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I. Additional Results in the Matrix AJD Model

A. Pricing Transform in the Matrix AJD Model

Under Assumption 2 and Assumption 5, the closed-form exponentially affine risk-neutral

transform for YT := log(ST ) is given by:

Ψ(τ ; γ) := Et [exp (γYT )] = exp
(
γYt + tr

[
A(τ)Xt

]
+B(τ)

)
, (A-1)

where τ = T − t, A(τ) = C22(τ)−1C21(τ) and the 2× 2 matrices Cij(τ) are the ij−th blocks

of the matrix exponential:(
C11(τ) C12(τ)

C21(τ) C22(τ)

)
= exp

[
τ

(
M + γQ′R −2Q′Q

C0(γ) −
(
M ′ + γR′Q

) )] . (A-2)

The explicit expressions for the 2× 2 matrix C0 is:

C0(γ) =
γ(γ − 1)

2
I2 + Λ

[
ΘY (γ)− 1− γΘY (1)

]
, (A-3)

and real-valued function B(τ) is given by:

= τ
{

(γ − 1)r + λ0

[
ΘY (γ)− 1− γΘY (1)

]}
−β

2
tr[ln(C22(τ)) + τ(M ′ + γR′Q)] (A-4)

where ln(·) is the matrix logarithm and ΘY (γ) is the univariate Laplace transform of the

return jump size distribution. In the case of the double exponential distribution,

ΘY
DX(γ) =

λ+λ−

λ+λ− + γ(λ+ − λ−)− γ2
.

In the case of the lognormal distribution

ΘY
LN(γ) = (1 + k)γ exp

(
γ(γ − 1)

δ2

2

)
,

see, e.g., Leippold and Trojani (2008).
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B. Variance Risk Premium in the Matrix AJD Model

The affine expression for the variance risk premium in Proposition 1 is obtained by recalling

the relations:

V RPt(τ) = tr

(
(EP

t − E
Q
t )

[
1

τ

∫ t+τ

t

Xsds

])
+ (EP

t − E
Q
t )

[
1

τ

∫ t+τ

t

(dSs/Ss−)2

]
= tr

(
(EP

t − E
Q
t )

[
1

τ

∫ t+τ

t

Xsds

])
+EQ[E(1 + k)]tr

(
Λ(β∗λE

P
t − E

Q
t )

[
1

τ

∫ t+τ

t

Xsds

])
.

This shows that V RPt(τ) is the sum of two-affine functions of state Xt. To compute these

functions in closed-form, we need to compute the P and Q expectation of the average inte-

grated state X in our model. These expectations are available in closed-form:

EQ
t

[
1

τ

∫ t+τ

t

Xsds

]
= XQ

∞ +
1

τ

∫ τ

0

eMu(Xt −XQ
∞)eM

′udu , (A-5)

where the long-run mean XQ
∞ is the unique solution of the Lyapunov equation MXQ

∞ +

XQ
∞M

′ = βQ′Q. Similarly,

EP
t

[
1

τ

∫ t+τ

t

Xsds

]
= XP

∞ +
1

τ

∫ τ

0

eM
∗u(Xt −XP

∞)eM
∗′udu , (A-6)

where XP
∞ is such that M∗XP

∞ +XP
∞M

∗′ = β∗Q′Q. This implies, for any 2× 2 matrix D:

tr

(
DEQ

t

[
1

τ

∫ t+τ

t

Xsds

])
= tr

[
D ·
(
XQ
∞ + AQ

τ (Xt −XQ
∞)
)]

, (A-7a)

tr

(
DEP

t

[
1

τ

∫ t+τ

t

Xsds

])
= tr

[
D ·
(
XP
∞ + AP

τ (Xt −XP
∞)
)]

, (A-7b)

where, for any 2× 2 matrix H:

AQ
τ (H) :=

1

τ

∫ τ

0

eMuHeM
′udu ; AP

τ (H) :=
1

τ

∫ τ

0

eM
∗uHeM

∗′udu .

Since these two functions are linear in H, the variance risk premium is affine in Xt. This

concludes the proof. �
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C. Stochastic Discount Factor in the Matrix AJD Model

Existence of a well-defined stochastic discount factor to price all shocks in our model is

ensured by a proper density for an equivalent change of measure, from the physical to the

risk neutral probability. To this end, we specify matrix processes {Γ1t}, {Γ2t} for the market

prices of Brownian shocks dW ∗
t , dB∗t , and an appropriate distribution for return jumps.

Following Assumption 2, we specify a double exponential distribution for log return jumps,

with parameters λ+∗, λ−
∗

and λ+, λ−, respectively, under the physical and the risk neutral

probabilities. We show that, under Assumption 4 in the main text, a proper density process

consistent with these properties is defined for any T ≥ 0 by:

dQ
dP

∣∣∣∣
FT

= exp

{
tr

(
−
∫ T

0

Γ1tdW
∗
t +

1

2

∫ T

0

Γ′1tΓ1tdt−
∫ T

0

Γ2tdB
∗
t +

1

2

∫ T

0

Γ′2tΓ2tdt

)}
dt

×
N∗T∏
i=1

exp

{
−(λ− − λ∗−)J∗i

− − (λ+ − λ∗+)J∗i
+ + ln

(
1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

)}
,

(A-8)

where

Γ1t =
√
XtΓ +

1

2
√
Xt

(β∗ − β)Q′ , (A-9)

and

Γ2t =
√
Xt∆ +

µ0 − (r − q)√
Xt

, (A-10)

with µ0 − (r − q) ≥ 0 and ∆ a 2 × 2 parameter matrix. The first (second) line of equality

(A-8) defines a possible change of measure for diffusive (jump) shocks in our model.

Under Assumption 4, the stochastic exponential in the first line of (A-8) is a well-defined

positive local martingale, and hence a supermartingale. Therefore, to show that this term is

a martingale, it is enough to show that it has a constant expectation:

1 = EP
0

[
exp

{
tr

(
−
∫ T

0

Γ1tdW
∗
t +

1

2

∫ T

0

Γ′1tΓ1tdt−
∫ T

0

Γ2tdB
∗
t +

1

2

∫ T

0

Γ′2tΓ2tdt

)}
dt

]
.

In our matrix AJD setting, this property does not follow from a standard Novikov-type

condition. However, it follows from a localization argument; see, e.g., Mayerhofer (2014).

