To bound Λ1 we use the inequality max{1 − a − b, 0} 6 (1 − a)(1 − b), that holds for any a
and b with 0 6 a, b 6 1:

Λ1 6
∑

x,y∈S
π(x)π(y)(1 − q(x))|A|(1− q(y))|A|

=
∑

x∈S
π(x)(1 − q(x))|A|∑

y∈S
π(y)(1− q(y))|A|

= P (ei,A)P (ej,A) (15)
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By combining Inequalities (13), (14), and (15), we obtain

P (ei,A · ej,A) 6 1−P (ei,A)−P (ej,A) +P (ei,A)P (ej,A) + Λ2

= (1−P (ei,A)) (1−P (ej,A)) + Λ2

= P (ei,A)P (ej,A) + Λ2 (16)

To upper bound Λ2, we use the following

Claim 2 If 0 6 b 6 1 and 1 6 1− a+ b 6 1, then, for any integer k > 1,

(1− a+ b)k − (max{1− a, 0})k 6 kb

Proof. By distinguishing the two cases 1− a 6 0 and 1 − a > 0, and in the latter
by induction on k. �

Let q̂(x, y) denote π(Γ(x) ∩ Γ(y)). Observe that

q(x, y) = q(x) + q(y)− q̂(x, y)

From Claim 2 with a = q(x) + q(y) and b = q̂(x, y), we get

(1− q(x, y))|A| − (max{1− q(x)− q(y), 0})|A| 6 |A|q̂(x, y)

It follows that

Λ2 6 |A|
∑

(x,y)∈R
π(x)π(y)q̂(x, y)

= |A|
∑

x,y∈S
π(x)π(y)q̂(x, y) (since (x, y) 6∈ R⇒ q̂(x, y) = 0))

= |A|
∑

x,y∈S
π(x)π(y)

∑

z∈S
π(z)C(z, x)C(z, y)

= |A|
∑

z∈S
π(z)

∑

x∈S
π(x)C(z, x)

∑

y∈S
π(y)C(z, y)

= |A|
∑

z∈S
π(z)q(z)2

6 η|A| (PNM)2 (from lemma’s hypothesis)

By combining this with Inequality (16), we obtain

P (ei,A · ej,A) 6 P (ei,A)P (ej,A) + η|A| (PNM)2 (17)

From Claim 1 and Hypothesis (12) we get

P (ek,A) >

√

|A|
2

(

PNM −
∑

x∈V
π(x)q(x)

)

>

√

|A|
2

(

PNM − 1

2
PNM

)

=

√

|A|
4

PNM
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In conclusion, from this and Inequality (17) we get the thesis:

P (ei,A · ej,A) 6 P (ei,A)P (ej,A) + η|A| (PNM)2

6 P (ei,A)P (ej,A) + η|A|4P (ei,A)
√

|A|
4P (ej,A)
√

|A|
= P (ei,A)P (ej,A) + 16ηP (ei,A)P (ej,A) 6 17ηP (ei,A)P (ej,A)

�

Lemma 16 For every i = 1, . . . , k, let ψi and ζi be any two probability distributions over any
domain Ωi. Let ψ and ζ denote the product probability distributions over

∏k
i=1Ωi of ψis and

ζis, respectively. Then, it holds that

||ψ − ζ||TV 6

k
∑

i=1

||ψi − ζi||TV

Proof. Let Ω =
∏k

i=1Ωi. We denote (x1, . . . , xk) by x. For every i, let Ω
−i =

∏k
j=1,j 6=iΩj and

let x−i denote (x1, . . . xi−1, xi+1, . . . , xk). It holds that

||ψ − ζ||TV =
1

2

∑

x∈Ω
|ψ(x)− ζ(x)|

=
1

2

∑

x∈Ω

∣

∣

∣

∣

∣

∣

k
∏

j=1

ψj(xj)−
k
∏

j=1

ζj(xj)

