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Abstract

We study the independent set problem in a semi-random model proposed by Feige and
Kilian. This model selects a graph with a planted independent set of size k and then allows an
adversary to modify a large fraction of edges: the subgraph induced by the complement of the
independent set can be modified arbitrarily, and the adversary may add (but not delete) edges
from the independent set to its complement. In particular, the adversary can create a graph in
which the initial planted independent set is not the largest independent set. Feige and Kilian
presented a randomized algorithm, which with high probability recovers an independent set of
size at least k (which may not be the planted one) when k = αn where α is a constant, and
the probability of a random edge p > (1 + ǫ) lnn/αn. Steinhardt studied a restriction of this
model in which the adversary is not allowed to add edges from the planted independent set to its
complement, and focused on the problem of finding the planted independent set. He develops an
algorithm that, given a random “seed” vertex in the planted independent set, finds the planted
independent set provided that k = Ω(n2/3logn1/3) in the p = 1/2 regime. Equivalently, by
guessing the seed, the algorithm is able to output a list of at most n independent sets of size k
such that one of them is the planted one.

We give a new deterministic algorithm in the Feige-Kilian model that finds an independent
set of size at least .99k provided that the planted set has size k = Ω(n2/3/p1/3), and finds a list
of independent sets, one of which is the planted one provided that k = Ω(n2/3/p). This improves
on the algorithm of Feige and Kilian by working for smaller k if p = Ω(1/n1/3), and improves on
the algorithm of Steinhardt by working for slightly smaller k and by working against a stronger
adversarial model. The ability to find a good approximation of the largest independent set is
new when p < lnn/k.
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1 Introduction

The maximum independent set problem is, given a graph G = (V,E), find the largest set of mutually
non-adjacent vertices. The associated decision problem, to determine whether a graph contains an
independent set of size at least k, was one of Karp’s twenty-one problems originally proved to be
NP-complete [15]1. More recent hardness of approximation results [21] show that, for every ǫ > 0,
it is impossible to approximate maximum independent set to within n1−ǫ in the worst case, unless
P = NP.

The worst-case hardness of this problem has motivated the study of its average-case complexity
and of its complexity in semi-random models that are intermediate between average-case analysis
and worst-case analysis.

A classical model for the average-case analysis of graph algorithms is the Gn,p Erdós-Rényi
model, where each edge is independently present with some probability p. In such a model, the
largest independent set has size about 2 logb n with high probability, for b = (1 − p)−1 and n the
number of vertices in the graph [17]. A simple greedy algorithm finds, with high probability, an
independent set of size about logb n. It has been a long-standing open problem to give an algorithm
that finds an independent set of size (1 + ǫ) logb n.

Another classical model is the “planted independent set” one, in which one starts from a Gn,p

random graph and then one picks a random set of k = k(n) vertices and removes all existing
edges among those vertices, turning them into an independent set. For p = 1/2, if k ≫ log n, the
selected set of vertices (which we will call the “planted” independent set of the graph) is, with high
probability, the unique maximum independent set of the graph. In this case, the problem of finding
the largest independent set in the graph coincides with the “recovery” problem of identifying the
selected set of vertices.

When the size k(n) of the the planted independent set is Ω(
√
n log n), choosing the k vertices of

lowest degree is sufficient to find the hidden independent set [16]; Alon, Krivelevich and Sudakov
[1] give a spectral algorithm to find the planted independent set with high probability when k(n) =
Ω(

√
n). It is an open problem whether there is a polynomial time algorithm that finds the planted

independent set with high probability in the regime k(n) = o(
√
n). Barak, Hopkins, Kelner, Kothari,

Moitra, and Potechin established this is impossible for sum of squares algorithms [2].
When studying simple generative models for graphs, such as Gn,1/2 or planted independent set

models, there is a risk of coming up with algorithms that perform well in the model, but that are
an overfit for it. For example picking the k vertices of lowest degree is a good way to find a size k
independent set in the planted model (if k ≫ √

n log n) but it may not perform well in practice.
In order to validate the robustness of average-case analyses of algorithms, there has been interest

in the study of semi-random generative models, in which a graph is generated via a combination of
random choices and adversarial choices. Even though no simple probabilistic model can capture all
the subtle properties of realistic graph distributions, realistic distributions can be captured by semi-
random models if the way in which the realistic distribution differs from the simple probabilistic
model is interpreted as the action of the adversary.

