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The Price of the Smile and Variance Risk Premia

ABSTRACT

Using a new specification of multi-factor volatility, we estimate the hidden

risk factors spanning SPX implied volatility surfaces and the risk premia of

volatility-sensitive payoffs. SPX implied volatility surfaces are well-explained

by three dependent state variables reflecting (i) short- and long-term implied

volatility risks and (ii) short-term implied skewness risk. The more persistent

volatility factor and the skewness factor support a downward sloping term

structure of variance risk premia in normal times, while the most transient

volatility factor accounts for an upward sloping term structure in periods of

distress. Our volatility specification based on a matrix state process is in-

strumental to obtain a tractable and flexible model for the joint dynamics of

returns and volatilities, which improves pricing performance and risk premium

modeling with respect to recent three-factor specifications based on standard

state spaces.
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Understanding the properties of the market price of volatility risk is a key issue in

financial economics, as the recent macroeconomic literature has shown that time-varying

uncertainty is a source of risk with real economic effects (e.g., Bloom (2009), Gourio (2012)

and Gourio (2014)). The financial literature has reached a consensus that aggregate volatility

shocks are priced in modern financial markets, i.e. that there exists a (typically negative)

variance risk premium. However, far less is known about:

• The relation between the characteristics of the option-implied volatility smile and vari-

ance risk premia,

• The time-variation and term structure of variance risk premia,

• The relation between volatility risk factors and market equity premia.

Studying these features in a coherent arbitrage-free framework is not an easy task. First,

volatility risk is driven by multiple sources of risk with distinct persistence properties, which

may comove dynamically and contribute differently to the price of volatility; see, e.g., Bates

(2000), Gruber, Tebaldi and Trojani (2010), Andersen, Fusari and Todorov (2015a) and

Bardgett, Gourier and Leippold (2019). Therefore, multi-factor models are essential for

identifying the distinct components of volatility and their market prices of risk. Second,

volatility risk is tradable in liquidity option markets by means of suitable replicating port-

folios, similar to other sources of risk such as skewness risk; see, e.g., Bergomi (2004, 2005,

2008, 2009), Kozhan, Neuberger and Schneider (2013), and Schneider and Trojani (2014,

2018a). Therefore, volatility and skewness risk need to be studied jointly with the risk

premia of tradable option portfolios in arbitrage-free markets. Third, many models, such

as Bates (2000)-type models, induce a counterfactually tight link between volatility and

skewness; see, e.g., Gruber et al. (2010), Andersen et al. (2015a) and Constantinides and

Lian (2015). Therefore, they may artificially compress the distinct information contents of
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option-implied skewness and volatility.1 Fourth, the latent factor dynamics estimated by

these models is often difficult to interpret economically in terms of directly observable key

properties of the implied volatility surface.

To jointly address all the main economic properties of volatility risk, we adopt a new

multi-factor volatility specification that allows us to study in a coherent, arbitrage-free frame-

work the multivariate implied volatility dynamics, the term structure of variance risk premia

and their link to equity premia. We study the price of volatility risk consistently with the

prices of all tradable risks in arbitrage-free option markets using a suitable three-factor spec-

ification of stochastic volatility in the class of matrix affine jump diffusions (AJD) introduced

by Leippold and Trojani (2008). This approach has a number of useful properties for identi-

fying the risk premia of the various sources of risk in a multi-factor volatility dynamics. First,

it yields a well-defined joint dynamics for the volatility, the volatility of volatility and the

feedback effects between returns and volatility, under similarly simple parameter constraints

as in standard affine models. Second, it naturally embeds a stochastic skewness that is only

weakly linked to the level of the volatility. Third, it easily accommodates flexible functional

forms for factor risk premia, which can depend on all volatility risk factors. Fourth, it is

based on dynamically correlated volatility factors that are more directly interpretable in

terms of the observable dynamics of implied volatility and skewness.

Using exclusively option information, we first estimate with a tractable filtering approach

the hidden transition dynamics of the volatility, together with all risk neutral parameters in

the model. This allows us to identify the volatility factors driving S&P500 option implied

volatilities and their factor risk premia. In a second step, we estimate variance risk premia,

i.e., the risk premia for trading realized variance, by means of a consistent arbitrage-free

regression of synthetic variance swap payoffs on model-implied variance risk premia. Both

1They may also imply too tight restrictions for factor risk premia, which are usually specified as affine
in individual factor levels to preserve tractability.
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steps do not require a specification of the equity premium dynamics, making this part of our

approach robust to a potential misspecification of equity premia. In a third step, we assess

the economic reliability of the estimated variance risk premium dynamics, by studying the

model-implied equity premium properties under a matrix-affine specification also for equity

premia.

Our volatility dynamics is based on a matrix AJD. This is instrumental for estimating

three stochastically dependent volatility factors X11, X12 and X22 with different persistence

properties, which naturally summarize distinct observable characteristics of the volatility

surface. With a half-life of about 5 weeks, factor X22 reflects the high-frequency component

of the volatility and closely follows the 30-day at-the-money implied volatility. Factor X12

has a longer half-life of about three months and closely targets the 30-day implied skew.

With a clearly longer half-life of more than one year, factor X11 reflects the low-frequency

component of the volatility and closely traces the 12 month at-the-money implied volatility.

We find that our model produces an excellent fit of the cross-sectional and time series

properties of the SPX volatility smile, relative to benchmark models in the literature. For

instance, it clearly improves on the fit of two- and three-factor Bates (2000)-type models.

Similarly, it delivers a pricing performance comparable to the affine double-jump diffusion

model in Andersen et al. (2015a), despite the latter model having five more parameters and

being estimated only under the risk neutral measure. Importantly we obtain a very stable

fit in- and out-of sample, which is known to be a challenge for models consistently estimated

under both the physical and pricing probabilities.2 This evidence supports the usefulness

of our matrix state space approach for capturing in a robust way the intrinsic volatility

dynamics without the need for a complex jump specification in volatility.

2For example, the pricing performance (RMSRE) of the double-jump diffusion model of Bardgett et al.
(2019) implies an out-of sample pricing error that can be up to 40% larger than in-sample.
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The estimated physical and risk-neutral volatility dynamics in our model give rise to

interesting risk premium properties. We obtain highly time-varying and unambiguously

negative variance risk premia, ranging between zero and −16 percent squared (−11 percent

squared), on an annualized basis, for monthly (annual) investment horizons. While variance

risk premia are negative, we find that the variance term premium may change sign. The

term structure of variance risk premia is usually downward sloping, but can become strongly

upward sloping in conditions of market distress, when short-term downside risk is extraordi-

narily high. The downward sloping term structure of variance risk premia in normal times

is spanned by the lower-frequency volatility factors X12 and X11, which act as variance risk

premium factors in such periods. In contrast, the upward sloping term structure in periods of

distress is dominated by the high-frequency factor X22, which acts as an additional variance

risk premium factor for the short end of the term structure, when the short-term volatility

and the volatility mean-reversion are unusually high.

Interestingly, we find that the lower-frequency factors X12 and X11 completely span the

risk premia of all systematic shocks to implied volatilities, which are condensed in a vector

of three factor risk premia. We call this vector the price of the smile. The structure of

the price of the smile is striking. We find that the risk premium of low-frequency volatility

factor X11 is proportional to its level, similar to standard affine models. Hence, long-horizon

implied volatility fully explains the level of its risk premium. In contrast, the risk premium of

skewness factor X12 depends on the level of both X11 and X12. Therefore, implied skewness

only partly explains the risk premium of implied skewness shocks. Finally, the risk premium

of transient volatility factor X22 is proportional to the level of X12. Thus, implied skewness

fully explains the risk premium of short-horizon implied volatility shocks.

Finally, we show that the estimated variance risk premium dynamics can be supported

with a matrix-affine specification of equity premia that is fully model-consistent and which
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produces an economically plausible counter-cyclical dynamics. Under this specification, the

estimated market equity premium varies between 0.2% and 16.5%, on an annual basis for

a quarterly horizon, and it never violates the model-free equity premium lower bound in

Schneider and Trojani (2019a).

The rest of the paper is organized as follows. Section I. introduces our three-factor

stochastic volatility model, together with the closed-form expressions for the term structure

of variance risk premia. It also explains the motivation for modelling the stochastic volatility

of univariate returns using a matrix state space. Section II. presents our empirical findings,

while Section III. concludes and highlights avenues for future developments.

I. Model

Our model is characterized by three mutually exciting risk factors defined on a matrix state

space. It features interdependent factor prices as well as a compensation for variance risk and

a time-varying skewness that are both partly disconnected from the diffusive spot volatility.