We now show that the second line of (A-8) also defines a martingale process. Using the

independence between IID log jump sizes J∗ and counting process N∗ under the physical

3



probability, it is enough to show that:

1 = EP
0

[
exp

{
−(λ− − λ∗−)J∗− − (λ+ − λ∗+)J∗+

} 1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

]
. (A-11)

Explicit calculations of the expectation on the right hand side yield:

λ∗−λ∗+

λ∗− + λ∗+
· 1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

∫ ∞
−∞

exp
(
−λ−J∗− − λ+J∗+

)
dJ∗ = 1 .

With respect to the risk-neutral probability Q, log return jumps follows a double exponential

distribution with parameters λ− , λ+. Indeed, for any u ∈ R it follows:

EQ [exp(uJ)] =
λ−λ+

λ− + λ+

∫ ∞
−∞

euJe−λ
−J−−λ+J+

dJ ,

which is the Laplace transform of a double exponential distribution with parameter λ−, λ+.

This concludes the proof.

�

D. Mapping of our notation to the Bates (2000) notation

Several well-studied affine option pricing models with independent factors are nested in our

framework, if we allow β to be a diagonal matrix instead of a scalar. In this case, the

independent volatility factors can be written as diagonal elements of Xt. Below, we show

the equivalence of the processes and how the parameters can be converted from the notation

in the original papers into our notation. For the sake of legibility, we suppress the time index

on all components of state variables and Brownian motions.

The return dynamics of the SV2,0 two-factor model of Christoffersen, Heston and Jacobs

(2009) is
dS

S
= (r − q)dt+

√
V1dz1 +

√
V2dz2 (A-12)

where r is the risk-free rate, q the dividend yield and Vi are two independent stochastic

volatility factors with the following dynamics:

dVi = (ai − biVi)dt+ σi
√
Vidwi i = 1, 2 (A-13)

where the correlation between dzi and dwj is δijρi.
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If we write X =

(
V1 0

0 V2

)
and dZ =

(
dz1 dZ12

dZ21 dz2

)
, then (A-12) can be written as

dS

S
= (r − q)dt+ tr[

√
XtdZ],

which is exactly the diffusive part of our return equation.

In order to show the equality of the volatility factors, we first need to establish that the

diagonal elements of Xt in (8) are independent CIR processes if the parameter matrices

M,R,Q are diagonal. We start by explicitly writing the diagonal elements of Xt in this case:

dXii =
(
βQ2

ii + 2MiiXii

)
dt+

∑
k

√
Xki dBki (A-14)

To eliminate the seeming interdependence of the diagonal elements, we introduce n new

independent Brownian motions dWi:

dWi =
1√
Xii

∑
k

√
Xki dBki

This allows us to express (A-14) as n independent CIR processes:

dXii =
(
βQ2

ii + 2MiiXii

)
dt+ 2Qii

√
XiidWi (A-15)

To convert our notation into the notation of (A-13), simply set

ai = βiiQ
2
ii, bi = −2Mii, σi = 2Qii, and ρi = Rii.

Remark 1 Our state matrix Xt will generally not remain diagonal, even if all parameter

matrices and the initial state X0 are diagonal. This does not void the nesting argument,

because X12,t does not enter the pricing equation. There is no economic interpretation for

the process X12,t, it is a mere artifact of writing a two-dimensional CIR process in matrix

form.

The jump intensity in Bates (2000) is given as λt = λ0 + λ1V1t + λ2V2t, which is already

identical to our jump intensity λt = λ0 + tr(ΛXt), if we write Λ =

(
λ1 0

0 λ2

)
. Our definitions of

the jump size distribution is the same as in Bates (2000).
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II. Estimation

A. Extended Kalman Filter

The first step in out estimation approach is based on an extended Kalman filter for our

matrix AJD model, using the full panel of option-implied volatilities as observables in the

observation equation of the filter. Hence, we estimate all risk-neutral parameters in the model

from the observation equation and the physical parameters in the matrix state dynamics from

the transition equation. Let us denote the set of all parameters estimated in this first step

by θ := (M,Q,R, β, λ+, λ−,Λ;M∗, β∗). The physical dynamics of our state variable is given

in (17):

dXt =
[
β∗Q′Q+M∗X ′t +XtM

∗′] dt+
√
XtdB

∗
tQ+Q′dB∗

′

t

√
Xt .

We discretize this process on a weekly grid with ∆k = 7 calendar days. When there is no

data for a given Wednesday, we skip the respective week and set ∆k = 14. We initialize the

filter at the steady state X0 = XP
∞, which is computed by solving the Lyapunov equation

M∗XP
∞ + XP

∞M
∗′ = β∗Q′Q. We work with half vectorized states X̂t and initialize the

variance of state X̂0 as Σ̂0 = 0. At each step, we compute from the Laplace transform (A-1)

the exact expectation (X t+∆) and covariance matrix (V t+∆) of hidden state X̃t+∆ conditional

on filtered state X̂t:

X t+∆ = β µ+ ΦX̂tΦ
′ (A-16)

V t+∆ = (I4 +K4)
(

ΦX̂tΦ
′ ⊗ µ+ β µ⊗ µ+ µ⊗ ΦX̂tΦ

′
)

(A-17)

where

µ = −1

2
C12C

′
11

Φ = e∆M∗

C = exp

[
∆

(
M∗ −2Q′Q

0 −M∗′

)]
=

(
C11 C12

C21 C22

)

with square 2× 2 matrices C11, C12, C21, C22 and 4× 4 commutation matrix K4. In this way,

we obtain the the set of observation equations

Ôt+∆,i = Ot+∆,i(X̃t+∆; θ) + εt+∆,i, ; i = 1, . . . , Nt+∆ . (A-18)

Here, Ôt+∆,i is the Black-Scholes implied volatility of the i−th option on day t + ∆, Nt+∆

the total number of options observed on that day, Ot+∆,i(X̃t+∆; θ) the model-induced Black-
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Scholes implied volatility and εt+∆,i a cross-sectionally iid noise with zero mean and variance

σ2
r . We allow observation errors to be correlated in the time series, by allowing for a degree

of autocorrelation in average pricing errors over time:

corr(εt+∆, εt) = ρr ,

where εt is the average pricing error over all options on day t. Given the linearity of the tran-

sition equation, we need to linearize only the observation equation, by computing numerically

the Jacobian matrix:

Gt =
∂Ot+∆

∂X̃t

. (A-19)

Using matrix

F = Φ⊗ Φ , (A-20)

we update the state variance covariance matrix as

Σ̃t+∆ = F Σ̂tF
′ + V t+∆ . (A-21)

Finally, we update the filtered state X̂t+∆ and the variance covariance matrix for the next

iteration as follows:

St = GtΣ̃t+∆G
′
t + σ2

rI2

Ht = Σ̃t+∆G
′
tS
−1
t

X̂t+∆ = X̃t+∆ +Ht

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)
Σ̂t+∆ = (I2 −HtGt)Σ̃t+∆

Given parameter vector θ, we compute the time-series of predicted states {X̃t} and the
corresponding log-likelihood function

L(θ) =

N∑
i=1

[
log det(S) +

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)′
S−1
t

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)]
. (A-22)

The estimated parameter θ̂ is the maximizer of L(θ), where the maximization is performed

using differential evolution of Storn and Price (1997).
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B. Model Identification

B.1. Admissibility conditions

The set of admissibility conditions are necessary for the infinitesimal generator of the Wishart

process to define a regular Markov process Xx0
t with evolution in the set of positive semidefi-

nite symmetric square 2×2 matrices, where x0 represents the initial condition. The condition

required to apply Theorem 2.4 of Cuchiero, Filipović, Mayerhofer, Teichmann (2011) in our

framework is:

ΩΩ′ � QQ′

(A � B means that the difference A−B is positive semidefinite).1 This condition grants the

existence of a weak solution if x0 is a symmetric, positive-definite 2× 2 matrix and a strong

solution if x0 symmetric positive definite and nonsingular.

Within our estimation sample this more general parametrization did not produce any ad-

vantage with respect to the more parsimonious ΩΩ′ = βQQ′ with β ≥ 1 that is henceforth

adopted in the text. The stricter condition β ≥ 3 is required for the state to remain positive

with probability 1. The estimated parameters 1 < β, β∗ < 3 imply that the time series of

initial conditions includes periods of time where the state variable is singular (non-positive

definite) and in particular over periods of time with low volatility the rank of the state vari-

able is statistically not different from 1. The dynamics of the process is well defined also

when the state matrix has reduced rank one, in fact the process is locally equivalent to a

one-dimensional square root process and the admissibility condition grants that the process

is constrained within the the cone of positive semi-definite symmetric matrices.

Two additional conditions are required to have a well defined joint return-variance process:

these are i) In order to have a well defined correlated brownian motion matrices it is necessary

that RR′ � I2. ii) In order to have a positive jump intensity the conditions λ0 ≥ 0 and

Tr [ΛX] ≥ 0. Assuming a lower triangular expression Λ = [Λ11 0; Λ12 Λ22], it is sufficient

to require that the symmetric matrix L = [Λ11 Λ12/2; Λ12/2 Λ22] is semi-positive definite,

then: Tr [ΛX] = Tr [LX] ≥ 0.

B.2. Identification conditions

During an estimation procedure in the presence of unobserved factors, it is necessary to

determine jointly parameters and state variables.

1The condition 2.11 pg. 404 in Cuchiero et al. (2011) does not imply any restriction on M in the absence
of the jump component.
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In the following we illustrate the basic restrictions that have to be imposed on the parameters

to guarantee that the mapping between observed time series and the level of the latent state

variables is uniquely defined.

As previously stated the universe of tradable securities that form the market span includes

the full panel of options in addition to a fund tracking the underlying index level and a the

risk-free security available in any quantity in the market. Recalling that option prices are

determined by the transform method approach as an integral convolution of the characteristic

function, we assume that the econometrician observes a large panel of traded option prices

(and model free replications of variance swap prices) so that the characteristic function of

the underlying data generating process can be uniquely reconstructed.

Characteristic function of the process is uniquely determined by the solution of a set of

Riccati ODE whose flow, in turn, is uniquely determined by the parameters that define the

infinitesimal generator.

As a consequence the mapping between observed prices and state variables is non-unique if

the model admits invariant transformations, i.e. joint transformations of the state variables

and of the set of parameters that leave unaffected the final expression of the infinitesimal

generator.

In the following we derive the identification conditions that remove these ambiguities. Recall

that the infinitesimal generator for the risk neutral process has the following expression:

AQ
Y,Xf (Y,X) =

(
r − q − Tr [X]

2

)
∂f

∂Y
+
Tr [X]

2

∂2f

∂Y 2
+ Tr[XR′QD]

∂f

∂Y

+Tr[Ω′Ω +MX +XM ′ +XDQ′QD]f

+ (λ0 + Tr [ΛX])

∫
dν (z) [f (Y + z,X)− f (Y,X)] (A-23)

where D =
(

∂
∂Xij

)
1≤i,j≤2

, Y = log (S) and ν (z) is the double-exponential density. The

generator of the process under the P-measure has the same functional expression with a

different selection of the parameter M that is shifted by the change of measure as described

in (18) in the main paper.

To remove the ambiguity in the change of measure induced by the fact both factors of the

product λk may be affected by the change of measure, we use the Assumption 5 that forces
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the jump intensity to be unaffected by the change of measure.2 As an implication, the vector

including all the parameters that are to be uniquely determined in terms of observed data

is given by: M,M∗, Q,R,Λ,∆︸ ︷︷ ︸
2×2 Matrices

, λ0, λ+, λ−, µ, r, q, βλ, β, β
∗︸ ︷︷ ︸

Scalars


while the state variable X is a symmetric, positive definite 2× 2 matrix.

In order to remove all the ambiguities on the matrix diffusion process we proceed as follows:

first, we classify all relevant invariant transformations. These are listed below:

• The permutation matrix that exchanges row and column 1 with row and column 2.

We remove the permutation matrix degeneracy imposing that the eigenvalues of the

matrix X are ordered in increasing order.

• The transposition of line and rows, in fact X is symmetric. Transposition invariance

would simply exchange upper with lower triangular matrices, so the above definitions

requiring the matrices to be lower triangular remove also the transposition invariance.

