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A B S T R A C T

Background: Progression free survival (PFS) and tumour response (TR) have been investigated as surrogate
endpoints for overall survival (OS) in advanced colorectal cancer (aCRC), however their validity has been shown
to be suboptimal. In recent years, meta-analytic methods allowing for use of multiple surrogate endpoints jointly
have been proposed. Our aim was to assess if PFS and TR used jointly as surrogate endpoints to OS improve their
predictive value.
Methods: Data were obtained from a systematic review of randomised controlled trials investigating effective-
ness of pharmacological therapies in aCRC, including systemic chemotherapies, anti-epidermal growth factor
receptor therapies and anti-angiogenic agents. Multivariate meta-analysis was used to model the association
patterns between treatment effects on the surrogate endpoints (TR, PFS) and the final outcome (OS).
Results: Analysis of 33 trials reporting treatment effects on all three outcomes showed reasonably strong asso-
ciation between treatment effects on PFS and OS, however the association parameters were obtained with a large
uncertainty. A weak surrogate relationship was noted between the treatment effects on TR and OS. Modelling the
two surrogate endpoints, TR and PFS, jointly as predictors of treatment effect on OS gave no marked im-
provement to surrogate association patterns. Modest improvement in the precision of the predicted treatment
effects on the final outcome was noted in studies investigating anti-angiogenic therapy, however it was likely
due to chance.
Conclusion: The joint use of two surrogate endpoints did not lead to marked improvement in the association
between treatment effects on surrogate and final endpoints in advanced colorectal cancer.

1. Introduction

Surrogate endpoints have been receiving increased attention by the
research community in the last three decades as they offer a cost ef-
fective and quicker alternative to the use of final outcomes especially if
they can be measured with a shorter follow-up period [1]. For surrogate
endpoints to be used effectively in clinical research, they need to be
validated. There are three levels of surrogate endpoint validation:
biological plausibility of association between outcomes, patient-level
association between outcomes and study-level association [2,3]. For the
purposes of this study we focus on the latter level of validation. Study
level association is the hallmark of surrogacy, i.e. establishing whether
the treatment effect on the surrogate endpoint is likely to predict a
treatment effect on the clinical outcome. This is usually carried out

through meta-analyses of randomised controlled trials (RCTs) and, in
particular, using a bivariate meta-analysis [4–6].

To identify a surrogate endpoint for overall survival (OS) in ad-
vanced or metastatic colorectal cancer, a number of candidate end-
points have been investigated as potential surrogate endpoints, in-
cluding progression free survival (PFS), tumour response (TR) or time
to progression (TTP) [7–12]. In previous work investigating trial-level
surrogacy in advanced colorectal cancer, Buyse et al. found that PFS
was an acceptable surrogate endpoint to the overall survival [7]. A
more recent study, investigating surrogacy patterns across a broader
range of treatments in a meta-analysis of 101 RCTs, showed suboptimal
validity of PFS as a surrogate endpoint for OS in advanced or metastatic
colorectal cancer [10]. Other studies also investigated the surrogate
relationship between the PFS and OS in advanced colorectal cancer that
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suggested that further validation is required [8,9].
Whilst PFS is a common surrogate outcome in clinical oncology, TR

has also been often used as a predictor of treatment benefit. Often TR is
used as a surrogate marker of treatment effect at the licensing stage of
drug development process. For example pertuzumab for the neoadju-
vant treatment of HER2-positive breast cancer was approved on the
basis of pathological complete response (pCR). In this case, an analysis
was undertaken to determine the relationship between pCR and im-
proved event-free and overall survival [13]. Tumour response has been
investigated as a potential surrogate endpoint with respect to PFS and
OS in several solid or hematologic cancer settings [13–16]. Definition of
tumour response is based on objective tumour measurements by ima-
ging methods that allow the classification of patients with a complete or
partial confirmed best response as responders. Responses are usually
determined according to the Response Evaluation Criteria in Solid Tu-
mors guidelines or the World Health Organization recommendations.
As the definition of disease progression to subsequent metastatic stage
usually entails clinical (symptoms) and laboratory and imaging-based
findings, which also characterise achievement of tumour response, we
believe it is reasonable to explore whether the use of treatment effects
on two candidate surrogate endpoints, TR and PFS, can result in in-
creased precision of predicted treatment effect on the final outcome,
namely OS, when they are modelled jointly.