In the sequel, we first discuss the motivation for using factor models defined on a matrix

state space when specifying stochastic volatility features. In a second step, we introduce our

model and the corresponding solutions for option prices and variance risk premia.

A. Multi-factor Volatility Models for Univariate Returns

Besides the standard positivity of the volatility, multi-factor models have to incorporate

further natural constraints in order to induce a well-defined return dynamics. Indeed, while

these models can give rise to flexible joint dynamics for the volatility, the volatility of volatil-

ity and the co-variation between returns and volatility, in doing so they need to imply a

well-defined joint variance-covariance matrix for returns and volatilities. This matrix is also

key to specifying well-defined dynamics for the risk premia of derivative assets in a market
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with stochastic volatility.

A.1. The Drivers of Risk Premia in Derivatives Markets with Stochastic Volatility

Let dSt/St− be a univariate continuous-time asset return and Vrrt := 1
dt
V arPt [dSt/St−] be the

conditional return variance under the physical probability. The joint covariance matrix of

returns and the volatility is defined by

Vt :=

 Vrrt Vrvt

Vvrt Vvvt

 , (1)

where Vrvt := 1
dt
CovPt [dSt/St−, dVrrt] and Vvvt = 1

dt
V arPt [dVrrt]. To understand the impor-

tance of matrix (1) for modelling the excess returns of derivatives in a market with stochastic

volatility, consider for illustration a volatility derivative with price process Pt := P (St, Vrrt).

Itô’s Lemma yields the following expression for the dynamics of the derivative’s value, as-

suming for brevity that it is delta- and theta-hedged:3

dPt
Pt−

=
1

Pt−

[
∂P (St, Vrrt)

∂Vrr
dVrrt +

1

2
tr(VtHt)dt

]
, (2)

with tr(·) the trace operator and the Hessian matrix

Ht :=

 ∂2P (St,Vrrt)
∂2S

∂2P (St,Vrrt)
∂S∂Vrr

∂2P (St,Vrrt)
∂S∂Vrr

∂2P (St,Vrrt)
∂2Vrr

 . (3)

In equation (2), the first term on the right hand side captures changes in the value of the

derivative that are due to first-order variations in the level of the volatility. It induces a risk

3The assumption Pt := P (St, Vrrt) is only for illustration purposes. For volatility derivatives with an
asset value depending on all volatility factors, the resulting risk premium description is more involved, but
the main intuition remains the same.

7



premium contribution to the derivative position that is proportional to the risk premium

for instantaneous volatility shocks, where the proportionality coefficient is captured by the

derivative’s vega. In contrast, the second term captures changes in the value of the portfolio

that are due to second-order variations in returns and the level of the volatility. This term

has finite variation and therefore directly identifies a particular time-varying risk premium

component in the excess return of the derivative position. It consists of a weighted sum

of second order sensitivities collected in matrix (3), with weights that are the time-varying

volatility, volatility of volatility and volatility feedback coefficients Vrrt, Vvvt and Vrvt in

matrix (1). In particular, the risk premium of the derivative depends on the level of the

volatility through the Gamma-sensitivity of the derivative price to shocks in the underlying

asset’s valuation, which gives rise to a Gamma-Vega relationship in derivative risk premia. In

contrast, all other components of the derivative risk premium depend either on the volatility

of volatility or the covariation of returns and volatility, which are empirically only partly

correlated with the level of the volatility.

In summary, in addition to a precise specification of instantaneous volatility risk premia,

an accurate model for the risk premia of volatility derivatives needs to rely on an empirically

plausible state process for the symmetric positive definite matrix (1). We discuss in the next

section how an approach based on matrix state processes can give rise to natural alternative

specifications for matrix (1) having distinct theoretical and empirical properties.

A.2. Main Issue

K−factor affine models specify every element of matrix (1) as a linear combination of un-

derlying factors with affine state dynamics, i.e.,

Vt :=
K∑
k=1

XktVk , (4)
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with scalar stochastic factors Xkt and constant parameter matrices Vk. The key feature

of benchmark affine models defined on standard state spaces, such as multi-factor Bates

(2000)-type models, is that in order to ensure positivity of matrix (1) they typically specify

all factors Xkt as positive (and typically independent). In parallel, they directly ensure

positive definiteness of each matrix Vk with suitable parameter constraints.4 This choice de

facto constraints matrix (1) to be a convex combination of matrices Vk once the level of the

volatility is fixed.

In this paper, we follow a different approach based on a matrix state process Xt defined

on a state space of n×n symmetric and positive semi-definite matrices. Therefore, we specify

volatility matrix (1) as affine in the matrix state Xt,

Vt :=

 tr(XtD̃
′D̃) tr(XtR̃

′Q̃)

tr(XtR̃
′Q̃) tr(XtQ̃

′Q̃)

 , (5)

where D̃, R̃, Q̃ are corresponding n×n matrices of parameters. By construction, the diagonal

elements of matrix (5) are non-negative. Therefore, to ensure positive definiteness of this

matrix, one just has to ensure that parameter matrix D̃′D̃−R̃′R̃ is positive definite.5 Clearly,

given the matrix affine form (5), it is always possible in these models to write:

Vt =
n∑
i=1

n∑
j=1

Xijt

 (D̃′D̃)ij (R̃′Q̃)ij

(R̃′Q̃)ij (Q̃′Q̃)ij

 , (6)

where Mij denotes the ij−th component of a generic matrix M . While this additive structure

seems superficially identical to the one in equation (4), it is actually very different in terms of

4For instance, each factor Xkt can be specified as an independent Heston (1993)-type volatility model,
which may as well be extended by an additional independent component modelling volatility jumps, while
matrix Vk can be specified as the (positive definite) covariance matrix of returns and factor k shocks.

5From Cauchy-Schwarz inequality, one directly has (tr(XtR̃
′Q̃))2 ≤ tr(XtQ̃

′Q̃)tr(XtR̃
′R̃). Therefore,

positivity of matrix (5) always follows if tr(Xt(D̃
′D̃ − R̃′R̃)) ≥ 0.
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the states for matrix Vt that are attainable. Indeed, note first that not all components Xijt

in equation (6) need to be positive, since the positivity condition need only be fulfilled at the

matrix level. Second, the various matrices in the sum on the right hand side of equation (6)

are not in general all positive definite, either. Lastly, we relax the assumption of conditional

volatility factor independence in many benchmark models. Indeed, the different components

Xijt of the matrix state process have to be conditionally mutually dependent to ensure

positive semi-definiteness of matrix Xt.

Figure 1 illustrates graphically the admissible combinations of variance of variance Vvvt

and leverage effect Vrvt in three-factor Bates (2000)-type models and in a our 2 × 2 matrix

AJD setting of Section I.B.1., for four distinct levels of the returns variance Vrrt. For any

given level, the admissible regions for matrix (1) in three-factor Bates (2000)-type models

form a three-dimensional simplex, a result of the convex combinations in (4). In contrast, the

corresponding admissible regions in our matrix AJD are bounded by ellipses, which almost

completely contain the corresponding regions of three-factor Bates (2000)-type models.

[Insert Figure 1 about here.]

In summary, matrix state processes are a convenient instrument to specify multi-factor

volatility dynamics that imply a well-defined covariance matrix (1). We follow this insight

and introduce in the next sections a tractable three-factor volatility model using a 2 × 2

matrix-valued diffusion of symmetric and positive semi-definite matrices of the form

Xt :=

 X11t X12t

X12t X22t

 . (7)
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B. A Three-Factor Matrix AJD Volatility Model

Positivity of the diagonal elements X11t and X22t in matrix (7) allows us to naturally specify

these state variables as (diffusive) variance risk factors. In parallel, we largely make use

of out-of-diagonal element X12t to model shocks in return jump intensities and volatility

feedbacks that are not perfectly correlated with the diffusive volatility.

B.1. Matrix State Dynamics

We specify a tractable state dynamics in our model, starting from the Wishart diffusion of

Bru (1991).

Assumption 1 Symmetric positive semi-definite process Xt follows the affine dynamics

dXt = [β∗Q′Q+M∗Xt +Xt(M
∗)′]dt+

√
XtdB

∗
tQ+Q′(dB∗t )

′
√
Xt , (8)

where β∗ ≥ 1, M∗, Q are 2 × 2 parameter matrices and B∗ is a 2 × 2 standard Brownian

motion under physical measure P.
√
Xt denotes the symmetric square root of Xt.

