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Fighting the Curse of Sparsity: Probabilistic Sensitivity
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1. INTRODUCTION

In risk-informed decision making, risk analysts

and Emanuele Borgonovo

2

Quantitative models support investigators in several risk analysis applications. The calcula-
tion of sensitivity measures is an integral part of this analysis. However, it becomes a com-
putationally challenging task, especially when the number of model inputs is large and the
model output is spread over orders of magnitude. We introduce and test a new method for
the estimation of global sensitivity measures. The new method relies on the intuition of ex-
ploiting the empirical cumulative distribution function of the simulator output. This choice
allows the estimators of global sensitivity measures to be based on numbers between 0 and
1, thus fighting the curse of sparsity. For density-based sensitivity measures, we devise an ap-
proach based on moving averages that bypasses kernel-density estimation. We compare the
new method to approaches for calculating popular risk analysis global sensitivity measures
as well as to approaches for computing dependence measures gathering increasing interest
in the machine learning and statistics literature (the Hilbert-Schmidt independence criterion
and distance covariance). The comparison involves also the number of operations needed to
obtain the estimates, an aspect often neglected in global sensitivity studies. We let the esti-
mators undergo several tests, first with the wing-weight test case, then with a computationally
challenging code with up to & = 30, 000 inputs, and finally with the traditional Level E bench-
mark code.

KEY WORDS: Given-data estimation; global sensitivity analysis; moment-independent measures;
variance-based sensitivity measures

portfolio insurance (Tsanakas & Millossovich, 2016),
flood risk (Koks, Bockarjova, de Moel, & Aerts,

and decisionmakers increasingly benefit from the use
of quantitative risk assessment models (Apostolakis,
2004). Applications range from the probabilistic risk
assessments of nuclear waste disposals (Helton, 1994;
Helton, Hansen, & Swift, 2014; Helton & Marietta,
2000; Iman, Helton, & Campbell, 1978), of nuclear
power plants (Breeding, Helton, Gorham, & Harper,
1992; Helton & Breeding, 1993; Iman & Hora, 1990;
NRC, 1990), to food safety (Patil & Frey, 2004),
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2015), and occupational exposure (Riedmann, Gasic,
& Vernez, 2015) studies.

Often the complexity of the problem requires
sophisticated modeling efforts with the model be-
coming a black box. Analysts then cannot rely on
the sole intuition for result interpretation and com-
munication. The literature has developed systematic
approaches, collectively named sensitivity analysis,
to allow analysts to extract additional insights from
risk assessment models, thus increasing transparency
and favoring interpretability (see Helton, 1993; Hel-
ton & Davis, 2002; Iman, Johnson, & Watson, 2005;
Saltelli, 2002b; Saltelli, Tarantola, & Chan, 1998),
(EPA, 2009, Appendix D).
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An important piece of information, often sought
in risk assessment, is the importance of the uncertain
inputs. This information allows the analyst to identify
areas where additional modeling efforts are needed
and to prioritize the collection of further data and in-
formation. Using the terminology of Saltelli (2002b),
we are in a factor prioritization setting. An analyst
obtains this information using either local, screen-
ing, or global sensitivity analysis methods. Local tech-
niques comprise methods such as Tornado Diagrams
(Eschenbach, 1992) and partial derivatives (Helton,
1993). Employing a local method, the analyst identi-
fies the key drivers of variability around a point or
in a limited region of the parameter space. Screen-
ing methods comprise techniques such as the method
of Morris (Morris, 1991), sequential bifurcation (Bet-
tonvil & Kleijnen, 1997; Kleijnen, 2017), and permu-
tation importance (we refer to Wei, Lu, & Song, 2015,
for greater details). Employing a screening method,
the analyst aims to identify the least relevant inputs
and to provide a qualitative indication of the most
important ones, with a low number of simulator eval-
uations. Global methods comprise techniques such as
variance-based (Saltelli & Tarantola, 2002), moment-
independent sensitivity indices (Borgonovo, 2006),
and value of information (Felli & Hazen, 1998; Oak-
ley, 2010). Employing a global sensitivity method, the
analyst aims at identifying the key drivers of uncer-
tainty quantitatively, while thoroughly exploring the
simulator input space.

While best practices recommend the use of
global sensitivity methods in the presence of uncer-
tainty (Helton, 1993; Helton & Davis, 2002; Patil &
Frey, 2004), the estimation of global sensitivity mea-
sures can become a challenging task. Past literature
has identified and introduced methods to fight the
curse of dimensionality, that affects estimation when
simulators have a large number of inputs. Sampling-
based methods—in the terminology of Helton and
Davis (2002)—or one-sample approaches in the ter-
minology of Strong, Oakley, and Chilcott (2012) and
Strong and Oakley (2013) are estimation methods
that reduce the relevance of dimensionality.

However, the curse of dimensionality might not
be the only computational challenge. Numerical val-
ues of the output spanning over orders of magnitude
may impair convergence at reasonable sample sizes,
independently of the dimensionality of the model.
We call this effect the curse of sparsity. Although
not explicitly isolated from the curse of dimension-
ality, this issue has been recognized early on in the
risk analysis literature. The scaling problem most
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often can be overcome by performing uncertainty
importance calculations based on a logarithmic scale
for the top-event frequencies. The log scale produces
a reliable ordering of the uncertainty importance
for the events, and expresses the results in terms of
log-based risk. However, the log-based uncertainty
importance calculations do not readily translate back
to a linear scale (Iman & Hora, 1990, p. 402). These
observations evidence two facts. On the one hand,
transformations can help reducing the effects of the
curse of sparsity. On the other hand, transformations
induce interpretation issues, because results are valid
on the transformed scale and not on the original
scale. The use of transformations has been popular
in the risk analysis literature since seminal works
such as Iman and Conover (1979) and Saltelli and
Sobol’ (1995). However, recently it has been noted
that the interpretation problems might be overcome
if the analyst employs a sensitivity measure which
is transformation-invariant (Borgonovo, Tarantola,
Plischke, & Morris, 2014). Nonetheless, transforma-
tion invariance per se is not sufficient to overcome
the curse of sparsity. In fact, some transformation-
invariant global sensitivity measures (for instance,
sensitivity measures based on the Kullback-Leibler
entropy or on the L'-norm between densities) re-
quire the estimation of a probability density function
(pdf). Density estimation often relies on kernel
smoothing whose numerical performance is affected
by sparsity. Thus, convergence might be impaired
even if the global sensitivity measure under estima-
tion is transformation-invariant.

We propose and evaluate a new method for com-
puting global sensitivity measures that builds on this
literature. The new method is based on the intuition
of rewriting estimators as function of the empirical
(marginal and conditional) distribution function of
the model output. In this way, the numerical elabo-
rations are restricted to real numbers in the [0,1] in-
terval, contrasting the curse of sparsity. The estima-
tion is within a given-data (one-sample) framework,
thus keeping the estimation cost independent of the
number of model inputs.

Before considering the numerical aspects of the
new method, we establish the relationship among the
L'-norm between pdfs, the Kolmogorov-Smirnov
and the Kuiper metrics. These three metrics are the
basis of three global sensitivity measures used in
previous risk assessment studies, namely, the mea-
sures 8, B%5, and X" (Borgonovo, 2006; Wei et al.,
2015). We find that if the marginal and all conditional
model output distributions are unimodal, the Kuiper
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and L'-norm distances are equivalent. Then, the an-
alyst can bypass density estimation using directly a
sensitivity measure based on cumulative distribution
functions (cdfs). However, these conditions on the
marginal and conditional distributions are not veri-
fied in general. We therefore adapt the new method
to the estimation of density-based sensitivity mea-
sures. The intuition is to employ a moving average
to replace kernel smoothing. We study the result-
ing estimators from two viewpoints. First, we pro-
vide a discussion on their consistency in Appendix C.
Second, we address their algorithmic properties. In
fact, besides the global importance measures dis-
cussed above, other dependence measures coming
from machine learning are becoming of interest in
risk assessment studies—in particular, distance co-
variance (Székely & Rizzo, 2005) and the Hilbert—
Schmidt independence criterion (HSIC) (Da Veiga,
2015; De Lozzo & Marrel, 2016; De Lozzo & Mar-
rel, 2017). These importance measures can be com-
puted from given data and thus, nominally, at the
same number of model runs as the method we are
studying. The difference is, however, in the number
of operations (algorithmic cost) performed once the
input—output sample is available. We then study the
algorithmic cost of the present method and compare
it with the algorithmic cost of the above-mentioned
dependence measures.