Moreover, by studying semi-random models we gain insight into what part of a problem gov-
erns its hardness. If an algorithm in a random graph solves a problem in polynomial time with
high probability, then we can ask how adversarial we can make our graph while still solving it in
polynomial time with high probability. For example, Feige and Kilian believed the planted inde-
pendent set should be recoverable without regard for the edges that do not touch the vertices of the

1In this work, as well as in others listed below, the planted clique problem is considered. Here we are describing
these results in the equivalent point of view in which one wants to find a planted independent set in the complementary
graph.
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independent set, so sought algorithms that could find the maximum independent set when these
edges were made adversarial [9]. In order to gain insight on what instances of unique games can be
difficult, Kolla, Makarychev, and Makarychev created algorithms that solved unique games with
high probability in a model where out of 4 given steps of creating a (1− ǫ) satisfiable instance, only
1 is randomized [14].

Semi-random generative models for graphs were first introduced by Blum and Spencer [3], and
then further studied by Feige and Kilian [9].

In the Feige-Kilian model, one generates a graph with a planted size k independent set as follows:
a set S of k vertices is chosen at random; Then, edges from S to V − S are selected as in a Gn,p

model; finally, an adversary is allowed to choose arbitrarily the edges within vertices in V −S, and
they are allowed to add edges from S to V − S. Note that, when k < n/2, the planted set S need
not be a largest independent set in the graph since, for example, the adversary could choose to
create an independent set of size k + 1 among the vertices in V − S.

Feige and Kilian studied the complexity of finding an independent set of size at least k in the
graph arising from their model. They prove that, for ǫ > 0, they can solve the problem in polynomial
time if p > (1 + ǫ) lnn/k and k = αn for constant α, and, if p < (1 − ǫ) ln n/k, the problem is
not solvable in polynomial time, unless NP ⊆ BPP. Since then, progress has been made on weaker
monotone semirandom versions of the problem [5, 6, 10]. Moreover, Coja-Oghlan generalized Feige
and Kilian’s algorithm to sparse subgraphs [7] as opposed to independent sets. However, prior to
this paper, there had been no algorithm that improved on the size of the independent set in the
Feige-Kilian model.

Steinhardt [20] studied the recovery problem (that is, the problem of finding the vertices of
the planted independent set) in a slight restriction of the Feige-Kilian model with p = 1/2, in
which the adversary can choose edges arbitrarily within V − S but cannot add edges between S
and V −S. Although the problem of recovering S seems to be information-theoretically impossible
when k < n/2, Steinhardt studies a “list-decoding” version of the problem in which the goal is to
output a collection of sets, one of which is the planted independent set (or to output the planted
independent set given a random vertex sampled from S). Steinhardt shows that the problem is
information-theoretically unsolvable when k = o(

√
n) by showing that a regime in which each

vertex belongs to a large number of independent sets has small total variation distance from the
semirandom model. He also, along with Charikar and Valiant, gives a polynomial time recovery
algorithm when k = Ω(n2/3 log1/3 n) [4].

In this paper, we provide a deterministic polynomial time algorithm that finds an independent
set of size ≥ (1 − ǫ) · k in the Feige-Kilian model (in which the adversary is allowed to add edges
between S and V −S) that works with high probability for k = Ω(n2/3/p1/3), that is, k = Ω(n/d1/3),
where d = pn is the average degree. Moreover, we can find a list of independent sets one of which
is the planted one, if k = Ω(n2/3/p). Comparing this to Feige and Kilian’s model, this works for a
wider range of the parameter k, which can be sublinear, but for a narrower range of the parameter
p: our full-recovery algorithm must have p = Ω(1/n1/3), whereas the Feige-Kilian algorithm only
requires p > (1 + ǫ)/(αn). However, our 1− ǫ factor approximation can work for p = Ω(1/n).

Instantiating our algorithm with p = 1/2, we have an improvement over Steinhardt’s algorithm,
by gaining a log1/3 factor in the size parameter k for which the algorithm works, and by being able
to deal with the full Feige-Kilian adversarial model.

Specifically, our results are the following:

Theorem 1.1. For all ǫ > 0, there exists a constant c1(ǫ) such that when

k ≥ c1
n2/3

p1/3

3



we can, with high probability, return an independent set of size at least (1− ǫ)k.

