
ar
X

iv
:1

70
3.

05
04

5v
3

 [
cs

.D
M

]
 2

2
Fe

b
20

18

Average whenever you meet:

Opportunistic protocols for community detection

Luca Becchetti
Sapienza Universit di Roma

Rome, Italy

becchetti@dis.uniroma1.it

Andrea Clementi
Universit di Roma Tor Vergata

Rome, Italy

clementi@mat.uniroma2.it

Pasin Manurangsi
U.C. Berkeley

Berkeley, California

pasin@berkeley.edu

Emanuele Natale
Max Planck Institute for Informatics

Saarbrcken, Germany

enatale@mpi-inf.mpg.de

Francesco Pasquale
Universit di Roma Tor Vergata

Rome, Italy

pasquale@mat.uniroma2.it

Prasad Raghavendra
U.C. Berkeley

Berkeley, CA, United States

raghavendra@berkeley.edu

Luca Trevisan
U.C. Berkeley

Berkeley, CA, United States

luca@berkeley.edu

Abstract

Consider the following asynchronous, opportunistic communication model over a graph
G: in each round, one edge is activated uniformly and independently at random and (only)
its two endpoints can exchange messages and perform local computations. Under this model,
we study the following random process: The first time a vertex is an endpoint of an active
edge, it chooses a random number, say ±1 with probability 1/2; then, in each round, the
two endpoints of the currently active edge update their values to their average. We show
that, if G exhibits a two-community structure (for example, two expanders connected by a
sparse cut), the values held by the nodes will collectively reflect the underlying community
structure over a suitable phase of the above process, allowing efficient and effective recovery
in important cases.

In more detail, we first provide a first-moment analysis showing that, for a large class of
almost-regular clustered graphs that includes the stochastic block model, the expected values
held by all but a negligible fraction of the nodes eventually reflect the underlying cut signal.
We prove this property emerges after a “mixing” period of length O(n logn). We further
provide a second-moment analysis for a more restricted class of regular clustered graphs
that includes the regular stochastic block model. For this case, we are able to show that
most nodes can efficiently and locally identify their community of reference over a suitable
time window. This results in the first opportunistic protocols that approximately recover
community structure using only logarithmic (or polylogarithmic, depending on the sparsity
of the cut) work per node. Even for the above class of regular graphs, our second moment
analysis requires new concentration bounds on the product of certain random matrices that
are technically challenging and possibly of independent interest.

Keywords: Distributed Community Detection, Asynchronous Protocols, Random Pro-
cesses, Spectral Analysis.

http://arxiv.org/abs/1703.05045v3

1 Introduction

Consider the following, elementary distributed process on an undirected graph G = (V,E) with
|V | = n nodes and |E| = m edges. Each node v holds a real number xv (which we call the state
of node v); at each time step, one random edge {u, v} becomes active and its endpoints u and
v update their states to their average.

Viewed as a protocol, the above process is consistent with asynchronous, opportunistic
communication models, such as those considered in [AAER07] for population-protocols; here, in
every round, one edge is activated uniformly and independently at random and (only) its two
endpoints can exchange messages and perform local computations in that round1. We further
assume no global clock is available (nodes can at most count the number of local activations) and
that the network is anonymous, i.e., nodes are not aware of theirs or their neighbors’ identities
and all nodes run the same process at all times.

The long-term behavior of the process outlined above is well-understood: assuming G is
connected, for each initial global state x ∈ R

V the system converges to a global state in which
all nodes share a common value, namely, the average of their initial states. A variant of an

argument of Boyd et al. [BGPS06] shows that convergence occurs in O
(

1
λ2
n log n

)

steps, where

λ2 is the second smallest eigenvalue of the normalized Laplacian of G.
Suppose now that G is well-clustered, i.e. it exhibits a community structure which in the

simplest case consists of two equal-sized expanders, connected by a sparse cut: This structure
arises, for instance, when the graph is sampled from the popular stochastic block model [MNS16]
Gn,p,q for p ≫ q and p > log n/n. If we let the averaging process unfold on such a graph, for
example starting from an initial ±1 random global state, one might reasonably expect a faster,
transient convergence toward some local average within each community, accompanied by a
slower, global convergence toward the average taken over the entire graph. If, as is likely the
case, a gap exists between the local averages of the two communities, the global state during
the transient phase would reflect the graph’s underlying community structure. This intuition
suggests the main questions we address in this paper:

Is there a phase in which the global state carries information about community structure? If so,
how strong is the corresponding “signal”? Finally, can nodes leverage local history to recover
this information?

The idea of using averaging local rules to perform distributed community detection is not
new: In [BCN+17], Becchetti et al. consider a deterministic dynamics in which, at every round,
each node updates its local state to the average of its neighbors. The authors show that this
results in a fast clustering algorithm with provable accuracy on a wide class of almost-regular
graphs that includes the stochastic block model. We remark that the algorithm in [BCN+17]
works in a synchronous, parallel communication model where every node exchanges data with all
its neighbors in each round. This implies considerable work and communication costs, especially
when the graph is dense. On the other hand, each step of the process is described by the same
matrix and its evolution unfolds according to the power of this matrix applied to the initial
state. In contrast, the averaging process we consider in this paper is considerably harder to
analyze than the one in [BCN+17], since each step is described by a random, possibly different
averaging matrix.

Differently from [BCN+17], our goal here is the design of simple, lightweight protocols for

1In an essentially equivalent continuous-time model, each edge has a clock that ticks at random intervals
with a Poisson distribution of average 1; when the clock ticks, then the edge endpoints become activated. For
t larger than n log n, the behavior of the continuous time process for t/n units of time and the behavior of the
discrete-time process for t steps are roughly equivalent.

2

fully-decentralized community detection which fit the asynchronous, opportunistic communica-
tion model, in which a (random) link activation represents an opportunistic meeting that the
endpoints can exploit to exchange one-to-one messages. More specifically, by “lightweight” we
mean protocols that require minimalistic assumptions as to network capabilities, while perform-
ing their task with minimal work, storage and communication per node (at most logarithmic or
polylogarithmic in our case). In this respect, any clustering strategies (like the one in [SZ17])
which construct (and then work over) some static, sparse subgraph of the underlying graph are
unfeasible in the opportunistic model we consider here. This restrictive setting is motivated by
network scenarios in which individual agents need to autonomously and locally uncover under-
lying, implicit communities of which they are members. This has widespread applicability, for
example in communication systems where lightweight data can be locally shared via wireless
opportunistic meetings when agents come within close range [WWA12].

We next discuss what it means to recover the “underlying community structure” in a dis-
tributed setting, a notion that can come in stronger or weaker flavors. Ideally, we would like
the protocol to reach a state in which, at least with high probability, each node can use a
simple rule to assign itself one of two possible labels, so that labelling within each community
is consistent and nodes in different communities are assigned different labels. Achieving this
corresponds to exact (block) reconstruction. The next best guarantee is weak (block) reconstruc-
tion (see Definition 2.3). In this case, with high probability the above property is true for all
but a small fraction of misclassified nodes. In this paper, we introduce a third notion, which we
call community-sensitive labeling (CSL for short): in this case, there is a predicate that can be
applied to pairs of labels so that, for all but a small fraction of outliers, the labels of any two
nodes within the same community satisfy the predicate, whereas the converse occurs when they
belong to different communities2. In this paper, informally speaking, nodes are labelled with
binary signatures of logarithmic length, while two labels satisfy the predicate whenever their
Hamming distance is below a certain threshold. This introduces a notion of similarity between
nodes of the graph, with labels behaving like profiles that reflect community membership3. Note
that this weaker notion of community-detection allows nodes to locally tell “friends” in their
community from “foes” in the other community, which is the main application of distributed
community detection in the opportunistic setting we consider here.

1.1 Our results

First moment analysis. Our first contribution is an analysis of the expected evolution of the
averaging process over a wide class of almost-regular graphs (see Definition 2.1) that possess a
hidden and balanced partition of the nodes with the following properties: (i) The cut separating
the two communities is sparse, i.e., it contains o(m) edges; (ii) the subgraphs induced by the two
communities are expanders, i.e., the gap λ3 − λ2 between the third and the second eigenvalues
of the normalized Laplacian matrix L of the graph is constant. The above conditions on the
underlying graph are satisfied, for instance, by graphs sampled from the stochastic block model4

Gn,p,q for q = o(p) and p > log n/n.
Let L = D − A be the Laplacian matrix of G. The first moment analysis considers the

deterministic process described by the linear equation x(t+1) = W
t ·x(0) (t > 1), where x(0) = x

is the vector with components the nodes’ initial random values and W := E[W] = I − 1
2mL

is the expectation of the random matrix that describes a single step of the averaging process.
While a formal proof of the above equation can be found in Section 3, our analysis reveals that

2Note that a weak reconstruction protocol entails a community-sensitive labeling. In this case, the predicate
is true if two labels are the same.

3Hence the phrase community-sensitive Labeling we use to refer to our approach.
4See Subsection 1.2 for the definition of Gn,p,q and for more details about our results for Gn,p,q.

3

the expected values held by the nodes are correlated with the underlying cut. This phenomenon
follows from structural connections between the underlying graph’s community structure and
some spectral properties of W . This allows us to show that, after an initial “mixing” phase of
Θ(n log n) rounds and for all but o(n) nodes, the following properties hold: (i) There exists a
relatively large time window in which the signs of the expected values of nodes are correlated
with the community they belong to. (ii) The expected values of nodes belonging to one of the
communities increase in each round, while those of nodes in the other community decrease.

The formal statements of the above claims can be found in Theorem 3.1. Here, we note that
these results suggest two different local criteria for community-sensitive labeling: (i) According
to the first one, every node uses the sign of its own state within the aforementioned time
window to set the generic component of its binary label (we in fact use independent copies of
the averaging process to get binary labels of logarithmic size - see Protocol Sign-Labeling in
Section 4.2). (ii) According to the second criterion, every node uses the signs of fluctuations
of its own value along consecutive rounds to set the generic component of its binary label (see
Protocol Jump-Labeling in Section 5.2) 5.

The above analysis describes the “expected” behaviour of the averaging process over a large
class of well-clustered graphs, at the same time showing that our approach might lead to efficient,
opportunistic protocols for block reconstruction. Yet, designing and analyzing protocols with
provable, high-probability guarantees, requires addressing the following questions:

1. Do realizations of the averaging process approximately follow its expected behavior with
high, or even constant, probability?

2. If this is the case, how can nodes locally and asynchronously recover the cut signal, let
alone guess the “right” global time window?

Second moment analysis. The first question above essentially requires a characterization
of the variance of the process over time, which turns out to be an extremely challenging task.
The main reason for this is that a realization of the averaging process is now described by an
equation of the form x(t) = Wt · · W1x, where the Wi’s are sampled independently and
uniformly from some matrix distribution (see Eq. (1) in Section 3). Here, matrix Wi “encodes”
both the i-th edge selected for activation and the averaging of the values held by its endpoints
at the end of the (i− 1)-th step.

Not much is known about concentration of the products of identically distributed random
matrices, but we are able to accurately characterize the class of regular clustered graphs. We
point out that many of the technical results and tools we develop to this purpose apply to far
more general settings than the regular case and may be of independent interest. In more detail,
we are able to provide accurate upper bounds on the norm of x(t)’s projection onto the subspace
spanned by the first and second eigenvector of W (see the proof’s outline of Theorem 3.1 and
Lemma B.2) for a class of regular clustered graphs that includes the regular stochastic block
model6 [BCN+17, BDG+15, MNS14] - see Definition 2.2.

These bounds are derived separately for two different regimes, defined by the sparseness of
the cut separating the two communities. Assuming a good inner expansion of the communities,
the first concentration result concerns cuts of size o(m/ log2 n) and it is given in Subsection 4.1
while, for the case of cuts of size up to αm for any α < 1, the obtained concentration results
are described in Subsection D.1.

5Having a node set its label within the correct time window is technically challenging in the asynchronous,
opportunistic communication model we consider. This issue is briefly discussed in this and the following sections
and formally addressed in Appendix C.4).

6See Subsection 1.2 for more details about our results for regular stochastic block models.

4

These bounds alone are not sufficient to prove accuracy of the clustering criteria, due to
the asynchronous nature of the communication model we consider, whereby every node only
updates its value once every m/d rounds in expectation, where d is the degree of the nodes.

Desynchronization. The variance analysis outlined in the previous paragraph ensures that,
for any fixed step t, the actual states of a large fraction of the nodes are “close” to their
expectations, with high probability. Unfortunately, the asynchrony of the model we consider
does not allow to easily apply this result (e.g., using a union bound) to prove that most nodes
will eventually label themselves within the right global window and in a way that is consistent
with the graph’s community structure. Rather, we show that there exists a large fraction of
non-ephemeral “good nodes” whose states remain close to their expectations over a suitable
time-window. The technical form of the concentration bound and the relative time window
again depend on the sparsity of the cut: See Definition 4.1 and Lemma 4.2 for sparse cuts and
Theorem 5.1 for dense cuts, respectively.

Distributed community detection. We exploit the second moment analysis and the desyn-
chronization above to devise two different opportunistic protocols for community detection on
regular clustered graphs.
- In the case of sparse cuts (i.e. of size o(m/ log2 n)), the obtained bound on the variance of
non-ephemeral nodes (see Lemma 4.2) holds over a time window that essentially equals the
one “suggested” by our first moment analysis. This allows us to give rigorous bounds on the
performance of the opportunistic Protocol Sign-Labeling based on the sign criterion (see
Section 4.2). This “good” time-window begins after O(n log n) rounds: So, if the underlying
graph has dense communities and a sparse cut, nodes can collectively compute an accurare
labeling before the global mixing time of the graph. For instance, if the cut is O(m/nγ),
for some constant γ < 2, our protocol is polynomially faster than the global mixing time.
In more detail, we prove that, given any regular clustered graph with cut of size o(m/ log2 n),
Protocol Sign-Labeling performs community-sensitive labeling for n−o(n) nodes within global
time7 O(n log2 n) and with work per node O(log2 n), with high probability (see Theorem 4.3
and its Corollary 4.2 for formal and more general statements about the performances of the
protocol). Importantly enough, the costs of our first protocol do not depend on the cardinality
of the edge set E.
- The bound on the variance that allows us to adopt the sign-based criterion above does not
hold when the cut is not sparse, i.e., whenever it is ω(m/ log2 n). For such dense cuts, we
use a different bound on the variance of nodes’ values given in Theorem 5.1, which starts to
hold after the global mixing time of the underlying graph and over a time window of length
Θ(n2). In this case, the specific form of the concentration bound leads to adoption of the second
clustering criterion suggested by our first moment analysis, i.e., the one based on monotonicity
of the values of non-ephemeral nodes. To this aim, we consider a “lazy” version of the averaging
process equipped with a local clustering criterion, whereby nodes use the signs of fluctuations
of their own values along consecutive rounds to label themselves (see Protocol Jump-Labeling
in Section 5.2). A restricted but relevant version of the algorithmic result we achieve in this
setting can be stated as follows (see Theorem 5.3 and its corollaries for more general statements):
Given any regular clustered graph consisting of two expanders as communities and a cut of
size up to αm (for any α < 1), the opportunistic protocol Jump-Labeling achieves weak
reconstruction for a fraction (1−ε)n nodes (where ε is an arbitrary positive constant), with high
probability. The protocol converges withinO(n log n (log2 n+m/m1,2)) rounds (where we named
m1,2 = |E(V1, V2)| the size of the cut) and every node performs O(log2 n+(m/m1,2) log n) work,

7The extra logarithmic factor is needed to let every node update each component of its Θ(log n)-size binary
label, independently (see Subsection 4.2 for details).

5

with high probability. Notice that this second protocol achieves a stronger form of community
detection than the first one, but it is less efficient, especially when the underlying graph is dense
and exhibits a sparse cut (it requires to “wait” for the global mixing time of the graph). On
the other hand, the two protocols have comparable costs in the parameter ranges they were
designed for.8

1.2 Comparison to previous work

We earlier compared our results to those of [BCN+17]. The advantage of [BCN+17] is that their
analysis achieves concentration over a class of graphs that are almost-regular and extends to
the case of more than two communities. Furthermore, in graphs in which the indicator of the
cut is an eigenvector of λ2, the algorithm of [BCN+17] achieves exact reconstruction. On the
other hand, as previously remarked, the advantage of our work over [BCN+17] is that, for the
first time, it applies to the asynchronous opportunistic model and the communication cost per
node does not depend on the degree of the graph, so it is much more efficient in dense graphs.

If we do not restrict to asynchronous and/or opportunistic protocols, recently, in [SZ17], Sun
and Zanetti9 introduced a synchronous, averaging-based protocol that first computes a fixed
random subgraph of the underlying graph and then, working on this sparse subgraph, returns
an efficient block-reconstruction for a wide class of almost-regular clustered graphs including
the stochastic block model. We remark that, besides having no desynchronization issue to deal
with, their second moment analysis uses Chernoff-like concentration bounds on some random
submatrix (rather than a product of them, as in our setting) which essentially show that, under
reasonable hypothesis, the signal of the cut can still be recovered from the corresponding sparse
subgraph the algorithm works on.

Further techniques for community detection and spectral clustering exist, which are not
based on averaging. In particular, Kempe and McSherry showed that the top k eigenvectors of
the adjacency matrix of the underlying graph can be computed in a distributed fashion [KM04].
These eigenvectors can then be used to partition the graph; in our settings, since we assume that
the indicator of the cut is the second eigenvector of the graph, applying Kempe and McSherry’s
algorithm with k = 2 immediately reveals the underlying partition. Again, we note here that
the downside of this algorithm is that it is synchronous and quite complex. In particular, the
algorithm requires a computation of Q1x, for which λ−1

2 log n work per node is a bottleneck,
while our first algorithm only requires λ−1

3 log n work per node, a difference that can become
significant for very sparse cuts.

At a technical level, we note that our analysis establishes concentration results for products
of certain i.d.d. random matrices; concentrations of such products have been studied in the
ergodic theory literature [CPV93, Ips15], but under assumptions that are not met in our setting,
and with convergence rates that are not suitable for our applications.

While we only focused on decentralized settings so far, we note that the question of commu-
nity detection, especially in stochastic block models, has been extensively studied in centralized
computational models [ABH14, CO10, DKMZ11, DF89, HLL83, JS98, McS01]. The stochastic
block model offers a popular framework for the probabilistic modelling of graphs that exhibit
good clustering or community properties. In its simplest version, the random graph Gn,p,q

consists of n nodes and an edge probability distribution defined as follows: The node set is par-
titioned into two subsets V1 and V2, each of size n/2; edges linking nodes belonging to the same

8As for the fraction of outliers guaranteed by the two protocols, please see the technical discussion after
Corollary 5.5.

9Before the technical report in [SZ17], the same authors in [SZ16] presented a synchronous distributed algo-
rithm able to perform approximate reconstruction with multiple communities. Sun and Zanetti then discovered
a gap in their analysis (personal communication), and they retracted the claims in [SZ16].

6

partition appear in E independently at random with probability p = p(n), while edges connect-
ing nodes from different partitions appear with probability q = q(n) < p. In the centralized
setting, the focus of most studies on stochastic block models is on determining the threshold at
which weak recovery becomes possible, rather than simplicity or running time of the algorithm
(as most algorithms are already reasonably simple and efficient). After a remarkable line of
work [DKMZ11, MNS14, Mas14, MNS13], such a threshold has now been precisely determined.

Calling a = pn and b = qn, it is known [BCN+17] that graphs sampled from Gn,p,q satisfy
(w.h.p.) the approximate regularity and spectral gap conditions required by our first moment
analysis (i.e. Theorem 3.1) whenever b = o(a) and a = Ω(log n). Versions of the stochastic block
model in which the random graph is regular have also been considered [MNS14, BDG+15]. In
particular Brito et al. [BDG+15] show that strong reconstruction is possible in polynomial-time
when a−b > 2

√
a+ b− 1. As for these regular random graphs, we remark that our opportunistic

protocol for sparse cut works whenever a/b > log2 n (see also [Bor15, BDG+15]), while our
protocol for dense cuts works for any parameter a and b such that a−b > 2(1+ρ)

√
a+ b, where

ρ is any positive constant. Since it is (information-theoretically) impossible to reconstruct the
graph when a − b 6 O(

√
a+ b) [MNS14], our result comes within a constant factor of this

threshold.