6

Process (8) is positive semi-definite (positive definite) if β∗ ≥ 1 (β∗ ≥ 3), ensuring that the

volatility components are reflected (cannot reach) the zero boundary, see Bru (1991) and

Mayerhofer (2014), among others. Note that in the general case when matrices M∗ or Q are

not diagonal, all states X11t, X22t and X12t are dynamically interconnected, because their

drifts and volatilities depend on all state variables in equation (8). When M∗ and Q are

diagonal, vector (X11t, X22t) is an autonomous Markov process with components distributed

as independent Heston (1993) volatility process. In this way, one can nest the two-factor

state process in Bates (2000) model within the state dynamics (8).

6Give a symmetric positive semi-definite matrix Xt,
√
Xt is the uniquely defined symmetric and positive

semi-definite matrix such that
√
Xt

√
Xt = Xt.
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B.2. Return Dynamics

We specify the return dynamics using the following affine jump-diffusion.

Assumption 2 Under the physical probability measure P, the dynamics of price process St

is given by7:

dSt
St−

= µtdt+ tr(
√
XtdZ

∗
t ) + k∗dN∗t , (9)

where Xt follows the dynamics (8),

Z∗t = B∗tR +W ∗
t

√
I2 −R′R , (10)

with W ∗ another 2× 2 standard Brownian motion, independent of B∗, and R a 2× 2 matrix

such that I2−R′R is positive semi-definite. Return jumps follow a compound Poisson process

k∗dN∗t with jump intensity λ∗t = tr(Λ∗Xt), for a 2 × 2 matrix Λ∗ and an iid jump size k∗.

The distribution of log return jumps J∗ := ln(1 + k∗) is a double exponential with parameter

λ∗+, λ∗− > 0 and density:

f(J∗) =
λ∗+λ∗−

λ∗+ + λ−∗

[
e−λ

∗−J∗−−λ∗+J∗+
]
, (11)

with J∗+ := max(J∗, 0) (J∗− := max(−J∗, 0)) the positive (negative) part of log return jumps.

Under Assumption 2, the covariance matrix (1) of returns and the volatility reads

Vt =

 tr(Xt) 2tr(XtR
′Q̃∗)

2tr(XtR
′Q̃∗) 4tr(XtQ̃

∗′Q̃∗)

+ EP(k∗2)

 tr(Λ∗Xt) 0

0 0

 , (12)

7In our specification, the jump process is not compensated. The total expected return under the physical
measure is EP[ dSt

St−
] = µt + EP[k∗dN∗].
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with the 2× 2 matrix Q̃∗ := Q(I2 +EP[k∗2]Λ∗).8 Here, tr(Xt) is the diffusive variance of re-

turns and EP(k∗2)tr(Λ∗Xt) the jump variance of returns. Note that while matrix component

X12 does not affect the diffusive variance of returns, it impacts in general on the dynamics of

both the jump intensity tr(Λ∗Xt) and the correlation between returns and volatility. Hence,

whenever matrices R′Q̃∗ and Λ∗ are not diagonal, component X12 jointly impacts the jump-

driven volatility, the jump-driven skewness and the diffusive skewness. At the same time, it

does not appear in the diffusive volatility.

Remark 3 Diagonal matrices R′Q̃∗ and Λ∗ give rise to Bates (2000) specification of volatil-

ity feedbacks and stochastic intensities. Thus, a diagonal model in Assumption 2 based on

diagonal matrices M∗, Q̃, R and Λ∗ gives rise to Bates (2000) model.9 All such diagonal

models have independent volatility risks, as well as jump intensities, volatility feedbacks and

factor prices that are completely spanned by the diffusive variance risk factors.

The three-factor return specification in Assumption 2 is only slightly less parsimonious than

Bates (2000) model, with three additional parameters. In contrast, a three-factor Bates

(2000)-type model implies seven additional parameters. Parsimony of our three-factor spec-

ification helps the identification of parameters and risk factors in our two-step estimation

procedure.10

8Matrix (12) is positive semi-definite because correlation matrix R in Assumption 2 is such that I2−R′R
is positive semi-definite.

9In order to formally nest two-factor Bates (2000)- and Heston (1993)-models in our setting, we specify
β∗ as a diagonal matrix B∗ when both Q̃∗ and M∗ are diagonal.

10Table 1 of the Online Appendix gives a summary of benchmark models related to Assumption 2. We
denote by SVrq pure diffusion and by SV Jrq jump diffusion models, according to the numbers r and q of
state variables and skewness factors disconnected from volatility, respectively. For comparison, we also report
the total number of parameters necessary for a complete specification of the risk-neutral and the physical
dynamics in our two-step estimation approach.
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C. Stochastic Discount Factor

In our model, three types of shocks can be priced: (i) diffusive shocks in index returns,

(ii) diffusive shocks in the X−driven volatility dynamics and (iii) jump-type shocks in index

returns. According to Assumption 2, these shocks correspond to the matrix Brownian shocks

dW ∗
t , dB∗t and the compound poisson shock (eJ

∗ − 1)dN∗t , respectively.

Given the incompleteness of our model setting, a multiplicity of stochastic discount

factors for pricing these shocks exists. Existence of a stochastic discount factor is ensured by

a corresponding density for an equivalent change of measure from the physical probability P

to the risk neutral probability Q. For suitable 2 × 2 matrix processes {Γ1t}, {Γ2t} and our

double-exponential specification for log return jumps, such a density can take the form:

dQ
dP

∣∣∣∣
FT

= exp

{
tr

(
−
∫ T

0

Γ1tdW
∗
t +

1

2

∫ T

0

Γ′1tΓ1tdt−
∫ T

0

Γ2tdB
∗
t +

1

2

∫ T

0

Γ′2tΓ2tdt

)}

×
N∗T∏
i=1

exp

{
−(λ− − λ∗−)J∗i

− − (λ+ − λ∗+)J∗i
+ + ln

(
1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

)}
, (13)

where the second line defines the change of measure for return jump size distributions and

we have already assumed for identification purposes identical functional forms of physical

and risk-neutral intensities, consistently with identification Assumption 5 in Section II. C.2.

below.11 This choice implies a double exponential distribution with density (11) for return

jumps, having parameters λ∗+, λ∗− and λ+, λ− under the physical and the risk neutral

distribution, respectively.

Consistently with Leippold and Trojani (2008) and Mayerhofer (2014), we can price the

volatility shocks in Assumption 2, driving the risk factors in our model, with a stochastic

discount factor that preserves an affine dynamics under the risk neutral probability measure.

11Filtration (FT )T≥0 is generated by all Brownian and Poisson-type shocks in the joint dynamics of
returns and volatility factors.
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A convenient specification preserving the affine structure under the pricing measure is:

Γ1t =
√
Xt∆ + δ

1√
Xt

, (14)

Γ2t =
√
XtΓ +

1

2
√
Xt

(β∗ − β)Q′ , (15)

with δ a scalar and Γ,∆ being 2 × 2 parameter matrices. However, it is important to

realize that knowledge of the specific form of Γ1t is not necessary to identify the full state

dynamics of Xt under our estimation approach. This feature allows us to estimate the time

series of volatility states Xt (and the variance risk premium) separately from Γ1t (and the

equity premium). In the following sections, we discuss in more detail the resulting change

of measure, admissibility conditions and model-implied risk premia.

C.1. Affine Market Price of Volatility Risk

Assumption 4 The change of measure from the physical probability P to the risk neutral

probability Q is such that:12

dB∗ = dB − Γ2tdt, (16)

with B is a 2 × 2 standard Brownian motion under the risk neutral probability measure,

matrix Γ2t in (15) and parameter constraints implying either min(β, β∗) ≥ 3 or β∗ = β.

When min(β∗, β) ≥ 3, process X is almost surely positive definite under both probabilities P

and Q. Such positive definiteness is necessary if one wants to specify a well-defined extended

affine market price of risk in the matrix AJD setting.13 Therefore, for all parameter choices

12The inverse of a positive definite matrix X is the matrix 1
X such that In = X 1

X = 1
XX.

