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Climate engineering—the deliberate large-scale manipulation of
the Earth’s climate system—is a set of technologies for reduc-
ing climate-change impacts and risks. It is controversial and raises
novel governance challenges [T. C. Schelling, Climatic Change, 33,
303–307 (1996); J. Virgoe, Climatic Change, 95, 103–119 (2008)].
We focus on the strategic implications of solar geoengineering.
When countries engineer the climate, conflict can arise because
different countries might prefer different temperatures. This
would result in too much geoengineering: The country with the
highest preference for geoengineering cools the planet beyond
what is socially optimal at the expense of the others—a theoret-
ical possibility termed “free-driving” [M. L. Weitzman, Scand. J.
Econ., 117, 1049–1068 (2015)]. This study is an empiricalQ:9 test of
this hypothesis. We carry out an economic laboratory experiment
based on a public “good or bad” game. We find compelling evi-
dence of free-driving: Global geoengineering exceeds the socially
efficient level and leads to welfare losses. We also evaluate the
possibility of counteracting the geoengineering efforts of others.
Results show that countergeoengineering generates high pay-
off inequality as well as heavy welfare losses, resulting from
both strategic and behavioral factors. Finally, we compare strate-
gic behavior in bilateral and multilateral settings. We find that
welfare deteriorates even more under multilateralism when coun-
tergeoengineering is a possibility. These results have general
implications for governing global good or bad commons.

climate governance | geoengineering | multilateralism | inequality

Unless urgent and drastic policy measures are taken, climate
change will have profound consequences on human soci-

eties, national economies, and Earth’s ecosystems. Despite the
scientific consensus on climate change, global CO2 emission lev-
els in 2019 are at their historical highest (1). Agreements on
effective international measures for emissions reduction have
been difficult because of the challenges posed by climate gov-
ernance (2–4). Meanwhile, by procrastinating action, we have
consumed the largest part of the carbon budgets compatible with
climate stabilization at 1.5 and 2 ◦C, the targets defined in the
Paris Agreement, with only a few years left at the current emis-
sion rates (5, 6). Because climate change is a stock externality
(7), even if effective and timely actions to curb emissions occur,
we will not completely halt the temperature increase resulting
from the accumulation of past emissions. These emissions have
modified the CO2 content of the atmosphere far above any level
within the past hundreds of thousands of years (8). Recent liter-
ature has highlighted negative economic impacts resulting from
climate change (9) and the fast-approaching tipping point to be
higher than previously expected (10).

In this context, climate-engineering options are increasingly
being considered as a means of deliberately intervening in
Earth’s climate system (11). They comprise two fundamentally
different strategies (12–14). CO2 removal, which tackles the
source of anthropogenic climate change, is similar to emission
reduction. Solar geoengineering (henceforth, geoengineering),
on the other hand, affects the amount of incoming radiation

from the sun and, thus, directly affects the planet’s temper-
ature. Geoengineering does not address the cause of anthro-
pogenic alteration of the climate—namely, the atmospheric CO2

concentration—and the direct damage it entails (e.g., ocean acid-
ification). In this paper, we focus on the latter type of climate
engineering.

Solar geoengineering has three notable characteristics. First, it
is relatively effective. It has been shown to be able to offset tem-
perature increase rapidly and well (15–19). Second, it is cheap.
Cost estimates vary, but they are generally lower than those asso-
ciated with mitigating CO2 emissions (20, 21). Third, it is risky.
The potential side effects include direct impacts on health (22–
24) and agriculture (25), as well as other adverse effects that are
not yet fully understood. Moreover, and most importantly for this
paper, the nature of this technology sets the stage for new and
serious governance challenges (26–29).

