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Stochastic Approximations to the Pitman–Yor
Process

Julyan Arbel∗, Pierpaolo De Blasi†, and Igor Prünster‡

Abstract. In this paper we consider approximations to the popular Pitman–Yor
process obtained by truncating the stick-breaking representation. The truncation
is determined by a random stopping rule that achieves an almost sure control
on the approximation error in total variation distance. We derive the asymptotic
distribution of the random truncation point as the approximation error ε goes
to zero in terms of a polynomially tilted positive stable random variable. The
practical usefulness and effectiveness of this theoretical result is demonstrated by
devising a sampling algorithm to approximate functionals of the ε-version of the
Pitman–Yor process.
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1 Introduction

The Pitman–Yor process defines a rich and flexible class of random probability measures
used as prior distribution in Bayesian nonparametric inference. It originates from the
work of Perman et al. (1992), further investigated in Pitman (1995); Pitman and Yor
(1997), and its use in nonparametric inference was initiated by Ishwaran and James
(2001). Thanks to its analytical tractability and flexibility, it has found applications in
a variety of inferential problems which include species sampling (Lijoi et al., 2007; Favaro
et al., 2009; Navarrete et al., 2008), survival analysis and gene networks (Jara et al., 2010;
Ni et al., 2018), linguistics and image segmentation (Teh, 2006; Sudderth and Jordan,
2009), curve estimation (Canale et al., 2017) and time-series and econometrics (Caron
et al., 2017; Bassetti et al., 2014). The Pitman–Yor process is a discrete probability
measure

P (dx) =
∑
i≥1

piδξi(dx), (1)

where (ξi)i≥1 are independent and identically distributed (i.i.d.) random variables with
common distribution P0 on a Polish space X , and (pi)i≥1 are random frequencies, i.e.
pi ≥ 0 and

∑
i≥1 pi = 1, independent of (ξi)i≥1. The distribution of the frequencies of the
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Pitman–Yor process is known in the literature as the two-parameter Poisson–Dirichlet
distribution. Its distinctive property is that the frequencies in size-biased order, that is
the random arrangement in the order of appearance in a simple random sampling with-
out replacement, admit the stick-breaking representation, or residual allocation model,

pi
d
= Vi

i−1∏
j=1

(1− Vj), Vj
ind∼ beta(1− α, θ + jα) (2)

for 0 ≤ α < 1 and θ > −α, see Pitman and Yor (1997). By setting α = 0 one recovers
the Dirichlet process of Ferguson (1973). Representation (2) turns out very useful in
devising finite support approximation to the Pitman–Yor process obtained by truncating
the summation in (1). A general method consists in setting the truncation level n by
replacing pn+1 with 1− (p1 + · · ·+ pn) in (1). The key quantity is the truncation error
of the infinite summation (1),

Rn =
∑
i>n

pi =
∏
j≤n

(1− Vj), (3)

since the resulting truncated process, say Pn(·), will be close to P (·) according to |P (A)−
Pn(A)| ≤ Rn for any measurable A ⊂ X . It is then important to study the distribution
of the truncation error Rn as n gets large in order to control the approximation error.
Ishwaran and James (2001) proposes to determine the truncation level based on the
moments of Rn. Cf. also Ishwaran and Zarepour (2002); Gelfand and Kottas (2002). In
this paper we propose and investigate a random truncation by setting n such that Rn

is smaller than a predetermined value ε ∈ (0, 1) with probability one. Specifically, we
define

τ(ε) = min{n ≥ 1 : Rn < ε} (4)

as the stopping time of the multiplicative process (Rn)n≥1 and, following Ghosal and
van der Vaart (2017, Section 4.3.3), we call ε-Pitman–Yor (ε-PY) process the Pitman–
Yor process truncated at n = τ(ε), namely

Pε(dx) =

τ(ε)∑
i=1

piδξi(dx) +Rτ(ε)δξ0(dx), (5)

where ξ0 has distribution P0, independent of the sequences (pi)i≥1 and (ξi)i≥1. By con-
struction, Pε is the finite stick-breaking approximation to P with the smallest number
of support points given a predetermined approximation level. In fact τ(ε) controls the
error of approximation according to the total variation bound

dTV (Pε, P ) = sup
A⊂X

|P (A)− Pε(A)| ≤ ε (6)

almost surely (a.s.). As such, it also guarantees the almost sure convergence of mea-
surable functionals of P by the corresponding functionals of Pε as ε → 0, cf. Ghosal
and van der Vaart (2017, Proposition 4.20). A typical application is in Bayesian non-
parametric inference on mixture models where the Pitman–Yor process is used as prior
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distribution on the mixing measure. The approximation Pε can be applied to the pos-
terior distribution given the latent variables, cf. Section 2.2 for details. In the Dirichlet
process case, Pε has been studied by Muliere and Tardella (1998). In this setting τ(ε)−1
is Poisson distributed with parameter θ log 1/ε, which makes an exact sampling of the
ε-approximation (5) feasible. This has been implemented in the highly popular R soft-
ware DPpackage, see (Jara, 2007; Jara et al., 2011), to draw posterior inference on the
random effect distribution of linear and generalized linear mixed effect model. Finally,
in Al Labadi and Zarepour (2014) a different type of finite dimensional truncation of
the Pitman–Yor process based on decreasing frequencies has been proposed, see Section
5 for a discussion.