13Cheridito, Filipovic and Kimmel (2007) propose a class of yield curve models with an extended affine
market price of risk in the context of affine models defined on standard state spaces.
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such that min(β∗, β) < 3, we need to impose the additional constraint β∗ = β to obtain

a well-defined pricing kernel. This constraint gives rise to a completely affine market price

of risk in the matrix AJD setting. Under Assumption 4 the X−dynamics under the risk

neutral probability is again affine and given by:14

dXt = [βQ′Q+MXt +XtM
′]dt+

√
XtdBtQ+Q′dBt

′
√
Xt , (17)

where

M∗ = M + ΓQ . (18)

An important feature of Assumption 4 is that the price of a shock in any of the risk factors

can depend on all factors X11, X22 and X12. Specifically, using the notation D := ΓQ, we

obtain the instantaneous factor risk premia:

1

dt
(EP

t − E
Q
t )[dX11t] = (β∗ − β)(Q′Q)11 + 2D11X11t + 2D12X12t , (19a)

1

dt
(EP

t − E
Q
t )[dX12t] = (β∗ − β)(Q′Q)12 + (D11 +D22)X12t +D21X11t +D12X22t , (19b)

1

dt
(EP

t − E
Q
t )[dX22t] = (β∗ − β)(Q′Q)22 + 2D22X22t + 2D21X12t . (19c)

When matrix ΓQ is not diagonal, the risk premium of diagonal factor Xiit is an affine

function only of Xiit and X12t, while the risk premium of out-of-diagonal factor X12t is affine

in all components of state matrix Xt. In contrast, when ΓQ is diagonal all risk premia are

disconnected and each factor premium is linear in the factor level alone, a situation emerging,

e.g., also in three-factor Bates (2000)-type models. Note that all risk premia can contain a

constant component whenever min(β, β∗) ≥ 3, which is the setting where an extended affine

14In our empirical analysis, we also explored more general physical dynamics for Xt having an uncon-
strained constant drift component ΩΩ′ in equation (17). Such an unconstrained estimation of the model
produced an estimated matrix ΩΩ′ that is statistically indistinguishable from β∗Q′Q. We thank an anony-
mous referee for suggesting the study of this possible extension of our state dynamics.
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market price of risk can be supported using a matrix state space. In all other cases, β = β∗

and the underlying market price of risk is completely affine.

Identification. So far we have specified all parameters relevant for the first step of our

estimation approach. For identification, we require matrices M,M∗ to be non-singular and

lower triangular. Matrix Q is required to be non-singular and upper triangular. Further,

matrix R is the uniquely defined upper triangular Choleski decomposition of R′R and is

constrained to ensure that matrix I2 − R′R is positive semi-definite. Finally, Λ must be

a non singular upper triangular matrix; see Section II.B. of the Online Appendix for a

derivation of these identification conditions.

C.2. Variance Swap Payoffs and Variance Risk Premia

We characterize the risk premia of variance swap contracts that can be synthesized by a

dynamically delta hedged static option portfolio, consistently with the definition of the

CBOE (2009) VIX index. As shown in Neuberger (1994), among others, the floating leg

RVt+τ (τ) of these contracts is proportional to the delta-hedged payoff of a log contract:

RVt+τ (τ) :=
2

τ

[
− ln(St+τ/St) +

∫ t+τ

t

dSs/Ss−

]
=

1

τ

∫ t+τ

t

1

S2
s

d[S, S]cs +
2

τ

∑
t≤s≤t+τ

E(Ss/Ss−) , (20)

where [S, S]cs is the continuous index quadratic variation and E(Ss/Ss−) := − ln(Ss/Ss−) +

Ss/Ss− − 1 the Itakura-Saito divergence of a jump in index returns at time s.15 Since the

variance risk premium V RPt(τ) is the difference of the P and Q expectations of RVt+τ (τ),

15See Schneider and Trojani (2019b) for details.
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Assumptions 1 and 4 give:

V RPt(τ) = (EP
t − E

Q
t )

[
1

τ

∫ t+τ

t

tr(Xs)ds

]
+ (EP

t − E
Q
t )

[
2

τ

∑
t≤s≤t+τ

E
(
Ss
Ss−

)]
. (21)

The first term on the right hand side is the diffusive variance risk premium, i.e., the premium

contribution from continuous return shocks. The second term is the jump variance risk

premium, i.e., the premium contribution from return jumps. Under our specification (13) of

the risk-neutral density, both terms are affine in state Xt. While the diffusive variance risk

premium is completely inferable from the risk premia of the diagonal components of state

process Xt, the jump variance risk premium depends on the chosen specification of jump

intensities and jump distributions under the physical and risk neutral probabilities.

In our empirical analysis, we identify risk-neutral jump intensities and jump size distri-

butions from the first-step estimation of the physical and risk-neutral matrix state dynamics,

while relying exclusively on option data information. In the second step of our empirical

approach, we identify the physical jump expected variance in the variance risk premium (21)

using the variance swap payoffs in equation (20). Given the non identifiability of λ∗t and

EP[E(St/St−)] from the term structure of variance swap payoffs, we assume in the sequel

identical functional forms of physical and risk-neutral intensities for identification.16

Assumption 5 Physical and risk neutral jump intensities are such that Λ∗ = Λ.

Assumption 5 is a fairly standard identification assumption in the literature, see for example

Bates (2000), Carr and Wu (2017) or Ait-Sahalia, Karaman and Mancini (2012), and is con-

sistent with the risk-neutral density specification in Section I. C.17 With the parameterization

16We investigated different affine specifications of physical jump intensities and found that a specification
with physical intensities proportional to risk-neutral intensities is preferred by the out-of-sample analysis of
variance swap payoffs.

17It is important to realize that under Assumption 5 the physical and risk-neutral intensity dynamics
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EP[E(1 + k)] = β∗λEQ[E(1 + k)], Assumption 5 yields:

EP
t

[
2

τ

∑
t≤s≤t+τ

E
(
Ss
Ss−

)]
= β∗λE

Q[E(1 + k)]EP
t

[
2

τ

∫ t+τ

t

tr(ΛXs)ds

]
.

The resulting closed-form (affine) expression for the variance risk premium is detailed below.

Proposition 1 Given Assumptions 1, 2, 4 and 5, the variance risk premium for time to

maturity τ > 0 is given by:

V RPt(τ) = V RP c
t (τ) + V RP d

t (τ) , (22)

where diffusive and jump variance risk premia V RP c
t (τ) and V RP d

t (τ) read explicitly:

V RP c
t (τ) = tr[XP

∞ −XQ
∞ + AP

τ (Xt −XP
∞)− AQ

τ (Xt −XQ
∞)],

V RP d
t (τ) = 2EQ[E(1 + k)] tr

[
Λ
(
β∗λX

P
∞ −XQ

∞ + β∗λA
P
τ (Xt −XP

∞)− AQ
τ (Xt −XQ

∞)
)]

,

with 2× 2 matrices XQ
∞, XP

∞ such that:

XQ
∞M +M ′XQ

∞ = βQ′Q ; XP
∞M

∗ +M∗′XP
∞ = β∗Q′Q , (23)

and linear matrix operators AP
τ (·) and AQ

τ (·) defined in Section I.B. of the Online Appendix.

Remark 6 (i) In non-diagonal models, the term structure of variance risk premia depends

on shocks to factor X12, which are partially separated from shocks to the spot volatility. (ii)

It is easy to see that when matrices Q, M , M∗ and Λ are diagonal, both V RP c
t (τ) and

V RP d
t (τ) depend only on X11 and X22, which induces a perfect correlation between shocks

are still different, because the physical and risk-neutral dynamics of state process X are different. As a
consequence, jump intensity risk is priced in our model and contributes to variance risk premia.
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in variance risk premia and the spot (diffusive) variance. This situation emerges in Bates

(2000)-type models.

C.3. Model-Implied Equity Premium

The instantaneous equity premium in our model is given by

EP
t [dSt/St−]− (r − q) = µt + EP

t [k∗dN∗t ]− (r − q) , (24)

with r the risk-free rate and q the index dividend yield. Given the risk-neutral density spec-

ification in equation (13) with a market price of volatility (15), the jump-related component

EP
t [k∗dN∗t ] of the equity premium is affine in state Xt. The concrete specification (14) for

the market price of W ∗−shocks further supports an affine dependence also for the diffusive

equity premium component δ + tr(∆Xt):
18

µt − δ − tr(∆Xt) = r − q − EQ
t [kdNt] , (25)

and

EP
t [dSt/St−]− (r − q) = δ + tr(∆Xt) + EP

t [k∗dN∗t ]− EQ
t [kdNt] . (26)

We test this affine specification of the equity premium in our model in a separate third

estimation step, detailed in Section I.C.6. below. In Section II.G. of our empirical analysis

we test the statistical and economic implications of this specification with respect to those

implied by unconstrained predictive regressions of future index returns on state Xt.

18Section I. C. of the Online Appendix provides a formal proof of the fact that under Assumptions 1
and 4 these choices of market price of risk specifications Γ1t and Γ2t imply a well defined density process
{dQdP |FT

}T≥0.
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C.4. Option Valuation

Assumption 2 and Assumption 5 yield closed-form risk-neutral transforms, which are useful

to compute the prices of plain vanilla options; see Carr and Madan (1999) and Duffie, Pan and

Singleton (2000), among others. Following Leippold and Trojani (2008), the exponentially

affine conditional Laplace transform for YT := log(ST ) is given by:

Ψ(τ ; γ) := Et [exp (γYT )] = exp (γYt + tr [A(τ)Xt] +B(τ)) , (27)

where τ = T − t, with the 2 × 2 matrix A(τ) and the scalar B(τ) given in closed form in

Section I.A. of the Online Appendix.19

C.5. Link between parameter β∗λ and variance swap payoffs

With the exception of parameter β∗λ, all states and parameters in Proposition 1 are iden-

tifiable from the panel of index option prices. This feature motivates a simple estimation

procedure for parameter β∗λ, based on the model-free payoffs of variance swaps.