∣

∣

∣

∣

∣

∣

=
1

2

∑

x∈Ω

∣

∣

∣

∣

∣

∣

k
∏

j=1

ψj(xj) +

k
∑

i=2

i−1
∏

j=1

ζj(xj)

k
∏

j=i

ψj(xj)−
k
∏

j=1

ζj(xj)−
k
∑

i=2

i−1
∏

j=1

ζj(xj)

k
∏

j=i

ψj(xj)

∣

∣

∣

∣

∣

∣

=
1

2

∑

x∈Ω

∣

∣

∣

∣

∣

∣

k
∑

i=1

i−1
∏

j=1

ζj(xj)
k
∏

j=i

ψj(xj)−
k
∑

i=1

i
∏

j=1

ζj(xj)
k
∏

j=i+1

ψj(xj)

∣

∣

∣

∣

∣

∣

=
1

2

∑

x∈Ω

∣

∣

∣

∣

∣

∣

k
∑

i=1

ψi(xi)

i−1
∏

j=1

ζj(xj)

k
∏

j=i+1

ψj(xj)−
k
∑

i=1

ζi(xi)

i−1
∏

j=1

ζj(xj)

k
∏

j=i+1

ψj(xj)

∣

∣

∣

∣

∣

∣

=
1

2

∑

x∈Ω

∣

∣

∣

∣

∣

∣

k
∑

i=1

(ψi(xi)− ζi(xi))
i−1
∏

j=1

ζj(xj)
k
∏

j=i+1

ψj(xj)

∣

∣

∣

∣

∣

∣

6
1

2

∑

x∈Ω

k
∑

i=1

|ψi(xi)− ζi(xi)|
i−1
∏

j=1

ζj(xj)

k
∏

j=i+1

ψj(xj)

=
1

2

k
∑

i=1

∑

xi∈Ωi

|ψi(xi)− ζi(xi)|
∑

x−i∈Ω−i

i−1
∏

j=1

ζj(xj)
k
∏

j=i+1

ψj(xj) (18)
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Observe that

∑

x−i∈Ω−i

i−1
∏

j=1

ζj(xj)
k
∏

j=i+1

ψj(xj) =
∑

(x1,...xi−1)∈
∏i−1

j=1
Ωj

i−1
∏

j=1

ζj(xj)
∑

(xi+1,...xk)∈
∏k

j=i+1
Ωj

k
∏

j=i+1

ψj(xj)

=
∑

(x1,...xi−1)∈
∏i−1

j=1
Ωj

i−1
∏

j=1

ζj(xj)

= 1

Hence, from this and Inequality (18) the thesis follows. �

Lemma 17 Let NM = NM(n,M, C) be a node-MEG such that

PNM2 6 η (PNM)2 for some η > 1 (19)

Moreover, let ν be a product probability distribution such that

∀i ∈ [n] ||νi − π||TV 6
(PNM)2

2n
(20)

Then, for any i, j ∈ [n] and for any A ⊆ [n]− {i, j},

(a) P
(

eνi,j

)

> PNM

2

(b) P
(

eνi,A · eνj,A
)

6 72ηP
(

eνi,A

)

P
(

eνj,A

)

Proof. Let Ci,j = {(x1, . . . , xn) ∈
∏n

i=1 S | C(xi, xj) = 1}. It holds that

P
(

eνi,j
)

= ν(Ci,j)

> π(Ci,j)− n
(PNM)2

2n
(from (20) and Lemma 16)

= PNM − (PNM)2

2
>
PNM

2

This proves (a).
For any k ∈ [n] and for any A ⊆ [n] − {k}, let Ck,A = {(x1, . . . , xn) ∈

∏n
i=1 S | ∃h ∈ A :

C(xk, xh) = 1}. For any i, j ∈ [n] and for any A ⊆ [n] − {i, j}, let Ci,j,A = {(x1, . . . , xn) ∈
∏n

i=1 S | ∃h, k ∈ A : C(xi, xh) = 1 ∧ C(xj, xk) = 1}. It holds that

P
(

eνi,A · eνj,A
)