• Rotation matrices. This can be proved as follows: the trace is a spectral invariant, this

implies that the set of invariant transformation is determined by a joint transformation

of the state variable X and of the matrix parameter P :

X → DXD−1

P → D−1PD

where P is a generic matrix parameter while D may be an element of the group

GL (2) of general linear transformations. Note however that the state variable has

to be a symmetric matrix X ∈ Sym+ (2), hence invariant transformations are only

those orthogonal transformations O (2) ⊂ GL (2), i.e. D−1 = D′, that preserve the

symmetry of the state variable matrix. This is a direct implication of the spectral

theorem: two symmetric matrices sharing the same set of eigenvalues may differ at

2Note that our estimation procedure does not produce a unique identification of the conditional return
distribution under the historical measure. In fact a unique parameter βλ is determined from eq.(30) by
considering model free payoffs of the variance swaps while the historical jump size distribution is determined
by two parameters λ∗+, λ∗−. Hence complete identification would be achieved forcing an additional parametric
restriction to make the mapping (βλ, λ+, λ−) ←→

(
λ∗+, λ

∗
−
)

one-to-one. The explicit determination of this
mapping is inconsequential for our results.
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most by an orthogonal transformation:

X ∈ Sym+ (2)⇒ DXD−1 ∈ Sym+ (2) iff D ∈ O (2)

In the following we list two Corollaries that will be used to select the parametric restrictions:

Corollary 2 If X is any 2 × 2 symmetric matrix then the value of Tr [AX] depends only

on the sum of the out of diagonal elements (A12 + A21) of A.

Proof.

Tr [AX] = A11X11 + (A12 + A21)X12 + A22X22

Corollary 3 Under an orthogonal transformation D the matrix differential operator D trans-

forms as: D−1DD.

Proof. The result follows from the application of the total differential rule applied to the

change of variables:

X ′ = D−1XD

We are now ready to state:

Proposition 1 Consider the infinitesimal generator (A-23) of an admissible process (Xt, Yt)

where Xt is a symmetric, positive definite 2 × 2 matrix and Yt = log (St). There are no

transformations that leave it invariant if the following parametric conditions apply:

• M , M∗ = M + ΓQ are non singular lower triangular matrices with positive elements

along the diagonal.

• Q and Ω (in the general specification) are non singular upper triangular matrices with

positive elements along the diagonal.

• R, Λ and ∆ are upper triangular matrices.

Proof.

The Trace terms appearing in the infinitesimal generator of the risk neutral process are:
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(1) Q measure: Tr[Ω′Ω+MX+XM ′+XDQ′QD] (P measure: Tr[Ω′Ω+M∗X+X (M∗)′+

XDQ′QD]) ,

(2) Tr[XR′QD] where D =
(

∂
∂xij

(·)
)
i,j=1,2

,

(3) Tr [XΛ] .

Consider first term (1): the Choleski decomposition theorem states that one can derive the

existence of two unique upper triangular non singular matrices Ω, Q. Prescription on Ω and

Q to be non singular upper triangular matrices with negative elements along the diagonal

remove the invariance Ω′Ω = (DΩ)′DΩ and Q′Q = (DQ)′ (DQ).

To remove the invariance determined by the invariant transformation D−1XD, we exploit

the unique ’QR’ decomposition of a non singular M as a product of an orthogonal matrix

and an lower triangular matrix with negative elements along the diagonal M = DMMU .

Selecting M lower triangular and DM = I any rotational invariance is removed. The same

identification condition works also for M∗.

Consider now term (2): rewriting it as Tr[R′QDXt] , the degeneracy is completely removed

by the condition that the matrix R′ is lower triangular. This can be proved as follows: first

we observe that the term DXt is symmetric. In fact, by the symmetry of the matrix Xt

follows that:

DXt =
∑

1≤j≤2

∂

∂xij
(·)xjk =

∑
1≤j≤2

xkj
∂

∂xji
(·) = (DXt)

T

Then, by the above Corollary, one can immediately conclude that the sum depends only on

the sum (R′Q)12 + (R′Q)21. In light of the above considerations, Q is uniquely specified as

upper triangular. This implies that, to have R′Q uniquely determined and upper triangular

with (R′Q)21 = 0, also R′ = (R′Q)Q−1 must be lower triangular. Finally, consider term (3),

uniqueness of the specification of Λ is achieved by imposing that it is lower triangular.

C. Definition of Level Lt, Skew St and Term StructureMt Proxies

To analyze our results in terms of observable properties of the implied volatility surface, such

as in Figure 3, we define the following proxies3

3We have evaluated the regression IV (τ,K)t = Lt+St ·K+Mt ·τ as an alternative specification. We have
found similar, but more noisy results. We have also performed robustness checks with respect to our defi-
nition. The alternative term structure measure M6

t := 1
6
12−

1
12

[
IV (τ = 6

12 ,∆ = 0.5)− IV (τ = 1
12 ,∆ = 0.5)

]
is, for example, 92% correlated with our term structure measure.

12



level Lt := IV (τ = 1
12
,∆ = 0.5)

short term skew St := 1
0.6−0.4

[
IV (τ = 1

12
,∆ = 0.6)− IV (τ = 1

12
,∆ = 0.4)

]
long term skew S longt := 1

0.6−0.4

[
IV (τ = 3

12
,∆ = 0.6)− IV (τ = 3

12
,∆ = 0.4)

]
term structure Mt := 1

3
12
− 1

12

[
IV (τ = 3

12
,∆ = 0.5)− IV (τ = 1

12
,∆ = 0.5)

]
skew term structure Mskew

t := 1
3
12
− 1

12

[
S longt − St

]
where IV and ∆ stand for the Black-Scholes implied volatility and delta. The time to

maturity τ is measured in years. In the data, we obtain the required implied volatilities

through two-dimensional interpolation of the volatility surface. In the model, we calculate

these quantities exactly.

III. Review of the Literature

Our work borrows from an enormous literature that has studied the economic sources of

volatility variations, the dynamics of the option-implied volatility smile and the origins of a

negative variance premium. We contribute to this literature along several dimensions.

First, we use a novel specification of stochastic volatility, which parsimoniously jointly identi-

fies three multi-frequency volatility risk factors, the price of the smile and the term structure

of the variance risk premium. Following Heston’s (1993) seminal model, Bates (2000) was

the first to recognize that volatility is a multi-frequency object dependent on factors with

distinct persistence and variability properties. More recent three-factor specifications such as

Carr and Wu (2017), Gruber, Tebaldi and Trojani (2010) and Andersen, Fusari and Todorov

(2015a), among others, improve on the fit of the volatility smile provided by benchmark

two-factor models. Andersen, Fusari and Todorov (2015b) study the predictive power of

option risk factors for future index and index volatility returns, but remain agnostic about

the price of the smile. Bardgett, Gourier and Leippold (2019) estimate a three factor model

with jumps in volatility in a standard affine setting using the information in both SPX and

VIX options and a particle filter.