In these previous studies, using meta-analytic techniques either in
the form of a meta-regression or a bivariate meta-analysis, only one
surrogate endpoint at a time was investigated. Recently, researchers
investigated use of multiple surrogate endpoints in a patient-level sur-
rogate endpoint validation in multiple sclerosis [17] and as joint pre-
dictors of clinical benefit measured on final outcome in a meta-analytic
framework using Bayesian multi-variate meta-analysis [18]. We pro-
vide a rationale for this approach in Section 2.2.

In this paper we investigate whether the use of treatment effects on
two candidate surrogate endpoints, TR and PFS, can result in increased
precision of predicted treatment effect on the final outcome, namely
OS, in advanced colorectal cancer when they are modelled jointly. We
investigate the predictive ability of the surrogate endpoints in this
setting by conducting a bivariate meta-analysis to investigate one sur-
rogate endpoint at a time and a trivariate meta-analysis to evaluate the
surrogate endpoints jointly. We conducted the analysis in the Bayesian
framework using multivariate meta-analysis method described by
Bujkiewicz et al. [18] as well as introduced here extensions of these
methods. The extensions include an alternative parameterisation of the
trivariate model and subgroup analysis. The added value of modeling
multiple surrogate endpoints jointly was investigated, by comparing the
meta-analytic models in terms of surrogacy criteria and predicted in-
tervals.

2. Methods

2.1. Data sources

We used data from a systematic review by Ciani et al. [10], which
included treatment effect estimates from 101 randomised controlled
trials (RCTs) in advanced or metastatic colorectal cancer that assess
pharmacologic therapies against other therapies. The studies included
trials investigating a broad range of treatments including five different
classes which were systemic chemotherapy, anti-epidermal growth
factor receptor monoclonal antibodies (Anti-EGFR), anti-angiogenic
agents, other multi-targeted antifolate (MTA) and intra-hepatic arterial
chemotherapy (IHA). For the purposes of the systematic review con-
ducted by Ciani et al. [10] the following definitions of outcomes were
considered: OS was defined as the time from randomisation to time of
death, PFS was defined as the time from randomisation to tumour
progression (regardless of how the progression was defined), or death
from any cause, and TR was defined by objective tumour measurements
by utilising methods that classify patients as responders, with a

complete or partial confirmed best response. Responses were de-
termined using the criteria and recommendations according to the
Response Evaluation Criteria in Solid Tumors (RECiST) guidelines [19]
or the World Health Organization recommendations [20].

For purpose of this paper, we used data from the above systematic
review on treatment effects measured on OS, PFS and TR. Not all of the
studies in the systematic review reported treatment effects on all three
outcomes of interest. In our main analysis, we used data from trials
reporting all three outcomes.

Individual patient data (IPD) were available from one of the RCT's
included in the systematic review; study by Hurwitz et al. [21] that
investigated the use of bevacizumab in combination with irinotecan,
fluorouracil, and leucovorin in patients with metastatic colorectal
cancer [21]. The IPD were used to obtain the within-study correlations
between the treatment effects on the surrogate endpoints and on the
final outcome.

2.2. Statistical analysis

The rationale for modelling the treatment effects on multiple sur-
rogate outcomes simultaneously is that the model can lead to removing
some of the measurement error. We can imagine, for example, that
three endpoints can be measured sequentially in time: first TR (at year
1) then PFS (year 3) and finally OS (year 5). If these timescales are
required to measure treatment effect on theses outcomes with reason-
able precision, one could imagine that RCTs with, for example, follow
up time of 2 years measure precisely only the treatment effect on TR,
but there is a lot of uncertainty around the effect on OS and still some
uncertainty around the treatment effect on PFS. If we assume that
treatment effects on TR are correlated with the effects on PFS and the
effects on PFS are correlated with treatment effects on OS, then such
model can lead to reduced uncertainty of the treatment effect on PFS
using the effect on TR. We cannot measure the true effect on PFS (only
have an estimate from a trial), so having measurement on TR can im-
prove estimate of measurement on PFS. This can be useful in particular
when the treatment effect on TR is measured precisely and on PFS in-
accurately, then the prediction of the true effect on PFS may be more
precise (due to accounting for the correlation with the effect on TR)
ultimately leading to better prediction of the effect on OS.