A series of challenging numerical experiments is
carried out. The first experiments involve the simula-
tor developed to study the weight of a wing of a light
aircraft and recently studied in Jiménez Rugama
and Gilquin (2018). The simulator is smooth, fast
to run, and of low-dimensionality: all estimators
work well. Then, we consider a simulator in which
the inputs and output are Cauchy distributed and
the curse of sparsity appears. This synthetic case
has the same behavior as the Level E geosphere
transport code, the reference code for sensitivity
analysis, which is investigated next. Level E features
an output spanning orders of magnitude. There is
no curse of dimensionality, but the curse of sparsity
starts playing a role. The last experiments involve
a computationally demanding albeit analytically
known model. The goal is to identify the 10 most
important inputs out of 30,000 input parameters with
a parameterization that makes the output variance
close to the numerical range of the floating-point
representation (which is 1.79 - 10°%). This test case
combines sparsity with dimensionality. For all ex-
periments, we test the new approach also against
previous methods as well as against estimators of the
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above-mentioned dependence measures, performing
the analysis with and without output transformation
to investigate whether rescaling is essential to reach
convergence. In all cases, the results show that the
newly proposed estimators achieve convergence at
reasonable sample sizes.

2. A CONCISE REVIEW ON GLOBAL
SENSITIVITY MEASURES

This section provides a concise review on global
sensitivity analysis. The literature is vaster than what
can be exposed here. For broad overviews, we re-
fer the reader to the monographs of Saltelli, Ratto,
Tarantola, and Campolongo (2012) and Borgonovo
(2017) and to the Handbook of Uncertainty Quan-
tification (Ghanem, Higdon, & Owhadi, 2017) for
comprehensive discussions. Among global methods,
in risk analysis regression-based methods have been
among the first to be applied for factor prioritiza-
tion (Helton, 1993; Saltelli & Marivoet, 1990). Re-
views are offered in Helton, Johnson, Sallaberry, and
Storlie (2006); Storlie and Helton (2008); and Storlie,
Swiler, Helton, and Sallaberry (2009). Works such as
Helton (1993, 1994, 1999); Helton and Davis (2002,
2003); Frey and Patil (2002); Helton and Sallaberry
(2009); and Mohanty et al. (2011) represent outstand-
ing examples of their several applications.

The main sensitivity indicators of nonparametric
regression methods are the standardized regression
coefficients and Pearson’s correlation coefficient. To
introduce them, let

g: X > R, X:(Xl,...,Xk)+—>Y=g(X)
and X CRF (1)

denote the input-output mapping where k is the
number of input factors. X is a random vector on a
probability space (X, B(X),P), where B(X) is the
Borel o-algebra and P the probability measure that
reflects the analyst’s state of knowledge about the
factors. The model output becomes a random vari-
able Y whose distribution is induced by g(-). The
corresponding probability space is (Y, B(}), Py).
We denote by Fy(y) and fy(y) the model out-
put marginal cdf and density, respectively. Condi-
tional distributions, cdfs, and densities are denoted by
Pyix,=x» Fyix,=x, (v), and fy|x,—, (y), respectively.

If the input-output mapping g can be accu-
rately fitted by a linear regression model, i.e.,
g(Y)~ by + Zf‘:l b X then natural sensitivity mea-
sures are the standardized regression coefficients
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Table I. Sensitivity Measures Used in This Work

Measure Symbol Definition Estimation
Linear regression based (SRC, PCC) 0 2)

Variance based n 3) (11)
Borgonovo, L! (pdf) s 7) (18)
Kolmogorov-Smirnov, L* (cdf) prs (8) (16)
Kuiper, range (cdf) pRu 9) (16)
Distance correlation (char. function) do (D2) (D3)
Hilbert-Schmidt independence criterion HSIC (D4)

SRC; (Helton, 1993; Kleijnen & Helton, 1999a,
1999b), SRC; = b,';’—;, where b; are the linear regres-
sion coefficients, o; are the standard deviations of Xj,
and oy is the standard deviation of the model output
Y. Under independence of all random inputs X, the
standardized regression coefficients coincide with
the Pearson product moment correlation coefficients
(Pearson, 1901)

o = VY X)) D)
0i0y
where cov(Y, X;) is the covariance between Y and
X; (Table I lists the sensitivity measures used in this
work).

The quantities g; and SRC; are usually in-
terpreted as measures of the strength of the lin-
ear relationship between two random variables.
However, when the linear regression fit is poor,
the explanatory power of a linear model assump-
tion is weak and confidence in the ranking in-
duced by regression-based techniques diminishes
(Campolongo & Saltelli, 1997). Two remedies are
present. The first is to resort to rank transformations
(Conover & Iman, 1976; Iman & Conover, 1979).
The standardized rank regression coefficients and the
Spearman regression coefficient (Spearman, 1904)
then become natural global sensitivity measures. The
second remedy is to apply sensitivity methods that
rely less on the regression fit.

Researchers have successfully investigated the
use variance-based sensitivity measures (Iman &
Hora, 1990; Saltelli, 2002a). One writes

V{E[Y X1} E{V[Y 1 Xi]}
= =1- : 3)
[Y] VY]
Here V[Y] is the output variance, E[Y|X;] and
V[Y|X;] are the conditional output expectation and
the conditional output variance given the input Xj.
The conditional expectation given X; is the non-
parametric regression curve of Y on X;. The quan-
tity in (3) is the expected reduction in model out-

put variance achieved by learning the true value of
X;. This quantity coincides with the Pearson corre-
lation ratio (Pearson, 1905) and with the first order
variance-based sensitivity index (Homma & Saltelli,
1996). Several strategies have been developed over
the years to efficiently estimate variance-based sensi-
tivity measures. Among others, we recall the designs
based on Fourier Amplitude Sensitivity Test (FAST)
(Saltelli, Tarantola, & Chan, 1999) and on Polyno-
mial Chaos Expansion (Le Gratiet, Marelli, & Su-
dret, 2017; Sudret, 2008).

Recently, Borgonovo, Hazen, and Plischke
(2016) show that several global sensitivity mea-
sures can be defined through a common rationale.
Consider an operator ¢ : P x P — R of the form
¢ (Py, Py|x—y, ), where P is the set of all distributions
on (X,B(X)) and ¢(-,-) is a generalized form of
distance (thus, a metric or a divergence) between
two distributions in the sense of Glick (1975). ¢ (-, -)
is called an inner operator. For consistency, it is
assumed that ¢ (P, P) = 0 for any P € P. The value
of ¢(Py, Py|x,—y;) depends on the value attained by
Xi;. Therefore, the distance ¢ (Py, Py|x,) is a random
function of X;. Taking the expectation with respect
to the marginal distribution of X;, we obtain the
quantity

& = E[¢(Py, Pyx,)]. 4)

This quantity is the global sensitivity measure of X;
based on inner operator ¢ (-, -). Several probabilistic
sensitivity measures used in risk analysis are encom-
passed by (4). For instance, by setting

2
¢ Py Pyix;) = ﬁ[ /y (i (v) — fy(y))dy} .6)

and averaging we obtain the first-order variance-
based sensitivity measure #; of (3). Similarly, setting

¢(Py, Pyx,) = %/y|f¥x,-(Y)— fr|dy  (6)
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and averaging, we obtain the §-importance measure

SiZ%E [/y}fyx,-(Y)—fY(Y)MY} (7

In addition, the global sensitivity measures
B = E[SI;P |Fx,(v) — Fr (»)|] ®)
and
B = E{sgp (Frix, ) = Fr () = inf (Fyix, 00) = By (y))} )

are the expected separations between the conditional
and unconditional model output cdfs obtained, re-
spectively, using the Kolmogorov—Smirnov and the
Kuiper distances (Borgonovo et al., 2014).