1.3 Roadmap of the paper

After presenting some preliminaries in Section 2, the first moment analysis for almost-regular
graphs is given in Section 3. The analysis of the variance of the averaging process in regular
graphs for the case of sparse cuts and the analysis of the resulting sign-based protocol are
described in Section 4. In Section 5, we address the case of dense cuts: Similarly to the
previous section, we first give a second moment analysis and then show how to apply it to
devise a suitable opportunistic protocol for this regime.

Due to the considerable length of this paper, most of the technical results are given in a
separate appendix.

2 Preliminaries

We study the weighted version of the Averaging process described in the introduction. In each
round, one edge of the graph is sampled uniformly at random and the two endpoints of the
sampled edge execute the following algorithm.

Averaging(δ) (for a node u that is one of the two endpoints of an active edge)

Initialization: If it is the first time u is active, then pick xu ∈ {−1,+1} u.a.r.

Update: Send xu to the other endpoint of the active edge
and then update xu := (1− δ)xu + δr, where r is the
value received from the other endpoint.

Algorithm 1: Updating rule for a node u of an active edge, where δ ∈ (0, 1) is the
parameter measuring the weight given to the neighbor’s value

For a graph G with n nodes and adjacency matrix A, let 0 = λ1 6 · · · 6 λn be the eigenvalues
of the normalized Laplacian L = I −D−1/2AD−1/2, where D is the diagonal matrix with the
degrees of the nodes. We consider the following classes of graphs.

7

Definition 2.1 (Almost-regular graphs). An (n, d, β)-almost-regular graph10 G = (V,E) is a
connected, non-bipartite graph over vertex set V , such that every node has degree d± βd.

Definition 2.2 (Clustered regular graphs). Let n > 2 be an even integer and d and b two
positive integers such that 2b < d < n. An (n, d, b)-clustered regular graph G = ((V1, V2), E) is
a graph over node set V = V1 ∪ V2, with |V1| = |V2| = n/2 and such that: (i) Every node has
degree d and (ii) Every node in V1 has b neighbors in V2 and every node in V2 has b neighbors
in V1.

We remark that if a graph is clustered regular then we easily get that the indicator vector χ
of the cut (V1, V2) is an eigenvector of L with eigenvalue 2b

d ; If we further assume that λ3 >
2b
d ,

then χ is an eigenvector of λ2. We next recall the notion of weak reconstruction [BCN+17].

Definition 2.3 (Weak Reconstruction). A function f : V → {±1} is said to be an ε-weak
reconstruction of G if subsets W1 ⊆ V1 and W2 ⊆ V2 exist, each of size at least (1− ε)n/2, such
that f(W1) ∩ f(W2) = ∅.

In this paper, we introduce a weaker notion of distributed community detection. Namely,
let ∆(x,y) denote the Hamming distance between two binary strings x and y.

Definition 2.4 (Community-sensitive labeling). Let G = (V,E) be a graph, let (V1, V2) be a
partition of V and let γ ∈ (0, 1]. For some m ∈ N, a function h : V1 ∪ V2 → {0, 1}m is a
γ-community-sensitive labeling for (V1, V2) if a subset Ṽ ⊆ V with size |Ṽ | > (1 − γ)|V | and
two constants 0 6 c1 < c2 6 1 exist, such that for all u, v ∈ Ṽ it holds that

∆(hu,hv)

{

6 c1m if iu = iv (Case (i)),

> c2m otherwise (Case (ii)),

where iu = 1 if u ∈ V1 and iu = 2 if u ∈ V2.

3 First Moment Analysis

In this section, we analyze the expected behaviour of Algorithm Averaging(1/2) on an almost-
regular graph G (see Definition 2.1). The evolution of the resulting process can be formally
described by the recursion x(t+1) = Wt · x(t), where Wt = (Wt(i, j)) is the random matrix that
defines the updates of the values at round t, i.e.,

Wt(i, j) =



















0 if i 6= j and {i, j} is not sampled (at round t),

1/2
if i = j and an edge with endpoint i is sampled
or i 6= j and edge {i, j} is sampled,

1 if i = j and i is not an endpoint of sampled edge.

(1)

and the initial random vector x(0) is uniformly distributed in {−1, 1}n.11
Notice that random matrices {Wt : t > 0} are independent and identically distributed and

simple calculus shows that their expectation can be expressed as (see Observation A.2 in the
Appendix):

W := E[Wt] = I − 1

2m
L , (2)

10This class is more general than the one introduced in [BCN+17], since there is no regularity constraint on
the outer node degree, i.e., on the number of edges a node can have towards the other community.

11Notice that, since each node chooses value ±1 with probability 1/2 the first time it is active, by using the
principle of deferred decisions we can assume there exists an “initial” random vector x

(0) uniformly distributed
in {−1,+1}n.

8

where L = D − A is the Laplacian matrix of G. Matrix W is thus symmetric and doubly-
stochastic. We denote its eigenvalues as λ̄1, . . . , λ̄n, with 1 = λ̄1 > λ̄2 > · · · λ̄n > −1 .

We next provide a first moment analysis for (n, d, β)-almost regular graphs that exhibit a
clustered structure. Our analysis proves the following results.

Theorem 3.1. Let G = (V,E) be an (n, d, β)-almost regular graph G = (V,E) with a balanced
partition V = (V1, V2) and such that: (i) The cut E(V1, V2) is sparse, i.e., m1,2 = |E(V1, V2)| =
o(m); (ii) The gap λ3−λ2 = Ω(1).12 If nodes of G execute Protocol Averaging then, with con-
stant probability w.r.t. the initial random vector x(0) ∈ {−1, 1}n, after Θ(n log n) rounds the fol-
lowing holds for all but o(n) nodes: (i) The expected value of a node u increases or decreases de-

pending on the community it belongs to, i.e., sgn
(

E

[

x
(t−1)
u |x(0)

]

− E

[

x
(t)
u |x(0)

])

= sgn (χu);

(ii) Over a time window of length Ω(n log n) the sign of the expected value of a node u reflects

the community u belongs to, i.e., sgn
(

E

[

x
(t)
u |x(0)

])

= sgn (α2χu), for some α2 = α2(x
(0)).

Proof of Theorem 3.1: An outline

The proof makes a black-box use of technical results that are rigorously given in Appendix B.1.
We believe, these results are interesting in their own right, since they shed light on the evolution
of the dynamics and its algebraic structure.

The hypotheses of Theorem 3.1 involve the eigenvalues of the normalized Laplacian matrix
L of the graph, while the expected evolution of the process is governed by matrix W and its
eigenvalues 1 = λ̄1 > · · · λ̄n > −1 (see Lemma B.1). However, (n, d, β)-almost regularity implies
that the spectra of these two matrices are related. In particular, it is easy to see that, under
the hypotheses of Theorem 3.1, we have (see Observation A.5 in the Appendix)

d

2m
(1− 2γ) (λ3 − λ2) 6 λ̄2 − λ̄3 6

d

2m
(1 + 2γ) (λ3 − λ2) (3)

In Lemma B.1, we decompose E
[

x(t)
]

into its components along the first two eigenvectors of

W and into the corresponding orthogonal component e(t) (note that W admits an orthonormal
eigenvector basis since it is symmetric). We further decompose the component along the second
eigenvector of W into its component parallel to the partition indicator vector (α2λ̄

t
2χ) and into

the corresponding orthogonal one (α2
√
n λ̄t

2f⊥). As a consequence, we can rewrite E
[

x(t)
]

as

E

[

x(t)
u

]

= α1 + α2λ̄
t
2

[

χu +
√
n f⊥,u

]

+ e(t)u , (4)

where
∥

∥e(t)
∥

∥ 6 λ̄t
3

√
n. Hence, if α2 6= 0 and λ̄3 < λ̄2, the term e

(t)
u becomes negligible w.r.t.

the other two from some round t onward. Moreover, for any node u with f⊥,u < 1/
√
n,

sgn([χu +
√
n f⊥,u]) = sgn(χu), i.e., x

(t)
u identifies the community Vh node u belongs to. Ac-

cordingly, we say a node u ∈ [n] is ε-bad if it does not satisfy the above property (see Defini-
tion B.1).13 Next, we derive an upper bound on the number of ε-bad nodes. To this purpose,
we first prove an upper bound on the square norm of f⊥, as a function of the gap λ̄2− λ̄3 and the
ratio between the size of the cut m1,2 and the total number of edges in the graph (Lemma B.2).
This easily implies an upper bound on the number of ε-bad nodes (Corollary B.1) as a function
of the gap λ̄2−λ̄3. From (3) and the hypothesis λ3−λ2 = Ω(1) the upper bound in Corollary B.1
turns out to be O(m1,2/d), which in turn is o(n) under the hypothesis m1,2 = o(m).

These results and (4) imply the following conclusions for all ε-good nodes u:

12In practice, this means that each of the subgraphs induced by community Vi (i = 1, 2) is an expander.
13Consistently, a node is ε-good otherwise.

9

(i) For all t = Ω(n log n), the evolution of E
[

x
(t)
u

]

along two consecutive rounds identifies the

block u belongs to (Lemma B.3), namely:

sgn
(

E

[

x(t−1)
u

]

− E

[

x(t)
u

])

= sgn (χu)

(ii) If |α2| is sufficiently larger than |α1| and the second and third largest eigenvalues of W

satisfy appropriate conditions, for all t falling in a suitable time window, the sign of E
[

x
(t)
u

]

identifies the community node u belongs to (Lemma B.4), namely:

sgn
(

E

[

x(t)
u

])

= sgn(α2χu)

Moreover, Lemma B.5 implies that the initial random vector x satisfies the hypotheses of
Lemma B.3 w.h.p. (i.e., α2(x) 6= 0 w.h.p.) and those of Lemma B.4 with constant probability
(i.e., |α2(x)| > 2|α1(x)|/(1 − ε) with constant probability).

As a result, we can claim the following for any non-bad node u: if we consider the r.v.

h
jump,(t)
u = sgn

(

E

[

x
(t−1)
u − x

(t)
u | x(0)

])

, Lemma B.3 implies h
jump,(t)
u = sgn(α2χu) w.h.p.,

for every t such that

t > 3 log

(

n

1− ε

)

/ log(λ̄2/λ̄3). (5)

Likewise, if we consider the r.v. h
sign,(t)
u = sgn

(

E

[

x
(t)
u

])

, Lemma B.4 implies

P

[

hjump,(t) = sgn(α2χu)
]

= Ω(1),

for all t such that

1

log(1/λ̄3)
log(n/|α1|) 6 t 6

1

log(1/λ̄2)
log

(|α2|(1− ε)

2|α1|

)

. (6)

Finally, note that under the hypothesis λ3 − λ2 = Ω(1), the lower bounds on t in (5) and (6)
are both O(n log n).

4 Regular Graphs with a Sparse Cut

We next provide a second moment analysis of the Averaging(δ) with δ = 1/2 on the class of
(n, d, b)-clustered regular graphs (see Definition 2.2) when the cut between the two communities
is relatively sparse, i.e., for λ2 = 2b/d = o(λ3/ log n). This analysis is consistent with the
“expected” clustering behaviour of the dynamics explored in the previous section and highlights
clustering properties that emerge well before global mixing time, as we show in Section 4.2. In
particular, the main analysis results are discussed in Section 4.1, while in Section 4.2, we describe
how the above analysis in concentration can be exploited to get an opportunistic protocol for
provably-good community-sensitive labeling.

4.1 Second moment analysis for sparse cuts

Restriction to (n, d, b)-clustered regular graphs simplifies the analysis of the Averaging dy-
namics. When G is regular, W defined in (2) can be written as

W =

(

1− 1

n

)

I +
1

n
P = I − 1

n
L

10

This obviously implies that W and L share the same eigenvectors, while every eigenvalue
λi of L corresponds to an eigenvalue λ̄i = 1− λi/n of W . For (n, d, b)-clustered regular graphs,
these facts and our preliminary remarks in Section 2 further imply λ̄2 = 1− λ2/n = 1− 2b/dn
whenever λ3 >

2b
d while, very importantly, the partition indicator vector χ turns out to be the

eigenvector of W corresponding to λ̄2 (see (2)). As a consequence, the orthogonal component
f⊥ in (4) is 0 in this case.

On the other hand, even in this restricted setting, our second moment analysis requires new,
non-standard concentration results for the product of random matrices that apply to far more
general settings and may be of independent interest.

For the sake of readability, we here denote by y(t) = Q2x
(t) the component of the state

vector in the eigenspace of the second eigenvalue of W , while z(t) = Q3···nx(t) denotes x(t)’s
projection onto the subspace orthogonal to 1 and χ. If we also set x‖ = Q1x

(0), we can write:

x(t) = x‖ + y(t) + z(t). (7)

Notice that, by taking expectations in the equation above, we get (4) with E
[

y(t)
]

= α2λ̄
t
2χ

and E
[

z(t)
]

= e(t).
Our analysis of the process induced by Averaging(1/2) provides the following bound.

Theorem 4.1 (Second moment analysis). Let G be an (n, d, b)-clustered regular graph with
λ2 =

2b
d = o (λ3/ log n). Then, for every 3n

λ3
log n 6 t 6 n

4λ2
it holds that

E

[

∥

∥

∥y(t) + z(t) − y(0)
∥

∥

∥

2
]

6
3λ2t

n
.

We prove Theorem 4.1 by bounding and tracking the lengths of the projections of x(t) onto
the eigenspace of λ2 and onto the space orthogonal to 1 and χ, i.e. ‖y(t)‖2 and ‖z(t)‖2. Due to
lack of space, the proof is deferred to Appendix C.1.

We here want just to remark that the only part using the regularity of the graph is the
derivation of the upper bound on E

[

‖y(t+1)‖2
]

(see Lemma C.2), in particular its second addend.
This term arises from an expression involving the Laplacian of G, which is far from simple in
general, but that very nicely simplifies in the regular case. We suspect that increasingly weaker
bounds should be achievable as the graph deviates from regularity.

Theorem 4.1 gives an upper bound on the squared norm of the difference of the state vector
at step t with the state vector at step 0. Corollary 4.1 below shows how such a global bound
can be used to derive pointwise bounds on the values of the nodes.

Definition 4.1. A node v is ε-good at time t if

(x(t)
v − (x‖,v + y(0)

v))2 6
ε2

n
‖y(0)‖2,

it is ε-bad otherwise. We define by Bt the set of nodes that are ε-bad at time t: Bt = {u :
u is ε-bad at time t}.

Observe first that, by definition of ε-bad node and some counting argument, we can prove
both the next inequality and the corollary below (see Appendix C.2 for their proofs)

|Bt| 6
n

ε2‖y(0)‖2 ‖y
(t) + z(t) − y(0)‖2. (8)

Corollary 4.1. Assume 3 n
λ3

log n 6 t 6 3c n
λ3

log n for any absolute constant c > 1 and λ2/λ3 6

ε4/(4c log n):

P

[

|Bt| > εn |x(0) = x
]

6 ε. (9)

11

The next lemma gives a bound on the number of nodes that are good over a relatively
large time-window. This is the key-property that we will use to analyse the asynchronous
protocol Sign-Labeling (see the next subsection and Lemma C.7).

Lemma 4.2 (Non-ephemeral good nodes). Let ε > 0 be an arbitrarily small value, let G be an

(n, d, b)-clustered regular graph with λ2
λ3

6 λ3ε4

c log2 n
, for a large enough costant c. If we execute

Averaging(1/2) on G, it holds that

P

[

|Bt| 6 3ε · n , ∀ t : 6
n

λ3
log n 6 t 6 12

n

λ3
log n

]

> 1− ε .

4.1.1 Proof of Lemma 4.2: An overview

The main idea of the proof is to first show that with probability strictly larger than 1− ε, the
number of ε-good nodes is at least n · (1 − ε/ log n) in every round t ∈ [t1, 2t1]. Theorem 4.1
already ensures this to be true in any given time step within a suitable window, but simply
taking a union bound will not work, since we have n log n time steps and only a 1−ε probability
of observing the desired outcome in each of them. We will instead argue about the possible
magnitude of the change in ‖y(t) + z(t) − y(0)‖2 over time, assuming this quantity is small at
time 6 n

λ3
log n. We will then show that our argument implies that, with probability 1 − ε, at

least n− εn nodes remain ε-good over the entire window [6 n
λ3

log n, 12 n
λ3

log n].
The full proof of Lemma 4.2 is given in Appendix C.3.

4.2 The Sign-Labeling protocol

Leveraging the results of Subsection 4.1, we next propose a simple, lightweight opportunistic
protocol that provides community-sensitive labeling for graphs that exhibit a relatively sparse
cut.

The algorithm, denoted as Sign-Labeling, adds a simple labeling rule to theAveraging(1/2)
process: Each node keeps track of the number of times it is activated. Upon its T -th activation,
for a suitable T = Θ(log n), the node uses the sign of its current value as a binary label. The
above local strategy is applied to ℓ independent runs of Averaging(1/2), so that every node
is eventually assigned a binary signature of length ℓ.

Sign-Labeling(T,ℓ) (for a node u that is one of the two endpoints of an active edge)

Component selection: Jointly14 with the other endpoint choose a component
j ∈ [ℓ] u.a.r.

Initialization and update: Run one step of Averaging (1/2)
for component j.

Labeling: If this is the T -th activation of component j: set hsign
u (j) = sgn(xu(j)).

Algorithm 2: Sign-Labeling algorithm for a node u of an active edge.

Algorithm Sign-Labeling achieves community-sensitive labeling (see Definition 2.4), as stated
in the following theorem and corollary.

Theorem 4.3 (Community-sensitive labeling). Let ε > 0 be an arbitrarily small value, let G be

an (n, d, b)-clustered regular graph with λ2
λ3

6 λ3ε4

c log2 n
, for a large enough constant c. Then, proto-

12

col Sign-Labeling (T, ℓ) with T = (8/λ3) log n and ℓ = 10ε−1 log n performs a γ-community-
sensitive labeling of G according to Definition 2.4 with c1 = 4ε, c2 = 1/6 and γ = 6ε, w.h.p.
The convergence time is O(nℓ log n/λ3) and the work per node is O(ℓ log n/λ3), w.h.p.

Notice that, according to the hypothesis of Theorem 4.3, in order to set local parameters T
and ℓ, nodes should know parameters ε and λ3 (in addition to a polynomial upper bound on
the number of the nodes). However, it easy to restate it in a slightly restricted form that does
not require such assumptions on what nodes know about the underlying graph.

Corollary 4.2. Protocol Sign-Labeling (80 log n, 600 log n) performs a (1/10)-community-
sensitive labeling, according to Definition 2.4 with c1 = 1/15 and c2 = 1/6, of any (n, d, b)-
clustered regular graph G with λ3 > 1/10 and λ2 6 1/(c log2 n) for a large enough constant
c.

4.2.1 Proof of Theorem 4.3: An Overview

We here sketch the main arguments proving Theorem 4.3: Its full proof is deferred to Appendix
C.4.

Lemma 4.2 essentially states that over a suitable time window of size Θ(n log n), for all

nodes u but a fraction O (ε/ log n), we have sgn(x
(t)
u) = sgn(x‖,u + y

(0)
u))). Recalling that x‖

and y(0) respectively are x(0)’s projections along χ/
√
n and 1/

√
n, this immediately implies

that, with probability 1−ε and up to a fraction ε of the nodes, sgn(x
(t)
u) = sgn(x

(t)
v), whenever

u and v belong to the same community and t falls within the aforementioned window. As
to the latter condition, we prove that each node labels itself within the right window with

probability at least 1− 1/n.15 Moreover, sgn(x‖,u + y
(0)
u))) = sgn(χu), whenever y

(0)
u exceeds

x‖,u in modulus, which occurs with probability 1/2− o(1) from the (independent) Rademacher
initialization. As a consequence, if we run ℓ suitably independent copies of the process (see
Algorithm 2), the following will happen for all but a fraction O(ε) of the nodes: the signatures
of two nodes belonging to the same community will agree on ℓ− o(1) bits, whereas those of two
nodes belonging to different communities will disagree on Ω(ℓ) bits, i.e., our algorithm returns
a community-sensitive labeling of the graph.