We used multivariate meta-analysis in a Bayesian framework to
model jointly the treatment effects on one or two surrogate endpoints
and on the overall survival which was the final clinical outcome.
Bivariate meta-analysis was used to evaluate surrogate endpoint one at
the time: TR as a surrogate endpoint to PFS and PFS as a surrogate
endpoint to OS, by modelling the treatment effect on these pairs of
outcomes. For completeness, we also include the analysis for TR as a
surrogate endpoint to OS. Trivariate meta-analysis was used to evaluate
both TR and PFS jointly as surrogate endpoints to OS. To model the
surrogate endpoints in the sequential order (TR, followed by PFS and
then OS as discussed above) we used a model with structured between-
studies covariance matrix assuming true treatment effects on TR and OS
conditionally independent, but treatment effects on pairs RT-PFS and
PFS-OS correlated. The model is discussed in detail in the supplement
and the sensitivity analyses to the modelling assumptions was carried
out as discussed in Section 2.3.

Treatment effects on PFS and OS were modeled using hazard ratios
(HRs) and treatment effects on TR were modelled using odds ratios
(ORs). Log scale was used to allow the assumption of normality of the
effects. For studies, where there were no responders in one of the
treatment arms, continuity correction of 0.5 was added to all values of
the contingency table to enable finite odds ratio and variance estima-
tors to be derived.

2.2.1. Surrogacy criteria and cross-validation
We followed the surrogacy criteria introduced by Daniels and

Hughes [4], and adopted by Bujkiewicz et al. [18], by which the slope
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(and uncertainty around it) indicates the association between the
treatment effect on the surrogate endpoint (PFS) and the treatment
effect on the final outcome (OS). For the treatment effects to be asso-
ciated, we require the slope not to be zero. For the association to be
perfect the conditional variance (quantifying the degree of variability of
the treatment effects around the regression line) would be zero.
Moreover, we would expect the intercept to be zero to ensure that no
treatment effect on surrogate endpoint will imply no treatment effect on
the final outcome. In a similar manner we can describe surrogacy cri-
teria between the first and second surrogate outcomes (TR and PFS),
where the second surrogate (here PFS) becomes the final outcome in a
bivariate model with a single surrogate endpoint. We also report the
adjusted R2 [25,26] which for perfect surrogate relationship should be
one. For further details see Appendix A in the supplementary materials.

In order to investigate whether the joint use of treatment effects on
multiple surrogate endpoints gives more precise predictions of the
treatment effect on the final outcome, a cross-validation procedure was
carried out. In one study at a time the treatment effect on the final
outcome was assumed unknown and predicted from the treatment ef-
fect on surrogate endpoint (or multiple surrogate endpoints jointly)
using the bivariate (or trivariate) meta-analytic model. In this Bayesian
approach to multivariate meta-analysis, this was achieved by assuming
that the unreported outcomes were missing at random, which were then
predicted by the Markov chain Monte Carlo (MCMC) simulation of the
model [24]. Further methodological details are included in the sup-
plementary materials. The predicted effects on the final outcome ob-
tained by the bivariate and the trivariate meta-analytic models were
compared in terms of the width of the predicted intervals. We in-
vestigated surrogacy across all RCTs as well as in subgroups of class of
therapy.

2.3. Sensitivity analyses

We carried out sensitivity analysis to the modelling assumptions,
but carrying out the analysis using an alternative model with a struc-
tured between-studies covariance matrix (assuming this time the
treatment effects on TR and PFS conditionally independent but both
correlated with the treatment effect on OS) and a model with an un-
structured between-studies covariance matrix (assuming that the true
treatment effects on all three outcomes were correlated). The models
are described in details in the online appendix.

We carried out a sensitivity analysis on a larger data set including
studies which reported treatment effects on at least two outcomes.
Analyses were also repeated in subsets of data defined by the class of
treatment. A sensitivity analyses to examine the impact of an outlying
observation (with large treatment effect on TR, which can be observed
in Fig. 1) and the choice of the prior distribution for the between-stu-
dies correlation were also carried out (for details see supplementary
materials, Appendix A).

Crossover in RCTs, for example from the control to experimental
arm following progression, often results in loss of information about the
treatment effect on the final outcome; what the effect would have been
if crossover was not allowed. As patients move to the experimental
treatment arm, the difference in treatment effect on OS between the
treatment arms diminishes, leading potentially to zero effect with large
uncertainty. This creates difficulty in estimating the association pat-
terns between treatment effects on surrogate and final endpoint and the
estimates of the latter are not reliable and their variability is reduced
(potentially diminishing the correlation between the treatment effect
on the two outcomes). Another sensitivity analysis was carried out on
the subset of trials which did not allow for crossover.