Theorem 1.2. There exists a constant c2 such that when

k ≥ c2
n2/3

p

we can, with high probability, return at most n candidate solutions such that one is the original

independent set. In particular, we are able to find an independent set of size at least k.

While Steinhardt relied on spectral techniques, we use semidefinite programming (SDP). The
improved robustness comes from the robustness of the SDP technique, and the logarithmic gain
comes from an analysis of the SDP via the Grothendieck inequality, which tends to give tighter
information about the properties of random graphs than spectral bounds obtained from matrix
Chernoff bounds or related techniques.

A natural way to apply SDP techniques in this setting would be to solve an SDP relaxation
of the maximum independent set problem on the given graph. This, however, would not work,
because the adversary could create a large set with few edges in V − S, and the optimum of the
relaxation could be related to this other set and carry no information about S.

Instead, we use a “crude SDP” (C-SDP), a technique used by Kolla, Makarychev and Makarychev
in their work on semi-random Unique Games [14] and by Makarychev, Makarychev and Vijayaragha-
van [18] in their later work on semi-random cut problems. Crude SDPs are not relaxations of the
problem of interest and, in particular, there is no standard way of mapping an intended solution (in
our case, the set S) to an associated canonical feasible solution of the SDP. Rather, the crude SDP
is designed in such a way that the optimal solution reveals information about the planted solution.

Our crude SDP will associate a unit vector to each vertex, with the constraint that adjacent
vertices are mapped to orthogonal vectors; the goal of the SDP is to maximize the sum of inner
products among all pairs of vectors. The point of the analysis will be that, with high probability
over the choice of the graph, and for every possible choice of the adversary, the optimal solution of
the SDP will map the vertices in S to vectors that are fairly close to one another, and then S can
be recovered by looking for sets of k vertices whose associated vectors are clustered. Specifically,
our program will be

maximize
∑

u,v〈xu, xv〉
subject to

||xu||2 = 1,∀u ∈ V
〈xu, xv〉 = 0,∀(u, v) ∈ E

Note that, because of the constraints ||xu||2 = 1, the cost function max
∑

u,v〈xu, xv〉 is equivalent
to min

∑

u,v ||xu − xv||2.
For motivation for why this may work, consider the following relaxation of the maximum in-

dependent set problem, which is a formulation of the Lovász theta function. This function can
retrieve the independent set in more restricted planted models [10].

maximize
∑

u,v〈xu, xv〉
subject to

∑

u ||xu||2 = 1
〈xu, xv〉 = 0,∀(u, v) ∈ E

The only difference in requirements is that instead of requiring the norms of the vectors to sum
to 1, we require that the norm of each vector is 1.

4



To gain intuition about the difference between the two SDPs, it is useful to see that, even if the
goal is to recover an independent set of size at least Ω(k), even in the regime, say k = n3/4, the
solution found by theta function will not necessarily be helpful in the Feige-Kilian model. Suppose
for example that, in G, we have all possible edges between S and V − S, and that the subgraph
induced by V −S is a graph in which the maximum independent set has size ≤ n.1 but the value of
the theta function is ≥ n.99 (such a graph is constructed by Feige [8]). Note that an adversary can
construct such a graph in the Feige-Kilian model. The optimum of the theta function will set all
vectors corresponding to vertices in S to zero, and the remaining vertices to the optimal solution
of the theta function for the graph induced by V − S. This is because all vertices in S must be
associated with vectors that are orthogonal to all vectors associated with vertices in V − S, so any
feasible solution is a convex combination of a solution entirely concentrated on S and a solution
entirely concentrated in V − S: any solution concentrated in S can have cost at most k while
solutions concentrated in V − S can have cost ≥ n.99, so the optimal solution will put zero weight
on vertices in S. But given a solution entirely concentrated in V − S, no rounding algorithm can
find a good solution, since all independent sets in V − S have a size ≤ n.1.