The three distance-based sensitivity measures
(8i, BXS, BXY) share the following properties:

(1) Normalization: §;, 85, B € [0, 1];

(2) Nullity implies independence: §; = 0, XS = 0,
or B =0 imply that X; and Y are indepen-
dent;

(3) Monotonic transformation invariance:

8i(2(Y)) = 8:(Y). B°(2(Y)) = B (Y),
B (z(Y) = BR(Y), (10)

where z:)Y — R is a monotonic function of
the model output Y.

Nullity implies independence is also listed as
number 5 in Rényi’s axioms for measures of statis-
tical dependence (Rényi, 1959). It allows an analyst
to conclude that a null value of the sensitivity mea-
sure implies that X; and Y are independent random
variables (Da Veiga, 2015). The sensitivity measures
SRC;, ¢i, and n; do not possess the nullity-implies-
independence property.

Monotonic transformation invariance helps an-
alysts in fighting the curse of sparsity. As shown in
Conover and Iman (1981); Iman and Hora (1990);
Saltelli and Sobol’ (1995), transformations may im-
prove numerical efficiency in the estimation of global
sensitivity measures. However, transformations open
the question of reinterpreting results back on the
original scale (Iman & Hora, 1990). Moreover, trans-
formations may induce ranking changes consequent
to the change in the input-output structure. If rank
modifications occur then the analyst would need to
make a choice on whether to trust the ranking be-
fore or after the transformation. Then, it becomes
important to understand whether the transformed or
the original output is the quantity of interest for the
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model user. Conversely, these problems are avoided
if the sensitivity measure is transformation-invariant.

Recently, further ways of identifying key drivers
of uncertainty have been explored in machine learn-
ing (Da Veiga, 2015). A first method relies on dis-
tance covariance and distance correlation (Székely,
Rizzo, & Bakirov, 2007). We refer to Lyons (2013)
and Sejdinovic, Sriperumbudur, Gretton, and Fuku-
mizu (2013) for further readings on theoretical as-
pects underlying these dependence measures. In Ap-
pendix D, we report some additional mathematical
details useful to clarify the calculations carried out in
the subsequent numerical experiments of our work.
Distance covariance quantifies the degree of statisti-
cal dependence between Y and X; via pairwise dis-
tances of their realization. In particular, one consid-
ers the random variables X; and Y and their indepen-
dent replicates X/, X" and Y',Y". Then, their dis-
tance covariance is calculated from the expression
(Lyons, 2013; Sejdinovic et al., 2013):

VIY, X)) =E[|X —-X'|  |Y - Y'|] +E[|X — X[]
E[lYy —Y"|] - 2E[|X = X'| - [y = Y"]].

In this work, we will use the normalized version
of distance covariance, which is known as distance
correlation—see Appendix D for details. Distance
covariance and distance correlation are part of the
so-called energy statistics (Székely & Rizzo, 2017),
and are a topical research subject.

The second method relies on the HSIC as a sensi-
tivity measure. Lyons (2013); Sejdinovic et al. (2013);
Da Veiga (2015) show that this criterion is closely
related to distance correlation. In particular, Sejdi-
novic et al. (2013) prove that when an Euclidean dis-
tance is used in HSIC, the square of distance correla-
tion and HSIC are proportional. However, with the
traditional use of a Gaussian kernel, HSIC, and dis-
tance correlation are not generally equivalent sensi-
tivity measures.

3. ESTIMATION: THE GIVEN-DATA
APPROACH

The total cost for estimating a probabilistic sen-
sitivity measure is given by the sum of two compo-
nents: the cost associated with the generation of the
sample (I'podel) and the cost associated with the cal-
culation of the global sensitivity measure from the
sample (TEstimator)- The first component is strictly re-
lated to the ability to run the model and is measured
in terms of model runs. The second component is
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related to the number of operations required by the
estimator and is measured in number of computer
operations. When the running time of the model is
high, T'vodel 18 usually dominating. However, if two
sensitivity measures can be estimated from the same
sample, then the lower INegimator the faster is the anal-
ysis. In this section, we shall focus on the first com-
ponent, IMyiode;- The algorithmic cost, INgstimator, 1S dis-
cussed at the end of Section 4.2.

The global sensitivity measures comprised by
the common rationale in (4) are associated with a
cost I'pruteforee — gy, - n;y where ney points are
sampled from the marginal distribution of Xj, i =
1,...,k, and n;, points are required to compute the
inner statistic conditional to the n,, realizations of
X.

The required number of model evaluations be-
comes rapidly prohibitive and several works have
addressed ways of reducing computational burden.
For variance-based sensitivity measures, the works
(Homma & Saltelli, 1996; Saltelli, 2002a; Saltelli
et al., 2010; Sobol’, 1990) have reduced the compu-
tational cost to Cyoger = (kK + 2)n, i.e., k+ 2 evalu-
ations of a basic sample block, for estimating first
and total effects.! These works use the Jansen-—
Saltelli-Sobol’ design, known also as pick-and-
freeze sampling (Gamboa, Janon, Klein, Lagnoux,
& Prieur, 2016). Recently, Owen (2013) introduces
a specific design that improves the estimation of
variance-based sensitivity measures when their val-
ues are small. The random balance design (Tarantola,
Gatelli, & Mara, 2006), a variant of the FAST method
(Cukier, Fortuin, Shuler, Petschek, & Schaibly, 1973),
requires C = n evaluations for computing first-order
effects. All these approaches are specific and require
that the sample is generated from the computer code
following a precise scheme.

A given-data or one-sample approach, instead,
allows the computation global sensitivity measures
directly from a sample (X,Y), with Tgven-Data =
where n is the sample size. The key intuition lies
in replacing the point-conditional probability Py x._,
with the class-conditional probability Py y.c,
where C,, ; is an element of a partition of the support
of X;. (We recall that, in general, the partition of a
set X is a collection of sets such that X; = U%:] Crm.is
CniNCi=0, m#m', m=1,2,..., M.) Specifi-
cally, in our case, one considers the realizations of

ITotal effects are given by 7; = 1 — V[Y]'E[V[Y|X.;]], and rep-
resent the expected reduction in output variance when all factors
except X; are fixed.
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Conditional Density

-4 Input

Fig 1. Conditioning the data via binning: Conditional means
(black dots) are used for estimating first-order effects, conditional
densities for density-based importance measures.

the pair (X;, Y). Then, one creates the scatterplot
of Y against X;. (Fig. 1 offers a three-dimensional
view of the scatterplot of n hypothetical simulator in
which X; and Y are absolutely continuous. The val-
ues of X; are on the x-axis, the realizations of Y on
the y-axis and the z-axis plots the empirical condi-
tional densities of Y given values of X; in a given
bin.) By sorting the values of X;, one then attributes
the realizations of X; to M partition classes C,,
m=1,2,..., M. To illustrate, in Fig. 1, the support
of Xj is the interval [—3.14, 3.14] and we have M = 8§,
with Cy; = [-3.14, —2.36), C,,; = [-2.36, —1.57), ...,
Cs.; = [2.36, 3.14] (The eight corresponding bins are
separated by dotted lines in Fig. 1). A bin contains all
realizations of Y that correspond to realizations of
X in partition C,, ;. We denote this set of realizations
by Y,.; ={y;; xji € Cp,i}. The number of realizations
of Y in a bin is n,, ;. Then, the local mean y,,; =
nl yev,,; Y is an estimate of the conditional expec-
tation E[Y | X; € C,..] (illustrated by black dots at the
center of each bin in Fig. 1). The global mean y =
%27‘:1 yj is an estimate of the unconditional mean
value of the model output, E[Y]. Then, the ratio

M mi (5 =
ﬁ' _ Zm:l nn (ym,i _y)Z
r 1 —
T i —9)?
is Pearson’s 1905 given-data estimator of »; in Equa-
tion (3), where the weights " are estimates of the
probability of C,, ; under Xj.