One such challenge stems from the possibility that one or
more regions could deploy geoengineering to the detriment of
others. Given its relatively low cost, a unilateral geoengineer-
ing effort would not have expense as a limitation, particularly
in light of the potential geopolitical benefits of setting the world
temperature at the ideal point for a specific region. This possibil-
ity might be particularly appealing to regions that would suffer
the most from unabated global warming (30). However, uncoor-
dinated unilateral actions could result in global geoengineering
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levels well above the social optimum, a phenomenon known as
“free-driving” (31). Such an oversupply of geoengineering would
have clear winners—the regions with a low ideal temperature—
and almost everyone else would lose. The free-driving externality
could lead to significant welfare losses (32), which would exac-
erbate the already looming free-riding problem that affects
emission reductions. It could also lead to retaliatory actions,
including an escalation of geoengineering efforts. Specifically,
regions that are adversely affected by another region’s efforts
could countergeoengineer the climate by spraying particles that
absorb sunlight radiation and thus cause temperature to increase
(33, 34).

The general setup underlying free-driving is that of a public
good or bad (GoB). The GoB game differs from the canon-
ical public good games (35)—even those in which agents can
both give or take contributions (36)—in that 1) the provi-
sion cost is so low that agents can provide the good; and 2)
a conflict over the total provision is present because agents
are characterized by heterogeneous, single-peaked preferences.
Geoengineering is a commodity that has public consequences;
that is, it affects Earth’s temperature. Different parties have dif-
ferent ideal temperatures and, thus, potentially conflicting ideal
points in terms of global geoengineering effort. Any upward or
downward deviation from a region’s ideal point leads to eco-
nomic losses for that region. This framework aligns with the
climate case, for which empirical evidence suggests a nonmono-
tonic relation between temperature and economic growth and
the existence of an optimum temperature for productivity growth
(30). Because of the heterogeneity in ideal points, different
regions will most likely disagree on their ideal level of geoengi-
neering. As a consequence, an overprovision by the country or
coalition with the highest ideal level of geoengineering would
result in global welfare losses and likely exacerbate inequality. A
GoB game with two countries resembles a dictator game where
roles are random and bargaining power asymmetric. Yet, the
country with low ideal point has choices and can punish the
other one.

The literature includes some experimental evaluations of
climate-change cooperation (37–39), but, to the best of our
knowledge, empirical evidence is lacking on the hypothesis of
free-driving in climate engineering. Further, no investigations
have been conducted regarding the consequences of possible
technological responses, such as countergeoengineering, that
could make climate governance even more challenging. Our
study is intended to bridge this gap in the literature and con-
tribute to the growing debate about climate engineering in
climate negotiations. Our methodology centers on a controlled
laboratory experiment to analyze behavior in a GoB game that is
carried out in a simple bilateral world with just two decision mak-
ers and in a complex multilateral world with six decision makers.
In the experiment, decision makers with different ideal points
choose a level of geoengineering through a decentralized effort
decision with global consequences.

In our experiment, the basic decision-making unit is a team of
two persons. We did this because teams are generally considered
more rational than individuals making decisions in isolation (see
ref. 40 for a review) and because the design minimally captures
the collective process behind national choices generated by coun-
tries. The experiment is unframed, and climate change is never
mentioned, although we refer to it in what follows.

The experiment comprises two treatments, “baseline” and
“counter,” that differ according to whether or not decision mak-
ers can exert effort in countergeoengineering (i.e., undo the
geoengineering efforts of other decision makers). We define
countergeoengineering as the use of technical means to negate
the change in radiative forcing caused by geoengineering deploy-
ment (34, 41). Each session has three parts (SI Appendix, Fig.
S1). In part 1, all participants, regardless of the treatment, play

the baseline GoB game for five rounds under economies of two
decision makers (N =2) that are characterized by distinct ideal
points. In part 2, participants remain in the same economies
of part 1 and play their treatment-specific game (baseline or
counter) for five rounds. In part 3, the treatment-specific game
is played for 15 rounds, but in economies of six decision makers
(N =6), with each decision maker characterized by one of three
possible ideal points.