2.4. Software and computing

All models were implemented in WinBUGS [27] where the estimates
were obtained using MCMC simulation using 250,000 iterations

(including 150,000 burn-in). Convergence was checked by visually as-
sessing the history, chains and autocorrelation using graphical tools in
WinBUGS. All posterior estimates are presented as means with the 95%
credible intervals (CrI). R was used for data manipulation and to exe-
cute WinBUGS code multiple times (for validation of surrogates for
each study) using the R2WinBUGS package [28]. OpenBUGS and
R2OpenBUGS version of the software was used for the cross-validation
procedures which were conducted using Linux (Red Hat, Inc., Raleigh,
North Carolina)-based high performance computer. WinBUGS programs
corresponding to the bivariate and trivariate models are included in the
online supplementary materials, Appendix B.

3. Results

3.1. Summary of the data

Out of the 101 RCT's 99 reported estimates of treatment effects on at
least one of the three outcomes of interest, 51 studies reported the
treatment effects on at least two of the outcomes and 33 studies re-
ported treatment effects on all three outcomes. In the main analysis of
data from studies reporting all three outcomes (33 studies), subgroups
of therapy included 15 studies which investigated the use of che-
motherapy, eight studies which evaluated the use of anti-EGFR thera-
pies, nine studies investigating the use of anti-angiogenic agents and
one study evaluating the use of IHA. More details about the study
characteristics are included in Ciani et al. [10].

In the sensitivity analysis of studies reporting at least two outcomes,
we used 51 of which: 48 studies reported treatment effect on OS (23
investigating chemotherapy, 11 anti-EGFR, 12 anti-angiogenic agents, 1
MTA, 1 IHA), 39 studies reported treatment effect on PFS (17 trials
investigating chemotherapy, 9 anti-EGFR, 12 anti-angiogenic agents,

Fig. 1. Scatter plot of treatment effect estimates on PFS vs TR (top), OS vs PFS
(middle) and OS vs TR (bottom); for each subclass of therapy for the main data
set including trials reporting all three outcomes.
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and 1 IHA), and 48 studies reported treatment effect on TR (25 trials of
chemotherapy, 10 anti-EGFR, 11 anti-angiogenic agents, 1 MTA, 1
IHA). The results obtained from the trivariate meta-analysis, where at
least two outcomes were reported (with some missing data), were
compared to the bivariate analysis of the complete data for each sur-
rogacy pair: 45 studies reported treatment effects on both TR and OS
(23 trials of chemotherapy, 10 anti-EGFR, 10 anti-angiogenic agents, 1
MTA and 1 IHA); 36 studies reported treatment effects on TR and PFS
(17 trials of chemotherapy, 8 anti-EGFR, 10 anti-angiogenic agents, 1
IHA); 36 studies reported treatment effects on PFS and OS (15 trials of
chemotherapy, 9 anti-EGFR, 11 anti-angiogenic agents and 1 IHA). List
of references for studies included in the analysis can be found in the
online supplementary materials (Appendix C: reference lists A and B).

In the sensitivity analysis of trials that did not allow for patient
crossover we combined seven studies, out of the total 33 trials reporting
all three outcomes. The studies included three trials of chemotherapy,
one anti-EGFR therapy, two anti-angiogenic agents and one IHA.

Data for the main analysis are presented in Fig. 1 in the form of
scatter plots of the treatment effects on each pair of outcomes (PFS vs
TR, OS vs PFS and OS vs TR). The plots show a possible strong positive
association between the treatment effects on PFS and OS and negative
association for the treatment effects on TR and PFS (increased response
rate is expected to lead to reduced progression and hence a negative
correlation between the treatment effects on these outcomes), but likely
weak negative or no association between the treatment effects on TR
and OS.

Exploratory analysis of the data showed a lot of heterogeneity of the
treatment effects for TR and PFS, with the confidence intervals of the
treatment effects on TR particularly wide, especially for two classes of
therapy: the chemotherapy and anti-EGFR therapies. Further details,
along with the estimates of the within-study correlations, are included
in the supplementary materials (Appendix D and Table 1 of Appendix
E).

3.2. Results of main analysis

Table 1 shows results of three bivariate meta-analyses and the tri-
variate meta-analysis (discussed in the first part of Section 2.2) con-
ducted using the data from studies reporting treatment effects on all of
the three outcomes. The table lists the surrogacy criteria for all surro-
gate relationships (and both the bivariate and trivariate models
models). The top part of the table shows results of applying the models
to all of the data. They are followed by the results of three sets of
analyses of applying the models to subsets of the data defined by the
class of therapy.