5 Regular Graphs with a Dense Cut

In this section, we extend our study to the lazy averaging algorithm Averaging(δ) where
δ < 1/2. Similar to the previous section, we assume that the underlying graph G is an (n, d, b)-
clustered regular graph and λ3 > λ2 = 2b/d. However, this new analyses and the clustering
protocol we derive from will work even for large (constant) λ2, in contrast to those in Sec-
tion 4 which only works for small λ2 ≪ 1/ log2 n. The structure of this section is similar
to the previous one. Indeed, in Subsection 5.1, we propose a second moment analysis of the
Averaging(δ) for the above-mentioned regime of λ2. Then, in Subsection 5.2, we exploit the
analysis above to devise a protocol that guarantees a weak reconstruction for the underlying
graph with arbitrarily-large constant probability and thus, by running independent “copies”
of the protocol (so, similarly to the previous section), we easily obtain a community-sensitive
labeling of the graph, with high probability.

15 It may be worth noting that sgn(x
(t)
u) = sgn(x

(t)
v) for u and v belonging to the same community does not

imply sgn(x
(t)
u) 6= sgn(x

(t)
v) when they don’t.

13

5.1 Second moment analysis for large λ2

Informally speaking, we show that, for an appropriate value of δ and any t such that Ω(n log n) 6
t 6 O(n2), with large probability, the vector y(t) + z(t) is almost parallel to χ, i.e., ‖z(t)‖ is
much smaller than ‖y(t)‖. A more precise statement is given below as Theorem 5.1. Note that,
for brevity, we write E here to denote the sequence {(ut, vt)}t∈N of the edges chosen by the
protocol.

Theorem 5.1. For any sufficiently large n ∈ N, any16 δ ∈ (0, 0.8(λ3 − λ2)) and any t ∈
[

Ω
(

n
δ(λ3−λ2)

log (n/δ)
)

,O
(

n2

δ(λ3−λ2)

(

d(λ3−λ2)
δb

)2/3
)]

, we have

P
x(0),E

[

‖z(t)‖2 6
√

δb

d(λ3 − λ2)
‖y(t)‖2

]

> 1−O
(

3

√

δb

d(λ3 − λ2)
+

1√
n

)

.

Theorem 5.1 should be compared to Theorem 4.1: both assert that ‖y(t)‖ is much larger
than ‖z(t)‖, but Theorem 5.1 works even when λ2 is quite large whereas Theorem 4.1 only holds
for λ2 ≪ 1/ log n.

While the parameter dependencies in Theorem 5.1 may look confusing at first, there are
mainly two cases that are interesting here. First, for any error parameter ε, we can pick δ
depending only on ε and λ3−λ2 in such a way that Theorem 5.1 implies that, with probability
1− ε, ‖z(t)‖2 is at most ε‖y(t)‖2, as stated below.

Corollary 5.1. For any constant ε > 0 and for any λ3 > λ2, there exists δ depending only on
ε and λ3 − λ2 such that, for any sufficiently large n and for any t ∈ [Ωε,λ3−λ2(n log n),O(n2)],
we have

P
x(0),E

[

‖z(t)‖2 6 ε‖y(t)‖2
]

> 1− ε.

Another interesting case is when δ = 1/2 (i.e., we consider the basic averaging protocol).
Recalling that λ2 = 2b/d, observe that λ2 appears in both the bound on ‖z(t)‖2 and the error
probability. Hence, we can derive a similar lemma as the one above, but with λ2 depending on
ε instead of δ:

Corollary 5.2. Fix δ = 1/2. For any constant ε > 0, any17 λ3 > 0.7, any sufficiently small λ2

depending only on ε, any sufficiently large n and any t ∈ [Ωε(n log n),O(n2)], we have

P
x(0),E

[

‖z(t)‖2 6 ε‖y(t)‖2
]

> 1− ε.

5.1.1 Proof of Theorem 5.1: An Overview

Due to space constraint, the full proof of Theorem 5.1 is deferred to Appendix D. We provide
a brief summary of the ideas behind the proof here. Compared to the proof of Theorem 4.1,
the main additional technical challenge in the new proof is to show that ‖y(t)‖ is large with
reasonably high probability. In Theorem 4.1, this is true because λ2 is so small that y(t) remains
almost unchanged from y(0). However, in the setting of large λ2, this is not true anymore; for
constant λ2, even E[y(t)] shrinks by a constant factor from y(0) when t > Ωλ2(n).

16Here 0.8 is arbitrary and can be changed to any constant less than 1. However, we pick an absolute constant
here to avoid introducing another parameter to our theorem.

170.7 here can be replaced by any constant larger than 0.5.

14

As a result, we need to develop a more fine-grained understanding of how ‖y(t)‖, ‖z(t)‖
changes over time. Specifically, at the heart of our analysis lies the following lemma18 which
allows us to understand how ‖y(t)‖, ‖z(t)‖ behave, given ‖y(t−1)‖, ‖z(t−1)‖:

Lemma 5.2. For any t ∈ N,

E[‖y(t)‖2] 6
(

1− 4δλ2

n
+

8δ2λ2

n2

)

‖y(t−1)‖2 +
(

8δ2λ2

n2

)

‖z(t−1)‖2

and

E[‖z(t)‖2] 6
(

4δ2λ2

n

)

‖y(t−1)‖2 +
(

1− 4δ(1 − δ)λ3

n

)

‖z(t−1)‖2

where the expectation is over the random edge selected at time t.

For simplicity of the overview, let us pretend that the cross terms were not there, i.e., that

E[‖y(t)‖2] 6
(

1− 4δλ2
n + 8δ2λ2

n2

)

‖y(t−1)‖2 and E[‖z(t)‖2] 6
(

1− 4δ(1−δ)λ3

n

)

‖z(t−1)‖2. These

imply that

E[‖y(t)‖2] 6
(

1− 4δλ2

n
+

8δ2λ2

n2

)t

‖y(0)‖2 (10)

and

E[‖z(t)‖2] 6
(

1− 4δ(1 − δ)λ3

n

)t

‖z(0)‖2. (11)

Now, by Markov’s inequality, (11) implies that, with 0.99 probability, ‖z(t)‖ is at most

O
(

(

1− 2δ(1−δ)λ3

n

)t
‖z(0)‖

)

. However, it is not immediately clear how (10) can be used to

lower bound ‖y(t)‖. Fortunately for us, it is rather simple to see that, for a fixed y(0), E[y(t)]
can be computed exactly; in particular,

E[y
(t)] =

(

1− 2δλ2

n

)t

y(0). (12)

Let ay(t) ∈ R be such that y(t) = ay(t) · (χ/
√
n). (12) can equivalently be stated as E[ay(t)] =

(1 − 2δλ2/n)
tay(0). This, together with (10), can be used to bound the variance of ay(t) as

follows:

Var(ay(t)) 6

(

1− 4δλ2

n
+

8δ2λ2

n2

)t

ay(0)
2 − (1− 2δλ2/n)

2tay(0)
2

= Oδ,λ2(t/n
2) (E[ay(t)])

2 .

Hence, when t ≪ n2, Chebyshev’s inequality implies that ay(t) concentrates around E[ay(t)] or,

equivalently, ‖y(t)‖ concentrates around
(

1− 2δλ2
n

)t
‖y0‖.

Finally, observe that, since λ2 < λ3, for sufficiently small δ, we have 2δλ2 < 2δ(1 −
δ)λ3. Hence, when t ≫ n log n,

(

1− 2δλ2
n

)t
is polynomially (say n10 times) larger than

(

1− 2δ(1−δ)λ3

n

)t
. It is also not hard to see that, for a random starting vector, ‖z(0)‖ ≪ n10‖y(0)‖

18Lemma 5.2 with its full statement and proof is given in Appendix D as Lemma D.2. Recall that λ2 = 2b/d.

15

with high probability. This means that, for this range of t, we have
(

1− 2δλ2
n

)t
‖y(0)‖ ≫

(

1− 2δ(1−δ)λ3

n

)t
‖z(0)‖ with high probability. Since ‖y(t)‖ concentrates on the former quantity

whereas ‖z(t)‖ often does not exceed a constant factor of the latter, we can conclude that ‖y(t)‖
is indeed often much larger than ‖z(t)‖.

This wraps up our proof overview of Theorem 5.1.

5.2 The Jump-Labeling protocol

Relying on our insights from the previous section, we propose a lightweight protocol named
Jump-Labeling, which makes use of the lazy version of the averaging process. Here δ ∈
[0, 1] and τ s, τ̃ s, τ e, τ̃ e ∈ N are parameters that will be chosen later. Intuitively, protocol

Jump-Labeling exploits the expected monotonicity in the behaviour of sgn(x
(t)
u − x(t−1))

highlighted in Section 3. Though this property does not hold for a single realization of the av-
eraging process in general, the results of Section 5 allow us to show that the sign of x(τeu)−x(τsu)

reflects u’s community membership for most vertices with probability 1 − o(1) (i.e., the algo-
rithm achieves weak reconstruction) when τ su and τ eu are randomly chosen within a suitable
interval. This is the intuition behind the main result of this section. Due to space constraints,
the full proof of Theorem 5.3 below is deferred to Appendix E.

Theorem 5.3. Let n be any sufficiently large even positive integer. For any 0 < δ < 0.8(λ3 −
λ2), there exist τ s, τ̃ s, τ e, τ̃ e ∈ N such that, with probability 1 −O

(

8

√

δb
d(λ3−λ2)

+ 4

√

1
logn

)

, after

O
(

n
δ(λ3−λ2)

log (n/δ) + nd
bδ

)

rounds of Jump-Labeling(δ, τ s, τ̃ s, τ e, τ̃ e), every node labels its

cluster and this labelling is a
(

8

√

δb
d(λ3−λ2)

+ 4

√

1
logn

)

-weak reconstruction of G. The convergence

time of this algorithm is Ωδ

(

n
(

log n+ d
b

))

.

Jump-Labeling(δ, τ s, τ̃ s, τ e, τ̃ e) (for a node u that is one of the two endpoints of an
active edge)

Initialization: The first time it is activated, u chooses τ su, τ
e
u ∈ N independently

uniformly at random from [τ s, τ̃ s] and [τ e, τ̃ e] respectively. Moreover, let τu = 0.

Update (and Averaging’s initialization): Run one step
of Averaging(δ).

Labeling: If τu = τ su, then set xsu = xu.
If τu = τ eu, then label hjump

u = sgn(xsu − xu).

Algorithm 3: Jump-Labeling algorithm for a node u of an active edge. Here, τu is a
local counter keeping track of the number of times u was an endpoint of an active edge,
while xu is u’s current value.

Remark 1. The nd/b dependency in the running time is necessary; imagine we start with a
good state where x(0) = z(0) = 0. In this case, the values on one side of the partition are all
ay(0) and the values on the other side are −ay(0). It is simple to see that, after o(nd/b) steps of
our protocol, 1− o(1) fraction of the values remain the same. For these nodes, it is impossible
them to determine which cluster they are in and, hence, no good reconstruction can be achieved.

16

Similarly to our concentration result in Section 5, let us demonstrate the use of Theorem 5.3
to the two interesting cases. First, let us start with the case where λ3 − λ2 is constant. Again,
in this case, for any error parameter ε > 0, we can pick δ = δ(ε, λ2 − λ3) sufficiently small so
that, with probability 1− ε, the protocol achieves ε-weak reconstruction, as stated below.

Corollary 5.3. For any constant ε > 0 and for any λ3, λ2, there exists δ depending only on
ε and λ3 − λ2 such that, for any sufficiently large n, there exists τ s, τ̃ s, τ e, τ̃ e ∈ N such that,

with probability 1− ε, after Oε,λ3−λ2

(

n log n+ n
λ2

)

rounds of Jump-Labeling(δ, τ s, τ̃ s, τ e, τ̃ e),

every node labels its cluster and this labelling is a ε-weak reconstruction of G.

As in Section 5, we can consider the (non-lazy) averaging protocol and view λ2 instead as a
parameter. On this front, we arrive at the following reconstruction guarantee.

Corollary 5.4. Fix δ = 1/2. For any constant ε > 0, any λ3 > 0.7, any sufficiently small
λ2 depending only on ε, any sufficiently large n, there exists τ s, τ̃ s, τ e, τ̃ e ∈ N such that, with

probability 1− ε, after Oε

(

n log n+ n
λ2

)

rounds of Jump-Labeling(δ, τ s, τ̃ s, τ e, τ̃ e), the nodes’

labelling is a ε-weak reconstruction of G.

While the weak reconstruction in the above claims is guaranteed only with arbitrarily-large
constant probability, we can boost this success probability considering the same approach we
used in Subsection 4.2 to get community-sensitive binary strings of size ℓ = Θ(log n) from the
sign-based protocol.

Indeed, we first run ℓ = Θε(log n) copies of Jump-Labeling where, similarly to Algorithm
2, “running ℓ copies” of Jump-Labeling means that each node keeps ℓ copies of the states of
Jump-Labeling and, when an edge {u, v} is activated, u and v jointly sample a random j ∈ [ℓ]
and run the j-th copy of Jump-Labeling.

In the previous section, we have seen that Lemma 4.2 and the repetition approach above
allowed us to get a good community-sensitive labeling, w.h.p. (not a good weak-reconstruction).
Interestingly enough, the somewhat stronger concentration results given in this section allow
us to “add” a simple majority rule on the top of the ℓ components and get a “good” single-bit
label, as described below.

When all ℓ components of a node u have been set, node u sets hjump
u = Majorityj∈[ℓ](h

jump
u (i))

where hjump
u (j) is the binary label of u from the j-th copy of the protocol.

Observe that the weak reconstruction guarantee of Jump-Labeling shown earlier implies
that the expected number of mislabelings of each copy is at most 2εn, i.e., E[{u ∈ V | |hjump

u (i) 6=
χu|}] 6 2εn. Now, since the number of mislabelings of each copy is independent, the total
number of mislabelings is at most O(εnℓ), w.h.p. However, if the eventual label of u is incorrect,
it must contributes to mislabeling across at least ℓ/2 copies. As a result, there are at most O(εn)
mislabelings in the new protocol, w.h.p.

The above approach in fact works for any weak reconstruction protocol (not just Jump-Labeling)
and, in our case, it easily gives the following result.

Corollary 5.5. For any constant ε > 0 and λ3 > λ2, there is a protocol that yields an ε-weak

reconstruction of G , w.h.p. The convergence time is Θε,λ3−λ2

(

n
(

log2 n+ logn
λ2

))

rounds, while

the work per node is Oε,λ3−λ2

(

log2 n+ logn
λ2

)

.

We finally remark that, for the dense-cut case we focus on in this section (i.e. λ2 = 2b/d =
Θ(1)), the fraction of outliers turns out to be a constant we can made arbitrarily small. If we
relax the condition to λ2 = o(1), then this fraction can be made o(1), accordingly. This issue
will be clarified in the full version of the paper.

17

5.2.1 Proof of Theorem 5.3: An Overview

We now give an informal overview of our proof, which builds on the concentration results from
Section 5. Since our discussion here will involve both local times and global times, let us define
the following notation to facilitate the discussion: for each vertex u ∈ V , let Tu : N → N be a
function that maps the local time of u to the global time, i.e., Tu(τ) , min{t ∈ N | |{i 6 t | u ∈
{ui, vi}}| > τ} where ({ui, vi})i∈N is the sequence of active edges.

Recall from the previous section that we let ay(t) ∈ R be such that y(t) = ay(t) ·(χ/
√
n). Let

us also assume without loss of generality that ay(0) > 0. Observe first that our concentration
result implies the following: for any t such that Ω(n log n) 6 t 6 O(n2), with large probability,

χu(x
(t)
u − x||,u) is roughly EE ay(t)/n for most vertices u ∈ V ; let us call these vertices good for

time t. Imagine for a moment that we change the protocol in such a way that each u has access

to the global time t and u assigns hjump
u = sgn(x

(te)
u −x

(ts)
u) for some ts, te ∈ [Ω(n log n),O(n2)]

that do not depend on u. If te − ts is large enough, then EE ay(ts) ≫ EE ay(te). This means

that, if a vertex u ∈ V is good at both times ts and te, then we have that χu(x
(ts)
u − x||,u) ≈

EE ay(ts)/n ≫ EE ay(te)/n ≈ χu(x
(te)
u − x||,u). Note that when χu · x(ts)

u > χu · x(te)
u , we have

hjump
u = χu. From this and from almost all vertices are good at both times ts and te, hjump is

indeed a good weak reconstruction for the graph!
The problem of the modified protocol above is of course that, in our settings, each vertex does

not know the global time t. Perhaps the simplest approach to imitate the above algorithm in this
regime is to fix τ s, τ e ∈ [Ω(log n),O(n)] and, for each u ∈ V , proceed as in Jump-Labeling ex-

cept with τ su = τ s and τ eu = τ e. In other words, u assigns hjump
u = sgn(x

(Tu(τ s))
u −x

(Tu(τe))
u). The

problem about this approach is that, while we know that EE Tu(τ
s) = 0.5nτ s and EE Tu(τ

e) =
0.5nτ e, the actual values of Tu(τ

s) and Tu(τ
e) differ quite a bit from their means, i.e., on average

they will be Ω(n
√
log n) of away their mean. Since our concentration result only says that, at

each time t, we expect 99% of the vertices to be good, it is unclear how this can rule out the
following extreme case: for many u ∈ V , Tu(τ

s) or Tu(τ
e) is a time step at which u is bad. This

case results in hjump not being a good weak reconstruction of V .
The above issue motivates us to arrive at our eventual algorithm, in which τ su and τ eu are not

fixed to be the same for every u, but instead each u pick these values randomly from specified
intervals [τ s, τ̃ s] and [τ e, τ̃ e]. To demonstrate why this overcomes the above problem, let us focus
on the interval [τ s, τ̃ s]. While Tu(τ

s) and Tu(τ̃
s) can still differ from their means, the interval

[Tu(τ
s), Tu(τ̃

s)] still, with large probability, overlaps with most of [0.5nτ s, 0.5nτ̃ s] if τ̃ s − τ s is
sufficiently large. Now, if Tu(τ+1)−Tu(τ) are the same for all τ ∈ [τ s, τ̃ s], then the distribution

of x
(Tu(τ s))
u is very close to x

(tsu)
u if we pick tsu randomly from [0.5nτ s, 0.5nτ̃ s]. From the usual

global time step argument, it is easy to see that the latter distribution results in most u being
good at time tsu. Of course, Tu(τ + 1) − Tu(τ) will not be the same for all τ ∈ [τ s, τ̃ s], but we
will be able to argue that, for almost all such τ , Tu(τ + 1) − Tu(τ) is not too small, which is
sufficient for our purpose.

References

[AAER07] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computa-
tional power of population protocols. Distributed Computing, 20(4):279–304, 2007.

[ABH14] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the
stochastic block model. IEEE Trans. on Information Theory, 62(1):471–487, 2014.

18

[BCN+17] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca
Trevisan. Find your place: Simple distributed algorithms for community detection.
In Proc. of the 28th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’17),
pages 940–959. SIAM, 2017.

[BDG+15] Gerandy Brito, Ioana Dumitriu, Shirshendu Ganguly, Christopher Hoffman, and
Linh V. Tran. Recovery and rigidity in a regular stochastic block model. In Proc. of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 371–390. ACM,
2015.

[BGPS06] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized
gossip algorithms. IEEE/ACM Transactions on Networking, 14:2508–2530, 2006.