For tractability, we introduce some simplifying assumptions.
First, the outcomes of geoengineering policies are deterministic.
We abstract from unknown effects of geoengineering, such as its
effect on rainfall patterns, ozone levels, and the political cost of
conflict over the level of geoengineering. Second, we consider a
repeated but static interaction: Geoengineering in a round does
not affect temperature in subsequent rounds. Third, apart from
their ideal points, we assume that all decision makers are identi-
cal: They have the same size, action space, geoengineering costs,
and losses incurred from deviations from their ideal points.

Geoengineering Game. In each round t , each decision maker i
chooses how much of their endowment, E =150, they want
to invest in geoengineering effort, gi . Participant earnings are
expressed in E$ (2 E$ = 0.01 euro [EUR]). These Q:10earnings
are converted to EURs at the end of the session, and partici-
pants are paid in cash. In baseline, gi ∈ [0, 15], while in counter,
gi ∈ [−15, 15]. Every unit of geoengineering effort, |gi |, costs
α=4. We leave out other climate strategies such as mitigation
and adaptation. We assume that the world has continued to
excessively produce greenhouse-gas emissions and that exten-
sive climate-related damage—in the form of rising sea levels,
altered ocean and atmospheric circulation patterns, and harm-
ful regional weather changes—are imminent unless we are able
to deliberately geoengineer the temperature. The global provi-
sion of geoengineering,

∑
i gi =G , affects the payoffs of each

decision maker i :

πi =E −α|gi | −λ|G −G∗i |. [1]

The decision makers are heterogeneous in their desired level
of global geoengineering, G , reflecting different geographical
locations. In the experiment, ideal points G∗i could be either
two, six, or 10 (henceforth, IP2, IP6, and IP10, respectively).
Both underprovision or overprovision of G results in loss. More
specifically, any deviation of the global geoengineering effort G
from the decision maker’s ideal point, G∗i , entails a loss, symmet-
ric on both sides, amounting to λ=10 per unit. All parameter
values are public information. After each round, decision mak-
ers observe the global geoengineering level, as well as efforts of
others.

An economy of six always includes two each of IP2, IP6, and
IP10. Decision makers with IP10 will have a unilateral incentive
to geoengineer because α<λ. Hence, theory predicts baseline
to be inefficient with global geoengineering equal to the highest
ideal point in the economy (G =10) and social surplus at 86%
of the socially optimal level (Fig. 1, Materials and Methods, and
SI Appendix, Proofs). Theory predicts that IP2 and IP6 decision
makers will not produce anything, and IP10 decision makers will
divide a total production of 10 among themselves. The social
optimum is at G =6, corresponding to the median ideal point
in the economy. Countergeoengineering is predicted to bring
the global effort down to the socially optimal level. However, a
“geoengineering war” would ensue as a result of the escalation
of efforts (33) and is expected to generate greater inefficiencies
than baseline (Fig. 1; see also Materials and Methods). The rea-
soning is similar for economies of two in parts 1 and 2, with the
caveat that there are three different types of economies of two: 1)
IP2 facing IP6, 2) IP2 facing IP10, and 3) IP6 facing IP10 (Mate-
rials and Methods and SI Appendix, Table S1). Under baseline
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Global geoengineering

Social optimum (100%)

Baseline (predicted: 87%)
Baseline (realized: 82%)

Counter (predicted: 67%)

Counter (realized: 34%)

Status
quo CoolingWarming

IP2 IP6 IP10

Fig. 1. Geoengineering in a multilateral world (n = 6). Global geoengineer-
ing is the sum of all effort levels. Relative to the status quo, geoengineering
efforts reduce temperature, while countergeoengineering efforts increase
it. Individual surplus refers to individual profits, while social surplus is the
sum of individual profits in an economy. The lower part of the figure
shows that individual payoffs from global geoengineering peak at a deci-
sion maker’s ideal point. Losses, due to excessive cooling or warming, are
symmetric. The shaded area in the upper part of the figure refers to the
efficiency frontier in terms of social surplus. The diamond, circle, and square
open symbols indicate the social surplus under social optimum, baseline pre-
diction, and counter prediction, respectively, while their filled counterparts
refer to the realized outcomes in the experiment. The horizontal lines on
the filled symbols represent the average within-economy 95% CI for global
geoengineering. Percentages in parentheses refer to the fraction of effi-
ciency achieved. The unit of observation is an economy in a round (i.e., for
each treatment n = 90).