Our model is complementary to these approaches by adding several new ingredients. We

relax the assumption of factor independence with a new specification of interdependent

volatility factors that follow a matrix AJD.4 This state space yields three economically

4See, among others, Gourieroux (2006), da Fonseca, Grasselli and Tebaldi (2008) and Buraschi, Porchia
and Trojani (2010) for examples and applications of affine matrix-valued diffusions, as well as Leippold and
Trojani (2008) for a broad class of affine matrix jump diffusion processes.
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interpretable volatility risk factors, which feature distinct persistence features and are priced

very differently. It also implies dynamic factor correlations, which parsimoniously embed a

dynamic skewness component disconnected from the spot volatility.5 In contrast to Andersen

et al. (2015b) or Bardgett et al. (2019), we specify and estimate our model under the physical

and the pricing measures, thus providing a coherent no-arbitrage framework for variance risk

factors, their prices (i.e. the price of the smile) as well as the variance risk premium and

the equity premium. Relaxing the factor independence assumption furthermore allows for a

richer structure of the price of the smile, because the price of each risk factor is not exclusively

spanned by the factor itself. We adopt a matrix jump diffusion process with jumps in index

returns allowing for a parsimonious specification of the state dynamics. We document that

our model does not require jumps in volatility to provide a sufficiently realistic description

of the SPX volatility dynamics. While it would be in principle possible to add jumps to

our volatility process, a parsimonious specification would require non-innocuous additional

identification assumptions.6

Second, our paper borrows from a large literature that has studied the trading of variance

risk factors, the market price of volatility and the term structure of variance risk premia. In

a first strand of this literature, Dupire (1993) and Neuberger (1994) were among the first

to propose option portfolio strategies for trading proxies of realized variance, followed by

Carr and Madan (1998), Demeterfi, Derman, Kamal and Zou (1999) and Britten-Jones and

Neuberger (2000), among others. From the price of such portfolios, the price of variance can

be measured in a model-free way, giving rise to a variety of synthetic variance swap contracts.

Recent papers have focused on the properties of variance swaps in presence of jumps and on

swap contracts for trading higher-order risks, such as, e.g., skewness and kurtosis.7 A key

insight of this literature, which motivates part of our work, is the tradeability of variance,

skewness and higher-order unspanned risks by means of appropriate option portfolios. Given

the no-arbitrage constraints prevailing in liquid option markets, it is natural to expect that

the prices of these risks are interconnected and difficult to study in isolation. Therefore,

5This helps to avoid the puzzling skew sensitivities of benchmark arbitrage-free models noted in Constan-
tinides and Lian (2015).

6For instance, Carr and Wu (2017) assume that the probability of a co-jump in returns and volatility
follows a pure-jump single-factor dynamics. Such an assumption restricts the jump variance risk premia to
be perfectly correlated across horizons, which we feel excessively constrains the term structure of variance
risk premia for our analysis.

7Martin (2012), Neuberger (2012) and Bondarenko (2014) introduce definitions of variance swap payoffs
robust to jumps. Kozhan, Neuberger and Schneider (2013) propose a synthetic skew swap to study skewness
vs. variance risk premia, while Schneider and Trojani (2014) trade and price fear using skew swaps. More
broadly, Schneider and Trojani (2019) introduce divergence swaps and characterize in a model-free way the
premia for trading general nonlinear risks of different orders.
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we endow our model with a joint arbitrage-free specification of the price of variance risk

together with the risk factors traded in option markets and the price of the smile.

Another strand of this literature has established the existence of a negative risk premium

for market volatility. Buraschi and Jackwerth (2001) test the spanning properties of option

markets and conclude in favour of models with priced unspanned risks, such as stochastic

volatility or return jumps. Bakshi and Kapadia (2003) provide first direct evidence on a

negative variance risk premium using delta-hedge call option positions. Similar evidence is

obtained by Carr and Wu (2009), using synthetic variance swaps. Todorov (2010) and Boller-

slev and Todorov (2011) conclude that variance risk premia are dominated by a premium

for jump variance risk.

A third strand of this literature studies the term structure of variance risk premia. Ait-

Sahalia, Karaman and Mancini (2012) and Filipovic, Gourier and Mancini (2016) estimate

an affine and a quadratic two-factor volatility model, based on OTC variance swaps. Their

focus is on the term structure of equity vs. variance risk premia and on the optimal portfolio

choice with variance swaps, respectively. The first paper estimates a downward sloping term

structure of variance risk premia. The second paper documents that the optimal portfolio

contains an important position in variance swap calendar spreads, which earns a premium

in the decreasing term structure of variance risk premia and simultaneously limits portfolio

losses when volatility rises. Li and Zinna (2016) estimate a three factor jump diffusion

using returns and variance swaps data. In their model, the term structure of variance risk

premia is inverted for short periods of time, when volatility is sufficiently large, while it is

steeply downward sloping in periods of low volatility. Dew-Becker, Giglio, Le and Rodriguez

(2016) estimate a discrete-time version of Ait-Sahalia et al.’ s 2012 model, using different

sets of variance swaps with maturities from 1 month to 14 years. They document that a

steep unconditional term structure of variance risk premia at the short end poses a strong

puzzle for recent parametrizations of structural long-run risk models, such as Drechsler and

Yaron (2011) and Wachter (2013), but less so for models with a time-varying exposure to

rare disasters, such as Gabaix (2012). Feunou, Jahan-Parvar and Tedongap (2013) propose

a new methodology for modeling and estimating time-varying downside risk and upside

uncertainty, motivated by a structural model with disappointment aversion, and focus on

the assessment of risk-return tradeoffs in financial markets. Empirically, they find that

relative downside risk is compensated through a higher conditional mode of returns and

that conditional skewness is a priced risk factor. Feunou, Fontaine, Taamouti and Tedongap

(2014) use reduced rank regressions to extract hidden volatility states from a panel of model-

free implied variance measures of different maturities, under the assumption of an affine

hidden state space dynamics. With this approach, they identify two common volatility
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factors as linear combinations of the original model-free implied variance measures and they

document the resulting joint predictive power for equity, bond and variance excess returns.