More in general, points in a bin follow the
conditional distribution Fyy.c, . If Y is absolutely
continuous, we have the corresponding conditional
densities fy|x,ec, ;- These densities are visualized in

mi*

(11)
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1(A) Cumulative Distributions
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Fig 2. Differences of probability densities and cumulative distributions.

the red lines of Fig. 1. Thus, from the realizations in
the bins it is possible to obtain empirical estimates
of the cdf Fyx.c,, or of the corresponding density
frix.ec,,- This partitioning idea carries over directly
to other measures in the common rationale. To illus-
trate, for the §-importance in (7) the estimator takes
the form

M

~ N i o~ o~

8= Z %fi(f)ﬁ frixec,.)s
m=1

(12)

where M is the number of partitions depending on
the sample size n and fy, fy|x.ec,, are empirical esti-
mation of the unconditional and conditional simula-
tor output densities.

In Equation (12), a crucial role is played by the
estimator of the conditional and unconditional den-
sities. If kernel smoothing is chosen, this choice in
itself involves the selection of kernel functions and
bandwidths—please see Appendix E for greater de-
tails. It is well known (Sheather, 2004) that the val-
ues of the kernel-density bandwidths are of criti-
cal importance and optimal choices are related to
the roughness of the (unknown) pdfs fy and fyc,, .
When the model output is sparse, this part of the es-
timator may fail in producing reasonable results at
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limited sample sizes. Then, bypassing density estima-
tion might be advantageous.

4. ESTIMATION USING EMPIRICAL CDFS

This section is divided into two parts. In the first
part, we state some results that help us in reformu-
lating estimators of global sensitivity measures based
on empirical cdfs. In the second, we introduce the
new method.

4.1. A Preliminary Result

In Fig. 2, a bimodal distribution (dark/red) is
compared with a unimodal one (light/green). The
Kolmogorov-Smirnov measure is determined by the
maximum distance between two cdfs. This distance
equals the length of the larger of the vertical black
bars in graphs (A) or (B). The Kuiper distance is
determined by considering the maximum difference
in both directions. Hence the sensitivity measure is
the sum of the two bars. However, we observe that
the separations in both the Kuiper and Kolmogorov—
Smirnov distances can be interpreted also in terms
of the areas between the corresponding pdfs. This is
illustrated in graphs (C) and (D) of Fig. 2. In graph
(C), regions I and III are bounded above by the red
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pdf and below by the green pdf. Region II is bounded
by the green pdf above and the red pdf below. Graph
(D) shows the pdf difference, regions I and III are
above the O-line, while region II is below. In this ex-
ample, the Kolmogorov—-Smirnov distance is equal to
the area of region I1I. The Kuiper distance is the area
of region II or, alternatively, the combined area of
regions I and III. The inner operator of the § sen-
sitivity measure (L'-norm, (6)) equals half the sum
of the areas of the three regions. It is also worth ob-
serving that the locations of the extremes of the dif-
ference between the cdfs coincide with the locations
of intersections of the pdfs. While the Kolmogorov-
Smirnov and Kuiper metrics refer to the global ex-
treme value of the difference between the condi-
tional and unconditional cdfs, the L'-norm also takes
all local extreme values into account (Davies & Ko-
vac, 2004). Extending these insights to the corre-
sponding global sensitivity measures, we then have
the following proposition—see Appendix A for the
proof.

Proposition 1. For any random variables X; and Y the
sensitivity measures BX5 < K <1, and 5 < 2BK5.
If g(x) is a map depending only on x;, i.e., there ex-
ists a function g(x;) = g(x) then BX*=5;=1 and
BXS = 0.5. If this functional relation is monotonic then
BKS = 0.75. Under absolute continuity of Y and Y|X;,
,BiKS < ﬂiK” < é&; < 1. If for almost all values of X; the
difference (fy\x, — fv)(y) has at most two inner zeros
then ,BI.K“ = §;. If this difference has exactly one inner
zero then BXS = K.

Besides formalizing the relationship between
global sensitivity measures based on the L'-norm, on
the Kolmogorov—-Smirnov metric and on the Kuiper
metrics, Proposition 1 shows that sensitivity measures
based on the Kuiper distance and on the L'-norm are
equivalent when all the involved model output dis-
tributions are unimodal. Thus, if §; and ,Bl.K“ are dif-
ferent, the analyst infers that not all conditional and
unconditional model output distribution involved in
the analysis are unimodal. On the other hand, if the
analyst knows that all involved distributions are uni-
modal, then ,BI.KU becomes a substitute for §;. Pre-
vious numerical experiments carried out in the lit-
erature, show that ﬂiK“ is easier to estimate than §;
(Borgonovo et al., 2014). Thus, Proposition 1 can
be turned into a computational advantage: one es-
timates ,Bl.K“ instead of §; if all distributions are uni-
modal. However, in general the analyst may not have
a priori knowledge that conditional and marginal dis-
tributions are all unimodal (for instance, this is not
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the case for the densities in Fig. 1). Moreover, the
reason of the computational advantage associated
with B has not been fully investigated. We argue
that the better convergence properties are due to the
fact that ,Bl.K“ works directly on the cdf, thus embed-
ding a convenient numerical transformation of the
model output data. We investigate these aspects fur-
ther in the next subsection.

4.2. CDF Estimators

The generic given-data estimator of any global
sensitivity measure comprised within the framework
of (4) can be expressed as a function of empirical cdfs
as follows (Borgonovo et al., 2016):?

M(n)

&= "B Fixee, ). (13)

m=1

where the number of partitions M(n) is dependent
on the sample size n. The assumptions under which
the estimators in Equation (13) are consistent are dis-
cussed in Borgonovo et al. (2016) and summarized in
theorem 1 therein. Specifically, it is required that: (i)
M ((n) is monotonically increasing in n and such that
lim,,_. o0 77075 = 00, and (ii) the inner statistic ¢ (-, -) is
a continuous function of its inputs, and (iii) ¢ (-, )
is Riemann-Stieltjes integrable with respect to the
marginal distribution of X;. In the proof, a key role
is played by the fact that Fy and Fy|x.c,, are con-

sistent, that is, by the fact that fy and Fy|x.cc,, tend
pointwise to Iy and Fy|x.c,; as the sample size n and
therefore the size of the partition M(n) increases.

Then, the first step for calculating any estima-
tor in the form of (13) is to obtain consistent cdf es-
timators. A canonical candidate for this purpose is
the empirical cdf of Y. Given # realizations (y;), j =
1,2,...,n of the random variable Y, the empirical
cdf of Y is defined by counting the number of real-
izations below y,

R) = #yly; <), (14)

where #A denotes the number of elements in the set
A. For the conditional random variable Y |X; € C,,,
we obtain the subsample Y, ; = {y;|x;; € C;n;} con-
taining n,, ; realizations of outputs for which the asso-
ciated input value of interest is contained in the mth

2For simplicity, we limit the discussion to continuous random
model inputs. However, the result applies to discrete X; as well
(Borgonovo et al., 2016).
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class of the partition. Then, the conditional empirical
cdf of Y given that X; € C,,; is defined by

~ 1
Fyixec,,(y) = " '#{Yj € Youily; <y} (15)

m,i

Setting Cp,; = [F)gl(mT’l), Fgl(%)] we have classes
=l A ﬁ, i.e., each
strip contributes the same weight in (13). With this
choice of the partition the estimator in Equation (13)

becomes

or bin intervals that all satisfy

~ 1 M

which we call cdf-based estimator. As shown in the
proof of theorem 1 in Borgonovo et al. (2016), the
canonical empirical-cdf estimators are consistent by
the law of large numbers and thus the cdf-based esti-
mator in Equation (16) is consistent.