Our C-SDP can be seen as a relaxation of the following problem: find a coloring of G that
maximizes the sum of squares of the sizes of the color classes, that is, find a partition of the
vertices P = {P1 . . . Pm} such that each Pi is an independent set and, subject to this constraint,
maximize

∑m
i=1 |Pi|2. To see that our C-SDP is a relaxation of this problem, take any partition

P = {P1 . . . Pm}, choose m orthogonal unit vectors x1, . . . , xm, and then associate to each vertex in
Pi the vector xi. This will satisfy the orthogonality constraints of the C-SDP, and the cost function
will evaluate to

∑

i |Pi|2.
Even in the presence of other independent sets larger than the planted one, we may hope that it

is optimal for the above combinatorial problem to have the planted independent set be a color class,
and that it is optimal for the relaxation to associate to the vertices of the planted independent set
a set of vectors that are close to each other, that is, such that

∑

u,v
u∈S or v∈S

〈x∗u, x∗v〉

will be approximately k2, where x∗u is the vector corresponding to u ∈ V in the optimal solution of
the C-SDP.

We prove this via an argument by contradiction: if a solution does not cluster the vectors
corresponding to the vertices in S close together, then we can construct a new feasible solution
of lower cost, meaning that the original solution was not optimal. To bound the cost of the new
solution we need to understand the sum of distances-squared, according to the original solution,
between pairs of vertices in S×(V −S). This is where we use the Grothendieck inequality: to reduce
this question to a purely combinatorial question that can be easily solved using the expansion of
the connection between S and V \S and union bounds.

The argument that we use to prove that an optimal solution to C-SDP must cluster the vertices
of the planted independent set, because otherwise a feasible solution of larger cost would exist,
relies on the assumption that k = Ω(n2/3/p1/3). Although our analysis stops working when k =
o(n2/3/p1/3), it is not clear whether the algorithm stops working as well, that is, whether there is
a strategy for the adversary in the k = o(n2/3/p1/3) regime which produces graphs that, with high
probability, have C-SDP optimal solutions that map the vertices of the planted independent set to
nearly orthogonal vectors such that

∑

u,v∈S〈xu, xv〉 = o(k2), although we suspect that this is the
case.

Feige and Kilian were motivated to study robust algorithms for the planted independent set

5



problem because of how it relates to the (n/k)-coloring problem. In the semirandom (n/k)-coloring
problem, we have n/k planted independent sets each of size k and add edges at random between
these sets. Then, we can add any other edges that keep the planted independent sets independent.

Finding an algorithm for the maximum independent set gives us an algorithm to solve this
planted (n/k)-coloring problem, as in this model, with high probability the largest independent
sets will be the planted ones. It is worth noting that our improved independent set algorithm can
also solve the (n/k)-coloring problem for k = Ω(n2/3/p). Since Feige and Kilian’s original paper,
algorithms specifically constructed for the coloring problem can solve it with high probability when
k = Ω(

√

n log n/p) [6].

2 C-SDP Clustering

An independent set S of a graph G = (V,E) is a subset S ⊆ V such that the subgraph induced
by S does not contain any edges. We form our semi-random graph G as follows, using the same
formulation as Feige and Kilian [9]. Here S = V − S.

1. An adversary chooses a set S ⊆ V such that |S| = k.

2. Create a graph G′ = (V,E′), where each pair of vertices u, v forms an edge independently
with probability P (u, v). P (u, v) is formulated as follows.

P (u, v) =











0 : (u, v) ∈ S × S

p : (u, v) ∈ S × S

0 : (u, v) ∈ S × S

3. The adversary can add any edge (u, v) arbitrarily as long as (u, v) /∈ S × S. Our graph will
be of the form G = (V,E) where S is an independent set in G and E ⊃ E′.

This gives us a graph that is arbitrary on (u, v) ∈ S × S, has no edges within S, and is lower
bounded by Bernoulli random variables on the boundary S × S.

Our goal for this section will be to show the following:

Lemma 2.1. Call x∗u the vector corresponding to u ∈ V for the optimal solution to our C-SDP.

With high probability,
∑

u,v∈S
||x∗u − x∗v||2 = O

(

n
√
k√
p

)

Our first step will be to show the following bound:

Lemma 2.2. For the optimal solution we have

∑

u,v∈S×S

||x∗u − x∗v||2 + 2
∑

u,v∈S×S

||x∗u − x∗v||2 ≤ 4k(n − k)

Proof. Here our analysis will be simpler if we think of our cost function as the equivalent

minimize
∑

u,v

||x∗u − x∗v||2

This is equivalent as all of our vectors are norm 1, so

6



∑

u,v

||xu − xv||2 =
∑

u,v

||xu||2 − 2〈xu, xv〉+ ||xv ||2 =
∑

u,v

2− 2〈xu, xv〉.

