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Abstract

We study the space complexity of sketching cuts and
Laplacian quadratic forms of graphs. We show that
any data structure which approximately stores the sizes
of all cuts in an undirected graph on n vertices up
to a 1 + ε error must use Ω(n log n/ε2) bits of space
in the worst case, improving the Ω(n/ε2) bound of
[ACK+16] and matching the best known upper bound
achieved by spectral sparsifiers [BSS12]. Our proof is
based on a rigidity phenomenon for cut (and spectral)
approximation which may be of independent interest:
any two d−regular graphs which approximate each
other’s cuts significantly better than a random graph
approximates the complete graph must overlap in a
constant fraction of their edges.

1 Introduction

An ε−spectral sparsifier [ST04] of a weighted graph G
is a weighted graph H such that for every x ∈ Rn we
have the multiplicative guarantee:

(1.1) (1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

where LG is the Laplacian matrix of G and LH is the
Laplacian matrix of H. We recall that

(1.2) xTLGx =
∑

(u,v)∈E(G)

wu,v(xu − xv)2,

where wu,v is the weight of edges (u, v) in G. An ε−cut
sparsifier [BK96] is a graph such that (1.1) holds for all
x ∈ {−1, 1}n; the former condition clearly implies the
latter, and it is not hard to see that the converse is not
true.

There have been many papers on efficiently con-
structing sparsifiers with few edges (e.g. [SS11,
FHHP11, AZLO15, LS17]). The best known sparsity-
approximation tradeoff is achieved in [BSS12], who
showed that every graph on n vertices has an ε-spectral

∗chca0914@colorado.edu. C.U. Boulder.
†alexandra.kolla@colorado.edu. C.U. Boulder. Supported by

NSF Grant 1423452.
‡nikhil@math.berkeley.edu. U.C. Berkeley. Supported by NSF

grant CCF-1553751 and a Sloan research fellowship.
§luca@berkeley.edu. U.C. Berkeley. Supported by the National

Science Foundation under Grants No. 1540685 and No. 1655215.

sparsifier with O(n/ε2) edges (and this is also the best
known upper bound for ε-cut sparsification). Since ev-
ery weighted edge can be stored using O(log n) bits1,
storing such a sparsifier requires O(n log n/ε2) bits.

The recent work [ACK+16] studied the question of
whether it is possible to use substantially fewer bits if
one simply wants a data structure (not necessarily a
graph) which answers cut and quadratic form queries.
We will use the following definition, which is inspired
by the one in [JS17].

Definition 1.1. An ε−spectral sketch of a graph G is
a function f : Rn → R such that for every x ∈ Rn:

(1.3) (1− ε)xTLGx ≤ f(x) ≤ (1 + ε)xTLGx.

An ε−cut sketch is a function f : {−1, 1}n → R such
that (1.3) holds for all x ∈ {−1, 1}n.

A sketching scheme is a deterministic map sk from
graphs on n vertices to (ε-spectral or ε-cut) sketches
f : Rn → R, along with specified procedures for storing
the functions as bit strings and for evaluating any given
f on a query x 2. The number of bits required to store
f is called its size.

In [ACK+16] it was shown that any ε-cut sketch must
use Ω(n/ε2) bits in the worst case, leaving a logarithmic
gap between the best known upper and lower bounds.
In this paper, we close this gap by showing that any
ε-cut sketching scheme must in fact use Ω(n log n/ε2)
bits whenever ε = ω(n−1/4) (Theorem 3.1), which
means that it is not in general possible to obtain
any asymptotic savings by considering sketches which
are not graphs. We also give a lowerbound for ε-
spectral sketching with a simpler proof and slightly
better constants (Theorem 2.1).

1.1 Related Work

The paper [ACK+16] also studied the problem of pro-
ducing a “for each” sketching algorithm, which has

1After discretizing the weights to, say, 1/n4 precision, which
introduces negligible error.

2We will not be concerned with the details of these procedures
since we are only interested in the space used by the sketches
and not computational parameters such as query time / success
probability of randomized schemes.
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the property that for any particular query x, f(x)
approximates xTLx with constant probability. They
showed that in this weaker model it is possible to obtain
ε−cut sketches of size O(npolylog(n)/ε) and ε-spectral
sketches of size O(npolylog(n)/ε1.6). The latter bound
was recently improved to O(npolylog(n)/ε) and gener-
alized to include queries to the pseudoinverse in [JS17].