economies of two, the predicted effort equals the higher ideal
point, while the social optimum equals the lower ideal point.
Additional details on the experimental design can be found in
Materials and Methods and SI Appendix.

Results
Free-Driving Confirmed. The experimental evidence∗ strongly
supportsQ:11 the hypothesis of free-driving behavior when each deci-
sion maker chooses its geoengineering effort. In a multilateral
scenario (N =6), global geoengineering is near the predicted
level (average 9.8 vs. predicted 10 in baseline: WSR test, P >
0.10, n =6). This level brings excessive cooling and lowers social
surplus, which is computed as the sum of the earnings of all deci-
sion makers in an economy in a round. The realized total surplus
is significantly below the socially optimal level (82%; Fig. 1; total
surplus actual vs. social optimum: WSR test, P < 0.05, n =6),
but very close to the predicted value of 87%. The social opti-
mum prescribes a level of geoengineering that yields the median
of all ideal points in the economy, not the highest one. Also
in line with the predictions, the geoengineering effort in base-
line is overwhelmingly undertaken by the decision makers with
the highest ideal point (86% with N =6; SI Appendix, Figs. S2A
and S3). In a multilateral scenario, the two IP10 decision mak-
ers roughly split the cost of effort to reach the desired global
geoengineering level—in 37% of cases, the split was exact—
and the other decision makers contribute a negligible amount
(SI Appendix, Fig. S3). Additional support for the free-driving
hypothesis comes from the data generated under the economies
of two scenarios (N =2). At the economy level, global geoengi-
neering was close to the preferred level of the decision maker

*All nonparametric tests conducted are either Wilcoxon–Mann–Whitney (WMW) or
Wilcoxon signed rank (WSR) two-tailed exact tests.

with the highest ideal point (SI Appendix, Figs. S4 and S5A),
who exerted most of the effort (91%; part 2). Prosocial behav-
ior is lower than in many dictator games, most likely because 1)
decision makers are teams rather than individuals (42); 2) initial
endowments are equal and substantial (43); and 3) interaction is
repeated (44).

Dramatic Effects of Countergeoengineering. Theory predicts a
strategic shift when decision makers are able to countergeo-
engineer the climate. One effect is a geoengineering war, which
occurs as those with high ideal points boost their geoengineering
efforts in anticipation of those with lower ideal points coun-
teracting them with (negative) efforts to warm temperatures.
In a multilateral scenario (N =6), such escalation of efforts is
expected to reduce social surplus to 67% of the socially opti-
mal surplus. In terms of effort, positive and negative efforts
would counteract each other, and the predicted outcome of the
experiment is a temperature at the socially optimal level. The
observed average global geoengineering in counter is very close
to this prediction (actual of 5.97 vs. predicted of 6.00) and is
significantly lower than the level of aggregate geoengineering in
baseline (WMW test, P < 0.01, n =12; see also regressions in SI
Appendix, Table S3). But this average hides a variability that has
massive implications for welfare. Indeed, countergeoengineering
induces a significant welfare loss: The realized social surplus in
the multilateral scenario of counter is only 34% of the socially
optimal level, half the predicted level of 67% (Fig. 1; total surplus
vs. social optimum: WSR test, P < 0.05, n =6). This outcome is
not, as would be expected, the result of a geoengineering war.
This is less severe than predicted (Fig. 2A), with a welfare loss
of only 22% of the socially optimal surplus. Rather, the driver of
the poor performance is the frequent undershootings and over-
shootings of global geoengineering levels (Fig. 2B). Although the
average global effort was close to the predicted level of six, this
level was exactly achieved in only 4.4% of the cases (SI Appendix,
Fig. S2B). In about 23% of cases, global geoengineering was at or
below zero, and in about 16% of the cases, it was at or above 15
(SI Appendix, Fig. S2B). The variability in global geoengineering
is also evident from the 95% CI shown in Fig. 1, which spans from
−4.5 to 16.4 and is four times as wide as the corresponding inter-
val in baseline (7.3 to 12.4). In counter, oscillations of effort in an
economy across rounds were present in all economies and were
wider than in baseline (average Q:12[ave.] baseline deviation from
prediction is 1.8 vs. ave. counter deviation from prediction is 8.3:
WMW test, P< 0.01, n =12; SI Appendix, Figs. S6 and S7). Thus,
in counter, inefficiencies due to temperature undershooting and
overshooting are greater than the inefficiencies due to the esca-
lation of effort (44% vs. 22%; Fig. 2B and SI Appendix, Fig. S8).
The first ones diminish over rounds as experience accumulates,
but never vanishes.