Denoting by Ft the S&P 500 index future for maturity τ ≥ t, the payoff of a variance

swap with maturity τ is the following delta-hedged payoff of a static option portfolio:

RV e
t+τ (τ) := RVt+τ (τ)− EQ

t [RVt+τ (τ)] =
2

τ

[∫ ∞
0

Ot+τ (K)

K2
dK +

∫ t+τ

t

(
1

Fs−
− 1

Ft

)
dFs

]
−2

τ

∫ ∞
0

EQ
t [Ot+τ (K)]

K2
dK , (28)

19In contrast to Bates (2000)-type models, the computation of the risk neutral transform cannot be
reduced to calculations that involve only scalar exponential and logarithmic functions, because A(τ) and
B(τ) depend on a matrix exponential and a matrix logarithm. To overcome these computational challenges
and make the estimation feasible, we employ a fast evaluation scheme based on the efficient Cosine-Transform
method in Fang and Oosterlee (2008) and perform the calculations on a cluster of 80 processors. To solve
the problem of the multi-valued complex logarithm, which has been documented in Lord and Kahl (2010) for
the scalar case, we employ the matrix rotation count algorithm. See Gruber (2015) for a detailed discussion
of the computational aspects of our model.
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where Ot+τ (K) is the payoff of an out-of-the-money European option on index futures, with

maturity τ and strike price K. We compute payoff RV e
t+τ (τ) in a model-free way, i.e. using

a panel of SPX options and a time of series high-frequency S&P 500 index futures prices

to approximate the integrals in (28) at a weekly frequency. Note that by definition the

expectation of this payoff is the variance risk premium in Proposition 1, which is itself

linear in parameter β∗λ. Therefore, we can subtract from payoff (28) the relevant terms in

Proposition 1, in order to obtain an arbitrage-free regression setting that allows us to directly

estimate parameter β∗λ. The explicit form of this regression is detailed in the next result.

Proposition 2 For any τ > 0, define the following variables:

Yt+τ (τ) := RV e
t+τ (τ)− V RP c

t (τ)− 2EQ[E(1 + k)]tr[Λ(XQ
∞ + AQ

τ (Xt −XQ
∞))] , (29)

Ut(τ) := 2EQ[E(1 + k)]tr[Λ(XP
∞ + AP

τ (Xt −XP
∞))] . (30)

Given Assumptions 2-5 and maturities τ1 < . . . < τn, the following is an arbitrage-free linear

regression model,


Yt+τ1(τ1)

...

Yt+τn(τn)

 = β∗λ


Ut(τ1)

...

Ut(τn)

+


ηt+τ1(τ1)

...

ηt+τn(τn)

 , (31)

where error term ηt+τ (τ) := (ηt+τ1(τ1), . . . , ηt+τn(τn))′ is such that EP
t [ηt+τ (τ)] = 0.

Note that all quantities in the definition of Yt+τ (τ) and Ut(τ) are computable from variance

swap payoffs RV e
t+τ (τ) and a first-step estimation of parameters β, β∗,M,M∗, Q,Λ, λ+, λ−

and filtered states {X̂t} from the panel of SPX options. This insight allows us to separate

the estimation of parameter β∗λ from the estimation of all other parameters in the model,

using our two-step identification procedure for the price of the smile and the term structure
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of variance risk premia.

C.6. Identification of the Equity Premium Parameters

As discussed in Section C.3., we obtain the full state dynamics, all parameters necessary

for option pricing and the variance risk premium without requiring a complete specification

of the price of risk Γ1t. This helps us to estimate and test the concrete equity premium

specification (26) in an independent third estimation step, without impacting the estimated

volatility dynamics.

We denote for brevity by β∗∆ := EP [k∗] /EQ [k] the parameter for the expected physical

jump size. Using equations (A-5)–(A-7) from the Online Appendix, together with equation

(26), we then obtain the following explicit equity premium identity, which is the basis of our

estimation approach:

1

τ
EP
[
ln

(
St+τ
St

)]
− (r − q) + EQ [k] tr

(
Λ · AQ

τ (Xt −XQ
∞)
)︸ ︷︷ ︸

Zt(τ)

= δ + β∗∆ E
Q [k] tr

(
Λ · AP

τ (Xt −XP
∞)
)︸ ︷︷ ︸

Wt(τ)

+tr
(
∆ · AP

τ (Xt −XP
∞)︸ ︷︷ ︸

Vt(τ)

)
, (32)

Identification and positivity of the diffusive equity premium component (25) require ∆ to be

a symmetric, positive semi-definite 2×2 matrix, and scalar δ to be non-negative. To estimate

θ := (δ, β∗∆,∆
11,∆12,∆22) using identity (32), an identification assumption is needed, as the

three components of the symmetric matrix Vt(τ) and scalar Wt(τ) are linearly dependent.

In order to allow for the possibility that all volatility factors impact the diffusive equity

premium, we thus require for identification ∆ to have rank equal to one. Overall, we obtain

a linear regression model of the form

ln

(
St+τ
St

)
− Zt(τ) = δ + β∗∆Wt(τ) + tr(∆Vt(τ)) + ζt+τ (τ) (33)
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where error term ζt,τ (τ) is such that EP
t [ζt+τ (τ)] = 0. In our empirical analysis, we estimate

δ, β∗∆,∆ with constrained least squares under the constraints 0 ≤ β∗∆ ≤ 1 and rank(∆) = 1,

using index returns for horizons τ = 1, . . . , 6, 9, 12.

II. Empirical Analysis

A. Data and Estimation

We collect from OptionMetrics daily data of end-of-day prices of S&P 500 index options

(SPX), traded at the CBOE, for the sample period from January 1996 to August 2015 and

maturities up to one year.20 The sample consists of 4948 trading days, which we reduce to

1015 weekly observations (each Wednesday). In order to allow for an out-of sample evaluation

of our model, we split these 1015 observations into an in-sample period from January 1996

to December 2002 with 359 observations and an out-of sample period from January 2003 to

August 2015 with 656 observations. We apply a number of standard filtering procedures as

outlined, e.g., in Bakshi, Cao and Chen (1997).

For our first-step estimation of model parameters and volatility factors, we make use

of all options with a time to maturity of at least ten days and an absolute Black-Scholes

delta between 0.1 and 0.9.21 On average, this gives about 175 option prices per trading day.

Table 2 of the Online Appendix presents a summary of the characteristics of our data set.

To calculate weekly model-free variance payoffs as defined in (28), we use of all available

options. The delta hedging component in the variance payoff is computed using tick data

for the S&P 500 index future traded at the CBOE, obtained from tickdata.com, sampled at

20We obtain end-of-day midquotes as simple averages of end-of-day bid and ask call prices. We obtain
the risk-free rate from OptionMetrics and force the put-call parity to hold when calculating implied dividend
yields. We base our estimation on synthetic forward prices.

21Given the challenges in jointly fitting weekly options and longer maturity options with models having
time-invariant jump distributions (see Andersen, Fusari and Todorov (2017)), we follow the standard ap-
proach in the literature and leave the study of weekly options with matrix AJD for future research. We
thank an anonymous referee for raising this issue.
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60 second intervals and aggregated over horizons τ = 1 . . . 12 months to realized volatilities.

In the first step of the estimation, we use the panel of SPX in-sample observations to es-

timate the model parameters Q, M , M∗, R, Λ, λ+, λ−, β, β∗, together with the filtered time

series of risk factors X11t, X12t and X22t. We estimate the model parameters by maximiz-

ing the likelihood defined on the option-implied volatility forecasting errors in an extended

Kalman filter, using an exact second-order state dynamics and a linearized observation equa-

tion for implied-volatilities.22 For the observation equation, we assume Gaussian errors and

account for a potential autocorrelation of implied volatility errors. Details on the estimation

procedure are provided in Section II.A. of the Online Appendix.