Our approach is different, as it is based on a new tractable three-factor arbitrage-free model

for the whole implied volatility surface, which allows us to jointly estimate the structure of

the hidden volatility states, the pricing parameters and variance risk premia in a coherent

framework. In this way, the information in the whole implied volatility surface is used to

identify three hidden state variables with different persistence features, which span implied

volatilities and variance risk premia consistently with the restrictions implied by no arbitrage.

In contrast to this literature, we fully exploit the information in the implied volatility surface

to identify three volatility risk factors with distinct persistence properties. We find that the

interaction of these risk factors is key to understand the dynamics of the term structure of

variance risk premia and is hardly identifiable from variance swap data alone. Moreover,

thanks to our specification of interacting factor risk premia, we obtain a more flexible term

structure of variance risk premia, both in states of high and low volatilities. Our joint

estimation of volatility factors and variance risk premia highlights the essential role of option-

implied skewness, (i) as risk premium factor for variance risk premia and the price of the

smile and (ii) as indespensable state variable for an accurate representation of the volatility

surface.

Our analysis can contribute to understand different structural mechanisms for variance risk

premia. While long-run risk models might help to explain the persistent dynamics of the

long end of the term structure of variance risk premia, we find that the dynamics in periods

of distress may be better explained by high-frequency volatility shocks that do not affect

the price of the smile. Such a mechanism may be rationalized by rare disaster models with

a time-varying market exposure only weakly correlated with aggregate consumption shocks,

as in Gabaix (2012). From a different angle, the multi-frequency variance risk premia in

our model are consistent with a price of volatility risk that depends on high frequency

shocks in situations of financial distress. Adrian and Rosenberg (2008) decompose market

volatility into two weakly persistent components, which are priced in the cross-section of

stock returns. They interpret the highest frequency volatility component as a proxy of

skewness risk reflecting the tightness of financial constraints. Muir (2013) emphasizes the

high-frequency character of financial crises and explains in a theoretical model with financial

intermediation why the term structure of variance risk premia can be inverted in phases of

financial turmoil. The dynamics of variance risk premia estimated by our model, in particular

the high-frequency inverted term structure of variance risk premia in periods of distress, is

compatible with the economic intuition in this literature.
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IV. Additional Figures
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Figure 1: Time series of mean absolute implied volatility errors (MAIV E) for our model
(GT 2). For every day t in our sample, we plot the MAIV E on that day, defined by

MAIV Et := 1
Nt

∑Nt
i=1 |IVi − ÎVi|, where Nt is the number of available options on that day.

Grey areas highlight NBER recessions; vertical lines indicate important crisis events as listed
in the caption of Figure 2 of the main paper.
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Panel A: Model GT 2
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Panel B: Model AFT
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Figure 2: Time series of realized and model-implied spot volatilities. We plot the time series
of realized volatilities in the data, computed according to Appendix B of Bollerslev and
Todorov (2011) (grey lines), together with the time series of estimated model-implied spot
volatilities in models AFT and model GT 2 (black dashed lines). Model-implied spot volatil-
ities are obtained using hidden states and model parameters estimated with the penalized
nonlinear least squares approach of Section II.F. in the main paper.
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Panel A: Volatility factor X11t/tr(Xt)
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Panel B: Volatility factor X12t/tr(Xt)
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Panel C: Diffusive variance tr(Xt) := X11t +X12t
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Figure 3: Scaled volatility factors X11t/tr(Xt), X12t/tr(Xt) and diffusive variance tr(Xt) :=
X11t + X12t. Grey areas highlight NBER recessions; vertical lines indicate the crisis events
as indicated in the caption to Figure 2.
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Panel A: State component X11
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Panel B: State component X12
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Panel C: State component X22
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Figure 4: Comparison of state recovery methods. Black line: state obtained from the ex-
tended Kalman Filter. Grey line: state recovered using nonlinear least squares (NLLS). For
both recovery methods, we have used the same parameters, as specified in Tab.1. For the
NLLS estimation, we have used criterion (35) with λ = 0.
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V. Additional Tables

r q Pure diffusion models Jump-diffusion models
1 0 SV10 (N = 6) Heston (1993) SV J10 (N = 8) Bates (1996)

2 0 SV20 (N = 12) Christoffersen et al. (2009) SV J20 (N = 18) Bates (2000)

3 0 SV30 (N = 18) (this paper) SV J30 (N = 25) (this paper)

3 1 SV31 (N = 14) da Fonseca et al. (2008) GT 2 (N = 21) Leippold and Trojani (2008)

Table 1: Models related to Assumption 2. r is the number of model state variables and q
the number of skewness components disconnected from volatility. N is the number of model
parameters. Our model GT 2 corresponds to the jump diffusion model GT 2 in the table.

Panel A: Summary statistics of the data

In-sample Out-of sample Total
Time frame 1996-2002 2003-2015/08 1996-2015/08
Sampling frequency weekly
Trading days T 359 656 1015
Number of observations 37’281 139’982 177’263
Average time to maturity (days) 141.5 115.2 120.7
Average moneyness (S/K) 1.00 0.98 0.98

Panel B: Number of observations by duration and delta

τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all
∆ < 0.2 2’523 7’229 5’222 4’880 19’854

0.2 < ∆ < 0.4 3’645 11’354 8’890 8’537 32’426
0.4 < ∆ < 0.6 3’707 12’575 10’107 9’392 35’781
0.6 < ∆ < 0.8 5’220 17’531 13’507 13’029 49’287
0.8 < ∆ 4’714 15’271 10’542 9’388 39’915
all 19’809 63’960 48’268 45’226 177’263

Table 2: Main characteristics of our S&P500 option panel. We use out-of the money calls
and puts.
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Panel A: Diffusion parameters

SV20 SV30 SV31 SV J20 SV J30 GT 2

M11 -0.3121 -0.0844 -1.0716 -0.3242 -0.1231 -0.0079
M22 -5.0719 -5.4283 -4.9213 -4.4564 -4.2041 -2.6808
M33 -1.4410 -0.5517
M21 -14.3050 1.0265
Q11 0.2370 0.1957 0.0556 0.0903 0.0742 0.0698
Q22 0.4209 0.4498 0.5256 0.4204 0.2853 0.2924
Q33 0.0718 0.0738
Q12 0.1440 -0.0770
R11 -1.0000 -1.0000 -0.0431 -1.0000 -0.9997 -0.2970
R22 -0.5348 -1.0000 -0.6405 -0.3823 -0.7111 -0.4057
R33 0.9633 -0.1178
R12 0.7672 -0.8708
β11 1.0000 1.0031 1.0000 1.0006 1.0064 1.0012
β22 1.0000 1.0007 1.0000 1.0042
β33 1.0162 1.0146
M∗