The origin of temperature undershooting and overshooting is
the strategic uncertainty characterizing the multilateral scenario
of counter. The first factor generating uncertainty is the presence
of many decision makers all putting nonzero effort (472 times in
counter vs. 223 times in baseline; Fig. 3 and SI Appendix, Fig. S9).
The second factor is the strategic interdependency of choices in
counter, which is absent in baseline. Assume that some decision
makers systematically deviate from the theoretical equilibrium
behavior because of mistakes or in an attempt to restrain the
escalation in efforts. In baseline, IP10 decision makers should
react to small deviations of others, while the best reply of IP2 and
IP6 decision makers would be unaffected. In counter, all decision
makers need to adjust their effort level in response to others’
deviations. In the experiment, such responses played a larger
role in early rounds because IP2 and IP10 were not exerting
efforts at the bounds (−15 and 15, respectively), as theory would
predict (SI Appendix, Fig. S8). Paradoxically, the losses gener-
ated by the strategic uncertainty caused by this behavior early on
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Fig. 2. Drivers of inefficiency over time. Losses to social surplus can come either from the escalation in geoengineering effort expenditures (type 1 loss; A)
or overshooting and undershooting the social optimum level of global geoengineering (type 2 loss; B). In a multilateral scenario (N = 6), baseline shows a
low type 1 loss (as predicted) and a medium type 2 loss (as predicted), while counter shows a high type 1 loss (as predicted) and an even higher type 2 loss
(not predicted). The type 2 loss in counter heavily affected realized surplus. Open symbols on the vertical axes indicate the predicted values for N = 2 (small
symbols) and N = 6 (large symbols). Circles refer to baseline and squares to counter. In both treatments, type 1 losses were higher under N = 2 than under
N = 6, while type 2 losses were lower under N = 2 than under N = 6. For N = 6, the unit of observation is an economy in a round (n = 90 for each treatment).
For N = 2, the unit of observation is the sum of three different economy types of part 2 (n = 90 for each treatment).

overshadow the potential losses from effort escalation that they
were trying to avoid. Further support for this interpretation
comes from the bilateral scenarios, which exhibit a drastically
lower loss from overshooting and undershooting (8% in counter
and 3% in baseline; Fig. 2B).

Finally, the counter condition generated a high inequality in
payoffs among decision makers. The Gini index in counter was
higher than in baseline (SI Appendix, Table S2), but also higher
than predicted (actual of 0.31 vs. predicted of 0.25). As predicted,
IP2 and IP10 decision makers had lower profits in counter com-
pared to baseline (counter: 33 [IP2], 23 [IP10] vs. baseline: 70
[IP2], 115 [IP10]). Contrary to predictions, IP6 decision makers
in counter also had lower profits than those in baseline (67 in
counter vs. 109 in baseline).