Results of the three bivariate models applied to all of the data
showed that there was an association between the treatment effects on
each pair of outcomes. The intervals of the intercepts obtained from the
bivariate models all contained zero indicating that no effect on the
surrogate endpoint could imply no effect on the final outcome. The
intervals for the slopes did not contain zero indicating positive asso-
ciation were slope was positive and negative association where slope
was negative. However the surrogate relationships were not strong.
When investigating TR as a surrogate endpoint for OS, the association
between the treatment effects on the two outcomes was weak in terms
of the small slope = −λ 0.0521 (95% CrI: −0.13, 0.00) and the 95% CrI
contained zero when rounded to the second decimal place, and the
mean and the lower bound of =R 0.33adj

2 (95% CrI: 0.00, 0.91) were
also small. The slope and the adjusted R-squared were higher for the
relationship between the treatment effects on TR and PFS; slope was
−0.32 (95% CrI: −0.45, −0.20) and =R 0.61adj

2 (95% CrI: 0.27, 0.87).
However the lower bound of the CrI for the R-squared was still low and
the conditional variance was relatively high, 0.02 (95% CrI: 0.01, 0.05),
indicating a weak surrogate relationship. The surrogate relationship
between the treatment effects on PFS and OS appeared stronger in
terms of the conditional variance 0.00 (95% CrI: 0.00, 0.01) and the

=R 0.58adj
2 (95% CrI: 0.06, 0.97) with lower ends of CrIs being close to

zero.
Results from the trivariate meta-analysis, which described the as-

sociations between the treatment effects on the two pairs of outcomes
(effects on TR and PFS and effects on PFS and OS) in a single model,

Table 1
Surrogacy criteria obtained from three bivariate models and a trivariate model for the association between treatment effects on the surrogate (TR or PFS) and the
final outcome (OS or PFS in one of the bivariate analyses). The results are posterior means and 95% credible intervals.

Bivariate analyses Trivariate analysis

TR OS TR PFS PFS OS TR PFS PFS OS

All treatments (N= 33)
Intercept −0.03(−0.07, 0.02) −0.05(−0.14, 0.02) −0.02(−0.06, 0.03) −0.05(−0.13, 0.02) −0.02(−0.06, 0.03)
Slope −0.05(−0.13, 0) −0.32(−0.45, −0.2) 0.22(0.03, 0.41) −0.31(−0.43, −0.19) 0.19(0.02, 0.4)
Variance 0(0, 0.01) 0.02(0.01, 0.05) 0(0, 0.01) 0.02(0.01, 0.04) 0(0, 0.01)

Radjusted
2 0.33(0, 0.91) 0.61(0.27, 0.87) 0.58(0.06, 0.97) 0.64(0.3, 0.89) 0.5(0.02, 0.95)

Systemic chemotherapy (N=15)
Intercept −0.02(−0.08, 0.04) −0.04(−0.16, 0.06) −0.02(−0.08, 0.04) −0.04(−0.14, 0.05) −0.02(−0.08, 0.04)
Slope −0.03(−0.11, 0) −0.26(−0.42, −0.08) 0.17(0, 0.45) −0.25(−0.4, −0.09) 0.14(0, 0.4)
Variance 0(0, 0.01) 0.02(0, 0.08) 0(0, 0.01) 0.02(0, 0.06) 0(0, 0.01)

Radjusted
2 0.39(0, 0.96) 0.58(0.07, 0.96) 0.52(0.01, 0.98) 0.66(0.11, 0.98) 0.47(0, 0.97)

Anti-EGFR therapies (N= 8)
Intercept −0.06(−0.16, 0.09) −0.21(−0.37, 0.01) −0.06(−0.16, 0.14) −0.18(−0.37, 0.05) −0.04(−0.16, 0.19)
Slope −0.04(−0.18, 0) −0.14(−0.36, −0.01) 0.14(0, 0.63) −0.16(−0.39, −0.02) 0.17(0, 0.78)
Variance 0.01(0, 0.05) 0.02(0, 0.08) 0.01(0, 0.04) 0.02(0, 0.1) 0.01(0, 0.05)

Radjusted
2 0.19(0, 0.82) 0.45(0, 0.96) 0.22(0, 0.85) 0.5(0.01, 0.97) 0.19(0, 0.83)