In contrast, in this paper we study only the “for
all” model, in which the sketch is required to work for
all queries simultaneously.

1.2 Techniques

Our proof is based on the following rigidity phe-
nomenon: there is a constant c such that if two
d−regular graphs c/

√
d-cut approximate each other

then they must overlap in a constant fraction of edges
(Lemmas 2.1 and 3.1). This allows us to argue that be-
low this approximation threshold any sketch encodes a
constant fraction of the information in the graph, and
so any sketch must use Ω(dn log n) = Ω(n log n/ε2) bits.

Interestingly, this phenomenon is very sensitive to
the value of the constant c — in particular, a well-known
theorem of Friedman [Fri03] says that the eigenvalues
of the Laplacian of a random d−regular graph are
contained in the range [d−2

√
d− 1−o(1), d+2

√
d+o(1)]

with high probability, which implies that almost every
d−regular graph has a 3/

√
d-spectral sketch of constant

size, namely the complete graph.
Note that according to the Alon-Boppana bound

[Nil91] it is not possible to approximate Kn by a
d−regular graph with error less than 2/

√
d. Thus, our

result can be interpreted as saying that a d−regular
graph can only be approximated by nearby graphs
when the error is substantially below the Alon-Boppana
bound.

We remark that the proof of [ACK+16] was based
on showing a Ω(1/ε2) bit lower bound for a constant
sized graph by reducing to the Gap-Hamming problem
in communication complexity, and then concatenating
O(n) instances of this problem to obtain an instance
of size n. This method is thereby inherently incapable
of recovering the logarithmic factor that we obtain (in
contrast, we work with random regular graphs).

1.3 Notation and Organization

We will denote ε-spectral approximation as

(1− ε)LG � LH � (1 + ε)LG

and ε−cut approximation as

(1− ε)LG �� LH �� (1 + ε)LG.

We will use lg and ln to denote binary and natural
logarithms.

We prove our lower bound for spectral sketching
in Section 2, and the lower bound for cut sketching in
Section 3. Although the latter is logically stronger than
the former, we have chosen to present the spectral case
first because it is extremely simple and introduces the
conceptual ideas of the proof.

1.4 Acknowledgments

We would like to thank MSRI and the Simons Institute
for the Theory of Computing, where this work was car-
ried out during the “Bridging Discrete and Continuous
Optimization” program.

2 Lower Bound for Spectral Sketches

In this section, we prove the following theorem.

Theorem 2.1. For any ε = ω(n−1/4), any ε-spectral
sketching scheme sk for graphs with n vertices must use
at least n lgn

500ε2 · (1− on(1)) bits in the worst case.

The main ingredient is the following lemma.

Lemma 2.1. (Rigidity of Spectral Approximation)

Suppose G and H are simple d−regular graphs such
that

(1− ε)LG � LH � (1 + ε)LG.

Then G and H must have at least dn
2 (1 − ε2d/2) edges

in common.

Proof. Since G and H are d−regular, we have LH −
LG = (dI−AH)−(dI−AG) = AG−AH and ‖LG‖ ≤ 2d
where AH is the adjacency matrix of H and AG is the
adjacency matrix of G. Thus the hypothesis implies
that:

−2dεI � −ε·LG � LH−LG = AG−AH � ε·LG � 2dεI,

which means ‖AG − AH‖ ≤ 2εd. Passing to the
Frobenius norm, we find that∑

ij

(AG(i, j)−AH(i, j))2 = ‖AG −AH‖2F

≤ n‖AG −AH‖2

≤ 4ε2d2n.

The matrix AG −AH has entries in {−1, 0, 1}, with ex-
actly two nonzero entries for every edge in E(G)∆E(H),
so the left hand side is equal to 2|E(G)∆E(H)| =
2(|E(G)|+ |E(H)|−2|E(G)∩E(H)|) = 2(dn−2|E(G)∩
E(H)|), since |E(G)| = |E(H)| = dn/2. Rearranging
yields the desired claim. 2

Note that the above lemma is vacuous for ε ≥
√

2/d but
indicates that G and H must share a fraction of their
edges for ε below this threshold.
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Lemma 2.2. For any function f : Rn → R and ε < 1/2:

lg |{G ∈ Gn,d : G is ε−spectrally approximated by f}|
≤ dn/2 + 5ε2d2n lg n,

where Gn,d denotes the set of all d−regular graphs on n
vertices.