Complexity in a Multilateral World. Our experiment also high-
lights the importance of studying geoengineering in a multilateral
setup. Theoretical and empirical reasons exist for going beyond
a bilateral setup. In theoretical models, the strategic incentives
to exert effort can substantially change, depending on the num-
ber and preferences of decision makers. Going from a bilateral
to a multilateral scenario has consequences for the complexity
of the coordination problem and for the equilibrium structure.
For instance, our GoB game has a unique equilibrium in the
bilateral scenarios and multiple equilibria in the multilateral
scenario.

Experimental evidence shows that decision makers under-
stood the change in game incentives well (Fig. 3 and SI Appendix,
Tables S4–S7). First, consider baseline. In a bilateral setting, the
IP10 decision maker is expected to provide the entire global geo-
engineering effort, while in a multilateral setting, two decision
makers coordinate efforts to reach the same global geoengineer-
ing level of 10. In the experiment, the average effort of IP10
decision makers was 8.4 under N =2 and 4.2 under N =6 (sig-
nificantly different at P < 0.001 according to Tobit regressions
in SI Appendix, Table S6A; Fig. 3A). Next, consider counter. In
a bilateral setting, the IP6 decision maker is predicted to pro-
vide an effort level of 15 if paired with IP2 or −9 if paired with
IP10, while in a multilateral setting, two decision makers coor-
dinate efforts to provide a global geoengineering level of six.
In the experiment, the average effort of IP6 was 9.5 and −4.7,

respectively, under N =2, and it was 1.1 under N =6 (signifi-
cantly different at P < 0.01, according to Tobit regressions in
SI Appendix, Table S6B; Fig. 3B). Experimental evidence also
shows that moving from a bilateral to a multilateral setting in
counter resulted in unexpectedly large losses stemming from the
frequency of temperatures overshooting and undershooting with
respect to the socially optimum level, as discussed above.
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Fig. 3. Strategic behavior in a bilateral (N = 2) vs. multilateral (N = 6) sce-
nario. (A) Baseline. (B) Counter. All decision makers were initially placed in
a bilateral setting (N = 2) and then in a multilateral setting (N = 6). If deci-
sion makers were together in economies of two, they remained together in
economies of six. A decision maker’s ideal point remained the same within
the session. In the experiment, decision makers were able to adjust their
effort level in the predicted direction. Open symbols on the vertical axes
represent the predictions for each ideal point under N = 2 (left axis) and
N = 6 (right axis). Filled symbols show the average geoengineering effort
for each ideal point. The unit of observation is a decision maker in a round;
that is, for each treatment and economy type, n = 540 for N = 6 and n = 60
for N = 2. More about bilateral scenarios is in SI Appendix, Fig. S10, part 1
vs. part 2).
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In other words, the shift in complexity affected treatments
differently. In baseline, the difference in aggregate variability
between the bilateral and the multilateral setups was minimal:
The number of times that global geoengineering fell outside the
ideal points’ range was similar in the two setups (16% vs. 22%,
probit regression: P = 0.11, n =npt2 +npt3 =720 with npt1 =180,
npt1 =540). For counter, the multilateral scenario exhibited a
much higher variability in outcomes, although experience pro-
gressively reduced variability (26% vs. 52%, probit regression:
P< 0.01, n =npt2 +npt3 =720 with npt1 =180, npt1 =540).

Discussion
Geoengineering is a potential additional strategy for combat-
ing the detrimental effects of climate change that is increasingly
being considered in scientific and policy discourses (45). While
it may be inexpensive and effective in immediately reducing
temperature levels, it may also generate risks that outweigh
those it is intended to reverse. In particular, we focus on risks
and challenges associated with its governance. Countries whose
optimal level of geoengineering is highest, such as those that
will suffer the most from climate change, can free-drive and
thereby propel geoengineering efforts beyond what is socially
optimal. In an experimentalQ:13 assessment, we confirm the the-
oretical predictions of free-driving: Under baseline, the total
surplus of economies of six is 82% of what would be the social
optimum, slightly worse than theoretically predicted (86%). The
lion’s share of geoengineering efforts is borne by those with the
highest desire to cool the planet, at the expense of the others.
Countries with the highest ideal level of geoengineering earn,
on average, 65% more than those with the lowest ideal level of
geoengineering.