Consider the feasible solution to the SDP obtained by taking the optimal solution, then setting
all vectors corresponding to u ∈ S to a single unit vector e orthogonal to all other vectors. We keep
all vectors corresponding to vertices in S as the same as the optimal solution. Call x′u the vector
for our new adjusted solution corresponding to vertex u. Since x∗ is optimal we have





∑

u,v∈V×V

||x∗u − x∗v||2 − ||x′u − x′v||2


 ≤ 0.

Terms that do not contain a vertex corresponding to S do not change between the two solutions.
Therefore we cancel these out, which yields





∑

u,v∈S×S

||x∗u − x∗v||2 − ||x′u − x′v||2


+ 2





∑

u,v∈S×S

||x∗u − x∗v||2 − ||x′u − x′v||2


 ≤ 0.

We then know that for our adjusted solution, ||x′u − x′v||2 = 0 if both u and v are in S, and
||x′u − x′v||2 = 2 if only one of u, v is in S, giving





∑

u,v∈S×S

||x∗u − x∗v||2


+ 2





∑

u,v∈S×S

||x∗u − x∗v||2


− 4k(n − k) ≤ 0





∑

u,v∈S×S

||x∗u − x∗v||2


+ 2





∑

u,v∈S×S

||x∗u − x∗v||2


 ≤ 4k(n− k)

Our next step is to show that the second sum in Lemma 2.2 is large. Towards this end we show
the following.

Lemma 2.3. With high probability, for the initial random choice of edges E′,

max
x1,...,xn

||xu||=1,
∀u∈V

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

u∈S,v∈S

〈xu, xv〉 −
1

p

∑

(u,v)∈E′

u∈S,v∈S

〈xu, xv〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

= O

(

n
√
k√
p

)

.

Proof. We proceed along the lines of [12]. Set

D := max
x1,...,xn

||xu||=1,
∀u∈V

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

u∈S,v∈S

〈xu, xv〉 −
1

p

∑

(u,v)∈E′

u∈S,v∈S

〈xu, xv〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

p
max

x1,...,xn

||xu||=1,
∀u∈V

∣

∣

∣

∣

∣

∣

∑

u∈S,v∈S

(p −Auv)〈xu, xv〉

∣

∣

∣

∣

∣

∣
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where Auv is the entry of the adjacency matrix corresponding to the vertex pair u, v and the edge
set E′.

We define a new matrix M such that

Muv =

{

p−Auv (u, v) ∈ S × S
0 otherwise

We have
∑

u,v∈V
Muv〈xu, xv〉 =

∑

u∈S,v∈S

(p −Auv)〈xu, xv〉

We then have that there exists a constant c such that

max
x1,...,xn

||xu||=1
∀u∈V

∣

∣

∣

∣

∣

∣

∑

u,v∈V
Muv〈xu, xv〉

∣

∣

∣

∣

∣

∣

≤ c max
x1,...,xn∈{±1}n
y1,...,yn∈{±1}n

∣

∣

∣

∣

∣

∣

∑

u,v∈V
Muvxuyv

∣

∣

∣

∣

∣

∣

by Grothendieck’s inequality ([11], see for example [13]). For a fixed set of x1, . . . , xn, y1, . . . , yn ∈
{±1}2n,

∑

u,v∈V
Muvxuyv =

∑

u∈S,v∈S

(p−Auv)xuyv.

Each entry Auv corresponding to u ∈ S, v ∈ S is a Bernoulli random 0-1 variable. Each term
(p−Auv)xuyv has absolute value at most 1 and expectation 0. Therefore, by Bernstein’s inequality,

Pr





∣

∣

∣

∣

∣

∣

∑

u∈S,v∈S

(p−Auv)xuyv

∣

∣

∣

∣

∣

∣

≥ ǫpk(n− k)



 < 2e−ǫ2pk(n−k)/3 (1)

for any 0 ≤ ǫ ≤ 1.
There are 22n possibilities for assignments of xu, yv, giving us

Pr

[

max
x1,...,xn={±1}n
y1,...,yn={±1}n

∣

∣

∣

∣

∣

∣

∑

u∈S,v∈S

(p−Auv)xuyv

∣

∣

∣

∣

∣

∣

≥ ǫpk(n− k)

]

≤ 22n+1e−ǫ2pk(n−k)/3 (2)

< e1.5n−ǫ2pk(n−k)/3 (3)

We have (2) from (1) and union bounding over assignments of xuyv. (3) is true if n > 6.
Therefore

Pr [D < cǫk(n − k)] > 1− e1.5n−ǫ2pk(n−k)/3.