[Bor15] Charles Bordenave. A new proof of Friedman’s second eigenvalue Theorem and its
extension to random lifts. arXiv preprint arXiv:1502.04482, 2015.

[CO10] A. Coja-Oghlan. Graph partitioning via adaptive spectral techniques. Combina-
torics, Probability and Computing, 19(02):227–284, 2010.

[CPV93] Andrea Crisanti, Giovanni Paladin, and Angelo Vulpiani. Products of Random
Matrices, volume 104 of Springer Series in Solid-State Sciences. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1993. DOI: 10.1007/978-3-642-84942-8.

[DF89] M. E. Dyer and A. M. Frieze. The solution of some random NP-hard problems in
polynomial expected time. Journal of Algorithms, 10(4):451–489, 1989.

[DKMZ11] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of
the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84(6):066106, 2011.

[DP09] D. P. Dubhashi and A. Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

[HLL83] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps.
Social networks, 5(2):109–137, 1983.

[Ips15] J. R. Ipsen. Products of Independent Gaussian Random Matrices. arXiv:1510.06128
[math-ph], October 2015. arXiv: 1510.06128.

[JS98] M. Jerrum and G. B. Sorkin. The metropolis algorithm for graph bisection. Discrete
Applied Mathematics, 82(1), 1998.

[KM04] D. Kempe and F. McSherry. A decentralized algorithm for spectral analysis. In
Proc. of the ACM Symposium on Theory of Computing (STOC), pages 561–568.
ACM, 2004.

[Mas14] L. Massoulie. Community Detection Thresholds and the Weak Ramanujan Property.
In Proc. of the ACM Symposium on Theory of Computing (STOC), pages 694–703.
ACM, 2014.

[McS01] F. McSherry. Spectral partitioning of random graphs. In Proc. of the IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 529–537, 2001.

[MNS13] E. Mossel, J. Neeman, and A. Sly. A proof of the block model threshold conjecture.
arXiv preprint arXiv:1311.4115, 2013.

19

[MNS14] E. Mossel, J. Neeman, and A. Sly. Reconstruction and estimation in the planted
partition model. Probability Theory and Related Fields, 162(3-4):431–461, 2014.

[MNS16] E. Mossel, J. Neeman, and A. Sly. Belief propagation, robust reconstruction and
optimal recovery of block models. The Annals of Applied Probability, 26(4):2211–
2256, 2016.

[SZ16] H. Sun and L. Zanetti. Distributed graph clustering by load balancing. CoRR,
abs/1607.04984, 2016.

[SZ17] H. Sun and L. Zanetti. Distributed graph clustering and sparsification. CoRR,
abs/1711.01262, 2017.

[WWA12] M.J. Williams, R.M. Whitaker, and S.M. Allen. Decentralised detection of periodic
encounter communities in opportunistic networks. Ad Hoc Networks, 10(8):1544–
1556, 2012.

20

Appendix

A Tools from linear algebra

A.1 Projections on the main eigenspaces

Lemma A.1 (Projection on the first two eigenvectors). For all ε ∈ (0, 1), for a random x ∈
{−1, 1}n, with probability at least 1−O(ε) we have,

P
[

|x · 1± x · χ| > ε · √n
]

> 1−O(ε) and

P
[

|x · 1| 6 |x · χ| − ε · √n | |x · 1± x · χ| > ε · √n
]

=
1

2
.

Proof. Note that x · (1 + χ) = 2x · 1V1 and x · (1 − χ) = 2x · 1V2 . Using properties of the
binomial distribution, it is easy to see that

P (“|x · 1+ x · χ| > ε
√
n” ∧ “|x · 1− x · χ| > ε

√
n”) > 1− 4√

2π
ε.

The above event implies ||x · 1| − |x · χ|| > ε
√
n. Since x · 1 and x ·χ are independent sums of

Rademacher random variables, they have the same chances of being positive or negative, thus
with probability at least 1

2 we will have |x · 1| 6 |x · χ|.

A.2 Properties of the spectrum of the main matrices

We consider here Algorithm Averaging(δ) assuming δ = 1/2 and recall the main notations:

• A is the adjacency matrix of the clustered graph G((V1, V2);E), with |Vh| = n/2, m = |E|
and m1,2 = |E(V1, V2)| is the number of edges in the cut (V1, V2);

• D is the diagonal matrix with the degrees of nodes;

• L = D −A is the Laplacian matrix;

• L = D−1/2LD−1/2is the normalized Laplacian;

• P = D−1A is the transition matrix;

• For each node i = 1, . . . , n, we name di = ai + bi the degree of node i, where ai is the
number of neighbors in its own block and bi is the number of neighbors in the other block

The next facts are often used in our analysis.

Observation A.1. Let W = (W (i, j)) ∼ W be the random matrix of one step of the averaging
process, then

wi,j =







0 if i 6= j and {i, j} not sampled
1/2 if i = j and some edge incident on i sampled or i 6= j and edge {i, j} sampled
1 if i = j and i not incident to a sampled edge.

Observation A.2. The expectation of W is

W := E[W] = I − 1

2m
L .

21

Proof. 1. If i 6= j then E[W (i, j)] = 1
2m

2. If i = j then E[W (i, j)] = 1
(

1− di
m

)

+ 1
2
di
m = 1− di

2m

As for the spectrum of the main matrices above, defined by the averaging process, we have
the following useful properties we can derive from standard spectral algebra.

Observation A.3. 1. Il λ is an egenvalue of L then 1− λ/(2m) is an eigenvalue of W .

2. Vector 1 is an eigenvector of W .

3. If the underlying graph G is (n, d, b)-regular then χ is an eigenvector of W .

Observation A.4. Consider a graph G with adjacency matrix A and diagonal degree matrix
D.

1. Let 1 = λP
1 > λP

2 > · · · > λP
n be the eigenvalues of the transition matrix P = D−1A

and let 0 = λ1 6 λ1 6 · · · 6 λ1 be the eigenvalues of the normalized Laplacian L =
I −D−1/2AD−1/2. For every i = 1, . . . , n it holds that

λi = 1− λP
i .

2. Let 1 = λ̄1 > λ̄2 > · · · > λ̄n be the eigenvalues of W = I −L/(2m) and let 0 = λL
1 6 λL

2 6
· · · 6 λL

n be the eigenvalues of the Laplacian matrix L = D −A. For every i = 1, . . . , n it
holds that

λL
i = 2m(1− λ̄i) .

3. For every i = 1, . . . , n, the eigenvalues of L and L satisfy

dminλi 6 λL
i 6 dmaxλi ,

where dmin and dmax are the minimum and the maximum degree of the nodes, respectively.

As a consequence of the above relationships among the eigenvalues of matrices L, L, and
W , we easily get the following useful bounds.

Observation A.5. Let G be an (n, d, γ)-clustered graph and let λ̄i and λi, for i = 1, . . . , n, be
the eigenvalues of W and L, respectively, in non-decreasing order. It holds that

d

2m
(1− 2γ) (λ3 − λ2) 6 λ̄2 − λ̄3 6

d

2m
(1 + 2γ) (λ3 − λ2) .

Proof. We have:

λ̄2 − λ̄3 =
λL
3 − λL

2

2m
.

To derive the lower bound, we write:

λL
3 − λL

2

2m
>

λ3dmin − λ2dmax

2m
>

λ3d(1− γ)− λ2d(1 + γ)

2m
=

(λ3 − λ2)d− γd(λ3 + λ2)

2m
(13)

>
(1− 2γ)(λ3 − λ2)

2m
. (14)

Here, the first inequality is a direct consequence of Observation A.4, the second follows from the
definition of (n, d, γ)-clustered graph, while the last inequality follows since λ3+λ2 6 2(λ3−λ2),
whenever λ3 > 3λ2.

19 The upper bound is derived in the same way, again using λ3 > 3λ2.
19Note that the latter condition holds, since the hypotheses of Theorem 3.1 state that λ3−λ2 = Ω(1), while the

conditions on the cut implies that the graph’s conductance is o(1). The condition λ3 > 3λ2 is thus a consequence
of Cheeger’s inequality.

22

Observation A.6. Since the random edges sequentially selected by the process are mutually
independent, the expected state of the process at time t can be written as :

E

[

x(t)
]

= E[Wt · . . . ·W1 · x] = (E[W])t x = W
t · x . (15)

B Proofs for Section 3

B.1 Proof of Theorem 3.1: Technical lemmas

The next lemma decomposes the state of the system at time t, explicitely identifying components
parallel to 1 and χ respectively.

Lemma B.1 (Main decomposition). Let x ∈ {−1, 1}n be an arbitrary initial vector of values
and, for h = 1, 2, let µh = µh(x) = (2/n)

∑

i∈Vh
x(i) be the average of the initial values in

block h. The expected vector of values at round t conditional on the initial vector being x can
be written as

E

[

x(t) |x(0) = x
]

= α11+ α2λ̄
t
2χ+ α2

√
n λ̄t

2f⊥ + e(t) ,

where

α1 =
µ1 + µ2

2
, α2 =

1

‖f − f⊥‖2
(

µ1 − µ2

2
− 〈x, f⊥〉√

n

)

and, moreover,
∥

∥

∥
e(t)
∥

∥

∥
6 λ̄t

3

√
n .

Proof. Let 1 = λ̄1 > λ̄2 > · · · > λ̄n be the eigenvalues of W and let w1 = 1/
√
n,w2, . . . ,wn be

a basis of orthonormal eigenvectors of W , so that we can write

E

[

x(t) |x(0) = x
]

=

n
∑

i=1

λ̄t
i〈x,wi〉wi .

Since λ̄1 = 1 and w1 = 1/
√
n, we have that 〈x, w1〉w1 = (1/n)〈x, 1〉1. Hence, α1 =

(1/n)
∑

i∈V x(i) = (µ1 + µ2)/2.

Since w2 = (f − f⊥)/‖f − f⊥‖ we have that

〈x,w2〉w2 =

〈

x,
f − f⊥

‖f − f⊥‖

〉

f − f⊥
‖f − f⊥‖

=
〈x, f − f⊥〉f − 〈x, f − f⊥〉f⊥

‖f − f⊥‖2

=
〈x, f − f⊥〉
‖f − f⊥‖2

√
n
χ− 〈x, f − f⊥〉

‖f − f⊥‖2
f⊥

Hence,

α2 =
〈x, f − f⊥〉
‖f − f⊥‖2

√
n
=

1

‖f − f⊥‖2
(〈x, f〉√

n
− 〈x, f⊥〉√

n

)

=
1

‖f − f⊥‖2
(〈x, χ〉

n
− 〈x, f⊥〉√

n

)

=
1

‖f − f⊥‖2
(

µ1 − µ2

2
− 〈x, f⊥〉√

n

)

Finally, the bound on
∥

∥e(t)
∥

∥ easily follows since, by definition, e ⊥ w1,w2 and λ̄3 > max{λ̄i | i >
4}.

Lemma B.2. Recall that we name m1,2 = |E(V1, V2)| the size of the cut. It holds that

‖f⊥‖2 6
2

λ̄2 − λ̄3
· m1,2

nm
.

23

Proof. Observe that since f is orthogonal to 1, we can write f⊺W f as

f⊺W f =
(

f‖ + f⊥
)⊺

W
(

f‖ + f⊥
)

= f⊺‖W f‖ + f⊺⊥W f⊥ + 2f⊺‖W f⊥

= f⊺‖W f‖ + f⊺⊥W f⊥ = λ̄2‖f‖‖2 + f⊺⊥W f⊥ (16)

where we used the fact that W is symmetric, thus f⊺⊥W f‖ = f⊺‖W f⊥ = 0, and the fact that f‖
is in the second eigenspace of W , thus f⊺‖W f‖ = λ̄2‖f‖‖2. Moreover, since f⊥ is orthogonal to

the first two eigenspaces of W , the third eigenvalue of W is λ̄3 = supx⊥1,w2

x⊺Wx
‖x‖2 >

f
⊺

⊥W f⊥
‖f⊥‖2

from (16) it follows that
f⊺W f 6 λ̄2‖f‖‖2 + λ̄3‖f⊥‖2 (17)

Observe that, since W = I − L/(2m) = I − D−A
2m we can also write f⊺W f as a function of

m1,2, indeed

f⊺W f = 1− 1

2m
(f⊺Df − f⊺Af) = 1− 1

2mn
(χ⊺Dχ− χ

⊺Aχ) = 1− 2
m1,2

mn
(18)

where we used the fact that χ⊺Dχ = 2m, the fact that χ⊺Aχ =
∑

i ai −
∑

i bi = 2m− 4m1,2.
From (17) and (18) and the fact that 1 = ‖f‖2 = ‖f‖‖2 + ‖f⊥‖2 we have

1− 2
m1,2

mn
6 λ̄2‖f‖‖2 + λ̄3‖f⊥‖2 = λ̄2 − (λ̄2 − λ̄3)‖f⊥‖2

and thus

‖f⊥‖2 6
2
m1,2

mn − (1− λ̄2)

λ̄2 − λ̄3
6

2

λ̄2 − λ̄3
· m1,2

nm
.

Definition B.1 (Bad nodes). We say a node u ∈ [n] is ε-bad if |f⊥,u| > ε/
√
n, for some ε > 0

and we call Bε the set of ε-bad nodes.

Notice that the property of being a bad node only depends on the graph and on the protocol,
not on the “execution” of the protocol.

From the Lemma B.2, an upper bound on the number of ε-bad nodes easily follows.

Corollary B.1 (Number of bad nodes). The number |Bε| of ε-bad nodes is upper bounded by

|Bε| 6
2m1,2

ε2(λ̄2 − λ̄3)m
.

Proof. Assume Bε vertices satisfy (f⊥)i >
ε√
n
. Lemma B.2 implies:

ε2

n
Bε 6

2

λ̄2 − λ̄3
· m1,2

nm
,

from which the thesis follows.

Lemma B.3 (Monotonicity property). Let G be a connected graph, let λ̄i for i = 1, . . . , n be
the eigenvalues of matrix W , let ε be such that 0 < ε < 1, and let x ∈ {−1, 1}n be an arbitrary
initial vector such that |α2| = |α2(x)| > 0. Then, for every node u /∈ Bε and for any round t

such that t > 3 log
(

n
1−ε

)

/ log(λ̄2/λ̄3), it holds that

sgn
(

E

[

x(t−1)
u |x(0) = x

]

− E

[

x(t)
u |x(0) = x

])

= sgn (α2χu) . (19)

24

Proof. Thanks to Lemma B.1, the expected difference of the value of a node in two consecutive
rounds is

E

[

x(t−1)
u |x(0) = x

]

− E

[

x(t)
u |x(0) = x

]

= α2λ̄
(t−1)
2 (1− λ̄2)[χu −√

n f⊥,u] + e(t−1) − e(t)

From the above equation we get that, as soon as

|e(t−1)
u − e(t)u | < |α2| λ̄t

2(1− λ̄2)|χu ± ε|,

the sign of the expected difference between two consecutive values of a non ε-bad node u indicates

the community node u belongs to. Moreover, since |χu ± ε| > 1 − ε and |e(t−1)
u − e

(t)
u | 6 2 λ̄t

3,
the above sign property turns out to be true for every round t such that

t > log

(

2

|α2|(1− λ̄2)(1 − ε)

)

/ log(λ̄2/λ̄3) (20)

The thesis thus follows from the fact that, if |α2| > 0 then it is at least 1/n and if the graph is
connected then 1− λ̄2 > 1/n. Hence, any

t > 3 log

(

n

1− ε

)

/ log(λ̄2/λ̄3)

satisfies (20).

Lemma B.4 (Sign property). Let G be a connected graph, let λ̄i for i = 1, . . . , n be the eigen-
values of matrix W , let ε be such that 0 < ε < 1, and let x ∈ {−1, 1}n be an arbitrary initial
vector such that α1 = α1(x) and α2 = α2(x) satisfy |α2| > 2|α1|/(1 − ε). Then, for every node
u /∈ Bε and for any round t such that

1

log(1/λ̄3)
log(n/|α1|) 6 t 6

1

log(1/λ̄2)
log

(|α2|(1− ε)

2|α1|

)

it holds that sgn
(

E

[

x
(t)
u |x(0) = x

])

= sgn (α2χu).

Proof. From (4) it follows that, if |α1 + e
(t)
u | < |α2| λ̄t

2 |χu ± ε|, then the sign of the expected
value of a non ε-bad node u indicates the block node u belongs to. Notice that, for

t >
1

log(1/λ̄3)
log(n/|α1|) (21)

we have that
|α1 + e(t)u | 6 |α1|+ |e(t)u | 6 |α1|+ nλ̄

(t)
3 6 2|α1|

And for

t 6
1

log(1/λ̄2)
log

(|α2|(1− ε)

2|α1|

)

(22)

we have that
2|α1| 6 |α2| λ̄t

2 (1− ε) 6 |α2| λ̄t
2 |χu ± ε|

Hence, if the time-window defined by (21) and (22) is non-empty then for all t in it

1

log(1/λ̄3)
log(n/|α1|) 6 t 6

1

log(1/λ̄2)
log

(|α2|(1− ε)

2|α1|

)

the sign of the expected value of a non-bad node u equals the sign of α2χu.

25

Lemma B.5 (Projection of the initial random vector.). Let x be chosen uniformly at random
in {−1, 1}n. Then, two absolute constants β1, β2 > 0 exist, such that:

• with probability at least β1, it holds that α2 = α2(x) > 0,

• with probability at least β2, it holds that |α2| > 2|α1|/(1 − ε).

Sketch of the Proof. Both α1 and α2 are linear combinations of a sum of n independent
Rademacher random variables. Then, the two claims can be derived easily from Lemma A.1.

C Proofs for Section 4.1

C.1 Proof of Theorem 4.1

From the fact that random matrix W ∼ W defined by one step of our averaging process is
symmetric and idempotent (W ⊺W = W) we get the following upper bound on the expected
squared norm of y+ z at the next step as a function of their squared norm at the current step.
For readability sake, in the following proofs of this section we use y′ and z′ for random variables
y(t+1) and z(t+1) conditional on the state at round t being x(t) = x = x‖ + y + z.

Lemma C.1. Let x = x‖ + y + z ∈ [−1, 1]n be an arbitrary vector of states. After one step of
Algorithm 1 it holds that

E

[

‖y(t+1) + z(t+1)‖2 |x(t) = x
]

6

(

1− λ2

n

)

‖y‖2 +
(

1− λ3

n

)

‖z‖2.

Proof. Since random matrix W is symmetric and idempotent, it holds that

E
[

‖y′ + z′‖2
]

= E
[

‖W (y + z)‖2
]

= (y + z)T
(

I − 1

n
L

)

(y + z)

= ‖y‖2 + ‖z‖2 − 1

n
yTLy − 1

n
zTLz

6

(

1− λ2

n

)

‖y‖2 +
(

1− λ3

n

)

‖z‖2.

The squared norm of y at the next step can be lower bounded as a function of the squared
norms of y and z at the current time step as follows. If the underlying graph is (n, d, b)-regular,
we can get an upper bound as well.

Lemma C.2. Let x = x‖ + y + z ∈ [−1, 1]n be an arbitrary vector of states. After one step of
Algorithm 1 it holds that

E

[

‖y(t+1)‖2 |x(t) = x
]

>

(

1− 2λ2

n

)

‖y‖2.

Moreover, if the underlying graph G is an (n, d, b)-clustered regular graph with λ2 = 2b/d =
o(λ3/ log n) we also have that

E

[

‖y(t+1)‖2 |x(t) = x
]

6

(

1− 2λ2

n

)

‖y‖2 + 2
λ2

n2

(

‖y‖2 + ‖z‖2
)

.