The literature has investigated the problem of
obtaining smooth estimates of empirical cdfs inten-
sively. For instance, Berg and Harris (2008) use a
diffusion-based approach while Veraverbeke, Gij-
bels, and Omelka (2014) use local linear regres-
sion estimates. One can benefit from these advances
to refine the estimators. Recently, Ben Abdellah,
L’Ecuyer, Owen, and Puchhammer (2018) show that
convergence in the estimation of the distribution oc-
curs not only when the sample is generated through
Monte Carlo, but also through Quasi-Monte Carlo.

Let us now come to the numerical imple-
mentation. Proposition 1 suggests that a common
problem in estimating §;, X%, and gX* is to find
the critical points (local extrema) for the function
AFyxec,,(y) = Frixec,, (v) — Fy (y), confirming the
intuition in Liu and Homma (2009). For simplicity
in the following discussion, we assume that the out-
put sample is without ties and reordered according
toy; <yj41, j=1,...,n—1, with the associated in-
puts being rearranged accordingly. The computation
is simplified by the fact that in this case Fy (y;) is al-
ready given by ﬁ It is also useful to introduce the
notion of subsample run.

Definition 1. A subsample run is a maximal sequence
of adjacent output values

{y,, Yi+ts - 7yj+r—1} C Ym

for which the associated input values x.; are all con-
tained in Cp, ;.

We can detect whether y; belongs to a sub-
sample run by considering the difference between
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AFyixec,,(v) = Fyxec,,(v) — Fr () at two consecu-

m,i

tive realizations of y. In fact, it holds:
ARy 1xe,,, (1)~ AFyixec,,, (vj-1) =
(ﬁY\Xiecm,i(yj) - FY(Y]’)) - (ﬁY\X,eCm,,ﬂ()’jfl ) = By (vj-1 )) =

(fY\)(,ec,,,,,-(Y_f) — Fyixiec,,; (-1 )) - (fY )~ F (- ))

1

- J:Xji € Ci,
Ny i

(17)

S|=3| =

otherwise.

Hence, the difference in (17) is increasing in jumps
of -1 — 1 > 0 within each subsample, while it is de-
creasing outside the subsample in smaller steps of

—%. If the partition bins are chosen to be equally

likely then ;- — | ~ 3, which shows how the par-

tition size impacts the cdf differences. Regarding g
and BXY, a straightforward application of the cdf-
based estimator (16) yields consistent estimators as
the conditions of theorem 1 in Borgonovo et al.
(2016) are satisfied. The insight added by (17) is that
local extrema of cdf differences are located at the be-
ginning and at the end of subsample runs. This fact
can be exploited to speed up the search for the global
extrema required by the Kolmogorov-Smirnov and
the Kuiper metrics.

Regarding §;, the construction of estimators
based on Equation (16) is more elaborate. In the
remainder of this section, we summarize the main
steps and intuition. Appendix B reports the tech-
nical details and Appendix C discusses the consis-
tency of the estimators. The first step is to link the
estimation of a density to the estimation of a cdf
via Scheffé’s theorem (Borgonovo, 2006; Devroye &
Gyorfi, 1985; Scheffé, 1947). This theorem implies
that it is equivalent to count (and sum) all the ar-
eas between the conditional and unconditional cdfs,
or to count twice only the areas where the condi-
tional cdf is greater (smaller) than the unconditional
cdf. So, the problem boils down to determine the
subset where fy|x.cc,,(y) is greater than fy(y). Sec-
ond, the § importance measure requires that Y is an
absolutely continuous random variable. In this case,
one observes that AFy|x.c,, is not a good approxi-
mation of AFy x.ec,,. The left graph in Fig. 3 offers
a visual illustration, using the same data of Fig. 1.
Note the jiggling in the left graph. The reason is that
AFy|x.ec,, is discontinuous, as Equation (17) sug-
gests, while AFy|x.c,, is continuous because of the
absolute continuity of Y. Here, the literature offers
two main alternatives: kernel smoothing or moving
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Fig 4. Numerical experiments for the wing-weight simulator. Convergence of the estimates of p, XS, KU, §. A sequence of quasi-random

sample sizes from n = 512 up to n = 65, 536 is used.

averages. To avoid kernel smoothing, we then ap-
ply a moving-average approach. The right graph in
Fig. 3 displays the effect of processing A Fy x,c,,;, With
a moving-average operator. The operation consider-
ably reduces the jiggling, while the local and global
extrema are still present. In general, smoothing has
the advantage of reducing variance, but at the cost of
introducing bias. At any finite sample size, despite the
smoothing, the determination of the extreme values
is still an error-prone process. Therefore, we need to
take additional provisions, defining positive and neg-
ative subsample runs. These are technical aspects that
we discuss in Appendix B.

All in all, one obtains the estimator

M T

@ My i T 7 - A

bi=3 =t (Z AFy|xiec,, (") = AFyxec,, (“f")>’ (18)
m=1 t=1

where b and 4" are properly selected values of Y in
each partition, and F, denotes the smoothed cdfs.
The pseudo-code of Algorithm 1 summarizes the
given-data estimators discussed thus far. It is based
on an efficient way to estimate conditional cdfs and
computes the sensitivity measures g%, X4, § by sup-
plying two vectors, x and y, of length n.
Implementationwise, the selection of the con-
ditional subsample with respect to input values
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Algorithm 1 Sensitivity indicators for input x € R” and output y € R” using M partitions

z < Sort x using y as key
form < 1toMdo
s < Select elements of z between quantiles ’"7*1 and 7

> s is a Boolean false/true vector converted to integers 0 and 1
AF <« Cumulative sum of s divided by sum of s — linear ramp from 1 to n divided by n
AF <« Apply a moving-average filter to AF (window size +3M)

KS,;, < max|AF]|
Ku,, < max AF — min AF

Bo,;, < Sum of maxima from positive runs — sum of minima from negative runs of AF

end for

. BKS | M 4K 1 M § . 1 yM
return Means: 8 <« 5z 3" KS,,, p° < 53" Kup, 6 < 57>, Bow

between the m]\;l quantile and the §; quantile is im-

plemented using the “is member of the subsample”
information which is coded into a true/false vector
that is interpreted as integers 1 and 0. Because the
vector z is a presorted copy of x, the conditional cdf
is given by a scaled version of the cumulative sum of
the membership vector, while the unconditional cdf is
a linear ramp. Thus, the operations to be performed
are differences of cumulative sums that are used to
determine the points of local extrema. Finally, the al-
gorithm returns the estimates of the sensitivity mea-
sures by averaging over all partition bins.

We now analyze the algorithmic cost of the
new estimation method, TDEgimator- 1he run-time
of Algorithm 1 is essentially driven by sorting the
available data with respect to the output and also
with respect to all inputs, which yields k + 1 sorting
operations of data of size n. Each sort can be per-
formed with O(nlog(n)) operations (Knuth, 1997)
so that O((k+ 1)nlogn) operations are needed.
Thus, the memory requirements of I'NeyMethod gre
approximately linear in the sample size. We note
that for kernel-based approaches like DCov or HSIC
as presented in Appendix D, matrices of distances
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Fig 6. Numerical experiments for the Level E transport model. The horizontal axis reports a sequence of quasi-random sample sizes from
n =512 up to n = 65, 536. The vertical axis reports the corresponding estimates of p, ﬂKS, BXu 5, HSIC, and distance correlation.

between all data pairs have to be formed, both for
the inputs and for the outputs. Hence the imple-
mentation implies, in principle, quadratic memory
requirements O(2n”) when evaluating the kernel
on all pairs of data. Furthermore, for HSIC with
Gaussian kernels, one needs bandwidth estimation,
which adds further complexity.

With respect to previous works, we also note that
Algorithm 1 sorts the output, in contrast to the scat-
terplot partitioning idea of Section 3 and the algo-
rithms discussed in Plischke (2012); Plischke, Bor-
gonovo, and Smith (2013) where the sorting is on the
realizations of X;, with the output realizations that
are then reordered accordingly.

Finally, we recall that counting the number of
runs from the conditional subsample in the ordered
output sample is at the basis of the Wald—Wolfowitz
run test statistic (Wald & Wolfowitz, 1940). Hence,
taking the largest cdf difference within each run com-
bines ideas from the Kolmogorov—Smirnov test and
the Wald—Wolfowitz run test.