Anti-angiogenic agents (N= 9)
Intercept 0.04(−0.09, 0.2) 0.03(−0.18, 0.25) 0.02(−0.1, 0.15) 0.03(−0.18, 0.25) 0.02(−0.09, 0.14)
Slope −0.35(−0.89, −0.03) −0.87(−1.64, −0.3) 0.38(0.05, 0.79) −0.85(−1.64, −0.27) 0.37(0.04, 0.77)
Variance 0.02(0, 0.07) 0.04(0, 0.15) 0.02(0, 0.06) 0.03(0, 0.14) 0.01(0, 0.06)

Radjusted
2 0.52(0.01, 0.97) 0.74(0.13, 0.99) 0.59(0.03, 0.97) 0.72(0.1, 0.99) 0.56(0.02, 0.97)

TR – tumour response, PFS – progression free survival, OS – overall survival.
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were similar to those obtained from separate bivariate models.
Precision around the intercept, slope and the conditional variance was
minimally reduced for the association between the treatment effects on
TR and PFS in the trivariate analysis whereas precision for these esti-
mates for the association between the treatment effects on PFS and OS
remained largely the same in the trivariate analysis as in the bivariate
analysis using PFS as a single surrogate endpoint.

Table 1 also shows the results for each subclass of therapy. For
subgroup of trials investigating systemic chemotherapy, the results
were similar to those obtained from the whole cohort of studies but
typically obtained with increased uncertainty (wider CrIs) and weaker
association in terms of lower mean slope. The adjusted R-squared was
minimally higher in this subgroup for the association between the
treatment effects on TR and OS, whilst a lower mean slope was obtained
for the association between TR and PFS and between PFS and OS,
compared to the analysis of all treatments. The slopes for the associa-
tion between the treatment effects on TR and PFS and between the
effects on PFS and OS were obtained with minimally higher precision
when using the trivariate model compared to the bivariate analysis. For
the anti-EGFR therapies, also similar results were obtained to those
from the analysis conducted on data from all of the studies but also,
similarly as for systemic chemotherapy, with weaker association pat-
tern. For anti-angiogenic agents the mean slopes and the mean
R-squared values were considerably higher for all investigated surro-
gacy relationships compared to other subclasses and the analysis of all
treatments, however they were obtained with high uncertainty, also
likely due to the small number of studies in the subgroup.

3.2.1. Cross-validation
To investigate the predictive value of the surrogate endpoints when

modelled jointly, a cross-validation procedures were carried out. The
predicted treatment effects on OS predicted from the treatment effect
on PFS alone were compared with those predicted from treatment ef-
fects on both TR and PFS jointly by exploring the associated uncertainty
described by the predicted intervals as well as whether the predicted
intervals contained the observed point estimate of the treatment effect
on OS in each study. When looking at predicted treatment effects ob-
tained using the complete data set of the 33 studies, some of the pre-
dicted intervals were inflated when making predictions from the
treatment effect on both surrogate endpoints jointly, compared to the
predictions made from the treatment effect on PFS only. The intervals
were on average 0.21% wider with the percentage change of the width
of the interval ranging between 1.96% reduction to 4.4% increase.
However, from the point of view of the cross-validation procedure, the
95% predicted intervals included the observed point estimate in most of
the studies apart from one which was an extreme lowest value of the
treatment effect on OS. This was the case for both bivariate and tri-
variate models. Full set of predicted intervals is included in the sup-
plementary materials (Table 2 in Appendix E).

The cross-validation procedure was repeated for each class of
therapy separately. In terms of predicted intervals, on average there
was a very modest improvement in precision of predictions for the anti-

angiogenic agents obtained from the trivariate compared to the bi-
variate model (on average 2.35% narrower 95% predicted interval). For
the systemic chemotherapy class there was a minimal improvement in
precision for most of the studies, with an average percentage reduction
of 1.41% predicted interval. However, the predicted intervals were
inflated for the anti-EGFR therapies with, on average, 6.9% increase in
the width of the interval. All predicted intervals are included in the
supplementary materials (Table 3 in Appendix E).