26

Proof. Let {u, v} ∈ E be the random edge sampled at step t, callWu,v ∼ W be the corresponding
random matrix with Lu,v be such that W = I − 1

2Lu,v. As for the lower bound we have

E
[

‖y′‖2
]

= E
[

‖Q2Wu,v (y + z)‖2
]

= E

[

‖Q2

(

I − 1

2
Lu,v

)

(y + z)‖2
]

= E

[

‖y − 1

2
Q2Lu,v (y + z)‖2

]

= E

[

‖y‖2 − yTQ2Lu,v (y+ z) + ‖1
2
Q2Lu,v (y + z)‖2

]

> ‖y‖2 − yTQ2E[Lu,v] (y + z)

= ‖y‖2 − 1

n
yTQ2Ly

= ‖y‖2
(

1− 2λ2

n

)

,

where the last equality follows since Q2 is the projector along the direction of v2 = χ/‖χ‖,
which in turn is L’s second eigenvector.
As for the upper bound, it holds that

E
[

‖y′‖2
]

= E
[

‖Q2Wu,v (y + z)‖2
]

= E

[

‖Q2

(

I − 1

2
Lu,v

)

(y + z)‖2
]

= E

[

‖y − 1

2
Q2Lu,v (y + z)‖2

]

= E

[

‖y‖2 − yTQ2Lu,v (y+ z) + ‖1
2
Q2Lu,v (y + z)‖2

]

=

(

1− 2λ2

n

)

‖y‖2 + E

[

(

1

2
vT
2 Lu,v (y + z)

)2
]

=

(

1− 2λ2

n

)

‖y‖2 + 1

4
‖y‖2E

[

(

vT
2 Lu,vv2

)2
]

+
1

2
E
[

vT
2 Lu,vyv

T
2 Lu,vz

]

+
1

4
E

[

(

vT
2 Lu,vz

)2
]

=

(

1− 2λ2

n

)

‖y‖2 + 1

4
‖y‖2E

[

(v2 (u)− v2 (v))
4
]

+
1

2
‖y‖E

[

(v2 (u)− v2 (v))
3 (z (u)− z (v))

]

+
1

4
E

[

(v2 (u)− v2 (v))
2 (z (u)− z (v))2

]

. (23)

Next, note that we have

E

[

(v2 (u)− v2 (v))
4
]

=
1

nd

∑

(u,v)∈E(V1,V2)

4

n2
=

b

dn2
=

λ2

2n2
, (24)

where we used that λ2 = 2b/d and the fact that v2(u) = 1/
√
n if u belongs to first community

and v2(u) = −1/
√
n when v belongs to the second community. We further get that

E

[

(v2 (u)− v2 (v))
3 (z (u)− z (v))

]

=
1

nd
· 8

n
√
n

∑

(u,v)∈E(V1,V2)

(z (u)− z (v))

27

=
1

nd
· 8

n
√
n





∑

u∈V1

bz(u) −
∑

v∈V2

bz(v)



 = 0, (25)

where it is understood that if (u, v) belongs to the cut, then u ∈ V1 and v ∈ V2 and where, to
derive the last equality, we recall that z ⊥ span{1,χ}.
Finally, we get that

E

[

(v2 (u)− v2 (v))
2 (z (u)− z (v))2

]

=
8

dn2

∑

(u,v)∈E(V1,V2)

(z(u) − z(v))2 (26)

=
8

dn2
‖z‖2

∑

(u,v)∈E(V1,V2)

(z(u) − z(v))2

‖z‖2

6
16b

dn2
‖z‖2 =

8λ2

n2
‖z‖2, (27)

where the last inequality follows by observing that
∑

(u,v)∈E(V1,V2)
(z(u)−z(v))2

‖z‖2 is the Rayleigh

quotient of the unnormalized Laplacian of a bipartite b-regular graph and the largest possible
eigenvalue is 2b. The thesis follows by using (24), (25), and (26) in (23).

Lemma C.3. Let x = x‖ + y + z ∈ [−1, 1]n be an arbitrary vector of states. After one step of
Algorithm 1 it holds that

E

[

‖z(t+1)‖ |x(t) = x
]2

6
λ2

n
‖y‖2 +

(

1− λ3

n

)

‖z‖2.

Proof. From Pythagoras’ Theorem and Lemmas C.1 and C.2, we get

E
[

‖z′‖2
]

= E
[

‖y′ + z′‖2
]

− E
[

‖y′‖2
]

6

(

1− λ2

n

)

‖y‖2 +
(

1− λ3

n

)

‖z‖2 −
(

1− 2λ2

n

)

‖y‖2

=
λ2

n
‖y‖2 +

(

1− λ3

n

)

‖z‖2.

Finally, by unrolling the double recursion, we get that the expected squared norm of z and y
at round t satisfy the following inequality.

Lemma C.4. Let G be an (n, d, b)-clustered regular graph with λ2 = 2b
d = o (λ3/ log n). For

every starting state x(0) ∈ {−1,+1}n and for every t ∈ N it holds that

E

[

‖z(t)‖2
]

6
λ2

λ3

(

1− λ2

n

)−t

E

[

‖y(t)‖2
]

+

(

1− λ3

n

)t

E

[

‖z(0)‖2
]

.

Proof. We first prove the following inequality

E

[

‖z(t)‖2
]

6
λ2

λ3
max

i
E

[

‖y(i)‖2
]

+

(

1− λ3

n

)t

E

[

‖z(0)‖2
]

. (28)

Indeed, from Lemma C.3 we get

E

[

‖z(t)‖2
]

6
λ2

n
E

[

‖y(t−1)‖2
]

+

(

1− λ3

n

)

E

[

‖z(t−1)‖2
]

28

6
λ2

n

∑

i6t−1

E

[

‖y(i)‖2
]

(

1− λ3

n

)t−1−i

+

(

1− λ3

n

)t

E

[

‖z(0)‖2
]

6
λ2

n
max
i6t−1

E

[

‖y(i)‖2
]

∑

i

(

1− λ3

n

)t−1−i

+

(

1− λ3

n

)t

E

[

‖z(0)‖2
]

=
λ2

n
max
i6t−1

E

[

‖y(i)‖2
] 1−

(

1− λ3
n

)t

λ3
n

+

(

1− λ3

n

)t

E

[

‖z(0)‖2
]

6
λ2

λ3
max
i6t−1

E

[

‖y(i)‖2
]

+

(

1− λ3

n

)t

E

[

‖z(0)‖2
]

.

Next we observe from Lemma C.2, for each i we have

E

[

‖y(t)‖2
]

>

(

1− 2λ2

n

)i

E

[

‖y(t−i)‖2
]

which means that

E

[

‖y(t−i)‖2
]

6

(

1− 2λ2

n

)−i

E

[

‖y(t)‖2
]

6

(

1− 2λ2

n

)−t

E

[

‖y(t)‖2
]

.

Hence,

max
i6t−1

E

[

‖y(i)‖2
]

6

(

1− λ2

n

)−t

E

[

‖y(t)‖2
]

. (29)

The thesis follows by using (29) in (28).

Wrapping up: Proof of Theorem 4.1

Since y(t) − y(0) and z(t) are orthogonal we can write

E

[

∥

∥

∥
y(t) + z(t) − y(0)

∥

∥

∥

2
]

= E

[

∥

∥

∥
y(t) − y(0)

∥

∥

∥

2
]

+ E

[

∥

∥

∥
z(t)
∥

∥

∥

2
]

. (30)

The proof proceeds by bounding the two terms above separately. As for the first term, observe
that

E

[

‖y(t) − y(0)‖2 |y(0)
]

= E

[

‖y(t)‖2
]

+ ‖y(0)‖2 − 2
〈

E

[

y(t)
]

,y(0)
〉

6 E

[

‖y(t)‖2
]

+ ‖y(0)‖2 − 2

(

1− λ2

n

)t

‖y(0)‖2, (31)

where the last inequality follows from the lower bound in Lemma C.2. By taking the expectation
of both sides of the previous inequality with respect to the random choice of the initial state,
we immediately have that (31) holds if ‖y(0)‖2 is replaced by E

[

‖y(0)‖2
]

. Moreover, the upper
bound in Lemma C.2 yields

E

[

∥

∥y′∥
∥

2
]

6

(

1− 2λ2

n

)

E[‖y‖2] + 2
λ2

n2

(

E[‖y‖2] + E[‖z‖2]
)

.

Recall the upper bound on E
[

‖z(t−1)‖2
]

given by Lemma C.4, namely

E

[

‖z(t−1)‖2
]

6
λ2

λ3

(

1− λ2

n

)−(t−1)

E

[

‖y(t−1)‖2
]

+

(

1− λ3

n

)t−1

E

[

‖z(0)‖2
]

. (32)

29

We thus get, for t = O(n/λ2),

E

[

‖y(t)‖2
]

6 f(n)E
[

‖y(t−1)‖2
]

+
2λ2

n2

(

1− λ3

n

)t−1

E

[

‖z(0)‖2
]

, (33)

where

f(n) =

(

1− 2λ2

n

)

+
2λ2

n2
+

2λ2
2

λ3n2

(

1− λ2

n

)−(t−1)

6

(

1− λ2

n

)

6 1, (34)

for the values of t under consideration. We can unfold the recursion above to obtain

E

[

‖y(t)‖2
]

6

(

1− λ2

n

)t

E

[

‖y(0)‖2
]

+
2λ2

n2
E

[

‖z(0)‖2
]

t−1
∑

j=0

(

1− λ3

n

)j

6

(

1− λ2

n

)t

E

[

‖y(0)‖2
]

+
2λ2

nλ3
E

[

‖z(0)‖2
]

. (35)

As for the second term in (30), from (32) we have that

E

[

‖z(t)‖2
]

6
λ2

λ3

(

1− λ2

n

)−t

E

[

‖y(t)‖2
]

+

(

1− λ3

n

)t

E

[

‖z(0)‖2
]

6
λ2

λ3
E

[

‖y(0)‖2
]

+
2

n

(

1− λ2

n

)−t(λ2

λ3

)2

E

[

‖z(0)‖2
]

+

(

1− λ3

n

)t

E

[

‖z(0)‖2
]

6
λ2

λ3
E

[

‖y(0)‖2
]

+

(

4

n

(

λ2

λ3

)2

+
1

n3

)

E

[

‖z(0)‖2
]

, (36)

where in the last inequality we used the fact that (1− λ2/n)
−t 6 2 for t 6 n/(4λ2) and the fact

that (1− λ3/n)
t 6 1/n3 for t > (3n/λ3) log n.

Using (35) in (31) and then (31) and (36) in (30) we get

E

[

∥

∥

∥
y(t) + z(t) − y(0)

∥

∥

∥

2
]

6

[

1−
(

1− λ2

n

)t

+
λ2

λ3

]

E

[

‖y(0)‖2
]

+

[

2λ2

nλ3
+

4

n

(

λ2

λ3

)2

+
1

n3

]

E

[

‖z(0)‖2
]

6 2
λ2t

n
E

[

‖y(0)‖2
]

+
1

n3
E

[

‖z(0)‖2
]

.

The thesis then follows from the fact that E
[

‖y(0)‖2
]

= 1 and E
[

‖z(0)‖2
]

6 1/n.

C.2 Proofs of Corollary 4.1 and of Equation (8)

- As for Corollary 4.1, we first note that t meets the conditions of Theorem 4.1. Moreover,
t 6 c n

λ3
log n, so we immediately have:

E[Bt] 6
n

ε2‖y(0)‖2E
[

‖y(t) + z(t) − y(0)‖2
]

6
4λ2t

ε2
6 4c

λ2

λ3
n log n,

which is at most ε2n, whenever λ2
λ3

6 ε4

4c logn . Hence, the second claim follows directly from
Markov’s inequality.
- As for Equation (8), note that the definition of ε-bad node implies:

|Bt| 6
n

ε2‖y(0)‖2 ‖x
(t) − x‖ − y(0)‖2 (a)

=
n

ε2‖y(0)‖2 ‖y
(t) + z(t) − y(0)‖2,

where in (a) we used (7). This easily implies (8).

30

C.3 Proof of Lemma 4.2

In order to prove Lemma 4.2, we need some preliminary results.

Claim 1. Let W1, . . . ,Wt be denote a sequence of matrices describing t steps of the Averaging

protocol that includes c cross edges and t− c internal edges. Then

‖Wt · · ·W1χ− χ‖2 6 4c.

Furthermore, if W1, . . . ,Wt are chosen randomly according to the Averaging protocol we have,

E
[

‖Wt · · ·W1χ− χ‖2
]

6 4
tb

d
and

P

[

‖Wt · · ·W1χ− χ‖2 > 8t
b

d

]

6 e−Ω(bt/d).

Proof. We have

‖Wt · · ·W1χ− χ‖2 = ‖Wt · · ·W1χ‖2 − 2χTWt · · ·W1χ+ ‖χ‖2

6 2n− 2χTWt · · ·W1χ.

To complete the proof, observe that for every vectorw such that ‖w‖∞ 6 1, we have χTWu,vw =
χ
Tw if (u, v) is an internal edge and

χ
TWu,vw = χ

T

(

w +
1

2
(wu − wv)1v +

1

2
(wv − wu)1u

)

> χ
Tw − 2.

By induction we thus get
χ
TWt · · ·W1χ > n− 2c,

which implies the first part of the lemma. The furthermore part follows by noting that the
average of c is bt/d, and that Chernoff bounds imply that c is concentrated around its average.

Claim 2. Let t1 = 6 n
λ3

log n and assume λ2
λ3

6 ε4

96 logn . Then

P

[

∀t ∈ {t1, . . . , 2t1} : |Bt| 6
48λ2t

ε3

]

> 1− ε− log n

n2
. (37)

Proof. Recall that y(t) + z(t) = Wt . . .Wt1(y
(t1) + z(t1)). Then, we deterministically have:

‖y(t) + z(t) − y(0)‖2 = ‖Wt . . .Wt1(y
(t1) + z(t1))− y(0)‖2

6 3‖Wt . . .Wt1y
(t1) − y(t1)‖2 + 3‖y(t1) − y(0)‖2 + 3‖Wt . . .Wt1z

(t1)‖2

6 3‖Wt . . .Wt1y
(t1) − y(t1)‖2 + 3‖y(t1) − y(0)‖2 + 3‖z(t1)‖2

= 3‖Wt . . .Wt1y
(t1) − y(t1)‖2 + 3‖y(t1) + z(t1) − y(0)‖2, (38)

where the first inequality follows from obvious manipulations, the second follows sinceWt . . . Wt1

has norm one, while the last equality follows from Pythagoras’ Theorem.
The proof of Claim 2 next proceeds in the following steps:

1. Upper bound to ‖y(t1) + z(t1) − y(0)‖2.

31

Theorem 4.1 and Markov’s inequality immediately imply:

P

[

‖y(t1) + z(t1) − y(0)‖2 6 4λ2t1
εn

‖y(0)‖2
]

> 1− ε. (39)

Moreover, since ‖y(t1) + z(t1) − y(0)‖2 = ‖y(t1) − y(0)‖2 + ‖z(t1)‖2, we have the following useful
derivations:

‖y(t1) + z(t1) − y(0)‖2 6 4λ2t1
εn

‖y(0)‖2 =⇒ ‖y(t1) − y(0)‖2 6
4λ2t1
εn

‖y(0)‖2

=⇒ ‖y(t1)‖2 6
(

1 +
4λ2t1
εn

)

‖y(0)‖2 (40)

2. Upper bound to ‖Wt . . .Wt1y
(t1) − y(t1)‖2, for t ∈ {t1, . . . , 2t1}.

We have:

‖Wt . . .Wt1y
(t1) − y(t1)‖2 = ‖Wt . . .W1χ− χ‖2 ‖y

(t1)‖2
n

Next, for any steps τ1, τ2 > t1, denote by C[τ1,τ2] the number of cross edges sampled over
the steps τ1, . . . , τ2. Claim 1 then implies:

‖Wt . . .Wt1y
(t1) − y(t1)‖2 6 6C[t1,t]

‖y(t1)‖2
n

(41)

The deterministic upper bound stated by (41) immediately implies:

P

[

‖Wt . . .Wt1y
(t1) − y(t1)‖2 > 12λ2t

n
‖y(t1)‖2

]

6 P
[

C[1,t] > 2λ2t
]

.

On the other hand, we immediately have E
[

C[1,t]

]

6 2b
d t = λ2t. Application of Chernoff bound

then implies:

P
[

C[1,t] > 2λ2t
]

6 e−
λ2t
2 6 e−3 logn,

since t > t1 = 6 n
λ3

log n and λ2 > 1/n, given the the graph is regular. As a result:

P

[

∃t ∈ {t1, . . . , 2t1} : ‖Wt . . . Wt1y
(t1) − y(t1)‖2 >

12λ2t

n
‖y(t1)‖2

]

<
log n

n2
. (42)

Recalling (38) and using (39) and (42) we finally obtain:

P

[

∃t ∈ {t1, . . . , 2t1} : ‖y(t) + z(t) − y(0)‖2 >
48λ2t

εn
‖y(0)‖2

]

< ε+
log n

n2
. (43)

In particular, from (39), (40) and (42), we know that with probability 1− ε− logn
n2 :

‖y(t) + z(t) − y(0)‖2 6 3‖Wt . . . Wt1y
(t1) − y(t1)‖+ 3‖y(t1) + z(t1) − y(0)‖2

6
12λ2t1
εn

‖y(0)‖2 + 36λ2t

n
‖y(t1)‖2 6 12λ2t

εn
‖y(0)‖2 + 36λ2t

n

(

1 +
4λ2t1
εn

)

‖y(0)‖2 6 48λ2t

εn
‖y(0)‖2.

The last inequality in the derivations above follows by noting that 36λ2t
n

(

1 + 4λ2t1
εn

)

6 36λ2t
εn

since t 6 2t1 6 4n/λ2, which in turn follows if λ2
λ3

6 ε4

96 logn as we assume.

Upper bound on |Bt|. (8) and (37) immediately imply that, with probability at least 1 − ε −
log n/n2

∀t ∈ {t1, . . . , 2t1} : |Bt| 6
48λ2t

ε3
.

This concludes the proof of Claim 2 .

32

Wrapping up: Proof of Lemma 4.2

Let t1 = 6 n
λ3

log n and define At1+1 := V − Bt1+1 the complement of Bt1+1 and, for each
t ∈ [t1 + 1, 2t1], let At denote the set of nodes in At1+1 that have not been averaged along a
cross edge or with a node in Bt. Inductively, if et = (ut, vt) is the edge chosen at time t then

At =

{

At−1 if et−1 is not a cross edge and et−1 ∩Bt−1 = ∅,
At−1 \ {ut, vt} otherwise.

(44)

We say that we sampled a good edge at time t in the first case, otherwise we say that we sampled
a bad edge. The proof proceeds in two steps:

Deterministic lower bound on the number of goods nodes. We note that |A2t1 | is a lower bound
on the number of nodes that are ε-good at every step t ∈ [t1, 2t1]. Indeed, every node v in
A2t1 was ε-good at all times between t1 and 2t1, because it is a node whose value was good at
time t1 + 1, and then was averaged only with nodes u on the same side of the partition (that
is, such that sgn(yu) = sgn(yv)) and at times in which u was good as well. Moreover, |At|
decreases by at most 2 compared to |At−1| and this can only happen if we sample a bad edge.
As a consequence, |A2t1 | > |At1 | − Z, with Z the number of bad edges sampled in the interval
[t1, 2t1].

Lower bound on |A2t1 |. Next, we condition on the event B = (∀t ∈ {t1, . . . , 2t1} : |Bt| 6 λ3εn
12 logn).

From Claim 2, this event holds with probability at least 1 − ε, whenever λ2
λ3

6 λ3ε4

6192 log2 n
.