= ν(Ci,j,A)

6 π(Ci,j,A) + n
(PNM)2

2n
(from (20) and Lemma 16)

= P (ei,A · ej,A) +
(PNM)2

2
(21)
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Since Hypothesis (19) holds, Lemma 15 ensures that

P (ei,A · ej,A) 6 17ηP (ei,A)P (ej,A)

From this and Inequality (21) we obtain

P
(

eνi,A · eνj,A
)

6 17ηP (ei,A)P (ej,A) +
(PNM)2

2
6 18ηP (ei,A)P (ej,A) (since PNM 6 P (ei,A) ,P (ej,A))

= 18ηπ(Ci,A)π(Cj,A)

6 18η(ν(Ci,A) +
(PNM)2

2
)(ν(Cj,A) +

(PNM)2

2
) (from (20) and Lemma 16)

6 18η(P
(

eνi,A
)

+
PNM

2
)(P

(

eνj,A
)

+
PNM

2
) (22)

Since PNM = P (ei,j) = π({(x1, . . . , xn) ∈
∏n

i=1 S | C(xi, xj) = 1}), from (20) and Lemma 16

it derives that PNM 6 P
(

eνi,j

)

+ ((PNM)2)/2. It follows that PNM/2 6 PNM − ((PNM)2)/2 6

P
(

eνi,j

)

6 P
(

eνi,A

)

. From this and Inequality (22) we get

P
(

eνi,A · eνj,A
)

6 18η(2P
(

eνi,A
)

)(2P
(

eνj,A
)

) = 72ηP
(

eνi,A
)

P
(

eνj,A
)

�

Proof of Theorem 3.
Let G = G([n], {Et}t>0) be the dynamic graph yielded by NM(n,M, C) and let eti,j and eti,A
be the relative random variables. Consider M = Tmix log(2n/(PNM)2) be the duration of an
epoch. From standard results on Markov chains, it derives that, for any node i, whatever the
probability distribution at time t the probability distribution νi at time t+M is such that

||νi − π||TV 6 2− log(2n/(PNM)2) =
(PNM)2

2n
(23)

This and the theorem’s hypothesis satisfy the hypotheses of Lemma 17 and in turn it implies
that

P
(

eτMi,j
∣

∣ Et6(τ−1)M

)

>
PNM

2
(24)

P
(

eτMi,A · eτMj,A
∣

∣ Et6(τ−1)M

)

6 72ηP
(

eτMi,A
∣

∣ Et6(τ−1)M

)

P
(

eτMj,A
∣

∣ Et6(τ−1)M

)

(25)

Hence, Inequalities (25) and (24) show that G is a (M,PNM/2, 72η)-stationary dynamic graph.
Then, from Theorem 1, the flooding time in G is, with high probability,

O

(

Tmix log(2n/(PNM)2)

(

2

nPNM
+ 72η

)2

log2 n

)

and, taking into account the hypothesis PNM > 1/nO(1), it is

O

(

Tmix

(

1

nPNM
+ η

)2

log3 n

)

�
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D.1 Flooding in Classic Mobility Models: Proofs

Proof of Corollary 4.
Let π be the stationary distribution of the Markov chain M of NM. For any x ∈ S, let u(x)
be the point in R where a node is when its state is x. By assuming that the states of the
nodes are random with π, let q(x) be the probability that a fixed node is connected to another
fixed node being in state x. Clearly,

q(x) =
∑

y∈S : u(y)∈D(u(x),r)

π(y)

Since NM is a sufficiently refined discrete version of the random trip model T , it holds that

q(x) ≈
∫

D(u(x),r)
FT (u)du (26)

From Hypothesis (b), for every v ∈ Br,

∀u ∈ D(v, r) FT (u) >
1

δvol(R)