We also study a technology that can place the global tem-
perature at the socially optimal level by counterbalancing exces-
sive efforts in geoengineering. While countergeoengineering can
theoretically offset global cooling, neutralizing the free-driving
inefficiency, one can also expect retaliatory efforts that increase
inequality and generate deadweight losses. The empirical results
are even higher than theoretically predicted and confirm the
onset of a geoengineering war, but not to the extent predicted
by theory. However, the experiment reveals that the greatest
inefficiency of countergeoengineering does not come from effort
escalation, but rather from the instability in global effort, which
theory did not predict. Many rounds are needed before the
variability in outcomes is smoothed out. A plausible explana-
tion is that decision makers at lower and higher ideal points
do not exert extreme efforts, as theory predicts, in an attempt
to avoid escalation. This behavior, however, creates high strate-
gic uncertainty. The resulting variability in outcomes ends up
being more detrimental to the economy in terms of economic
surplus than the losses that would be incurred from effort
escalation.

These results hold regardless of economy size (N =2 or N =
6). However, multilateralism complicates coordination. This
complication is particularly relevant for countergeoengineering,
especially in the field, where policing investments in geoengi-
neering efforts is difficult, and group sizes and compositions are
uncertain and possibly change in each round. This possibility has
implications for the governance of geoengineering, which is likely
to take place in a context of multiple countries. Communication
may likely improve outcomes, and this could certainly also be
studied experimentally.

The setup used in this paper makes a series of simplifying
assumptions, such as assuming geoengineering is the only strat-
egy and abstracting from the indirect effects of geoengineering.
The presence of costly side effects from geoengineering would
further weaken the attractiveness of a world with countergeo-
engineering. The possibility of further retaliatory actions, such
as military intervention, might also limit free-driving. On the

other hand, inequality in decision makers’ endowments, which
is a proxy for variable welfare of countries, might exacerbate
free-driving, given that the regions that will suffer the most from
global warming are also the poorest.

Regardless of these shortcomings, which we hope to address
in future work, our paper provides a serious warning of the
consequences of strategic as well as behavioral factors for geo-
engineering. Both contribute to lowering welfare and increasing
inequalities. The set-up, and the experimental results we derived,
apply more generally to the class of public GoB games, which are
relevant for the management of economic and natural resources.

Materials and Methods
A total of six sessions were conducted on the campus of Bologna University,
with exactly 24 participants per session (SI Appendix, Table S8), who were
recruited from the undergraduate student population by using ORSEE (46).
Each session was randomly assigned to be either a baseline treatment or a
counter treatment, and it comprised 25 rounds of interaction. Each partici-
pant participated in only one session. Average earnings were about 20 EUR,
inclusive of the 6 EUR of the show-up, for sessions that lasted for 2 h on
average.

At the beginning of the experiment, individuals were randomly matched
in teams of two members, and a team was assigned an ideal point that they
kept for the entire experiment. In each round, a team could have a 1- or
2-min discussion and had to reach a unanimous decision. Decisions were
made individually, but had to be identical within a team. In cases of dis-
agreement, individuals were asked to re-enter their decisions. Unresolved
disagreements occurred in between 2% and 4% of all choices, depending on
the session, affecting on average 10% of economies (SI Appendix, Fig. S11).
In part 3, though, the impact was larger on counter than baseline economies
(16% vs. 3%, WMW test, P < 0.05, n = 12).