Now, observe that, for a given time step t, conditioning on the event B can only increase the
probability of sampling a good edge. As a consequence, recalling that, without conditioning we
sample edges uniformly at random, for any integer x > 0 we have:

P [Z > x | B] 6 P

[

Ẑ > x
]

,

where Ẑ is the sum of independent Bernoulli variables with parameter 2b
d + λ3ε

12 logn . Here, the
first term is the probability of sampling a cross edge, while the second is worst-case upper bound
on the probability of sampling an edge with an endpoint in At and the other in Bt, provided
that |Bt| 6 λ3εn

12 logn . As a consequence, recalling that λ2 = 2b/d:

E

[

Ẑ
]

= λ2t1 +
λ3ε

12 log n
t1 = 6

n

λ3
log n

(

λ2 +
λ3ε

12 log n

)

= 6
λ2

λ3
n log n+

εn

2
6 εn,

where the last inequality obviously follows given our assumptions on λ2/λ3. At this point, a
simple application of Chernoff bound allows to conclude that Ẑ (and thus Z, when conditioned
to B), is at most 2εn with probability 1 − e−

εn
2 . So, conditioned to the event B, A2t1 >

n− λ3n
12 logn − 2εn with probability 1− e−

εn
2 . This concludes the proof.

C.4 Tools for the analysis of Algorithm 2

Proof of Theorem 4.3

In the next two subsections, we provide Lemmas C.5 and C.7, respectively. The two lemmas
together easily imply Theorem 4.3.

33

Lucky nodes and community-sensitive labeling

We next consider the behavior of Algorithm Sign-Labeling(T, 1) on a graph G = (V,E)
where V has a sparse cut (V1, V2) that we wish to discover. For every node u, let psignu (T) be
the probability that node u sets hsign

u differently from the sign of the average of the initial values
of the nodes in its own community

psignu (T) =







P

[

hsign
u 6= sgn

(

2
n

∑

v∈V1
xv

)

]

if u ∈ V1,

P

[

hsign
u 6= sgn

(

2
n

∑

v∈V2
xv

)

]

if u ∈ V2,

where the randomness is over the initial choice of x ∼ {−1, 1}n and over the execution of
Algorithm Sign-Labeling(T, 1). Notice that, for a given graph G and partition of the nodes
V1, V2, p

sign
u (T) depends on the node u, on the protocol (sign), and on the number of activations

T after which the node sets h
sign
u (we will omit parameter T from psignu when clear from context).

To understand the point of this definition, consider the extreme case in which the cut
(V1, V2) is empty, while V1 and V2 induce connected graphs. In this case, the averaging process
Averaging will converge to a global state in which all nodes in V1 have a local state close
to the average 2

n

∑

v∈V1
xv and all nodes in V2 have a state close to 2

n

∑

v∈V2
xv. We call τu

the (random) step in which the node u sets its h
sign
u to the sign of the state of u, i.e., the

global round when u achieves T activations. If T is chosen so that τu is large enough, we would

expect h
sign
u to agree with the sign of 2

n

∑

v∈V1
xv if u ∈ V1 and with the sign of 2

n

∑

v∈V2
xv

if u ∈ V2, with psignu small for all u. It seems reasonable that a possibly weakened version of
the considerations above should apply to graphs exhibiting a sparse, rather than empty, cut,
provided the subgraphs induced by V1 and V2 are good expanders. To quantitavely capture this
intuition, we introduce the notion of a (un)lucky node.

Definition C.1 (Unlucky nodes). We say that node u is ε-unlucky if psignu is larger than ε.
We thus define the set of ε-unlucky nodes as follows

U ε,sign
G,(V1,V2)

=
{

u | psignu > ε
}

.

We write U ε,sign in place of U ε,sign
G,(V1,V2)

, when the underlying graph and partition of the nodes
are clear from the context.

Lemma C.5. Let G = (V,E) be a graph, V1, V2 be a partition of V and fix ε ∈ (0, 1
12]. Then,

Sign-Labeling (T, 10ε−1 log n) performs a community-sensitive labeling of G according to Def-
inition 2.4, with c1 = 4ε, c2 = 1/6 and γ = |U ε,T |/n.

Proof. The proof of the theorem relies on the mutual independence among the components
of any label h(·) and some standard arguments. We remark that the independence crucially
depends on the fact that Sign-Labeling (T,m) updates one component per interaction: the
evolution of x(j1) and x(j2) depends solely on the respective initial vector values (which are
independent), and on the sequence of sampled edges which update component j1 and j2 (which
are independent conditional on their number).

Call ℓ = 10 logn
ε and denote hVi

:= (hVi
(1), . . . , hVi

(ℓ)) where hVi
(j) := sgn

(
∑

v∈Vi
xv
)

.
We first claim that w.h.p. for every vertex u ∈ V1 \ U ε, ∆(hu,hV1) 6 2εℓ. Observe that by

definition of U ε,
E[∆(hu,hV1)] = p(u)ℓ 6 εℓ.

Since the ℓ components are mutually independent, the Chernoff bound [DP09] implies that
∆(hu,hV1) 6 2εℓ, w.h.p. A union bound over vertices in V1 \ U ε implies the claim.

34

Henceforth, let us assume that ∆(hu,hV1) 6 2εℓ for each u ∈ V1 \ U ε and a similar claim
for all vertices v ∈ V2 \ U ε.

As for Case (i), w.l.o.g. let us consider u, v ∈ V1 \ U . By triangle inequality, we get the
desired claim.

∆(hu,hv) 6 ∆(hu,hV1) + ∆(hV1 ,hv) 6 4εℓ.

As for Case (ii), since the initial values of xu(j) (u ∈ V1 ∪ V2) are chosen independently and
uniformly at random in {−1, 1}, simple symmetry arguments show that the probability of
the event “sgn(

∑

u∈V1
xu) = sgn(

∑

u∈V2
xu)” is 1/2. Hence, E[∆(hV1 ,hV2)] = ℓ/2 and from

Chernoff bounds we get that

∆(hV1 ,hV2) >
ℓ

3
, (45)

with all but a probability exponentially small in ℓ. Henceforth, let us condition on the event
that ∆(hV1 ,hV2) 6

ℓ
3

Consider u ∈ V1 and v ∈ V2. By triangle inequality, we have that

∆(hu,hv) > ∆(hV1 ,hV2)−∆(hu,hV1)−∆(hV2 ,hv) (46)

>
ℓ

3
− 2εℓ− 2εℓ >

ℓ

6
, (47)

concluding the proof.

C.4.1 A bound on the number of unlucky nodes

In Lemma C.7 we give an upper bound on the number of ε-unlucky nodes. This is the second
key step toward proving Theorem 4.3.

We first prove the following technical lemma on the range in which τv falls w.h.p.

Lemma C.6. If T > 72 log n and t1 = 3Tn/4 then

P [{τv | v ∈ V } ⊆ [t1, 2t1]] > 1− 1

n
.

Proof. For each node v, let X
(i)
v = 1[v is activated at round i]. Fix a node v. By applying the

Chernoff bound on the i.i.d. random variables {X(i)
v }i>0, we have

P





3Tn/4
∑

i=1

X(i)
v > T



 6 e−
T
36 and P





3Tn/2
∑

i=1

X(i)
v 6 T



 6 e−
T
12 .

The claim follows by applying a union bound over the nodes.

Lemma C.7 (Number of unlucky nodes). Let ε > 0 be an arbitrarily small value and let G be

an (n, d, b)-clustered regular graph with λ2
λ3

6 λ3ε4

c log2 n
, for a large enough costant c. If T = 8

λ3
log n

then the number of
√
ε-unlucky nodes is

∣

∣

∣U
√
ε,sign

∣

∣

∣ 6 6
√
ε n.

35

Proof. Let Lsign be the set of nodes that freeze their sign hsign
v according to the sign of x‖,v+y

(0)
v ,

Lsign =
{

v ∈ V1 ∪ V2 : sgn (xτv
v) = sgn

(

x‖,v + y(0)
v

)}

.

We first observe that, given any ε > 0, if we have a lower bound on the expected size of Lsign,
namely E

[

|Lsign|
]

> n− εn, then we have an upper bound on the number of
√
ε-unlucky nodes,

namely |U
√
ε,sign| 6 6

√
εn. Indeed,

E
[

|Lsign|
]

=
∑

u∈U
√
ε,sign

P
[

u ∈ Lsign
]

+
∑

u/∈U
√
ε,sign

P
[

u ∈ Lsign
]

6 (1−√
ε)
∣

∣

∣
U

√
ε,sign

∣

∣

∣
+ n−

∣

∣

∣
U

√
ε,sign

∣

∣

∣

= n−√
ε
∣

∣

∣
U

√
ε,sign

∣

∣

∣
. (48)

We now give a lower bound on the expected size of Lsign. Let Γ be the event

Γ = “|y(0)
v + x‖,v| >

ε√
n
”.

Recall that τv denotes the time at which node v freezes its value of hsign
v . Notice that the

value |y(0)
v + x‖,v| does not depend on the node v, only on the initial assignment. Hence, for

any node u ∈ V1 ∪ V2 we have that

P
[

u ∈ Lsign
]

> P [Γ ∧ {u is ε-good at round τu}]
> P [Γ ∧ {u is ε-good at all rounds t ∈ [t1, 2t1]} ∧ {τu ∈ [t1, 2t1]}]
> 1− P

[

Γ
]

− P [{u is not ε-good at some round t ∈ [t1, 2t1]}]− P [τu /∈ [t1, 2t1]]

= P [u is ε-good at all rounds t ∈ [t1, 2t1]]− P
[

Γ
]

− P [τu /∈ [t1, 2t1]] . (49)

From Lemmas A.1 and C.6 it follows that P
[

Γ
]

6 O(ε) and that P [τu /∈ [t1, 2t1]] 6 1/n.
Hence, from (49) the expected size of Lsign is

E
[

|Lsign|
]

=
∑

u

P
[

u ∈ Lsign
]

> E[|{u : u is ε-good at all rounds t ∈ [t1, 2t1]}|] −
4√
2π

εn− 1. (50)

Finally, from Lemma 4.2 we have

E[|{u : u is ε-good at all rounds t ∈ [t1, 2t1]}|] > (1− 3ε)(1 − ε)n.

Thus from (50) and the previous inequality we get that

E
[

|Lsign|
]

> (1− 3ε)(1 − ε)n− 4√
2π

εn− 1 > (1− 6ε)n

and the thesis follows from (48).

36

D Omitted Proofs from Section 5

The main goal of this subsection is to prove Theorem 5.1. For the sake of convenience, we
rewrite the state of the averaging process as

x(t) = a|| ·
(

1/
√
n
)

+ ay(t) ·
(

χ/
√
n
)

+ z(t)

where a||, ay(t) ∈ R and z(t) is orthogonal to both χ and 1. Recall also that y(t) = ay(t) ·(χ/
√
n)

and that a|| remains unchanged throughout the algorithm. Suppose now we fix a starting vector

x(0), then we can exactly compute the expectation of ay(t) as stated more formally below.

Observation D.1. For all t ∈ Z>0, we have EE [ay(t)] =
(

1− 2δλ2
n

)t
ay(0).

Proof of Observation D.1. To prove the above statement, it is enough to show that E(ut,vt)[ay(t)] =
(

1− 2δλ2
n

)

ay(t− 1) for every t ∈ N. Indeed, E(ut,vt)[ay(t)] can be rewritten as follows.

E
W∼W

[

χTWx(t−1)

√
n

]

=
χT W̄x(t−1)

√
n

=

(

1− 2δλ2
n

)

χTx(t−1)

√
n

=

(

1− 2δλ2

n

)

ay(t− 1),

concluding the proof.

Let µ(t) , E[ay(t)] =
(

1− 4δb
dn

)t
ay(0) be the expectation of ay(t). We will show that, if we

start with x(0) such that ‖z(0)‖2 is not too much larger than n‖y(0)‖2, then ay(t) concentrates
around µ(t), as long as t 6 Ob,d,δ(n

2). Moreover, we will also show that, for t > Ωb,d,δ(n log n),
‖z(t)‖ becomes small compared to µ(t). This is stated more precisely below.

Theorem D.1. Let β be any real number such that 1 6 β 6 d
εb . For any initial vector x(0)

that satisfies satisfies ‖z(0)‖2 6 nβ‖y(0)‖2 and for any t ∈
[

8n
δ(λ3−λ2)

log
(

ndβ
εb

)

, n2β
128δ(λ3−λ2)

]

, we

have

P
E
[0.5µ(t) 6 ay(t) 6 1.5µ(t)] > 1−O(εβb/d) (51)

and

P
E

[

‖z(t)‖ 6
(

0.5 4
√

εb/d
)

µ(t)
]

> 1−O(
√

εb/d). (52)

We defer the proof of Theorem D.1 to Subsection D.1. For now, let us turn our attention
back to the proof of Theorem 5.1. To go from here to Theorem 5.1, we will also need to upper
bound the probability that ‖z(0)‖2 > nβ‖y(0)‖2. More specifically, when x(0) is a random ±1
vector, we have the following bound.

Proposition 1. For any β > 0, we have Px(0)∼{±1}n
[

‖z(0)‖2 > nβ‖y(0)‖2
]

6 O(1/
√
β+1/

√
n).

This proposition was also essentially proved in [BCN+17]; we repeat the proof from [BCN+17]
below for completeness.

Proof of Proposition 1. First, note that ‖z(0)‖2 6 ‖x(0)‖2 = n. Hence, it suffices to upper

bound the probability that ‖y(0)‖2 is less than 1/β. Since ‖y(0)‖ =
∣

∣

∣

χTx(0)√
n

∣

∣

∣, the probability

37

that ‖y(0)‖2 < 1/β is exactly equal to the probability that a sum of n i.i.d. Rademacher random
variables lie in [−

√

n/β,
√

n/β]. The latter probability is exactly equal to

1

2n

(

n+⌊
√

n/β⌋
)

/2
∑

i=
(

n−⌊
√

n/β⌋
)

/2

(

n

i

)

6
(

√

n/β + 1
)

(n
n/2

)

2n
6 O(1/

√

β + 1/
√
n),

where the second inequality comes from a well-known fact that
(n
n/2

)

= O(2n/
√
n).

By combining Theorem D.1 and Proposition 1, we immediately get Theorem 5.1.

Proof of Theorem 5.1. choosing β =
(

d
εb

)2/3
, we can upper bound Px(0),E

[

‖z(t)‖2 6
√

εb/d‖y(t)‖2
]

by

P
E

[

‖z(t)‖2 6
√

εb/d‖y(t)‖2
∣

∣

∣ ‖z(0)‖2 6 nβ‖y(0)‖2
]

+ P
x(0)∼{±1}n

[

‖z(0)‖2 > nβ‖y(0)‖2
]

.

Then, from Theorem D.1, the first term is at most O(εβb/d) +O(
√

εb/d) = O(3
√

εb/d). More-
over, from Proposition 1, the second term is also at most O(1/

√
β + 1/

√
n) = O(3

√

εb/d +
1/
√
n).

D.1 Proof of Theorem D.1

D.1.1 Evolution of State in One Time Step

The first step in proving Theorem D.1 is to understand what happens in a single update.
Specifically, we would like to understand how ‖y(t)‖ and ‖z(t)‖ behave, given ‖y(t−1)‖ and
‖z(t−1)‖. To this end, we prove the following lemma, which gives bounds on expectations of
‖y(t)‖2 and ‖z(t)‖2 based on ‖y(t−1)‖2 and ‖z(t−1)‖2.

Lemma D.2. Let G be as above. Let y be a vector parallel to χ and z be a vector orthogonal
to y and to 1. Let Pχ be the projection matrix on χ, that is, Pχ = 1

nχχ
T and let P⊥ be

the the projection matrix on the space orthogonal χ, that is, P⊥ = I − 1
nχχ

T . Moreover, let
y′ = PχW (y + z) and z′ = P⊥W (y + z) where W is randomly selected according to W. Then,

E
W
[‖y′‖2] 6

(

1− 8δb

dn
+

16δ2b

dn2

)

‖y‖2 +
(

16δ2b

dn2

)

‖z‖2

and

E
W
[‖z′‖2] 6

(

8δ2b

dn

)

‖y‖2 +
(

1− 4δ(1 − δ)λ3

n

)

‖z‖2.

We note here that Lemma D.2 is simply a restatement of Lemma 5.2.

Proof. Note that y′ and z′ are orthogonal. We will estimate the expectation of ‖y′ + z′‖2 and
of ‖y′‖2, and the we will use Pythagoras’s theorem to deduce a bound on ‖z′‖2.

To estimate the expected norm squared of y′ + z′ we see that

E
W
[‖y′ + z′‖2] = E

W
[‖W (y + z)‖2]

= E
W
[(y + z)TW TW (y + z)]

38

= E
W
[(y + z)TW 2(y + z)]

= E
W
[(y + z)T ((2δ − 1)I + 2(1− δ)W)(y + z)]

= (2δ − 1)
(

‖y‖2 + ‖z‖2
)

+ 2(1 − δ)(y + z)T W̄ (y + z)

= (2δ − 1)
(

‖y‖2 + ‖z‖2
)

+ 2(1 − δ)
(

yT W̄y + 2zT W̄y + zT W̄z
)

= (2δ − 1)
(

‖y‖2 + ‖z‖2
)

+ 2(1 − δ)

((

1− 4δb

dn

)

‖y‖2 + zT W̄z

)

,

where W̄ := E[W], and in (a) we used that W̄y =
(

1− 4δb
dn

)

y.
Moreover, note that z can be written as a linear combination of eigenvectors of W̄ whose

eigenvalues are at most 1 − 2δλ3
n ; This implies that zT W̄z 6

(

1− 2δλ3
n

)

‖z‖2. Plugging this

inequality into the above equality, we have

E
W
[‖y′ + z′‖2] 6

(

1− 8δ(1 − δ)b

dn

)

‖y‖2 +
(

1− 4δ(1 − δ)λ3

n

)

‖z‖2. (53)

Now we estimate the expected squared norm of y′. Observe that

E
W
[‖y′‖2] = E

W
[‖PχW (y+ z)‖2]

= E
W

[(y + z)TW TP T
χ PχW (y + z)]

= E
W

[(y + z)TW TPχW (y + z)].

Let us consider two cases: whether the edge (u, v) defining W is an internal edge, that is,
an edge whose endpoints are on the same side of the partition, or it is a cross edge having
endpoints on different sides of the partition.

1. If (u, v) is an internal edge, which happens with probability 1− b
d , then Wχ = χ, and so

WPχW = 1
nWχχTW = 1

nχχ
T = Pχ. This implies that (y + z)TW TPχW (y + z) = ‖y‖2.

2. If (u, v) is a cross edge such that u ∈ V1 and v ∈ V2, recall that W = I − δeu,ve
T
u,v. To

bound ‖PχW (y + z)‖2, first observe that

PχWχ = Pχ(χ− δeu,v(e
T
u,vχ)) =

χ

n
(χTχ− δ‖eTu,vχ‖2) = χ− 4δ

n
χ.

Hence, we have

PχWy =

(

1− 4δ

n

)

y. (54)

Now, let us consider PχWz. Observe that

Pχ(Wz) = Pχ(z− δeu,v(e
T
u,vz)) = Pχ(z− δ(zu − zv)eu,v) = −2δ(zu − zv)

n
χ. (55)

By combining (54) and (55), we have

‖PχW (y + z)‖2 =

(

1− 4δ

n

)2

‖y‖2 − 2

(

2δ(zu − zv)√
n

)(

1− 4δ

n

)

‖y‖+ 4δ2(zu − zv)
2

n
.

39

Now, if we take the expectation over cross edges (u, v), the second term becomes zero,
because both zu and zv average to zero for a random cross edge (the margninal of u is
uniform over V1 and the marginal of v is uniform over V2). Moreover, we have

E
(u,v) crossedge

[(zu − zv)
2] 6 E

(u,v)crossedge
[2(z2u + z2v)] = E

u∈V
[4z2u] =

4

n
‖z‖2.

where the first equality follows from the fact that each vertex has b cross edges.

Thus, in this case, we have

(

1− 4δ

n

)2

‖y‖2 6 ‖PχW (y + z)‖2 6

(

1− 4δ

n

)2

‖y‖2 + 16δ2

n2
‖z‖2.

Putting the two cases together, we arrive at the following inequality.