This implies that
∫

D(v,r)
FT (u)du >

vol(D(v, r))

δvol(R)
=

cdr
d

δvol(R)
(27)

where cd is a constant depending only on d. By combining (26) and (27), we have that, for
every x ∈ S with u(x) ∈ Br,

q(x) &
cdr

d

δvol(R)
(28)

It holds that

PNM =
∑

x∈S
π(x)q(x)

>
∑

x∈S : u(x)∈Br

π(x)q(x)

&
cdr

d

δvol(R)

∑

x∈S : u(x)∈Br

π(x) (from Inequality (28))

&
cdr

d

δvol(R)

∫

Br

FT (u)du

&
cdr

d

δvol(R)

vol(Br)

δvol(R)
(from Hypothesis (b))

&
λcdr

d

δ2vol(R)
(from Hypothesis (b)) (29)
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From (26) and Hypothesis (a), it derives that, for every x ∈ S,

q(x) ≈
∫

D(u(x),r)
FT (u)du .

δvol(D(u(x), r))

vol(R)
=

δcdr
d

vol(R)
(30)

It holds that

PNM2 =
∑

x∈S
π(x)q(x)2

.

(

δcdr
d

vol(R)

)2
∑

x∈S
π(x) (from Inequality (30))

=
δ2c2dr

2d

vol(R)2

From this and Inequality (29), we get

PNM2 .
δ2c2dr

2d

vol(R)2
=
δ6

λ2

(

λcdr
d

δ2vol(R)

)2

.
δ6

λ2
(PNM)2

It follows that the node-MEG NM satisfies the hypotheses of Theorem 3 with η = δ6/λ2 and
thus, with high probability, the flooding time is

O

(

Tmix

(

1

nPNM
+
δ6

λ2

)2

log3 n

)

6 O

(

Tmix

(

δ2vol(R)

λnrd
+
δ6

λ2

)2

log3 n

)

where we have used Inequality (29). �

Proof of Corollary 5.
It is easy to see that, any node-MEG yielded by a random-path model is a Markov Trace
Model (MTM), a general class of models introduced in [14]. Since RP is simple and reversible,
Theorem 11 in [14] implies that the stationary distribution π of M is uniform. For any state
x ∈ S, let u(x) ∈ V be the point where a node is when its state is x. By assuming that
the states of the nodes are random with π, let q(x) be the probability that a fixed node is
connected to another fixed node being in state x. Since π is uniform and RP is simple, it
holds that

q(x) =
∑

y∈S : C(y,x)=1

π(x) =
1

|S| |{y ∈ S | u(y) = u(x)}| = #P(u(x))
|S| (31)

It follows that

PNM =
∑

x∈S
π(x)q(x) =

1

|S|2
∑

x∈S
#P(u(x)) =

1

|S|2
∑

u∈V
#P(u)

2 (32)

where the last equality derives from |{y ∈ S | u(y) = u}| = #P(u). Thanks to Jensen’s
inequality it holds that

∑

u∈V #P(u)2

|V | >

(
∑

u∈V #P(u)

|V |

)2

=
|S|2
|V |2
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Thus, from (32), we have

PNM >
1

|V | (33)

From (31), it holds that

PNM2 =
∑

x∈S
π(x)q(x)2 =

1

|S|3
∑

x∈S
#P(u(x))

2 =
1

|S|3
∑

u∈V
#P(u)

3

Since RP is δ-regular and (33) holds, it follows that

PNM2 =
1

|S|3
∑

u∈V
#P(u)

3 6
1

|S|3
∑

u∈V

(

δ

∑

v∈V #P(v)

|V |

)3

=
δ3

|V |2 6 δ3 (PNM)2

From this and taking into account the hypothesis |V | 6 nO(1) and (33), Theorem 3 can be
applied with η = δ3 obtaining that, with high probability, the flooding time is

O

(

Tmix

( |V |
n

+ δ3
)2

log3 n

)

�
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