If we set ǫ = 3√
pk

then with high probability

max
x1,...,xn

||xu||=1,
∀u∈V

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

u∈S,v∈S

〈xu, xv〉 −
1

p

∑

(u,v)∈E′

u∈S,v∈S

〈xu, xv〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

= O

(

n
√
k√
p

)

.
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Proof of Lemma 2.1. By Lemma 2.2,

∑

u,v∈S×S

||x∗u − x∗v||2 + 2
∑

u,v∈S×S

||x∗u − x∗v||2 ≤ 4k(n − k)

∑

u,v∈S×S

||x∗u − x∗v||2 + 2





∑

u,v∈S×S

2− 2〈x∗u, x∗v〉



 ≤ 4k(n − k).

By pulling out the constant term, we get

∑

u,v∈S×S

||x∗u − x∗v||2 − 4
∑

u,v∈S×S

〈x∗u, x∗v〉 ≤ 0.

Then, by Lemma 2.3

∑

u,v∈S×S

||x∗u − x∗v||2 −
4

p

∑

(u,v)∈E′

〈x∗u, x∗v〉 −O

(

n
√
k√
p

)

≤ 0.

By the requirements of the SDP, 〈x∗u, x∗v〉 = 0 for all (u, v) ∈ E′. Therefore

∑

u,v∈S×S

||x∗u − x∗v||2 = O

(

n
√
k√
p

)

.

Note that this argument works even when the adversary adds edges to the boundary of S, as
the vertex pairs corresponding to E′ will approximate p of the overall sum with high probability
regardless of whether the other vertex pairs correspond to edges or not. Our argument only requires
that the vertex pairs corresponding to E′ correspond to edges, meaning the adversary cannot remove
edges from the boundary, but they can add them.

3 Algorithm Analysis and Recovery

Our algorithm is as follows:

• Solve the crude SDP.

• For each vector, create a set of all vectors that are ℓ2 distance less than
√

2−
√
2 from the

original vector. Namely we take the ball of radius
√

2−
√
2 around the the vector xu and list

all vectors inside the ball. We call this set of vertices Su.

• Add to the set all vertices that are independent with all vertices already in the set.

• Return the largest such set.

We use this algorithm to prove our two theorems.
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Proof of Theorem 1.1. Using Lemma 2.1, we have that with high probability there exists a constant
c3 such that

∑

u,v∈S
||x∗u − x∗v||2 ≤ c3

n
√
k√
p

for the optimal solution of our SDP. Therefore there is some vertex u ∈ S such that

Ev∈S(||x∗u − x∗v||2) ≤ c3
n

k3/2
√
p
.

By Markov’s inequality we have

Prv∈S(||x∗u − x∗v||2 ≥ 2−
√
2) ≤ c4

n

k3/2
√
p
.

where c4 = c3/(2−
√
2). We choose

√

2−
√
2 because if ||xu−xv||2 < 2−

√
2 then as ||xu−xv||2 =

2− 2〈xu, xv〉, this implies that cos(xu, xv) = 〈xu, xv〉 > 1/
√
2. Therefore any two points within the

ball of radius 2−
√
2 around xv cannot be orthogonal, so the ball of this radius forms an independent

set.
This means that after running the SDP,

|Su| ≥ k − c4
n√
kp

. (4)

Thereby for a given ǫ > 0, if we set c1(ǫ) = (c4/ǫ)
2/3, then if

k ≥ c1
n2/3

p1/3

|Su| ≥ (1 − ǫ)k. As Su will be one of our n candidate solutions, we can, with high probability,
discover an independent set of size at least (1− ǫ)k.

This means that for p as small as p = Θ( 1n) our algorithm will discover a large independent set,
assuming large enough k. This is surprising, considering that in this regime, with high probability
there are many vertices in S with no edges to S.

Proof of Theorem 1.2. After adding vertices to Su greedily, we hope that the resulting set will be
S. For this to be the case, we need to make sure that all vertices of S share at least one edge with
Su. This is at most the probability that every vertex of S has at least k − |Su| edges to the set S.
Namely

min
v∈S

deg(v, S) > k − |Su| (5)

By (4), this will be satisfied if

min
v∈S

deg(v, S) > c4
n√
kp

(6)

To satisfy (6) for the minimum v ∈ S, it is of course necessary to satisfy (6) in the expectation
over vertices in S. Therefore we need

10



kp > c4
n√
kp

.