In the second step, we estimate the jump size proportionality parameter β∗λ from an

arbitrage-free linear regression of realized variance swap payoffs on the time series of model-

implied variance risk premia, as outlined in Proposition 2. Precisely, we first compute

synthetic variance swap payoffs for maturities τ1, τ2, . . . , τn = 1, 2, 3, 4, 5, 6, 9, 12 months and

construct a time series of in-sample weekly observations for variables (Yt+τi(τi), Ut(τi))i=1,...,n

in linear model (31), where t = 1, . . . , N and the in-sample sample size is N = 359. We then

estimate the single unknown parameter β∗λ with a pooled linear regression.23

In a third step, we estimate with constrained least squares parameters δ, β∗∆,∆ in equity

premium identity (33), based on constrained pooled predictive regression for horizons τ =

22While this filtering approach is not exact and may imply a discretization bias, we feel it is a reasonable
compromise between computational complexity and accuracy in our setting with more than 150 options per
day. In principle, one could try to develop an unscented Kalman Filter or a particle filter for our matrix
AJD, in order to propagate the underlying matrix state dynamics. As such approaches would considerably
increase the computational burden for the model estimation in our current setting, we leave it as an interesting
direction for future research. We thank an anonymous referee for raising this point.

23This approach allows us to estimate parameter β∗λ consistently with a simple pseudo Maximum Like-
lihood approach, under the assumption of a correctly specified conditional variance risk premium. Clearly,
this approach is less efficient than a Maximum Likelihood estimation incorporating the information from the
full conditional distribution of the realized variance excess payoffs. As correctly specifying a full likelihood
for realized variance would require additional not obvious assumptions, we feel that a pseudo-maximum like-
lihood approach is naturally motivated also from a robustness perspective. We thank an anonymous referee
for raising this point.
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1, 2, 3, 4, 5, 6, 9, 12 months, using our full sample January 1996 to August 2015.

B. Option Pricing Performance and Model Fit with Respect to Bates-Type Models

We quantify the option pricing performance and the statistical fit of our matrix AJD model

(GT 2) in relation to the benchmark models in Table 1 of the Online Appendix. These bench-

mark models include two- and three-factor Heston (1993)- and Bates (2000)-type models, as

well as the purely diffusive version of our model, which is obtained for Λ = 0. For all these

models, we produce a joint estimation of physical and risk-neutral volatility dynamics.24

Since the models have different numbers of parameters and state space dimensions (see in

Table 1 of the Online Appendix), we control for overfitting using our in-sample (1996-2002)

and out-of-sample (2003-2015) periods. All our parameter estimates are exclusively based on

in-sample weekly data. We then use the full data set to compute the filtered states, in- and

out-of sample option prices, implied volatilities and finally proxies of pricing accuracy, such

as the mean weekly absolute implied volatility error (MAIVE ). We furthermore compare

the statistical fit of different models using the in- and the out-of-sample value of the average

likelihood function and information criteria. Table 2 summarizes the pricing performance

and statistical fit across models.

[Insert Table 2 about here.]

The results indicate that our model GT 2 produces the best pricing performance and

statistical fit, both in- and out-of-sample. For instance, the pricing error is substantially

reduced relative to a Bates (2000)-type model (SJV20), by 19.4% in-sample and 31.3% out-of-

sample, using the MAIVE metric. The improvement of the in-sample (out-of-sample) value

of the likelihood function is 4.7% (10.4%) and is statistically significant at conventional levels.

24In Section II.F. below, we compare the performance of our model also with respect to recent flexible
specifications of risk-neutral probabilities. There, we estimate risk neutral parameters and hidden volatility
states with a penalized nonlinear least squares approach to allow for comparison.

26



Our model also improves with respect to a three-factor Bates (2000)-type model (SV J30),

despite having four parameters less.25

The in- and out-of sample performances of our GT 2 model are virtually identical, with

MAIVE s of 53.7 and 54.8 volatility basis points. In contrast, the out-of-sample MAIVE of

the SV J20 (SV J30) model is 19.8% (4.6%) higher. In summary, our model improves on

benchmark two- and three-factor Bates (2000)-type models, both in- and out-of-sample, in

a way that clearly indicates no relevant degree of overfitting.

C. Estimated Parameters

The estimated model parameters directly capture the dynamic interactions between volatility

risk factors and their relation with the price of the smile. Table 1 presents the parameter

estimates for our model, while Table 3 of the Online Appendix presents our estimates in the

context of different benchmark models.

[Insert Table 1 about here.]

All estimated parameters are significant at standard significance levels. Since we cannot

reject the null hypothesis β∗ = β, the data support a completely affine specification of the

market price of risk in (16). The out-of-diagonal element is strongly significant in all param-

eter matrices M , M∗, Λ, R and Q, indicating that option prices are better described by a

three-factor matrix AJD than by a two-factor diagonal model with independent components.

The estimated jump parameters λ− � λ+ reflect the negative risk-neutral skewness of the

distribution of log return jumps.

The large negative coefficient M∗
22 indicates that factor X22 has the strongest autonomous

mean reversion and the lowest persistence of all factors in our model. Since Q22 � Q11, factor

25Our model is preferred to benchmark two- and three-factor Bates models also according to standard
model selection criteria, such as Akaike Information Criterion (AIC).
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X22 also has the largest local volatility. Due to the positivity of M∗
12, X22’s mean reversion

is dampened (reinforced) in states where X12 is positive (negative). As X12 is positive

most of the time, with stronger excursions during phases of market distress, this feature

induces a mutually-exciting behaviour of factors X22 and X12 in such phases. Note that

besides driving the high-frequency component of the diffusive variance, X22 also creates high-

frequency movements in the jump variance, because parameter Λ22 is positive and significant.

Thus, X22 is a high-frequency component of the total variance, featuring mutually exciting

dynamics with X12 in phases of distress.

The negative coefficient M∗
11 indicates that factor X11 is also mean-reverting, but clearly

more persistent and less volatile than X22, as Q22 � Q11. The mean-reversion of X11 is

also dampened in phases of distress, so that overall the total diffusive variance follows a

mutually-exciting dynamics with X12 in such periods. Positivity of parameter Λ11 shows

that X11 is also a low-frequency component of the jump variance. X11 is therefore a low-

frequency component of the total variance, featuring mutually-exciting behaviour with X12

in periods of distress.

The negative coefficients M∗
11 and M∗

22 indicate that factor X12 has an autonomous

mean-reversion between the one of the high- and low-frequency factors X11 and X22. The

local mean reversion of X12 depends on X11 and X22 and is asymmetric. It is increased

(dampened) in states where X12 is negative (positive), making X12 more persistent and

mutually-exciting in phases of distress. By construction, X12 loads on the jump variance,

via the jump intensity, but is absent from the diffusive variance. The large loading Λ12

indicates that X12 is a key state variable for the jump variance in periods of distress. In

combination with its dominating role in the leverage effect, it has the interpretation of a risk

factor for skewness risk.
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D. Dynamics of Volatility Factors

The times series of factors X11, X22 and X12 are presented in Figure 2 and imply half-lives

of 1.212, 0.25 and 0.108 years, see also Table 5 of the Online Appendix. These factors are

dynamically correlated and mutually exciting, with unconditional correlations of about 0.25

between X11 and X22 and of about 0.5 for the pairs (X11, X12) and (X12, X22).

[Insert Figure 2 about here.]

The diffusive variance tr(Xt) is the sum of two positive components with significantly

different levels of persistence and volatilities of volatility. Here, X22 has on average a larger

contribution to the diffusive variance than X11, besides being more volatile and less per-

sistent. Factor X12 is positive most of the time and takes – as X22 – the largest values in

periods of significant turmoil, as during the 2008-2009 financial crisis. Interestingly, while

the most persistent factor X11 also spikes substantially in periods of distress, it often does

so with a lag with respect to factors X12 and X22. Figure 3 of the Online Appendix also

documents that the relative importance of each factor in our multivariate state dynamics

can vary substantially. For instance, Panel A shows that the fraction of persistent diffusive

variance generated by factor X11 can vary essentially from zero to one.26

Panel B similarly shows that the relative importance of factor X12 also varies a lot. Given

the predominant role of factor X12 in periods of market distress, it appears that this factor

is a key driver of the variance dynamics in these periods.

26Indeed, this fraction is basically zero during Greenspan’s conundrum period, it is about one shortly
before the collapse of the NASDAQ bubble and it rapidly increases from about 0.2 to 0.9 shortly after the
US downgrade. X12t can be as large as 50% of the diffusive volatility during phases of market turmoil, e.g,
shortly after the devaluation of the Thai Bhat, the beginning of the Russian crisis, the Lehman default and
the US downgrade.
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D.1. Interpretation of Factors X11, X12 and X22 as Option-Implied Risks

Even though X11, X12 and X22 are nominally latent factors, we are able to link them to

directly observable characteristics of the option-implied volatility smile, in order to gain

additional economic interpretation. We find that the high-frequency factor X22 is closely

related to the 30-day at-the-money implied variance, with a correlation of 91% and virtually

identical persistence properties. Factor X12 is closely related to the 30-day option-implied

skew, with a correlation of −89%. Similarly, X11 closely targets the long end of the implied

volatility curve and has a correlation of 91% with the 12 months at-the-money implied

variance. Figure 3 presents the time series of model-implied factors and compares these to

the time series of the one-month implied variance, the one-month implied skew and the 12

month implied variance.