11 -1.4051 -1.2204 -0.6378 -0.7395 -0.8289 -0.5467
M∗

22 -1.8593 -2.2558 -2.7528 -1.9462 -1.2661 -2.6808
M∗

33 -0.4869 -0.5539
M∗

21 -1.9200 0.3982
β∗11 1.0000 1.0017 1.0000 1.0006 1.0064 1.0012
β∗22 1.0000 1.0046 1.0000 1.0042
β∗33 1.0693 1.0146

Panel B: Jump parameters

SV J20 SV J30 GT 2

λ0 0.0000 0.0003 0.0000
Λ11 43.8971 57.3248 25.6671
Λ22 1.0566 11.9429 15.9795
Λ33 0.0454
Λ12 40.4278
k̄ -0.1500 -0.1500
δ 0.1500 0.1500
λ− 7.1518
λ+ 58.3547

Panel C: Physical jump parameter

GT 2

βλ 0.053 0.324

Table 3: In-sample (1996/01-2002/12) parameter estimates. Panel A: diffusion parameters.
Panel B: jump parameters. For consistency and for brevity, all parameter values are reported
using a notation based on matrix AJD, i.e., by considering Bates- and Heston-type models
as nested diagonal matrix AJD models.
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Panel A: Model GT 2

M11 -0.036 M21 0.793 M22 -5.654
R11 -0.945 R21 -0.250 R22 -0.241
Q11 0.087 Q21 -0.277 Q22 0.205
β 1.083 λ+ 474.621 λ− 7.611
Λ11 68.755 Λ21 75.757 Λ22 20.895

Panel B: Model AFT

ρ1 -0.896 ρ2 -0.996 ρu 0.025
k1 19.827 k2 0.009 ku 7.964
v1 0.005 v2 0.204 µu 8.195
σ1 0.471 σ2 0.119 c+

2 0.290
µv1 45.154 c+

1 503.217 c−2 35.108
c+

0 29.073 c−1 71.823 c−3 827.816
λ− 45.411 λ+ 229.933

Table 4: Parameter estimates obtained from the NLLS estimation for the in-sample period
(1996-2002) as described in Section I. F.

X11 X12 X22

Min 0.0000 -0.0135 0.0001
Max 0.0513 0.0886 0.2609
Mean 0.0090 0.0040 0.0217
Median 0.0080 0.0016 0.0154
Positive 1.0000 0.6847 1.0000
Stdv 0.0089 0.0096 0.0245
Skewness 1.4686 3.8837 4.8909
Kurtosis 5.9205 24.4185 39.0020
AR(1) 0.9891 0.9480 0.8843
Half life 1.2118 0.2496 0.1084

Table 5: Summary statistics of weekly filtered volatility factors X11, X12 and X22 for the
entire sample. “Positive” denotes the fraction of positive realizations. Half lives are given in
years.
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Panel A1: MAIVE for SV J20 model, in-sample
τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all

|∆| < 0.2 0.934 0.601 0.655 0.595 0.663
0.2 < |∆| < 0.4 0.781 0.476 0.637 0.631 0.607
0.4 < |∆| < 0.6 0.693 0.509 0.536 0.515 0.537
0.6 < |∆| < 0.8 0.810 0.654 0.481 0.547 0.587
0.8 < |∆| 1.284 1.046 0.806 1.026 1.002
all 0.889 0.660 0.605 0.651 0.669

Panel A2: MAIVE for GT 2 model, in-sample
τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all

|∆| < 0.2 0.899 0.544 0.488 0.501 0.571
0.2 < |∆| < 0.4 0.842 0.416 0.479 0.466 0.501
0.4 < |∆| < 0.6 0.715 0.464 0.553 0.385 0.485
0.6 < |∆| < 0.8 0.730 0.499 0.486 0.378 0.476
0.8 < |∆| 0.890 0.565 0.626 0.876 0.722
all 0.804 0.493 0.529 0.502 0.541

Panel B1: MAIVE for SV J20 model, out of sample
τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all

|∆| < 0.2 0.851 1.201 1.376 1.656 1.309
0.2 < |∆| < 0.4 0.626 0.631 0.870 1.222 0.839
0.4 < |∆| < 0.6 0.862 0.439 0.448 0.793 0.569
0.6 < |∆| < 0.8 1.254 0.753 0.444 0.713 0.711
0.8 < |∆| 1.360 0.950 0.597 0.878 0.891
all 1.046 0.772 0.661 0.967 0.817

Panel B2: MAIVE for GT 2 model, out of sample
τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all

|∆| < 0.2 0.690 0.665 0.745 1.022 0.771
0.2 < |∆| < 0.4 0.640 0.385 0.474 0.592 0.488
0.4 < |∆| < 0.6 0.764 0.418 0.485 0.396 0.468
0.6 < |∆| < 0.8 0.863 0.445 0.461 0.538 0.516
0.8 < |∆| 0.815 0.534 0.468 0.780 0.602
all 0.771 0.477 0.502 0.627 0.551

Table 6: MAIV E stratified by maturity in calendar days and moneyness in absolute Black-
Scholes deltas. We report the mean absolute implied volatility error across maturity and
moneyness bins for our model ( GT 2) and for the benchmark Bates (2000) model (SV J20),
for the in-sample period (1996/01-2002/12) and the out of sample period (2003/01-2015/08).
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Panel A1: Fraction of prices within bid/ask spread SV J20 model, in-sample
τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all

∆ < 0.2 0.368 0.398 0.320 0.367 0.365
0.2 < ∆ < 0.4 0.436 0.534 0.346 0.323 0.401
0.4 < ∆ < 0.6 0.610 0.575 0.414 0.324 0.449
0.6 < ∆ < 0.8 0.721 0.612 0.552 0.363 0.518
0.8 < ∆ 0.706 0.559 0.489 0.224 0.444
all 0.589 0.557 0.448 0.320 0.450

Panel A2: Fraction of prices within bid/ask spread GT 2 model, in-sample
τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all