3.2.2. Summary of main results
Overall there was not much benefit of combining treatment effects

on two surrogate endpoints to predict the treatment effect on the final
outcome. This lack of improvement, or even increased uncertainty of
the predicted effect when using multiple surrogate endpoints, may be
due to increased overall between-studies heterogeneity when extending
the data to include the treatment effect on TR. The between-studies
heterogeneity for the treatment effect on TR was considerably higher
compared to the heterogeneity of the treatment effects on PFS and OS in
the data set including all treatments. This was also the case for the
subgroups of studies including the systemic chemotherapy and the anti-
EGFR therapy trials. However, for the anti-angiogenic agents, the be-
tween-studies heterogeneity of the treatment effect on TR was com-
parable with that for the treatment effects on PFS. This may explain
some increase in precision of the slope and the predicted effects on OS
when using multiple surrogate endpoints in this class of therapy, as
including additional outcome did not increase overall uncertainty.
However, due to small number of studies the added value was minimal.
The treatment effects on all three outcomes are comparable between
those from bivariate and trivariate models. All mean treatment effects
and the heterogeneity parameters are listed in the supplementary ma-
terials (Table 1 in Appendix E).

3.3. Results of sensitivity analyses

Two alternative parameterisations of the trivariate model (de-
scribed in Section 2.3) were investigated to assess their impact on the
results. For the first alternative structured model the parameters de-
scribing the association pattern between the treatment effects on PFS
and OS are similar to those obtained from the main trivariate model.
For the two structured models the slope is =λ 0.1932 (95% CrI: 0.02,
0.4) and 0.13 (95% CrI: 0.01, 0.33) respectively. The adjusted
R-squared for the alternative structured model was reduced but was
obtained with higher precision compared to the main structured model;
Radj

2 becomes 0.35 (95% CrI: 0, 0.87) compared to 0.5 (95% CrI: 0.02,
0.95) in the main model. For the unstructured trivariate model the
treatment effects on the two outcomes showed higher association in
terms of slope =λ 0.2932 (95% CrI: −0.01, 0.73) but the association was
found to be only marginal (95% CrI contained zero) (Table 2).

Sensitivity analysis, extending the data set to the 51 studies re-
porting at least two outcomes gave similar results to the main analysis;
surrogacy criteria for the association between the treatment effects on
PFS and OS were satisfied both when looking at all therapies as well as

Table 2
Surrogacy criteria obtained from the bivariate model and three trivariate models: the main structured model (assuming conditional independence between true
effects on TR and OS), the alternative structured model (assuming conditional independence between true effects on TR and PFS) and the unstructured model (all true
effect on the three outcomes are correlated), applied to the complete data set (33 studies).

Trivariate models

PFS OS bivariate model PFS OS structured main model PFS OS structured alternative model PFS OS unstructured model

Intercept −0.02(−0.06, 0.03) −0.02(−0.06, 0.03) −0.02(−0.06, 0.03) −0.06(−0.14, 0.01)
Slope 0.22(0.03, 0.41) 0.19(0.02, 0.4) 0.13(0.01, 0.33) 0.29(−0.01, 0.73)
Variance 0(0, 0.01) 0(0, 0.01) 0(0, 0.01) 0(0, 0.01)

Radjusted
2 0.58(0.06, 0.97) 0.5(0.02, 0.95) 0.35(0, 0.87) 0.37(0.04, 0.89)

DIC −116.92(−136.5, −95.37) −117.61(−144.9, −87.1) −119.96(−146.6, −91.58) −120.77(−148, 90.75)
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for chemotherapy and anti-angiogenic agents (Tables 4 and 5 in
Appendix E in the online supplementary materials).

Results of the sensitivity analysis of trials with no crossover, pre-
sented in Appendix E (Section 5.3) of the online supplementary mate-
rials, were similar to those obtained from the main analysis with respect
to the surrogacy criteria. The treatment effects on the surrogate and
final outcomes appeared to be associated for all investigated surrogacy
relationships. However for all parameters describing surrogate re-
lationships for both the bivariate and the trivariate analyses were ob-
tained with larger uncertainty compared to the whole set of studies,
which was most likely due to the small number of studies (only 7) in the
meta-analysis. The association between treatment effects on PFS and OS
appeared to be weaker in terms of the conditional variance which in-
creased compared to the results obtained from all 33 studies reporting
all three outcomes. This was the case in both sets of results, from the
bivariate and the trivariate analyses. This also led to reduced values of
the adjusted R-squared. The use of multiple surrogate endpoints did not
improve the strength of the association patterns when compared to the
use of a single surrogate endpoint in this subset of studies. Similarly as
for the full data set, this could also be due to the large heterogeneity of
the treatment effects on TR including the average effects and the het-
erogeneity parameters. The cross validation showed on average a very
modest increase in precision, by on average 2.3% and up to 6.2%, when
predicting the treatment effect on OS from the treatment effects on both
PFS and TR compared to the predictions made from the effect on PFS
alone. Full set of results from the cross validation are included in
Table 8 of the online supplementary materials.