Therefore, let us require that

k ≥ 2c
2/3
4 n2/3

p
.

To show that this requirement is in fact sufficient, we have by Chernoff bounds that

Pr(∃v ∈ S such that deg(v, S) ≤ (1− ǫ)kp) < (n− k)e−ǫ2kp/2 < ne−ǫ2c
2/3
4

n2/3
(7)

so for ǫ = 1
2 , this probability will go to 0. Therefore (5) occurs with high probability.

We find, with high probability, all vertices in S share at least one edge with the elements from
Su. Hence, no vertices outside S will be included in the set corresponding to u, as orthogonal
vectors are ℓ2 distance

√
2 away. Since only elements from S will be present in Su, the remaining

vertices of S will be added during the greedy step. Therefore, when the algorithm terminates, this
set will contain the original planted independent set with high probability.

This means that our algorithm can give full recovery as long as p = Ω( 1
n1/3 ) for k a constant

fraction of n. We do not hope for full recovery for p < (1 − ǫ) ln n/k, as Feige and Kilian showed
that with high probability this is impossible unless NP ⊆ BPP.

If we are given a vertex at random such as in the model of [20], then we can recover the original
set exactly.

Theorem 3.1. If we are given a random vertex of S, then with high probability, we can recover

the set S when k ≥ c2n
2/3/p.

Proof. We add the following steps to the algorithm:

• Remove all independent sets of size less than c2n
2/3/p from our list.

• For sets S1, S2 on the list, if S1 6= S2 and |S1 ∩ S2| ≥ (1− p/2)|S1| then remove S1.

• For sets S1, S2 on the list, if S1 6= S2 and |S1 ∩S2| ≥ 3(log n)/p, remove both S1 and S2 from
the list.

• If our random vertex u ∈ S is in exactly 1 set on our list, return this set. Otherwise, return
FAIL.

First we will show that with high probability S remains on the list by the end of the algorithm.
If S′ is on the list before the first removal step, it is necessarily maximal by the greedy step.
Therefore if S′ 6= S, then ∃v ∈ S′ such that v /∈ S. For S′ to be an independent set, there can be no
edges from v to S′ ∩ S. By (7), with high probability, every vertex in S satisfies deg(v, S) > kp/2,
meaning |S′ ∩ S| < (1− p/2)k, and S survives this step.

For S′ 6= S on the list immediately after the second removal step, we have |S′∩S| < (1−p/2)|S′|
so |S′∩S| > p|S′|/2 > c2n

2/3/2 > 3(log n)/p for large enough n, as we must have p = Ω(1/n1/3). If
|S′ ∩ S| ≥ 3(log n)/p, then there is T ⊂ S′ such that |T ∩ S| = 3(log n)/p and |T ∩ S| = 3(log n)/p.
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For any such set T , the probability that T is an independent set is at most (1 − p)(3(log n)/p)
2

.
The probability that an independent T exists is

Pr(∃ independent T ) ≤
(

k

3(log n)/p

)(

n− k

3(log n)/p

)

(1− p)(3(log n)/p)
2

(8)

< k3(log n)/p(n− k)3(log n)/pe−p(3(log n)/p)2 (9)

= k3(log n)/p(n− k)3(log n)/pn−9(logn)/p (10)

=

(

k(n − k)

n3

)3(logn)/p

≪ 1 (11)

meaning that S survives the second removal with high probability. (9) follows from the inequality
1− x ≤ e−x.

If s represents the number of unique independent sets on the list at the end of the algorithm,
then by the inclusion exclusion principle,

s
c2n

2/3

p
−
(

s

2

)

3 log n

p
≤ n

as there are n elements overall. Therefore

sc2n
2/3 −

(

s

2

)

3 log n ≤ np.

From this we can see that we must have

s ≤ 2n1/3

c2

for large enough n. The number of elements of S that will appear in other independent sets in our
list is at most

s
3 log n

p
≤ 6n1/3 log n

c2p
.

Therefore the probability that the random vertex of S we receive is in any of the other sets remaining
is at most

6n1/3 log n

c2pk
≤ 6 log n

c22n
1/3

≪ 1.
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