(

1− 8δb

dn
+

16δ2b

dn2

)

‖y‖2 6 E
W
[‖y′‖2] 6

(

1− 8δb

dn
+

16δ2b

dn2

)

‖y‖2 +
(

16δ2b

dn2

)

‖z‖2. (56)

Finally, note that the upper bound in (56) is already the desired upper bound for EW [‖y′‖2]
and that the lower bound in (56) together with (53) implies the desired upper bound on

EW [‖z′‖2].

D.1.2 From Evolution of State to Bounds on EE [‖y(t)‖2] and EE [‖z(t)‖2]
We next turn the bounds from Lemma D.2 to bounds on EE [‖y(t)‖2] and EE [‖z(t)‖2] based only
on ‖y(0)‖2, ‖z(0)‖2, δ and the parameters of our graph. This bound will indeed be enough for
us to prove certain concentrations of ‖y(t)‖ and ‖z(t)‖, which are at the heart of the analysis.
Before we state the bounds on EE [‖y(t)‖2] and EE [‖z(t)‖2], let us define the following shorthands
for some expressions that will appear regularly throughout the rest of the section.

• Let ξ ,
(

1− 4δb
dn

)2
, ξ1 ,

(

1− 8δb
dn + 336δ2b

dn2

)

, ξ2 ,
(

1− 4δ(1−δ)λ3

n

)

. Note that µ(t) =

ξt/2ay(0).

• Let κ , 1 + (40εb/d)β. Recall that β is a parameter in Theorem D.1 which satisfies

β > ‖z(0)‖2
n‖y(0)‖2 .

We can now state our bounds on EE [‖y(t)‖2] and EE [‖z(t)‖2]:

Lemma D.3. For any t ∈ Z>0, we have

E
E
[‖y(t)‖2] 6 (κξt1)‖y(0)‖2 and E

E
[‖z(t)‖2] 6

(

(20εb/d)κξt1 + βnξt2
)

‖y(0)‖2.

We defer the proof of Lemma D.3, which is essentially solving the recurrence relation from
Lemma D.2, to Subsection D.1.5. Let us now proceed to use this lemma to derive concentrations
of ‖y(t)‖, ‖z(t)‖.

D.1.3 Concentrations of ‖y(t)‖ and ‖z(t)‖
A direction application of Markov’s inequality to the bound on EE [‖z(t)‖2] from Lemma D.3
gives us the desired concentration for ‖z(t)‖:

40

Lemma D.4. For every t ∈ Z>0, PE
[

‖z(t)‖2 > 0.25
√

εb/d(µ(t))2
]

6 80
√

εb/dκ(ξ1/ξ)
t +

4βn√
εb/d

(ξ2/ξ)
t.

For ‖y(t)‖, since we know that ‖y(t)‖2 is simply ay(t)
2 and we also know µ(t) = EE [ay(t)],

we can apply Cherbychev’s inequality on ay(t), which results in the following lemma.

Lemma D.5. For every t ∈ Z>0, PE [ay(t) /∈ (0.5µ(t), 1.5µ(t))] 6 4
(

κ(ξ1/ξ)
t − 1

)

.

Proof. Recall from Observation D.1 that EE [ay(t)] = µ(t) = ξt/2ay(0). Moreover, from Lemma D.3,
we have EE [ay(t)2] = EE [‖y(t)‖2] 6 (κξt1)(ay(0))

2. Hence, from Chebyshev’s inequality, we have

P
E
[ay(t) /∈ (0.5µ(t), 1.5µ(t))] 6

EE [ay(t)2]− (µ(t))2

(0.5µ(t))2
= 4

(

κ(ξ1/ξ)
t − 1

)

as desired.

D.1.4 Putting things together

Finally, we will now prove Theorem D.1 by plugging in the appropriate value for variables in
Lemma D.4 and Lemma D.5. To this end, let us first state a couple of inequalities that will be
useful.

Lemma D.6. If β 6 d
εb , then, for any t 6 n2β

1344δ(λ3−λ2)
, we have κ(ξ1/ξ)

t 6 1 + 81(εbβ/d).

Lemma D.7. If β 6 d
εb , then, for any t > 8n

δ(λ3−λ2)
log
(

ndβ
εb

)

, we have 4βn√
εb/d

(ξ2/ξ)
t 6 4

√

εb/d.

We defer the proofs of both lemmas, which are basically calculations, to Appendix D.1.6.
Let us now proceed to prove Theorem D.1.

Proof of Theorem D.1. Let t be any positive integer such that 8n
δ(λ3−λ2)

log
(

nd
εb

)

6 t 6 n2β
1344δ(λ3−λ2)

.

From Lemma D.5 and Lemma D.6, we have PE [ay(t) /∈ (0.5µ(t), 1.5µ(t))] 6 O(εbβ/d).
Moreover, from Lemma D.4, Lemma D.6 and Lemma D.7, we have

P
E

[

‖z(t)‖ > 0.5 4
√

εb/dµ(t)
]

= P
E

[

‖z(t)‖2 > 0.25
√

εb/d(µ(t))2
]

6 80
√

εb/dκ(ξ1/ξ)
t +

4βn
√

εb/d
(ξ2/ξ)

t

(From Lemma D.6 and Lemma D.7) 6 O(
√

εb/d),

which concludes the proof of Theorem D.1.

D.1.5 Proof of Lemma D.3

The goal of this subsection is to prove Lemma D.3, which is essentially just solving the recurrence
relation from Lemma D.2. Before we proceed to the proof, we state a fact and an observation
regarding eigenvalues and eigenvectors of certain 2 × 2 natruces, which will be useful in our
proof.

Fact D.1. Let A =

[

a11 a12
a21 a22

]

∈ R
2×2 be a 2 × 2 real-valued matrix such that a11 6= 0 and

(a11 − a22)
2 6= 4a12a21. Then, its eigenvalues are

α1(A) ,
1

2

(

a11 + a22 +
√

(a11 − a22)2 + 4a12a21

)

and

41

α2(A) ,
1

2

(

a11 + a22 −
√

(a11 − a22)2 + 4a12a21

)

,

and its eigenvectors are

[

1
α1(A)−a11

a12

]

and

[

1
α2(A)−a11

a12

]

.

Observation D.2. Let A, a11, a12, a21, a22, α1(A), α2(A) be as in Fact D.1. Suppose further
that a11, a12, a21, a22 > 0, a11 > a22 and that (a11 − a22)

2 > 4a12a21. Then,

a11 +
a12a21

a11 − a22
> α1(A) > a11 > a22 > α2(A) > a22 −

a12a21
a11 − a22

.

Proof. The inequalities come from an observation that a11 − a22 6
√

(a11 − a22)2 + 4a12a21 6
a11 − a22 +

2a12a21
a11−a22

.

We are now ready to prove Lemma D.3.

Proof of Lemma D.3. Let {y(t)}t∈Z>0
and {z(t)}t∈Z>0

be sequence of non-negative real numbers

defined by y(0) = ‖y(0)‖2, z(0) = ‖z(0)‖2 and

[

y(t)

z(t)

]

= A

[

y(t−1)

z(t−1)

]

where A ,

[

1− 8δb
dn + 16δ2b

dn2
16δ2b
dn2

8δ2b
dn 1− 4δ(1−δ)λ3

n

]

for every t ∈ N. Note that, from Lemma D.2 and from the initial values y(0), z(0), we have
y(t) > EE [‖y(t)‖2] and z(t) > EE [‖z(t)‖2] for every t ∈ Z>0. Hence, to prove the lemma, it
suffices to prove that

y(t) 6

(

y(0) +

(

40εb

dn

)

z(0)
)(

1− 8δb

dn
+

336δ2b

dn2

)t

and

z(t) 6

(

(y(0) +

(

40εb

dn

)

z(0)
)(

1− 8δb

dn
+

336δ2b

dn2

)t

+ z(0)
(

1− 4δ(1 − δ)λ3

n

)t

.

Let a11, a12, a21, a22 be the entries of A. Note that

a11 − a12 =

(

1− 8δb

dn
+

16δ2b

dn2

)

−
(

1− 4δ(1 − δ)λ3

n

)

>
4δ(1 − δ)λ3

n
− 8δb

dn

=
4δ(1 − δ)λ3

n
− 4δλ2

n

=
4δ

n
(λ3 − λ2 − δλ3) .

Observe here that, since the sum of eigenvalues of L is equal to tr(L) = n and λ1, λ2 > 0,
we have λ3 6 n

n−2 . Thus, from δ 6 0.8(λ3 − λ2), we have that δλ3 6 0.9(λ3 − λ2) for any
sufficiently large n. Plugging this into the above inequality gives

a11 − a12 >
0.4δ(λ3 − λ2)

n
=

0.4δ2

εn
. (57)

42

The above inequality implies that a11 − a22 > 0. Moreover, for n > 1000, we have

(a11 − a22)
2 >

0.16δ4

ε2n2
>

128δ4b2

d2n3
= a12a21.

In other words, the conditions in Fact D.1 and Observation D.2 are satisfied. From Fact D.1,
the eigenvalues of A are

α1 ,
1

2

(

a11 + a22 +
√

(a11 − a22)2 + 4a12a21

)

and

α2 ,
1

2

(

a11 + a22 −
√

(a11 − a22)2 − 4a12a21

)

.

Furthermore, the eigenvectors of A are

v1 ,

[

1
α1−a11

a12

]

and v2 ,

[

1
α2−a11

a12

]

.

Let γ1 ,
(

a11−α2
α1−α2

)

y(0) +
(

a12
α1−α2

)

z(0) and γ2 ,
(

α1−a11
α1−α2

)

y(0) −
(

a12
α1−α2

)

z(0). It is easy to see

that
[

y(0)

z(0)

]

= γ1v1 + γ2v2.

Since v1 and v2 are eigenvectors of A with eigenvalues α1 and α2 respectively, we have
[

y(t)

z(t)

]

= γ1α
t
1v1 + γ2α

t
2v2

for every t ∈ Z. In other words, we have

y(t) = γ1α
t
1 + γ2α

t
2, z(t) =

(

α1 − a11
a12

)

γ1α
t
1 +

(

α2 − a11
a12

)

γ2α
t
2.

Having derived the above formula, we will now bound y(t), z(t) by appropriately bounding the
eigenvalues and coefficients. Before we do so, let us list a few inequalities that will be useful.

• From (57), we have the following three ineqalities.

a12
a11 − a22

6
40εb

dn
, (58)

a21
a11 − a22

6
20εb

d
, (59)

and

a12a21
a11 − a22

6
320εδ2b2

d2n2
6

320δ2b

dn2
(60)

where the second inequality comes from ε < 1 and b 6 d.

• From (60) and from Observation D.2, we have

a11 +
320δ2b

dn2
> α1 > a11 > a22 > α2 > a22 −

320δ2b

dn2
. (61)

Note also that the right-most term above is non-negative for sufficiently large n.

43

Bounding y(t). With the above inequalities in place, it is now easy to bound y(t) as follows.

y(t) = γ1α
t
1 + γ2α

t
2

(Since γ2 6

(

α1 − a11
α1 − α2

)

y(0) and α2 > 0) 6 γ1α
t
1 +

(

α1 − a11
α1 − α2

)

y(0)αt
2

(Since α2 6 α1) 6 γ1α
t
1 +

(

α1 − a11
α1 − α2

)

y(0)αt
1

=

(

y(0) +

(

a12
α1 − α2

)

z(0)
)

αt
1

(From (61)) 6

(

y(0) +

(

a12
a11 − a22

)

z(0)
)

αt
1

(From (58)) 6

(

y(0) +

(

8εb

dn

)

z(0)
)

αt
1

(From (61)) 6

(

y(0) +

(

40εb

dn

)

z(0)
)(

1− 8δb

dn
+

336δ2b

dn2

)t

as desired.

Bounding z(t). Recall that z(t) =
(

α1−a11
a12

)

γ1α
t
1+
(

α2−a11
a12

)

γ2α
t
2. Let us bound the two terms

separately, starting with the first term
(

α1−a11
a12

)

γ1α
t
1. To this end, we can bound

(

α1−a11
a12

)

γ1

as follows.
(

α1 − a11
a12

)

γ1 6

(

a21
a11 − a22

)

γ1

(From (59)) 6

(

20εb

d

)

γ1

=

(

20εb

d

)((

a11 − α2

α1 − α2

)

y(0) +

(

a12
α1 − α2

)

z(0)
)

(From (61)) 6

(

20εb

d

)(

y(0) +

(

a12
a11 − a22

)

z(0)
)

(From (58)) 6

(

20εb

d

)(

y(0) +

(

40εb

dn

)

z(0)
)

.

Note that the first inequality comes from Observation D.2 and from γ1 > 0. From the above

bound on
(

α1−a11
a12

)

γ1 and our bound on α1 from (61), we have

(

α1 − a11
a12

)

γ1α
t
1 6

(

20εb

d

)(

y(0) +

(

40εb

dn

)

z(0)
)(

1− 8δb

dn
+

336δ2b

dn2

)t

. (62)

Let us next bound
(

α2−a11
a12

)

γ2α
t
2. Again, we first rearrange the coefficient

(

α2−a11
a12

)

γ2 as

(

α2 − a11
a12

)

γ2 =

(

α2 − a11
a12

)((

α1 − a11
α1 − α2

)

y(0) −
(

a12
α1 − α2

)

z(0)
)

(Since
α2 − a11

a12
6 0 and

α1 − a11
α1 − α2

> 0) 6

(

a11 − α2

α1 − α2

)

z(0)

(From (61)) 6 z(0).

44

Hence, from the above inequality and (61), we have

(

α2 − a11
a12

)

γ2α
t
2 6 z(0)at22 = z(0)

(

1− 4δ(1 − δ)λ3

n

)t

. (63)

Combining (62) and (63) indeed yields the desired bound on z(t).

D.1.6 Proofs of Lemma D.6 and Lemma D.7

Proof of Lemma D.6. Since κ = 1 + 40εbβ/d and since εbβ/d 6 1, it suffices to show that
(ξ1/ξ)

t 6 1 + εbβ/d. To show this, let us rearrange (ξ/ξ1)
t as follows.

(

ξ

ξ1

)t

=

(

1− ξ1 − ξ

ξ1

)t

>

(

1−
336δ2b
dn2

ξ1

)t

(Since ξ > 1/2 when n > 8) >

(

1− 672δ2b

dn2

)t

(From Bernoulli’s inequality) > 1− 672δ2bt

dn2

(Since t 6
n2β

1344δ(λ3 − λ2)
) > 1− εbβ

2d
.

Note that we can apply Bernoulli’s inequality since 672δ2b
dn2 6 1 for any sufficiently large n

(i.e. n > 30). Finally, note that the above inequality implies that (ξ1/ξ)
t 6 1 + εbβ/d since

1

1− εbβ
2d

6 1 + εbβ/d because εbβ/d 6 1.

Proof of Lemma D.7. Observe that, in (57), we have already proved that ξ − ξ2 > 2δ2

εn =
2δ(λ3−λ2)

n . Moreover, observe that ξ2 6 1. Hence, we have

(

ξ

ξ2

)t

=

(

1 +
ξ − ξ2
ξ2

)t

>

(

1 +
2δ(λ3 − λ2)

n

)t

.

(From Bernoulli’s inequality) > 2
2δ(λ3−λ2)t

n

> 24 log(
ndβ
εb)

=

(

ndβ

εb

)4

,

which implies the inequality stated in the lemma.

E Omitted Proofs from Section 5.2

The main goal of this section is to prove Theorem 5.3. The actual proof deviates in a couple of
subtle ways from the outline in Section 5.2.1:

45

• Firstly, we use a slightly different notion of “good at time t”. In the outline, we say that a

node is good at time t if χu(x
(t)
u −a||) ≈ µ(t)/n. However, since χu ·x(Tu(τ su))

u > χu ·x(Tu(τeu))
u

suffices to conclude that hjump
u = χu, it is enough for us to pick η ∈ R as a cutoff

threshold and says that u such that χu(x
(Tu(t))
u − a||) > η is good for stored time t and

u such that χu(x
(Tu(t))
u − a||) < η is good for end time t. More formally, for each t ∈ N,

let Rη
t , {u ∈ V | χu(x

(t)
u − a||) > η} be the set of good nodes for stored time t and

R̄η
t , V \Rη

t be the set of good nodes for end time t.

• Secondly, instead of arguing that [Tu(τ
s), Tu(τ̃

s)]∩ [0.5nτ s, 0.5nτ̃ s] is large for most u (and
similarly for the ending time), we will argue that [Tu(τ

s), Tu(τ̃
s)] ⊆ [0.4nτ s, 0.6nτ̃ s] for

most u, which suffices for our purpose.

More precisely, the main steps of the proof are as follows. After selecting appropriate values
of τ s, τ̃ s, τ e, τ̃ e, η, our proof consists of three main steps as follows. For brevity, let us focus on
the stored time here as the statements for the end time are analogous.

1. We start by using the concentration result from the previous section to argue that, for
each t ∈ [0.4nτ s, 0.6nτ̃ s], most nodes are good for stored time t, i.e., EE |Rη

t | is large. In
other words, we will show that EE |R̄η

t | is small for such t’s.

2. We next argue that, for most nodes u, Tu(τ
s), . . . , Tu(τ̃

s) are “sufficiently uniform” in the
following sense: [Tu(τ

s), Tu(τ̃
s)] ⊆ [0.4nτ s, 0.6nτ̃ s] and, for most τ ∈ [τ s, τ̃ s], Tu(τ + 1) −

Tu(τ) is not too much smaller than its expected value, n/2.

3. Finally, we show that, if most nodes are uniform, then using local time is not much worse
than using global time. In other words, we show that, if the average size of the sets of
bad nodes R̄η

t is small over t ∈ [0.4nτ s, 0.6nτ̃ s], then the average size of R̄η
Tu(τ)

is also

small over all τ ∈ [τ s, τ̃ s]. The latter indeed implies that most u is unlikely to be bad for
random stored time τ su ∈ [τ s, τ̃ s].

The values of the parameters that we will be using throughout this section are as follows.

• Pick τ s ,
100 log(nd

εb)
δ(λ3−λ2)

, τ̃ s , 2τ s, τ e , 3τ̃ s + 10d
δb and τ̃ e , 2τ e.

• Let η , 0.25µ(0.6nτ̃ s)/n.

E.1 The proof

Let us now proceed to the proof. The two main lemmas of the first step can be stated as
follows. Since both lemmas follow easily from our concentration result, we defer their proofs to
Appendix E.2.

Lemma E.1. For any x(0) such that ‖z(0)‖2 6 n
√

d/(εb)‖y(0)‖2 and every t ∈ [0.4nτ s, 0.6nτ̃ s],

we have EE |R̄η
t | 6 O

(

n
√

εb/d
)

.

Lemma E.2. For any x(0) such that ‖z(0)‖2 6 n
√

d/(εb)‖y(0)‖2 and every t ∈ [0.4nτ e, 0.6nτ̃ e],

we have EE |Rη
t | 6 O

(

n
√

εb/d
)

.

As stated in the proof overview, the second step is to argue that a random sequence of edges E
is “sufficiently uniform” for most node u with high probability. The notion of uniformity needed
here is formalized below. Note that the parameters a, b below will later be set to τ s

logn ,
τ̃ s

logn to

achieve uniformity for stored time and τe

logn ,
τ̃e

logn to achieve uniformity for end time.

46

Definition E.1. Let a, b, ζ be any positive real number such that b > 2a. We say that a node
u ∈ V is (a, b, ζ)-uniform (with respect to a sequence of edges E) if

• Tu(a log n) > 0.4an log n and Tu(b log n+ 1) 6 0.6bn log n, and,

• Pτ∈[a logn,b logn]
[

Tu(τ + 1) < Tu(τ) +
√
ζn
]

6 4
√
ζ.

We can argue that, for a random E , with high probability, most nodes are uniform, as stated
below. Since this follows from standard Chernoff bound, we defer the proof to Appendix E.3.

Lemma E.3. With probability 1−n−Ω(
√
ζa), at least n−n1−Ω(

√
ζa) nodes are (a, b, ζ)-uniform.