5. NUMERICAL EXPERIMENTS

We start with a premise on partition selection. As
mentioned in Strong and Oakley (2013); Borgonovo,

Hazen, and Plischke (2016), there is a trade-off be-
tween the number of realizations to allocate to a par-
tition and the number of partitions. In fact, the lower
the number of partitions the more accurately we can
estimate the inner statistic, but a low number of parti-
tions may lead to failure in capturing the behavior of
;i(Py, Pyx,) as a function of X;. The trade-off is well
detailed in Strong and Oakley (2013) and Borgonovo
et al. (2016). While for large sample sizes estimates
become insensitive to the partition size, for sample
sizes below n = 2,000 the partition selection strat-
egy becomes relevant. The partition size M in the fol-
lowing experiments is linked to the sample size n via
M = min{g;, 32} guaranteeing a minimal subsample
size of 64 realizations when one selects equally likely
partition bins.

5.1. When Everything Works

We consider first the wing-weight simulator, a
numerical code recently studied in the context of the
estimation of Sobol’ sensitivity indices in Jiménez
Rugama and Gilquin (2018). The model simulates
the weight of a light aircraft wing depending on 10
design parameters. The MATLAB file and imple-
mentation details are available from the library of
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Fig 7. Level E Transport Model at time ¢ = 300, 000. Convergence study on log-transformed output, 65,536 QMC max.

Surjanovic and Bingham (2019). The code has 10
uncertain input parameters. Following the distribu-
tional assignment in Jiménez Rugama and Gilquin
(2018, table 9, p. 735), we generate a sequence of
samples of increasing size, up to n = 65,536, for
the estimation of variance-based sensitivity mea-
sures (the size is the same as in Jiménez Rugama
and Gilquin, 2018). We utilize the same samples
and distributional assignments to estimate, besides
first-order sensitivity measures, correlation coeffi-
cients, the XS, pKu § sensitivity measures, as well
as HSIC and distance correlation. For the gXS, gKu,
8, we compare the estimators proposed in this work
against the estimators of Plischke et al. (2013) and
Borgonovo et al. (2014).

The graphs in Fig. 4 report the sample sizes on
the horizontal axis, and the corresponding estimates
on the vertical axis. The upper left panel reports
the squared correlation coefficients, the lower left
variance-based first-order indices. The upper three
centered panels are obtained by Algorithm 1 applied
directly to the sample data, while the lower panels
use the estimators in Plischke et al. (2013). The right-
most panels display the results for the HSIC (upper
graph) and distance correlation (lower graph).

Fig. 4 shows that all estimates rapidly converge
and the ranking of the most important inputs is cor-

rectly reported by all estimators already at the small-
est tested sample size (n = 512), with convergence in
the estimates obtained for n > 1, 024. For this sim-
ulator, a linear regression surface just with additive
terms would fit well, capturing over 90% of the out-
put variance, signaling a mild behavior of the input-
output mapping. Thus, in this case, the newly intro-
duced estimators do not display an advantage over
estimators previously introduced. (Note that the hor-
izontal axis of distance-correlation and of HSIC stops
at about n = 7, 000. The large memory requirements
would make it not possible to obtain numerical esti-
mates for larger sample sizes. However, all relevant
inputs are already identified by these sensitivity mea-
sures at smaller sample sizes.)

5.2.  When Sparsity Jumps In

Let us now consider what happens when the
output is sparse (ranges over orders of magni-
tude), a situation often encountered in risk analysis
applications (see Iman & Hora, 1990). To show
that sparsity issues can emerge independently of
the simulator dimensionality, we start with a low-
dimensional test case. Consider Y=Xl‘] + X5,
with X; Cauchy(0,3)-distributed and X, inde-
pendently Cauchy(1,0.5)-distributed. Then, Y is
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Fig 8. Product of lognormals, input dimension d = 30, 000. Convergence study, 65,536 MC max. Shown are the 30 first parameters.

Cauchy(1, %)-distributed, and also all the conditional
distributions are Cauchy. Therefore, it is possible to
obtain the values of moment-independent sensitivity
measures analytically. Specifically, we have §; = 0.31
and 8, = 0.46. Because the distributions are all uni-
modal, by Proposition 1 we expect §; = g*". Fig. 5
shows the estimates of the sensitivity measures
addressed thus far. For variance-based sensitivity
measures, we observe that the larger the sample
size, the more numerical issues appear. Furthermore,
the kernel-density—based estimator of § of Plischke
et al. (2013) fails (lower row) to produce consistent
estimates. Then, from the estimators in the lower
row of Fig. 5 one would not recover the theoretically
expected identity between §; and AX“. This iden-
tity is, instead, recovered by the estimators in the
upper row.

The previous test case is based on Cauchy-
distributed random variables, which have mode and
median, but no mean. Thus, techniques that rely on
the first moment do not converge. The test case may
seem artificial, but it captures a problem that occurs
with one of the most widely used test cases in sensi-
tivity analysis, Level E.

The geosphere transport model Level E has been
widely studied in sensitivity analysis since Saltelli

et al. (1999) and Saltelli and Tarantola (2002). The
simulator computes the annual radiation dose to hu-
mans as a result of leakage from a hypothetical un-
derground disposal site for nuclear waste spanning
a time horizon going from 2 x 10* to 2 x 10” years
into the future. We analyze the output at timestep
t = 300, 000. The simulator features 12 uncertain in-
put parameters, whose distributions have been as-
signed based on expert opinions in OECD (1989)
and have been used consistently in all subsequent
studies. We refer to Saltelli and Tarantola (2002) for
the description. Issues with this model can be spot-
ted from the slow convergence of the first-order ef-
fects. Moreover, the ranking of the first two parame-
ters is not consistent over all measures. A neat sepa-
ration of the sensitivity measures of minor contribu-
tors is only possible for large sample sizes, n > §, 192
(Fig. 6).

As the output spans orders of magnitudes, the
analyst usually employs an output transformation.
We then apply a logarithmic transformation of the
output. Zero values and stray negative values are
mapped to the smallest positive number repre-
sentable in floating-point arithmetic before apply-
ing the transformation. As Fig. 7 shows, the nu-
merical convergence issues are now resolved, but
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Fig 9. Product of lognormals, input dimension d = 30, 000. Convergence study on log-transformed output, 65,536 MC max. Shown are the

30 first parameters.

the transformation has changed the ranking of the
inputs.

Overall, the analysis shows that for the dose at
t =300, 000 years, the estimation of global sensitiv-
ity measures is challenging. The analysis with and
without transformations, however, permits to iden-
tify two key drivers of uncertainty. The steam flow
rate X is a stochastic variable whose properties
cannot be influenced by technical design considera-
tions. Thus, a risk manager knows that she/he can-
not intervene on this parameter by changing the
design.

The fact that this parameter is a key driver of un-
certainty then means that additional information on
the parameter will, in fact, reduce uncertainty about
the output but will not be informative about possi-
ble ameliorations of the performance of the waste
repository. The second important parameter Xy, the
water velocity in the first geosphere layer, refers
to characteristics of the host rock formation. Thus,
getting more specific on this aspect of the reposi-
tory design has the potential to reduce the problem
uncertainty.

5.3. When Dimensionality Adds To Sparsity

Now, if sparsity of output is paired with a large
number of input parameters, then classical screen-
ing methods for which the sample design depends
on the number of inputs are not applicable. Given-
data techniques, however, may still extract informa-
tion from a sample when its size of is smaller than
the number of dimensions. We consider the prod-
uct of standard lognormals, Y = [}°, X212, X;,
X; ~1ogN(0,1) iid, with d =30,000. Additional
tests were performed with d = 30, d = 300, and d =
3,000, but these offer qualitatively the same results
and are not reported here. In order to deal with
over- and underflow, infinite values in the simula-
tor output have been replaced by the largest rep-
resentable positive floating point number and zeros
by the smallest representable positive floating point
number. Fig. 8 shows the results of computing differ-
ent sensitivity measures using alternative algorithms.
Estimation methods not derived from cdf estimations
are not working reliable on this data set. This is a
consequence of the sparsity of the output. The log-
transformed output is studied in Fig. 9. Note that
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the simulator output becomes linear after the trans-
formation. As the sparsity and therefore also the
variance of the model output is now notably reduced,
all methods produce results.