Proof. If f does not ε−approximate any d−regular
graph then we are done. Otherwise, let H be the
lexicographically (in some pre-determined ordering on
d−regular graphs) first graph which f ε-approximates.
Suppose G is another graph that f ε−approximates.
Notice that by applying (1.3) twice, we have that for
every x ∈ Rn:

1− ε
1 + ε

≤ xTLHx

xTLGx
=

f(x)

xTLGx
· x

TLHx

f(x)
≤ 1 + ε

1− ε
,

so G 3ε-spectrally approximates H. By Lemma 2.1, H
and G must share

k :=
dn

2
(1− 9ε2d/2)

edges. Thus, G can be encoded by specifying:

1. Which edges of H occur in G. This is a subset of
the edges of H, which requires at most dn/2 bits.

2. The remaining dn/2 − k = 9ε2d2n/4 edges of G.
Each edge requires at most 2 lg(n) bits to specify, so
the number of bits needed is at most 18ε2d2n lg n/4.

Thus, the total number of bits required is at most

dn/2 + 18ε2d2n lg n/4,

as desired. 2

Theorem 2.2. ([Wor99]Cor. 2.4) For d = o(
√
n), the

number of d−regular graphs on n vertices is:

(dn)!

(dn/2)!2dn/2(d!)n
exp

(
1− d2

4
− d3

12n
+O

(
d2

n

))
≥ exp(dn ln(n/d)/2 · (1− on(1))).

Proof. [Proof of Theorem 2.1] Let N be the number of
distinct sketches produced by sk and let d = d 1

25ε2 e.
By Lemma 2.2, the binary logarithm of the number
of d−regular graphs ε-spectrally approximated by any
single sketch f ∈ range(sk) is at most

dn/2 + dn lg n/5 ≤ dn lg n/5 · (1 + o(1)).

On the other hand by Theorem 2.2, since d = o(
√
n) we

have

lg |Gn,d| ≥ dn lg(n/d)/2 · (1− o(1))

≥ dn lg n/4 · (1− o(1)).
(2.4)

Since every d−regular graph receives a sketch, we must
have

(1 + o(1)) lgN ≥ dn lg n/4− dn lg n/5

= dn lg n/20

= n lg n/500ε2,

as desired.
2

Remark 2.1. The proof above actually shows that any
1/5
√
d-spectral sketching scheme for d−regular graphs

on n vertices must use at least Ω(dn lg n) bits on aver-
age, since the same proof goes through if we only insist
that the sketches work for most graphs.

Remark 2.2. The result of [BSS12] produces ε-spectral
sparsifiers with 16n/ε2 edges, which yield ε-spectral
sketches with 64n lg n/ε2 bits by discretizing the edge
weights up to 1/n2 error, so the bound above is tight up
to a factor of 64 · 500. We have not made any attempt
to optimize the constants.

3 Lower Bound for Cut Sketches

In this section we prove Theorem 3.1. The new ingre-
dient is a rigidity lemma for cuts, which may be seen
as a discrete analogue of Lemma 2.1. The lemma holds
for bipartite graphs and is proven using a Goemans-
Williamson [GW95] style rounding argument.

Lemma 3.1. (Rigidity of Cut Approximation)

Suppose G and H are simple d−regular bipartite graphs
with the same bipartition L ∪R, such that

(3.5) (1− ε)LG �� LH �� (1 + ε)LG.

Then G and H must have at least dn
2 (1 − 3

√
dε) edges

in common.

Proof. We will show the contrapositive. Assume

|E(G) \ E(H)| = |E(H) \ E(G)| = δdn/2

for some δ ≥ 3
√
dε. To show that (3.5) does not hold, it

is sufficient to exhibit a vector x ∈ {−1, 1}n such that

xTMx := xT (LG − LH)x > 2εdn ≥ ε · xTLGx,

where M = LG − LH = AH − AG, since both graphs
are d−regular and the latter inequality follows from
‖LG‖ ≤ 2d. To find such an x we will first construct n
vectors y1, . . . , yn ∈ Rn such that

(3.6)

n∑
i,j=1

Mij〈yi, yj〉 > πεdn
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and then use hyperplane rounding to find scalars
x1, . . . , xn ∈ {−1, 1} which satisfy:

(3.7)
n∑

i,j=1

Mijxixj > 2εdn.