[Insert Figure 3 about here.]

D.2. The Price of the Smile

Our estimation results in Table 1 imply the following instantaneous risk premium for X11−,

X22− and X12−shocks, as defined in equation (19):

1

dt
(EP

t − E
Q
t )[dX11t] = −1.0776X11t , (34a)

1

dt
(EP

t − E
Q
t )[dX12t] = −0.6283X11t − 0.5388X12t , (34b)

1

dt
(EP

t − E
Q
t )[dX22t] = −1.2566X12t . (34c)

Therefore, the more persistent factors X11 and X12 are actually risk premium factors that

completely span the price of the smile. Note that the risk premium of each factor is at least

as persistent as the factor itself: The most persistent risk premium is the one for X11−shocks,

followed by the risk premium for X12−shocks, while the most transient risk premium is the
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risk premium for X22−shocks. These instantaneous factor risk premia imply the form of the

risk premium for a shock in the spot diffusive variance V c
t := V art[dS

c
t /S

c
t ] = X11t +X22t:

1

dt
(EP − EQ)

[
dV c

t

]
=

1

dt
(EP − EQ)

[
dX11t + dX22t

]
= −1.0776X11t − 1.2566X12t .

The negative and time-varying market price of spot variance risk is fully explained by the

two more persistent risk premium factors X11 and X12 that span the price of the smile,

where each of these factors loads with a similar weight on the price of the spot variance.

Therefore, our estimated model embeds situations where high-frequency shocks in the spot

volatility can materialize without immediately affecting the market price of the volatility, as

this market price varies only when the lower frequency volatility and skewness factors X11

and X12 vary.

From this evidence, we conclude that the the price of the smile, which is a linear function

of factors X11 and X12 alone, is directly related to observable proxies of long-term option-

implied volatility and short term option-implied skewness. These proxies contain a substan-

tial component that is orthogonal to the high-frequency volatility factor X22. They are also

naturally related to the price of particular option portfolios, such as calendar spreads or risk

reversals, which are designed to profit from changes in long-term option-implied volatilities

and short-term option-implied skewness. According to our findings, we can interpret the

prices of these portfolios as observable risk premium factors that span the price of the smile

and are naturally related to the term structure of variance risk premia.

E. Variance Risk Premia and their Term Structure

The model-implied variance risk premia for horizons τ = 1, 12 months are plotted in Figure

4, together with their difference, as a proxy for the slope of their term structure. Variance

risk premia are unambiguously negative and highly time-varying. They range from −0.1%
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to −16% (−0.4% to −11%) squared for horizons of τ = 1 month (12 months) and provide a

plausible description for the first conditional moment of variance swap payoffs. Consistent

with intuition, the variability of variance swap payoffs around the conditional first moment

is state dependent and can be extremely high during periods of distress. In such periods,

variance risk premia are largest in absolute value.

The term structure of variance risk premia is usually downward-sloping. However, it can

also be upward sloping during short periods of time that correspond to about 12% of the

observations in our sample. The most prominent cases in which we observe an inversion of the

term structure arise immediately after both the Lehmann default in September 2008 and the

US downgrade in August 2011, when the spread between annualized 12 month and 1 month

variance risk premia has been as large as +5.8% squared and +2% squared, respectively.

[Insert Figure 4 about here.]

F. Option Pricing Performance and Volatility Fit with Respect to Three-Factor Double-

Jump Affine Specifications of Risk-Neutral Dynamics

A natural question is how does our matrix AJD specification of the state dynamics perform

with respect to recent flexible specifications of the risk neutral-dynamics for standard state

spaces, which incorporate both an unspanned component for jump skewness and co-jumps

between returns and volatility, such as the option pricing model in Andersen, Fusari and

Todorov (2015b) (AFT ). Therefore, we closely follow the estimation procedure in Andersen

et al. (2015b) for estimating the model’s hidden states and risk-neutral parameters from

option panels, and we apply this procedure for the estimation of their model and our model

using data from our in-sample period 1996-2002.27

27We are grateful to Nicola Fusari for making available his Matlab Toolbox for Option Pricing on which
we based our estimation of the AFT -model. We also thank Kai Wang for excellent research assistance.
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Their estimation approach relies on a regularized nonlinear least squares estimation that

balances the tradeoff between the model’s option pricing and spot volatility fits. Hence,

conditional on a parameter vector θ and a time series of hidden states {Xt}, the objective

function for this estimation problem is:

EWGHT (θ, {Xt}) =

√√√√ 1

T

T∑
t=1

(EPRICE,t + λERV,t) , (35)

where λ > 0 is a penalization parameter and28

EPRICE,t :=
Nt∑
k=1

(IVk,t − ÎV k,t)
2 , ERV,t :=

√
(RVt − R̂Vt)2 , (36)

with Nt the number of option prices observed on day t. In these equations, IVk,t and ÎV k,t

are Black-Scholes option-implied volatilities in the data and as implied by the given model

for parameter θ and states {Xt}, respectively. Similarly, RVt is the continuous part of the

realized volatility on day t, as specified in Appendix B of Bollerslev and Todorov (2011),

while R̂Vt is the diffusive model-implied integrated variance. Table 3 summarizes the quality

of the option pricing and the volatility fit resulting from the estimation of AFT model and

our GT 2 model with our dataset.29

[Insert Table 3 about here.]

We find that both models perform similarly well in terms of the in-sample and out-of-

sample weighted objective function (35), both with respect to its option pricing and realized

volatility error components.30 This evidence shows that our matrix AJD setting can produce

28Following Andersen et al. (2015b), we make use of a penalization parameter λ = 0.2.
29Table 4 of the Online Appendix also reports the parameters estimated by penalized nonlinear least

squares for AFT model and for our matrix AJD model.
30Figure 2 of the Online Appendix also documents graphically the very similar fit of realized volatilities

resulting from the estimation of these two models with our dataset.
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a similarly accurate specification of the risk neutral dynamics and hidden states as AFT -type

models, despite having four parameters less in its specification of risk neutral distributions.

The hidden states estimated by penalized nonlinear least squares for our model GT 2 are

also quite consistent with the filtered states estimated with our extended Kalman filter for

matrix AJD.

When setting the volatility weight λ to zero in criterion (35), the NLLS approach also

defines a natural benchmark for our extended Kalman filter estimation. We find that while

the states estimated by nonlinear least squares are naturally more noisy and volatile, their

correlation with the filtered states from the extended Kalman filter is 0.997 for state X11,

0.972 for state X12 and 0.992 for state X22; see also Figure 4 of the Online Appendix for

more details.

G. Equity Premium Dynamics

The estimated model-implied equity premium dynamics resulting from specification (14)-

(15) implies reasonable economic properties, such as a pronounced counter-cyclicality across

maturities. Figure 5, Panel A, reports the time series of estimated index equity premia

on an annual basis for quarterly horizons.31 We find that the conditional equity premium

variability is large, with a maximum of about 16.5% during the Great Financial Crisis and

a minimum of about 0.2% in the Conundrum Period. Plausibility of the estimated equity

premium dynamics can further be gauged using model-free lower bounds implied by the

cross-section of option prices using the recovery approach in Schneider and Trojani (2019a).

Importantly, we find that while the lower bound reported in Fig. 5 is quite volatile and

counter-cyclical, the model-implied equity premium virtually never violates it.

[Insert Figure 5 about here.]

31Equity premium dynamics for other horizons highlight similar patterns.
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The model-implied equity premium dynamics is naturally constrained by the consistency

conditions induced on the model’s parameters. A model-independent test of an affine equity

premium specification can simply estimate unconstrained predictive regressions of index

returns on model-implied volatility states. In doing so, we can naturally compare the dynamic

equity premium implications of volatility risk factors of different models. Figure 5 reports

the time series of equity premia obtained from predictive regressions of index returns on

estimated volatility states in the AFT model.32 While all volatility factors are statistically

significant in explaining the equity premium for horizons of at least three months, we find that

the resulting dynamics are economically counter-intuitive, with frequent strongly negative

equity premia and frequent violations of the model-free lower bound.33 When imposing

ad-hoc exclusion or sign constraints on the coefficients of strictly positive volatility factors,

a dynamics with uniformly positive equity premia is obtained, which is more consistent

with the model-free lower bound. However, the economic foundation for such constraints is

unclear.