∆ < 0.2 0.371 0.449 0.453 0.422 0.429
0.2 < ∆ < 0.4 0.372 0.617 0.446 0.408 0.472
0.4 < ∆ < 0.6 0.605 0.598 0.316 0.395 0.454
0.6 < ∆ < 0.8 0.771 0.717 0.492 0.488 0.582
0.8 < ∆ 0.847 0.848 0.601 0.275 0.589
all 0.616 0.669 0.462 0.405 0.518

Panel B1: Fraction of prices within bid/ask spread SV J20 model, out of sample
τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all

∆ < 0.2 0.317 0.207 0.176 0.127 0.194
0.2 < ∆ < 0.4 0.445 0.400 0.264 0.211 0.321
0.4 < ∆ < 0.6 0.469 0.611 0.527 0.305 0.500
0.6 < ∆ < 0.8 0.509 0.504 0.659 0.432 0.531
0.8 < ∆ 0.716 0.690 0.782 0.579 0.694
all 0.518 0.518 0.532 0.362 0.486

Panel B2: Fraction of prices within bid/ask spread GT 2 model, out of sample
τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all

∆ < 0.2 0.381 0.365 0.349 0.199 0.325
0.2 < ∆ < 0.4 0.446 0.627 0.508 0.396 0.518
0.4 < ∆ < 0.6 0.521 0.577 0.458 0.514 0.522
0.6 < ∆ < 0.8 0.708 0.737 0.599 0.457 0.629
0.8 < ∆ 0.902 0.912 0.872 0.594 0.833
all 0.635 0.688 0.586 0.457 0.601

Table 7: Fraction of model-implied option prices within bid-ask spread for the benchmark
SV J20 model and our model (GT 2), across maturity and moneyness bins for the in-sample
period (1996/01-2002/12) and the out of sample period (2003/01-2015/08).
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Panel A: Adjusted R2

1mo 2mo 3mo 4mo 5mo 6mo 7mo 8mo 9mo
GT 2

all 0.04 1.19 2.09 4.94 6.25 5.32 5.12 4.80 4.50
X11, X12 0.04 0.67 0.96 2.22 3.40 3.88 4.14 3.95 3.83

AFT s
all 0.28 1.53 3.67 6.03 7.62 6.89 6.26 6.38 6.82
Ut 0.07 0.72 1.31 2.07 3.26 4.21 4.37 4.32 4.42

Panel B: Factor loadings
1mo 2mo 3mo 4mo 5mo 6mo 7mo 8mo 9mo

GT 2 (all)
const 0.014 0.021 0.026 0.024 0.020 0.016 0.014 0.016 0.017

( 0.78) ( 1.64) ( 2.63) ( 2.83) ( 2.46) ( 2.09) ( 2.07) ( 2.50) ( 2.73)

X11 2.42 2.10 2.01 3.00 2.93 2.05 1.81 1.50 1.17
( 1.30) ( 1.60) ( 2.03) ( 3.44) ( 3.63) ( 2.61) ( 2.54) ( 2.23) ( 1.87)

X12 0.49 2.78 2.93 3.27 3.71 3.89 3.59 3.40 3.32
( 0.20) ( 1.79) ( 1.97) ( 2.95) ( 4.12) ( 4.69) ( 4.70) ( 4.99) ( 5.27)

X22 -0.63 -1.10 -1.27 -1.68 -1.57 -1.07 -0.84 -0.74 -0.64
(-0.68) (-2.02) (-3.31) (-4.77) (-4.73) (-4.38) (-4.06) (-3.78) (-3.35)

GT 2 (only X11, X12)
const 0.004 0.003 0.006 -0.002 -0.005 -0.001 0.001 0.004 0.007

( 0.27) ( 0.30) ( 0.70) (-0.27) (-0.73) (-0.22) ( 0.14) ( 0.78) ( 1.25)

X11 2.42 2.10 2.01 3.00 2.93 2.05 1.81 1.49 1.17
( 1.30) ( 1.63) ( 2.08) ( 3.53) ( 3.78) ( 2.73) ( 2.66) ( 2.34) ( 1.96)

X12 -0.45 1.13 1.04 0.76 1.36 2.28 2.34 2.30 2.36
(-0.22) ( 0.92) ( 0.77) ( 0.66) ( 1.66) ( 3.31) ( 3.76) ( 4.22) ( 5.10)

AFT (all)
const 0.006 0.015 0.025 0.020 0.009 0.012 0.013 0.018 0.021

( 0.25) ( 0.98) ( 2.10) ( 1.83) ( 0.95) ( 1.26) ( 1.52) ( 2.18) ( 2.57)

V1,t -0.81 -0.81 -0.99 -1.17 -1.16 -0.77 -0.55 -0.48 -0.46
(-1.37) (-2.65) (-3.41) (-3.74) (-6.28) (-4.50) (-3.45) (-3.38) (-3.74)

V2,t -0.34 -2.03 -3.24 -3.06 -2.48 -2.81 -2.58 -2.76 -2.95
(-0.16) (-1.36) (-2.76) (-2.88) (-2.58) (-2.98) (-3.03) (-3.42) (-3.75)

Ut 2.54 3.17 3.58 4.06 4.35 3.87 3.37 3.09 2.99
( 1.55) ( 2.67) ( 3.86) ( 5.30) ( 8.12) ( 7.82) ( 7.82) ( 8.23) ( 8.75)

AFT (only Ut)
const 0.008 0.001 0.001 -0.002 -0.007 -0.010 -0.008 -0.005 -0.005

( 0.43) ( 0.10) ( 0.08) (-0.17) (-0.89) (-1.42) (-1.25) (-0.93) (-0.87)

Ut 1.19 1.84 1.98 2.15 2.44 2.63 2.50 2.34 2.27
( 0.87) ( 1.92) ( 2.37) ( 3.25) ( 5.10) ( 6.72) ( 7.32) ( 7.99) ( 8.87)

Table 8: Predictive regressions. We regress index returns on the states of models GT 2 and
AFT for horizons from 1 to 9 months. The regressions are performed separately for each
horizon and over the full sample (1996-2015/08). The label “all” corresponds to regression
with all estimated states as predictors. The labels X11, X12 (Ut) for GT 2 (AFT ) correspond
to the constrained affine specification without the high-frequency volatility factor. Panel A:
Adjusted R2s. Panel B: Factor loadings and t-statistics in brackets.
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