An additional sensitivity analysis was carried out to investigate an
impact of an outlying observation (study with the largest effect size
estimate for TR). The results (listed in Table 9 of the online supple-
mentary materials) showed an increased mean slope and the mean R-
squared for the full set of studies and the subgroups of the EGFR in-
hibitors, however the uncertainty around these parameters in both sets
of results also increased.

A final sensitivity analysis was carried out investigating the impact
of the choice of the prior distribution for the between-studies correla-
tion, replacing the informative prior distributions uniform(−1,0) for the
negative association and uniform(0,1) for the positive association with
a non-informative prior distributions uniform(−1,1). The results of this
analysis (listed in Table 10 of the online supplementary materials) were
somewhat different compared to those obtained from the main analysis,
in particular for anti EGRF therapies where the slope for the association
between the treatment effects on PFS and OS become negative with
large uncertainty, confirming that this prior was not suitably vague as
discussed by Burke et al. [22].

4. Discussion

We investigated the use of multiple surrogate endpoints as joint
predictors of the clinical benefit measured on the final clinical outcome
in advanced colorectal cancer. A multivariate meta-analytic framework
allowed us to combine treatment effects on two candidate surrogate
endpoints (TR and PFS) and the treatment effect on the final clinical
outcome (OS). In a Bayesian meta-analytic framework, we modelled the
correlated treatment effect in the product normal formulation which is
a convenient form to explore a range of parameters describing the
surrogacy relationships, such as the intercept, slope, conditional var-
iance (as set out by Daniels and Hughes [4]) and the adjusted R-squared
(introduced by Burzykowski et al. [26] and in the Bayesian framework
by Renfro et al. [25]). These models also are used to make predictions
of the treatment effect on the final clinical outcome (OS) from the
treatment effect on the surrogate endpoints. In this respect they have an
advantage of taking into account of the uncertainty around all the
parameters, including the measurement error around the treatment
effects on surrogate endpoints (in contrast to, for example, the standard
approach to meta-regression where treatment effects on surrogate

endpoints are treated as fixed covariates) [18].
The treatment effects on PFS and TR were associated with treatment

effect on OS. However, overall the joint use of two surrogate endpoints
did not lead to much improvement in the association between treat-
ment effects on the surrogate and final endpoints but in the subclass of
anti-angiogenic agents led to very modest improvement in precision of
the predicted effects on OS. Some small improvement in precision,
when modelling both surrogate endpoints jointly, was also observed in
cross-validation procedure conducted on trials without cross-over. In
the trials allowing for cross-over, there is typically reduced effect on OS
with large uncertainty around the treatment effect estimate. This is
likely to affect the results of modelling surrogate relationships, using
both the bivariate and the trivariate methods. It is possible that the
trivariate approach would show some noticeable benefit if more studies
were available in the analysis of studies without the cross-over. In our
analysis of the trials which did not allow for the cross-over, there was
typically reduced uncertainty of the predicted effects when using
multiple surrogates, but the reduction was small as the number of
studies in the analysis was also small, therefore we cannot draw strong
conclusions based on our findings. Not all studies reported whether the
treatment cross-over was allowed. Another source of uncertainty that
may have prevented the improvement of the surrogate relationship
when using both candidate surrogate endpoints was the large between-
studies heterogeneity of the treatment effect on the tumour response.
This may have been caused by the heterogeneity of the methods used to
measure the response across the trials.

A limitation of the data was also availability of IPD from only one
RCT. Therefore we assumed that the within-study correlations were the
same across studies. This is, however, not an unusual approach and this
assumption has been made by other authors [29,30]. This assumption
should not have substantial impact on the results, unless the actual
within-study correlations vary substantially across the studies. How-
ever, a recent study by Papanikos et al. [31], looked into within-study
correlations between the treatment effects on the same outcomes from
several RCTs in advanced colorectal cancer and they were all very si-
milar across these studies, suggesting suitability of this assumption for
our data.

In conclusion, the impact of the joint modelling of the treatment
effects on two surrogate endpoints (TR and PFS), on their surrogate
relationship with the treatment effect on the overall survival was not
noticeable in advance colorectal cancer. Further work will be needed to
investigate in detail the treatment cross-over and the heterogeneity of
the definitions of the outcomes and potentially the patient populations.
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