Let z1, . . . , zn ∈ Rn be the columns of

I +
M√
d
,

and note that ‖zi‖2 ∈ [1, 3] since zi(i)
2 = 1 and every

vertex is incident with at most d edges in each of
E(H) \ E(G) and E(G) \ E(H). The relevant inner
products of the zi are easy to understand:

Mij〈zi, zj〉 =
0 if Mij = 0
2√
d

= 1 · (1 · 1√
d

+ 1 · 1√
d
) if ij ∈ E(H) \ E(G)

2√
d

= (−1) · (1 · −1√
d

+ 1 · −1√
d
) if ij ∈ E(G) \ E(H),

where in the latter two cases we have used the fact that
i and j cannot have any common neighbors because
they lie on different sides of the bipartition. Letting
yi = zi/‖zi‖, we therefore have

(3.8)

n∑
i,j=1

Mij〈yi, yj〉 ≥ 2 · δdn · 2

3
√
d
> πεdn

by our choice of δ. Let w be a random unit vector and
let

xi =

{
+1 if 〈yi, w〉 ≥ 0

−1 if 〈yi, w〉 < 0.

We denote the angle between vectors yi, yj ∈ Y as θij .
We recall that θij = cos−1〈yi, yj〉 since yi and yj have
unit length. It follows that the probability that xi 6= xj
is equal to

θij
π and the probability of xi = xj is equal to

(1− θij
π ). We note that sin−1(x) ≥ x. Thus,

E

 n∑
i,j=1

Mijxixj

 =
n∑

i,j=1

MijE[xixj ]

=

n∑
i,j=1

Mij

(
−θij
π

+ (1− θij
π

)

)

=
n∑

i,j=1

Mij

(
1− 2θij

π

)

=
2

π

n∑
i,j=1

Mij

(π
2
− θij

)
=

2

π

n∑
i,j=1

Mij

(π
2
− cos−1〈yi, yj〉

)
=

2

π

n∑
i,j=1

Mij sin−1〈yi, yj〉

≥ 2

π

n∑
i,j=1

Mij〈yi, yj〉

> 2εdn,

by (3.8), as desired.
2

Remark 3.1. The analysis of the rounding scheme
above can be improved from 2/π to the Goemans-
Williamson constant 0.868 . . ., but we have chosen not
to do so for simplicity.

Theorem 3.1. For any ε = ω(n−1/4), any ε-cut sketch-
ing scheme sk for graphs with n vertices must use at least
n lgn
2304ε2 · (1− on(1)) bits in the worst case.

Proof. Assume n is divisible by 4 (add a constant if
this is not the case). Let d = 1

16·9ε2 and let Bn,d be
the set of bipartite graphs on n vertices with respect
to a fixed bipartition. We proceed as in the proof of
Theorem 2.1. Let f : {−1, 1}n → R be any function
which is an ε−cut sketch for some graph H. Arguing as
in Lemma 2.2, any other graph G ∈ Bn,d which has the
same sketch must 3ε-cut approximate H, so by Lemma
3.1, any such G must have at most 9

√
dε · dn/2 edges

which are not present in H. Thus, the encoding length
of such H is at most

` := dn/2 + 9d3/2nε lg n = dn lg n/16 · (1 + o(1))

bits, by our choice of d, so any particular f can only be
an ε-cut sketch for 2` graphs in Bn,d

On the other hand, Bn,d is quite large. Recall that
the bipartite double cover of a graph F on n vertices is
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the graph on 2n vertices obtained by taking its tensor
product with K2, and two distinct graphs must have
distinct double covers. Thus, by (2.4) we have

lg |Bn,d| ≥ lg |Gn/2,d| ≥ dn lg n/8 · (1− o(1)).

Thus, if N is the number of distinct sketches
produced by sk, we must have

(1 + o(1)) lgN ≥ dn lg n/8− dn lg n/16

= dn lg n/16

= n lg n/(16)2 · 9ε2,

as desired. 2
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