III. Conclusions and Outlook

Motivated by the joint tradability of variance and skewness risk in option markets, we make

use of a new specification of multi-factor volatility to estimate the hidden risk factors span-

ning SPX implied volatility surfaces and the risk premia of volatility-sensitive payoffs. We

find that SPX implied volatility surfaces are well-explained by three dependent state vari-

ables reflecting (i) short- and long-term implied volatility risks and (ii) short-term implied

skewness risk. The more persistent volatility factor and the skewness factor support a down-

ward sloping term structure of variance risk premia in normal times, while the most transient

32Table 8 in the Online Appendix reports full details on estimated regression coefficients and predictive
R2s. Unconstrained predictive regressions using volatility factors in our model produce a qualitatively similar
evidence.

33Estimated factor loading of strictly positive volatility factors are also always significantly negative.
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volatility factor accounts for an upward sloping term structure in periods of distress. The

volatility risk factors in our model also produce under a simple affine specification an econom-

ically plausible and counter-cyclical equity premium, which is compatible with model-free

lower bounds extracted from option prices.

Our volatility specification based on a matrix state process is instrumental to obtaining

a tractable and flexible model for the joint dynamics of returns and volatilities, which im-

proves pricing performance and risk premium modelling with respect to recent three-factor

specifications based on standard state spaces. In contrast to most existing arbitrage-free

models, a key property of our specification is that it incorporates three dynamically corre-

lated and differently persistent state variables, which (i) are linked to a stochastic skewness

and factor prices not spanned by the spot volatility and (ii) produce a sharp identification

of the sources of risk traded in option markets.

While we have focused in this paper on a three-factor specification without jumps in

volatility, an interesting avenue for future research is the study of arbitrage-free option

pricing models with a matrix state space that allows for a multivariate jump component in

the joint covariance matrix of returns and volatilities. Such models can naturally incorporate

multivariate bursts in volatility and volatility of volatility factors, consistently with the recent

empirical evidence in, e.g., Christensen, Oomen and Podolskij (2014) that volatility bursts,

rather than return jumps, are a key component of high-frequency return dynamics.
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Figure 1: Attainable regions for variance-covariance matrix (1) in a three-factor Bates (2000)-
type model and in our 2 × 2 matrix AJD model of Section I. B.1.. For four different levels
of return variance Vrr, we plot the admissible combinations of variance of variance Vvv and
leverage effect Vrv in a three-factor Bates (2000)-type affine model (dark grey triangles)
and our 2 × 2 matrix AJD model of Section I. B.1. (light grey ellipses), making use of the
estimated model parameters of Section II..
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Panel A: Volatility factor X11t
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Panel B: Volatility factor X12t
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Panel C: Volatility factor X22t
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Figure 2: Filtered volatility factors X11t, X12t, X22t. Grey areas highlight NBER recessions;
vertical lines indicate the following crisis events:

(1) 1997-07-02 Start of Asian Crisis (4) 2008-05-30 Bear Sterns bailout
(2) 1998-08-17 Start of Russian Crisis (5) 2008-09-15 Lehman bankruptcy
(3) 2000-03-10 NASDAQ maximum (6) 2011-08-05 US downgrade
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Panel A: Filtered factor X11 as 12-month at-the-money implied variance
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Figure 3: Filtered volatility factors as observable components of the volatility surface. Panel
A: X11 (black line, left scale) and the 12-month at-the-money implied variance (grey line,
right scale). Panel B: Negative value of X12 (black line, left scale) and option-implied skew
S at 1-month horizon (grey line, right scale). Panel C: X22 (black line) and one-month
at-the-money implied variance (grey line). See Section II.C. of the Online Appendix for the
definition of the option-implied skew S. Grey areas highlight NBER recessions; vertical lines
indicate important crisis events as listed in the caption of Figure 2.
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Panel A: 1 month variance risk premium
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Panel B: 12 months variance risk premium
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Panel C: Term structure of variance risk premia
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Figure 4: Variance risk premium and slope of the term structure of variance risk premia.
In panel A (B), we plot the annualized model-implied 1 month (12 months) variance risk
premium (black lines) and the payoffs of synthetic variance swaps (grey lines). In panel C,
we plot the slope of the model-implied term structure of variance risk premia, computed as
the difference of 12-months and 1-month variance risk premia. Grey areas highlight NBER
recessions; vertical lines indicate important crisis events as listed in the caption of Figure 2.
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Panel A: Model GT 2
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Panel B: Model AFT
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Figure 5: Time series of model-implied equity premia. Panel A: For our GT 2 model, we
display the model-implied equity premium obtained using the third step estimation approach
as described in Section I.C.6. (grey solid line). We contrast this quantity to the model-free
lower bound of the equity premium in Schneider and Trojani (2019a) (black line). Panel
B: For the AFT model, the estimated equity premium from a linear projection of future
S&P 500 index excess returns on the hidden states obtained by nonlinear least squares (grey
dotted line: all states, grey solid line: restricted regression using only state Ut). We contrast
these quantities to the model-free lower bound of the equity premium in Schneider and
Trojani (2019a) (black line).
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Panel A: Diffusion parameters

M11 -0.0079 M21 1.0265 M22 -2.6808

( 0.0000) ( 0.0007) ( 0.0023)

Q11 0.0698 Q12 -0.0770 Q22 0.2924

( 0.0000) ( 0.0000) ( 0.0002)

R11 -0.2970 R12 -0.8708 R22 -0.4057

( 0.0002) ( 0.0006) ( 0.0003)

M∗
11 -0.5467 M∗

21 0.3982 M∗
22 -2.6808

( 0.0004) ( 0.0003) ( 0.0021)

β 1.0012 β∗ 1.0012

( 0.0007) ( 0.0007)

Panel B: Jump parameters

Λ11 25.6671 Λ12 40.4278 Λ22 15.9795

( 0.0200) ( 0.0293) ( 0.0114)

λ0 0.0000 λ− 7.1518 λ+ 58.3547

( 0.0000) ( 0.0047) ( 0.0413)

β∗λ 0.3238

( 0.0587)

Panel C: Equity premium parameters

∆11 2.1879 ∆12 0.1941 ∆22 0.0172

δ 1.3× 10−5 β∗∆ 0.9998

Table 1: In-sample (1996/01-2002/12) parameter estimates and standard errors for our model
GT 2. For the parameters of the benchmark models, see the Online Appendix, Tables 3 and
4.
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SV20 SV30 SV31 SV J20 SV J30 GT 2

RMSIVE
in-sample 1.322 1.225 0.897 0.841 0.703 0.685
out-of sample 1.586 1.395 1.049 1.019 0.736 0.705

MAIVE
in-sample 1.009 0.935 0.700 0.666 0.538 0.537
out-of sample 1.246 1.093 0.835 0.798 0.563 0.548

Average log-likelihood
in-sample 7.294 7.363 8.006 8.104 8.314 8.488
out-of sample 6.963 7.292 7.695 7.471 8.199 8.251

AIC
in-sample -5209 -5247 -5716 -5779 -5915 -6048
out-of sample -9107 -9527 -10064 -9762 -10703 -10779

Table 2: Indicators of pricing performance and statistical fit. We report indicators of in-
and out-of-sample pricing performance and fit for our model (GT 2) and for the benchmark
models in Table 1. The in-sample period for estimation is January 1996 to December 2002.
The out-of-sample period is from January 2003 to August 2015. For each model, we report
the daily root-mean-squared implied volatility error (RMSIVE) and the daily mean absolute
implied volatility error (MAIV E). These quantities are computed using the filtered states
implied by the in-sample weekly parameter estimates for each day of our in- and out-of-
sample periods. As a measure of statistical model fit and predictive ability, we report the in-
and the out-of-sample average value of the weekly likelihood function, evaluated at the in-
sample parameter estimates. Finally, we compute standard Akaike model-selection criteria
(AIC). The in-sample period is 1996/01-2002/12 and the out of sample period is 2003/01-
2015/08.

Total Criterion Option Pricing Volatility Fit
IS OS All IS OS All IS OS All

GT 2 1.016 1.072 1.053 0.970 1.025 1.006 0.682 0.701 0.694
AFT 1.071 1.094 1.086 1.021 1.058 1.045 0.730 0.625 0.664

Table 3: Performance metrics under the nonlinear least squares estimation approach. For
models AFT and GT 2, we report the optimized weighted nonlinear least squares criterion
(35) for the in-sample (IS) period 1996-2002. We compute the values of the same criterion for
the out-of-sample (OS) period 2003-2015/08 using estimated parameters and states from the
in-sample period. For both periods, we also report the Option Pricing and the Volatility Fit
components of the weighted objective function (35). All quantities are reported in percentage
points as the square root of the average error in variance units.
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