Throughout we have considered a sample of size
n, with the intuition that this is the maximum sample
size that the time/resource budget allows. However,
Figs. 4-9 suggest an iterative version of the estima-
tion procedure. One starts with a trial budget ng of
model runs, and then increases it to ny, n,, ... moni-
toring the convergence in the estimates. Once the dif-
ference in two subsequent estimates is small enough
the analyst can stop the process. The application of an
automated sequential approach is part of future re-
search.

6. CONCLUSIONS

The computation of global importance measures
is an important part of quantitative risk assess-
ment. However, such computation can be extremely
challenging. This work contributes to improving
the efficiency and lowering the computational cost
associated with the estimation of global sensitiv-
ity measures.

First, the investigation contributes in raising the
awareness that estimation challenges do not come
solely from dimensionality, but also from sparsity.
Thus, our finding add to the risk analysis litera-
ture on the use of transformations originated by
the work of Iman and Hora (1990). We have pro-
posed and analyzed a new computation method that
relies on rewriting the estimators of global sensi-
tivity measures using the cdf of the output. It is
based on the given-data principle, and thus it re-
duces the effect of the curse of dimensionality. More-
over, the new approach allows the manipulation of
numbers on the [0,1] scale. As such, it works seem-
lessly for the estimation of any global sensitivity mea-
sure based on the cdf of the output such as X and
BXU. For density-based sensitivity measures, we have
proposed a moving-average approach that bypasses
kernel-density estimation. We have studied the re-
sulting estimator proving its convergence. We have
also discussed the algorithmic cost of the new imple-
mentation and compared it to the algorithmic cost
of dependence measures such as distance covariance
and HSIC.

Because the new method allows the manipula-
tion of numbers on the [0,1] scale, it becomes a
potential remedy to the curse of sparsity. We have
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tested this assertion through a series of experiments
of increasing complexity, from the computationally
friendly wing-weight simulator to a 30, 000 input case
study in which the model output variance reaches the
numerical range of the floating-point representation
of numbers in the computer. For each experiment,
we have performed tests with and without transfor-
mations. Results show that the estimates to converge
at reasonable sample sizes for all the examples even
without the use of transformations.

There are some key recommendations for a risk
analyst emerging from our investigation. First, spar-
sity may affect the performance of global sensitivity
estimators as much as dimensionality and, in any
case, sparsity acts independently of dimensionality.
The use of transformations may not directly solve
the curse of sparsity. Not only do transformations
introduce interpretation issues, but a transformation
may not be numerically effective, especially if the
estimators rely on kernel smoothing. Moreover,
sparsity does not impact estimators of alternative
global sensitivity measures in the same way; a rec-
ommendation is, then, that the analyst employs
an ensemble of global sensitivity measures. Rely-
ing on a single indicator may lead to unreliable
conclusions due to numerical estimation issues.
In this respect, the case studies have shown that
employing the new method simultaneously with
other global sensitivity measures allows the ana-
lyst to obtain solid insights on the key drivers of
uncertainty while keeping computational burden
under control.

Avenues for future research are the compari-
son, in high-dimensional settings, of the global esti-
mators discussed in this work with screening tech-
niques such as the method of Morris or sequential
bifurcation, as well as the implementation of a se-
quential version of the method. Moreover, the addi-
tion of further cdf-based distances like Cramer/von
Mises to the global sensitivity measure portfolio is
also pursued.
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APPENDIX A: PROOFS

Proposition 1. Using the notations AFyx,(y) =
Frix,(y) — Fr(v) and Afyix(y) = frix,(v) = fr (y)
the inequality BX5 < pK < 2BK5 follows immediately
from
sup | AFy x, (v)| = sup{—AFyx, (y), AFyx,(v)}
< sup{—AFyx, (¥)} + sup{AFyx,(y)} < 2sup |AFyx, (y)]-
(A1)

Suppose that there are two functions yo, y1: X;i — ),
yo(-) # y1(+) such that

Afrix (o(xi)) = 0= A fypx (v1(x:))
and Afyx,(y) #0 forall othery.

These zeros correspond to the minimum (<0) and
maximum (> 0) of AFy x,. Hence,

B =/(|AFY|x,(yO(xz))| + | AFyx,(v1(x:))]) dxi.

Now recall Scheffé’s theorem (Devroye & Gyorfi,
1985; Scheffé, 1947) which states that given two prob-
ability density functions (pdfs) fi and f, one has

/ |f1(7) = f2(3)| dy =2 sup
y BeB

[Amay-[ rorar). (a2)

Hence for the intervals

[min{yo(x;), y1(x;)}, max{yo(x;), y1(x;)}],
3; satisfies

-
B(x;

/ |AFy1x,(yo(x;)) — AFyx,(y1(x:))|dx; = B

B(xi) =
by (A2)

dx,- =

)(fy — frix) dy

If there is only one nonvanishing extremum for all
x; then AFy|x, contains no sign change and therefore
pEu = pKS

i [

If g(-) is a function depending on its sole scalar
parameter x; then we have for y, < g(x;) <y, that
Ku(x))>1-=F () — (0—FO1))|—1asy1 — y».
If g(-) is monotonically increasing then by transforma-

oo 1
tion invariance we have p*5 = [’ max{u, 1 — u} du =
3

7
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APPENDIX B: ESTIMATION OF
BORGONOVO’S § FROM CDFS: TECHNICAL
DETAILS

Scheffé’s theorem (Devroye & Gyorfi, 1985;
Schefté, 1947) allows us to write

LMM&AW—AUWW

=2 [ (v )= r)dv. B
By

where B = {y: fyixec,,(¥) = fr(»)}, i.e,, B} is the
subset in Y where fy x.ec,,(v) is above fy(y). With
a slight notation abuse, (B1) can also be written in
terms of cdfs

/y |fY\XieCm,,()’) - fY(Y)}dy

= 2(Fyxec,,,(BY) — Fr (BY)). (B2)

Equation (B2) has a geometric interpretation which
can be used for the estimation of §. Returning
to Fig. 2, observe that, in association with (B2),
it is equivalent to count (and sum) all the ar-
eas between the conditional and unconditional cdfs,
or to count twice only the areas where the con-
ditional cdf is greater (smaller) than the uncon-
ditional cdf. So, the problem boils down to de-
termining the subset B! (Liu & Homma, 2009).
This set is a union of intervals of which the end-
points are critical points (local extrema) for the
function AFyx.c,,(¥) = Frixec,, (v) — Fr(y) (Bor-
gonovo, Castaings, & Tarantola, 2011; Liu & Homma,
2009). Now, the subset B”! has to be determined from
the sample and the conditional subsample. But for
this task, AFy|x.c,, 1s not a good approximation of
AFy x.ec,, as the former is discontinuous (see Equa-
tion (17)), while the latter is continuous because of
the absolute continuity of Y. We therefore suggest
the following simple form of data-smoothing: The av-
eraged version AFy y.cc,, of AFy|x.cc,, is obtained

m,i

from
1 min(3M,n)
AFy\xec,,; (Vi) = M1 > AFyixec, (ve). (B3)
¢=max(j—-3M.,1)

For the size of the moving-average window, note that
the chance of selecting an output realization which is
contained in the subsample is, on average, ]\1—4 (where
M is the number of partitions, as above). Hence,
one out of M realizations is from the subsample and
therefore responsible for ajump in AFy | x.<c,, ;. There-

mi
o~

fore, when applying a moving average to AFy|x.ec

m.i
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the minimal window size is equal to the partition size
as then a single jump contribution is balanced out.
In our experience, a larger (£3M) moving window
is better suited to capture the variability. For finite
sample sizes, despite the smoothing, the determina-
tion of the extreme values to approximate the set B},
is still an error-prone process as local extreme val-
ues appear and vanish depending on the smoothing
parameters and it is not clear if they are numerical
artifacts or ground truth. Therefore we consider the
union of intervals B, = 1[a,, (] as an approxima-
tion of B! where one identifies b as arguments max-
imizing AFy x.cc,, in each of the positive runs, and
4" as minimizers in each of the negative runs (i.e.,
one value per run). Here, we call positive run a max-
imal sequence of adjacent output values where the
smoothed cdf difference is positive,

Afy‘)(,gcm,(y) > 0 for ally =Yj-s Vijtr—1,
Vijsenes Yjtr-1": _
AFy|xec,,(y) <0fory =y 1,y

A negative run is defined in a similar way. The max-
imum distances between the cdfs within each of the
run have to be considered for forming the estimate of
the § measure, lead to Equation (18).