To state the main lemma of the final step of the proof, let us defined an additional notation:
we call a sequence {St}t∈N of subsets St ⊆ V compatible with E if, for every t ∈ N, St△St+1 ⊆
{ut+1, vt+1}, i.e., St+1 can only differ from St on the endpoints of the edge in step t. Observe

that the sequences {Rη
t }t∈Nand {R̄η

t }t∈N are compatible with E since x
(t+1)
u can change only

when u ∈ {ut+1, vt+1}. The main lemma of this part is stated below.

Lemma E.4. For any sequence of edges E such that at least (1−√
ζ)n nodes are (a, b, ζ)-uniform

and for any sequence of subsets {St}t∈N that is compatible with E and that Et∈[0.4an logn,0.6bn logn] [|St|] 6
ζn, we have

P
u∈V,τ∈[a logn,b logn]

[

u ∈ STu(τ)

]

6 O(
√

ζ).

St should be thought of as the set of bad nodes for t; for stored time, we should think of
St as R̄η

t whereas, for end time, we should think of St as Rη
t . The above lemma asserts that,

by randomly choosing a local time from [a log n, b log n], most nodesill likely end up in a global
time step where it is good. The proof of Lemma E.4 is deferred to Subsection E.4.

Let us now show how to use these lemmas to prove Theorem 5.3.

Proof of Theorem 5.3. First, note that the fact that every node is labeled at time O(n logn
δ(λ3−λ2)

+
nd
δb) w.h.p. follows easily from applying a union bound on top of a Chernoff bound on PE [Tu(τ̃

e) 6
100nτ̃ e] for each node u ∈ V ; this latter probability is simply the same as the probability that
sum of 100nτ̃ e i.i.d. Bernoulli random variables each with mean 2/n is less than τ̃ e.

To we prove the reconstruction guarantee, let us define the following notations for brevity:

• Θinitial denotes the event that ‖z(0)‖2 6 n
√

d/(εb)‖y(0)‖2.

• Θs denotes the event that Et∈[0.4nτ s,0.6nτ s] |R̄η
t | 6 n 4

√

εb/d.

• Θe denotes the event that Et∈[0.4nτe,0.6nτe] |Rη
t | 6 n 4

√

εb/d.

• Let as , τ s

logn , b
s , τ̃ s

logn , a
e , τe

logn and be , τ̃e

logn .

• Let ζ , max

{

√

εb
d ,

1
logn

}

.

• Θuniform,s denotes the event that at least (1−√
ζ)n nodes are (as, bs, ζ)-uniform.

• Θuniform,e denotes the event that at least (1−√
ζ)n nodes are (ae, be, ζ)-uniform.

• Θ denotes the event that Θinitial,Θs,Θe,Θuniform,s and Θuniform,e all occur.

47

Note that Θ here is the “nice” event, where the conditions required in Lemma E.1, Lemma E.2
and Lemma E.4 are satisfied and we can invoke them. Our proof will proceed in two steps: we
will first show that the probability that Θ occurs is large and, then, we will use our auxiliary
lemmas to show that, conditioned on Θ happening, we achieve the desired reconstruction most
of the time.

To bound Px(0),E [¬Θ], first note that, from Proposition 1, we have Px(0) [¬Θinitial] 6 O(4
√

εb/d).
Moreover, from Lemma E.1, we have

E
x(0),E

[

E
t∈[0.4nτ s,0.6nτ s]

|R̄η
t |
∣

∣

∣

∣

∣

Θinitial

]

6 O
(

n
√

εb/d
)

.

From Markov’s inequality, this implies that Px(0),E [¬Θs | Θinitial] 6 O
(

4
√

εb/d
)

. Similarly,

Lemma E.2 implies that Px(0),E [¬Θe | Θinitial] 6 O
(

4
√

εb/d
)

. Now, note that, since ζ > 1/ log n

and as > 1, we have that
√
ζn > n1−Ω(

√
ζas) for sufficiently large n. Hence, we can apply

Lemma E.3, which implies that PE [¬Θuniform,s] 6 n−Ω(
√
ζa) 6 O(

√
ζ). Similarly, we also have

PE [¬Θuniform,e] 6 O(
√
ζ). Finally, by combining these four bounds, we have

P[¬Θ] 6 P[¬Θinitial] + P[¬Θs | Θinitial]

+ P[¬Θe | Θinitial] + P[¬Θuniform,s] + P[¬Θuniform,e]

6 O(
√

ζ). (64)

We now proceed to the second part of the proof. Let us denote the set of nodes incorrectly
labeled by V incorrect, i.e., V incorrect =

{

u ∈ V | χu

(

xTu(τ su)
− xTu(τeu)

)

< 0
}

. We will show that

E
x(0),E,{τ su}u∈V ,{τeu}u∈V

[

|V incorrect|
∣

∣ Θ
]

6 O
(

n
√

ζ
)

. (65)

Before we prove the above inequality, let us first show how this implies the desired reconstruction
property. By applying Markov’s inequality to (65), we can conclude that P

[

|V incorrect| > n 4
√
ζ/2

∣

∣ Θ
]

6
O(4

√
ζ). From this and from (64), we can conclude that P

[

|V incorrect| > n 4
√
ζ/2
]

6 O(4
√
ζ). Note

that, when |V incorrect| 6 n 4
√
ζ/2, the protocol achieves a 4

√
ζ-weak reconstruction. Hence, with

probability 1 − O(4
√
ζ), our protocol achieves a 4

√
ζ-weak reconstruction of the graph. Since

ζ = max{
√

εb/d, 1/ log n}, this indeed implies the reconstruction property as stated in Theo-
rem 5.3.

Finally, let us next prove (65) and complete our proof of Theorem 5.3. Since {τ su}u∈V , {τ eu}u∈V
are independent of Θ, we can write the left-hand side of (65) as

E
x(0),E,{τ su}u∈V ,{τeu}u∈V

[

|V incorrect|
∣

∣ Θ
]

= E
x(0),E,{τ su}u∈V ,{τeu}u∈V

[

n · P
u∈V

[u ∈ V incorrect]

∣

∣

∣

∣

Θ

]

= E
x(0),E

[

n · P
u∈V,τ su,τeu

[u ∈ V incorrect]

∣

∣

∣

∣

Θ

]

.

Hence, it suffices for us to show that, assuming that Θ happens, Pu∈V,τ su,τeu [u ∈ V incorrect] 6
O(

√
ζ). To prove this, first observe that if u ∈ V incorrect, then either u ∈ R̄η

Tu(τ su)
or u ∈ Rη

Tu(τeu)
or both. Thus, we have

P
u∈V,τ su,τeu

[u ∈ V incorrect] 6 P
u∈V,τ su

[u ∈ R̄η
Tu(τ su)

] + P
u∈V,τeu

[u ∈ Rη
Tu(τeu)

].

48

Since we assume that Θ occurs, Θuniform,s also occurs, which means that we can apply Lemma E.4
for the sequence St = R̄η

t , a = as and b = bs. This implies that

P
u∈V,τ su

[u ∈ R̄η
Tu(τ su)

] 6 O(
√

ζ).

Similarly, applying Lemma E.4 with St = Rη
t , a = ae and b = be, we also have

P
u∈V,τ su

[u ∈ Rη
Tu(τeu)

] 6 O(
√

ζ).

By combining the above three inequalities, we indeed arrive at the desired bound.

E.2 Bounding |Rη
t | and |R̄η

t |: Proofs of Lemma E.1 and Lemma E.2

Proof of Lemma E.1. Consider any t ∈ [0.4nτ s, 0.6nτ̃ s]. For brevity, let Θ denote an event that

ay(t) ∈ [0.5µ(t), 1.5µ(t)] and ‖z(t)‖ 6
(

0.5 4
√

εb/d
)

µ(t). Applying Theorem D.1 with β =
√

d
εb ,

we have PE [Θ] > 1−O(
√

εb/d).
Now, let us bound the size of R̄η

t conditioned on Θ happening. To do so, first recall that,

since x(t) = a|| · (1/
√
n) + ay(t) · (χ/

√
n) + z(t), we have xu(t) = a|| +

ay(t)χu√
n

+ zu(t). Hence,

we have

(xu(t)− a||)χu − η =
ay(t)

n
+ χuzu(t)− η >

0.25µ(t)

n
+ χuzu(t).

where the inequality comes from ay(t) > 0.5µ(t) and from µ(t) > µ(0.6nτ̃ s). This inequality

implies that, if u ∈ R̄η
t , then |zu(t)| > 0.25µ(t)√

n
. As a result, we can conclude that

|R̄η
t | <

‖z(t)‖2
(0.25µ(t)/

√
n)2

6 O
(

n
√

εb/d
)

where the latter comes from ‖z(t)‖ 6
(

0.5 4
√

εb/d
)

µ(t).

Thus, we have

E
E
|R̄η

t | = E
E
[|R̄η

t | | Θ]P[Θ] + E
E
[|R̄η

t | | ¬Θ]P[¬Θ] 6 O(n
√

εb/d) · 1 + n ·O(
√

εb/d) 6 O(n
√

εb/d)

as desired.

The proof of Lemma E.1 is analogous to the above proof and is presented below.

Proof of Lemma E.2. Consider any t ∈ [0.4nτ e, 0.6nτ̃ e]. First of all, let us note that

µ(t)

η
= 4

(

1− 4δb

dn

)t−0.6nτ̃ s

6 4

(

1− 4δb

dn

) 4dn
δb

6 4 · e−16 6 0.25 (66)

where the second inequality comes from the fact that 1 + x 6 ex for all x ∈ R.
The rest of the proof proceeds similar to the proof of Lemma E.1. Again, let Θ denote an

event that ay(t) ∈ [0.5µ(t), 1.5µ(t)] and ‖z(t)‖ 6
(

0.5 4
√

εb/d
)

µ(t). From Theorem D.1 with

β =
√

d
εb , we have PE [Θ] > 1−O(

√

εb/d).

Conditioned on Θ, observe that

(xu(t)− a||)χu − η =
ay(t)

n
+ χuzu(t)− η 6 −0.5µ(t)

n
+ χuzu(t).

49

where the inequality comes from ay(t) 6 1.5µ(t) and (66). Hence, if u ∈ Rη
t , then |zu(t)| >

0.5µ(t)√
n

. Since ‖z(t)‖ 6
(

0.5 4
√

εb/d
)

µ(t), this implies that |Rη
t | < ‖z(t)‖2

(0.5µ(t)/
√
n)2

6 n
√

εb/d.

Thus, we have

E
E
|Rη

t | = E
E
[|Rη

t | | Θ]P[Θ] + E
E
[|Rη

t | | ¬Θ]P[¬Θ] 6 n
√

εb/d+ n ·O(
√

εb/d) 6 O(n
√

εb/d)

as desired.

E.3 Most Vertices are Uniform: Proof of Lemma E.3

Proof of Lemma E.3. Let us fix a vertex u ∈ V . We will compute the probability that u is
(a, b, ζ)-uniform. First, we will bound the probability that the first condition is not satisfied.
To do so, let us introduce an additional notation; we use Xt to denote an indicator variable of
the event u ∈ {ut, vt}. Note each Xt is an i.i.d. Bernoulli random variable which is one with
probability 2/n. The probability that Tu(a log n) < 0.4an log n can now be written in terms of
Xt’s as follows.

P
E
[Tu(a log n) 6 0.4an log n] = P

E
[X1 + · · ·+X0.4an logn > a log n] 6 2−Ω(a logn) (67)

where the inequality comes from an application of Chernoff bound. Similarly, we get the fol-
lowing bound for PE [Tu(b log n+ 1) > 0.6b log n]:

P
E
[Tu(b log n+ 1) < 0.6b log n] = P

E
[X1 + · · · +X0.6bn logn 6 b log n] 6 2−Ω(b logn). (68)

Next, we proceed to bound the probability that the second condition fails. Let Yτ denote an
indicator variable of the event Tu(τ +1) < Tu(τ) +

√
ζn. Observe that Yτ ’s are i.i.d. Moreover,

the probability that Yτ = 1 can be bounded as follows.

P[Yτ = 1] = P





Tu(τ)+
√
ζn−1

∧

i=Tu(τ)

u ∈ {ut, vt}



 6

Tu(τ)+
√
ζn−1

∑

i=Tu(τ)

P [u ∈ {ut, vt}] = 2
√

ζ.

Hence, by Chernoff bound, we have

P





b logn
∑

τ=a logn

Yτ 6 4
√

ζ(b− a) log n



 6 2−Ω(
√
ζ(b−a) logn). (69)

Observe that
∑b logn

τ=a logn Yτ 6 4
√
ζ(b− a) log n is equivalent to

P
τ∈[a logn,b logn]

[

Tu(τ + 1) < Tu(τ) +
√

ζn
]

6 4
√

ζ.

Thus, (67), (68) and (69) together with the fact that b = 2a imply that the probability that u
is (a, b, ζ)-standard is at least 1 − 2−Ω(

√
ζa logn), which is at least 1 − n−C

√
ζa for some global

constant C.
As a result, the expected number of vertices that are not (a, b, ζ)-uniform is at most n1−C

√
ζa.

Hence, an application of Markov’s inequality implies that, with probability at most nC
√
ζa/2,

the number of non-uniform vertices is at most n1−C
√
ζa/2, which concludes the proof of this

lemma.

50

E.4 From Global to Local Time: Proof of Lemma E.4

In this subsection, we present the proof of Lemma E.4.

Proof of Lemma E.4. Let St ⊆ V denote the set of (a, b, ζ)-uniform vertices. We can first write
the left-handside term so that we separate out the uniform u’s from the non-uniform ones as
follows.

P
u∈V,τ∈[a logn,b logn]

[

u ∈ STu(τ)

]

6 P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ u ∈ STu(τ)

]

+ P
u∈V

[u /∈ St]

6 P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ u ∈ STu(τ)

]

+
√

ζ

where the last inequality comes from our assumption that there are only
√
ζn non-uniform

vertices. For each vertex u ∈ V , denote the set of τ ∈ [a log n, b log n] such that Tu(τ + 1) −
Tu(τ) <

√
ζn by Ru. We can further bound the term Pu∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ u ∈ STu(τ)

]

by

P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ u ∈ STu(τ)

]

6 P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ τ /∈ Ru ∧ u ∈ STu(τ)

]

+ P
u∈V,τ∈[a logn,b logn]

[u ∈ St ∧ τ ∈ Ru]

6 P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ τ /∈ Ru ∧ u ∈ STu(τ)

]

+O(
√

ζ)

where the second inequality comes from the fact that, if u is (a, b, ζ)-uniform, then Pτ∈[a logn,b logn] [τ ∈ Ru] 6
4
√
ζ. Hence, to prove the intended inequality, it suffices to show that

P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ τ /∈ Ru ∧ u ∈ STu(τ)

]

6
√

ζ.

Observe that this probability can be further rearranged as

P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ τ /∈ Ru ∧ u ∈ STu(τ)

]

=
1

n(b log n− a log n+ 1)





∑

u∈V

∑

τ∈[a logn,b logn]
1
[

u ∈ St ∧ τ /∈ Ru ∧ u ∈ STu(τ)

]





6
1

na log n





∑

u∈St

∑

τ∈[a logn,b logn]\Ru

1
[

u ∈ STu(τ)

]



 . (70)

Let us fix u ∈ St and τ ∈ [a log n, b log n] \Ru. Recall that, since {St}t∈N is compatible with E ,
we have 1[u ∈ St] = 1[u ∈ STu(τ)] for every t ∈ [Tu(τ), Tu(τ + 1)). Moreover, because τ /∈ Ru,
we have Tu(τ + 1)− Tu(τ) >

√
ζn. Thus, we have

1
[

τ /∈ Ru ∧ u ∈ ST (τ)

]

= 1 [τ /∈ Ru]1
[

u ∈ STu(τ)

]

= 1 [τ /∈ Ru]





∑Tu(τ+1)−1
t=Tu(τ)

1 [u ∈ St]

Tu(τ + 1)− Tu(τ)





6 1 [τ /∈ Ru]





∑Tu(τ+1)−1
t=Tu(τ)

1 [u ∈ St]√
ζn





51

6

∑Tu(τ+1)−1
t=Tu(τ)

1 [u ∈ St]√
ζn

.

Plugging the above inequality back into (70), the probability

P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ τ /∈ Ru ∧ u ∈ STu(τ)

]

can be upper bounded by

1√
ζn2a log n





∑

u∈St

∑

τ∈[a logn,b logn]\Ru

Tu(τ+1)−1
∑

t=Tu(τ)

1 [u ∈ St]





6
1√

ζn2a log n





∑

u∈St

∑

τ∈[a logn,b logn]

Tu(τ+1)−1
∑

t=Tu(τ)

1 [u ∈ St]





=
1√

ζn2a log n





∑

u∈St

Tu(b logn+1)−1
∑

t=Tu(a logn)

1 [u ∈ St]



 .

Finally, recall from definition of uniform vertices that, if u is (a, b, ζ)-uniform, then Tu(a log n) >
0.4an log n and Tu(b log n+ 1) 6 0.6b log n. Combining this with the above inequality, we have

P
u∈V,τ∈[a logn,b logn]

[

u ∈ St ∧ τ /∈ Ru ∧ u ∈ STu(τ)

]

6
1√

ζn2a log n





∑

u∈St

0.6b logn−1
∑

t=0.4an logn

1 [u ∈ St]





6
1√

ζn2a log n





∑

u∈V

0.6b logn−1
∑

t=0.4an logn

1 [u ∈ St]





=
1√

ζn2a log n





0.6b logn−1
∑

t=0.4an logn

∑

u∈V
1 [u ∈ St]





=
1√

ζn2a log n





0.6b logn−1
∑

t=0.4an logn

|St|





(

Since E
t∈[0.4an logn,0.6b logn]

|St| 6 ζn

)

6
1√

ζn2a log n
((0.6bn log n− 0.4an log n+ 1)ζn)

= O(
√

ζ),

which concludes our proof.

52

	1 Introduction
	1.1 Our results
	1.2 Comparison to previous work
	1.3 Roadmap of the paper

	2 Preliminaries
	3 First Moment Analysis
	4 Regular Graphs with a Sparse Cut
	4.1 Second moment analysis for sparse cuts
	4.1.1 Proof of Lemma ??: An overview

	4.2 The Sign-Labeling protocol
	4.2.1 Proof of Theorem ??: An Overview

	5 Regular Graphs with a Dense Cut
	5.1 Second moment analysis for large 2
	5.1.1 Proof of Theorem ??: An Overview

	5.2 The Jump-Labeling protocol
	5.2.1 Proof of Theorem ??: An Overview

	A Tools from linear algebra
	A.1 Projections on the main eigenspaces
	A.2 Properties of the spectrum of the main matrices

	B Proofs for Section ??
	B.1 Proof of Theorem ??: Technical lemmas

	C Proofs for Section ??
	C.1 Proof of Theorem ??
	C.2 Proofs of Corollary ?? and of Equation (??)
	C.3 Proof of Lemma ??
	C.4 Tools for the analysis of Algorithm ??
	C.4.1 A bound on the number of unlucky nodes

	D Omitted Proofs from Section ??
	D.1 Proof of Theorem ??
	D.1.1 Evolution of State in One Time Step
	D.1.2 From Evolution of State to Bounds on EE["026B30D y(t)"026B30D 2] and EE["026B30D z(t)"026B30D 2]
	D.1.3 Concentrations of "026B30D y(t)"026B30D and "026B30D z(t)"026B30D
	D.1.4 Putting things together
	D.1.5 Proof of Lemma ??
	D.1.6 Proofs of Lemma ?? and Lemma ??

	E Omitted Proofs from Section ??
	E.1 The proof
	E.2 Bounding |Rt| and |t|: Proofs of Lemma ?? and Lemma ??
	E.3 Most Vertices are Uniform: Proof of Lemma ??
	E.4 From Global to Local Time: Proof of Lemma ??