Before the first round, teams were randomly matched in economies of
two and remained in a fixed matching for 10 rounds under a bilateral set-
ting. After round 10, three economies of two with different ideal point
combinations were merged to form an economy of six under a multilateral
setting. This matching remained fixed for 15 rounds. Each participant was
assigned a computer station with partitions blocking their view of all other
stations. Participants were not allowed to communicate with one another
for the duration of the experiment, except when the chat window opened
for communicating with their team member. The experiment was conducted
by using z-Tree (47). An experimenter read the instructions aloud, after
which the participants answered a quiz to ensure that they understood
them. At the end of the session, participants were asked to complete an
unpaid survey questionnaire, which included socio-demographic questions
as well as questions on individual preferences following ref. 48. Copies of
the full experimental instructions and the questionnaire are provided in SI
Appendix, Instructions.

In the same experiment, we collected data on two additional treatments,
treaty and transfers. We will report about these treatments in a separate
paper.

The experiment was neutrally framed and involved no deception. We
never mentioned climate change, and decision makers were referred to as
“teams,” economies were referred to as “groups,” and geoengineering was
referred to as “production.” The experiment was granted ethics (Institu-
tional Review Board) approval by Bocconi University on December 4, 2013.
Informed consent was obtained from all participants.

Theoretical Considerations. For both baseline and counter treatments, the
optimal level of global geoengineering in N = 2 was equal to the lowest
ideal point and in N = 6, to the median ideal point. Under N = 2, this yielded
a total surplus of 252 (IP2 and IP6), 212 (IP2 and IP10), and 236 (IP6 and IP10),
and, under N = 6, a total surplus of 716 (IP2, IP6, and IP10). Under N = 6, the
predicted Gini index of inequality reaches a minimum of 0.07 if effort is
equally split by the two IP6 decision makers.

In baseline, all types of economies admit a unique subgame Q:14perfect
Nash equilibrium outcome: Global geoengineering equals the highest ideal
point in the economy. Under N = 2, the decision maker with the highest
ideal point contributes all of the effort, and the other decision maker puts
in zero. Under N = 6, the two IP10 decision makers put in a total effort
equal to 10. The predicted outcome is suboptimal relative to the total sur-
plus from the social optimum: 94% for economy (IP2 and IP6), 85% for
economy (IP2 and IP10), 93% for economy (IP6 and IP10), and 87% for
economy of six. Inequality, as measured by the Gini index, is 0.03 for econ-
omy (IP2 and IP6), 0.11 for economy (IP2 and IP10), 0 for economy (IP6 and
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IP10), and 0.13 for the economy of six (when IP10 decision makers produce
five each).

In counter, global geoengineering equals the lowest ideal point of the
decision makers in N = 2 and the median ideal point of the decision makers
in N = 6. In N = 2, the decision maker with the higher ideal point con-
tributes the maximum amount of effort, while the decision maker with
the lower ideal point counteracts this effort and brings it down to its own
ideal level. In N = 6, IP10 decision makers put in 15, IP2 decision mak-
ers put in −15, and IP6 decision makers put in a total of six. Counter
leads to a level of global geoengineering equivalent to the socially opti-
mal one, but the resulting total surplus is not the same; that is, countries’
efforts are wasted, as

∑
j 6=i |gj,i|�G. In N = 2, this sum is 26 for economies

(IP2 and IP6) and (IP2 and IP10) and 24 for (IP6 and IP10). In N = 6, this
sum is 66, resulting in a total surplus of just 66% of the socially opti-
mal surplus and an inequality of 0.25 (when IP6 decision makers produce
three each).

A summary of these theoretical predictions is available in SI Appendix,
Table S1. The formal proofs for a general N is available in SI Appendix, Proof
of Theoretical Predictions. We also report theoretical analyses of two model

extensions in SI Appendix, Robustness of Theoretical Results to Variations
of the Model Assumptions): allowing quadratic instead of linear damages
and taking away the upper bound of effort. Predictions are qualitatively
similar.

Data Availability. All relevant Q:15data and code are included in the manuscript,
SI Appendix, and Datasets S1–S4.
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