APPENDIX C: MOVING-AVERAGE
ESTIMATOR CONSISTENCY

In this section, we provide greater details on
the convergence properties of the cdf-based estima-
tors proposed here. Consider first that X; is an abso-
lutely continuous random variable in &A; C R. Then,
for every point x! € X; there exists a series of in-
tervals in the partitions such that x = (), C(n).:(n),
m < M(n). The notation M(n) makes explicit the de-
pendence of partition classes on the sample size and
we assume that the function M(n) satisfies the as-
sumptions of theorem 1 in Borgonovo et al., (2016).
We have the following inequality:

’AFY|X Cony i) V) = AFy y Y0()’)) < ‘FY\X ec,,,(,,>,(n)()’)>
(_FY\)(,'EC,,,(,,>.,‘(t1)(y)‘ + )FY(Y) - FY()’)‘ .

For the first term, absolute continuity of X; allows us
to write

-1
ﬁY|XiECm(n).i(n) (y) = (/ fY (y)dy)
Cm(n).i(”)

/C By e fi(£)dE <

m(n).i (1

max Fy|X =£>
€ m(n),(”
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which converges to ﬁYl x,—w Dy partition refinement.

For the second term, Fy (y) — Fy(y), by the law of
large numbers, as also given in the proof of theorem 1
of Borgonovo et al. (2016). Therefore, the estimators
are asymptotically consistent.

Now, consider the averaged version of the dis-
tance between the conditional and the unconditional
empirical cdf. For this estimator, we need the assump-
tion that also Y is absolutely continuous. We have

_ M . A
AFyx,(0) = g1 Lo ohgny Mix (B (B () +
1)). AF is therefore sandwiched between the
minimal and maximal values of AF over this range,

i AF F
j:—3MI(lf3)1P..3M<n> YX( (Y(y)+ ))‘

By (y)+Le[0,1]
AFyix,(y) <
ax AF )2
= 3MOny M () Y|X( < y(¥)+ = ))
B (n)+Le0.1]

We have seen above that Fy(y) — Fy(y) and
AFyx, = Aly|x, as n increases. We also have that

3M(n)

|ﬁ|< — 0asn — oo. Then, we need to be reas-

sured that F Yhy(y)+ L 1) — y as nincreases, where
F , is the generalized inverse, i.e., F (u) =inf{y €
y: Fy(y) > u}. For the term Fy(y) + £ we register
F@y)+1 2 — Fy(y) as n tends to 1nﬁn1ty. Then, we

need that FY’ T F; L. For this, absolute continuity
of Y comes into play. In fact, if Y is absolutely con-
tinuous, then Fy is differentiable and strictly increas-
ing. Therefore, we always have a nonzero derivative
at any point and the quantile function is defined for
any value of y. Under these conditions, the empirical
quantile function tends to the true value (see van der
Vaart, 2000, chapter 21).

APPENDIX D: DETAILS ON DISTANCE
CORRELATION AND HILBERT-SCHMIDT
INDEPENDENCE CRITERION (HSIC)

If Z is an ¢-dimensional random vector and Y
is a random variable, the distance covariance is de-
fined by taking a weighted difference between (pos-
sibly multidimensional) characteristic functions,

deov (Z,Y) = CZ/ /2 sl 42 ‘E I:ei.YTZ+itY]>

(~E[e"7]Ee "Y]‘ dsdt, (D1)
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where C; is a normalizing constant related to the vol-
ume of a unit hyperball. The weights are chosen in
such way that the measure is invariant with respect
to rotations of the /-dimensional space of Z. Analo-
gously to the standard correlation of (2), the distance
correlation is given by

do(Z. ) = decov(Z,Y)
Vdvar(Z)dvar(Y)
where dvar(Z) = dcov(Z, Z). (D2)

Under the condition that the first moments of Z and
Y are finite, dcov(Z,Y) =0 if and only if Z and Y
are independent, i.e., it satisfies the nullity-implies-
independence property. The distance correlation do
is also invariant under affine linear transformations
of Z and Y. Estimators that avoid the use of charac-
teristic functions are working on the trace product of

andy;, y; € R,
1
(n—1)
trace (A(I —n~'117)B(I —n~'117)), (D3)

dcov’(Z,Y) =

where [ is the n x n identity matrix, 1 is a vector
of ones, and # is the sample size. In Székely et al.
(2007), the entries of the distance matrices A and
B are centered with respect to column, row, and
overall averages, however, due to the properties of
the trace product, (D3) needs only the row aver-
ages, n ' A1 and n~'B1. The HSIC replaces the dif-
ference matrices in (D3) with appropriate kernels

from reproducing kernel Hilbert spaces, i.e., A]">'C =

K7(zi., z;.) and Bi'C = Ky (y;,y;) (see Gretton,
Bousquet, Smola, & Scholkopf, 2005, for further de-
tails). Then, analogously to (D3), HSIC can be com-
puted via

HSIC = > trace (A™'C(1 —n~'117))

1
(n—1)
(BB —n11")). (D4)
For using distance correlation or HSIC as sensitivity

measures, Z is given by a single input factor X; or a
group of factors of interest, (X, ..., X, ).

APPENDIX E: DETAILS ON
KERNEL-DENSITY ESTIMATION

Let {(xji,y;)|j=1,...,n} be a given sample
of realizations of (X,Y). The estimate fy(-) is ob-
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tained from a kernel-density estimation of all re-
alizations {y;|j=1,...,n} while fyxcc,,(-) is ob-
tained from a kernel-density estimation of the sub-
set Yy, = {yjlxji € C;}. For a given kernel K(-) and
m =1, ..., M, the kernel-density estimates are

) = %Zn: éK(J%)

j=1

? Lo (y—yi
Frixee,.(v) = > —K(—- _(E1)
m,i Om oy
x/'iECnL[
Here, n,,; = Zxﬁ e, L is the number of realizations

in class C,; of the partition of &;. Let us recall a
vector-valued formulation of (E1).

Proposition E1 (Bowman & Azzalini, 2003). Given a
sample z = (z;) of the random variable Z, quadrature
points { = (¢;), and a kernel function K with band-
width h, construct the weight matrix

Wi(z.¢) = %K(Zi - §f>. (E2)

Then fz(Cj) = %Z, Wij.

This proposition is directly applicable to the re-
alizations y and the quadrature points v to obtain
fy. If the bandwidths satisfy « = a,,, m=1,..., M
then estimating the conditional pdfs amounts to a
subset selection of the rows of the weight matrix W
analogous to the calculation of j; preceding (11). In
particular, we have fy(v,) =n"" > i1 Wig(y, v) and
Fric. (vg) = m, ¥ e, Wig(. v). One of the re-
maining issues is the choice of the kernel function
K and an associated bandwidth 4. We use a rule-
of-thumb bandwidth (Sheather, 2004) and keep it
constant when passing over to conditional pdfs. This
avoids also the paradoxical situation that the esti-
mates of the conditional pdfs have a larger support
than the estimate of the unconditional pdf, as the
less data are available the larger an automatically se-
lected bandwidth is chosen.
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