The main theoretical contribution of this paper is the derivation of the asymptotic
distribution of τ(ε) as ε → 0 for α > 0. As (4) suggests, the asymptotic distribution of
τ(ε) is related to that of Rn in (3) as n → ∞. According to Pitman (2006, Lemma 3.11),
the latter involves a polynomially tilted stable random variable Tα,θ, see Section 2 for
a formal definition. The main idea is to work with Tn = − logRn so to deal with sums
of the independent random variables Yi = − log(1−Vi). The distribution of τ(ε) can be
then studied in terms of the allied renewal counting process N(t) = max{n : Tn ≤ t},
according to the relation τ(ε) = N(log 1/ε)+1. The problem boils down to the derivation
of an appropriate a.s. convergence of N(t) as t → ∞, which, in turn, is obtained from
the asymptotic distribution of Tn by showing that N(t) → ∞ a.s. as t → ∞ together
with a (non standard) application of the law of large numbers for randomly indexed
sequences. This strategy proves successful in establishing the almost sure convergence of
τ(ε)− 1 to (εTα,θ/α)

−α/(1−α) as ε → 0. The form of the asymptotic distribution reveals
how large the truncation point τ(ε) is as ε gets small in terms of the model parameters
α and θ. In particular, it highlights the power law behavior of τ(ε) as ε → 0, namely
the growth at the polynomial rate 1/εα/(1−α) compared to the slower logarithmic rate
θ log 1/ε in the Dirichlet process case. This is further illustrated by a simulation study in
which we generate from the asymptotic distribution of τ(ε) by using Zolotarev’s integral
representation of the positive stable distribution as in Devroye (2009). As far as the
simulation of the ε-PY process is concerned, exact sampling is feasible by implementing
the stopping rule in (4), that is by simulating the stick breaking frequencies pj until the
error Rn crosses the approximation level ε. As this can be computationally expensive
when ε is small, as an alternative we propose to use the asymptotic distribution of
τ(ε) by simulating the truncation point first, then run the stick breaking procedure
up to that point. It results in an approximate sampler of the ε-PY process that we
compare with the exact sampler in a simulation study involving moments and mean
functionals.

The rest of the paper is organized as follows. In Section 2, we derive the asymptotic
distribution of τ(ε) and explain how to use it to simulate from the ε-PY process. Section 3
reports a simulation study on the distribution of τ(ε) and on functionals of the ε-
PY process. In Section 4, to help the understanding and gain additional insight on
the asymptotic distribution, we highlight the connections of τ(ε) with Pitman’s theory
on random partition structures. We conclude with a discussion of open problems in
Section 5. The details of Devroye’s algorithm for generating from a polynomially tilted
positive stable random variable are given in Supplementary Material (Arbel etal., 2018).
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2 Theory and algorithms

2.1 Asymptotic distribution of τ (ε)

In this section we derive the asymptotic distribution of the stopping time τ(ε) and show
how to simulate from it. We start by introducing the renewal process interpretation
which is crucial for the asymptotic results. As explained in the previous section, in order
to study the distribution of τ(ε) it is convenient to work with the log transformation of
the truncation error Rn in (3), that is

Tn =

n∑
i=1

Yi, Yi = − log(1− Vi), (7)

with Vj
ind∼ beta(1− α, θ + jα) as in (2). Being a sum of independent and nonnegative

random variables, (Tn)n≥1 takes the interpretation of a (generalized) renewal process
with independent waiting times Yi. For t ≥ 0 define

N(t) = max{n : Tn ≤ t}, (8)

to be the renewal counting process associated to (Tn)n≥1, which is related to τ(ε) via
τ(ε) = N(log 1/ε) + 1. Classical renewal theory pertains to iid waiting times while here
there is no identity in distribution unless α = 0, i.e. the Dirichlet process case. In

the latter setting, one gets Yi
i.i.d.∼ Exp(θ) so that Tn has gamma distribution with scale

parameter n. We immediately get from the relation {Tn ≤ t} = {N(t) ≥ n} that N(t) ∼
Pois(θt) and, in turn, that τ(ε)−1 has Pois(θ log(1/ε)) distribution. As far as asymptotics
is concerned, Tn satisfies the central limit theorem (CLT) with (Tn−n/θ)/(

√
n/θ) →d Z

where Z ∼ N(0, 1). The asymptotic distribution of N(t) can be obtained via Ascombe
theorem, cf. Gut (2013, Theorem 7.4.1), to get (N(t) − θt)/(

√
θt) →d Z, as t → ∞, in

accordance with the standard normal approximation of the Poisson distribution with
large rate parameter.

In the general Pitman–Yor case α > 0, the waiting times Yi are no more identically
distributed. More importantly, generalizations of the CLT such as the Lindeberg–Feller
theorem do not apply for Tn, hence we cannot resort to Anscombe’s theorem to derive
the asymptotic distribution of N(t) and, in turn, of τ(ε). Nevertheless, the limit exists
but is not normal as stated in Theorem 1 below. To this aim, let Tα be a positive stable
random variable with exponent α, that is E(e−sTα) = e−sα , and denote its density by
fα(t). A polynomially tilted version of Tα is defined as the random variable Tα,θ with
density proportional to t−θfα(t), that is

fα,θ(t) =
Γ(θ + 1)

Γ(θ/α+ 1)
t−θfα(t), t > 0. (9)

The random variable Tα,θ is of paramount importance in the theory of random partition
structures associated to the frequency distribution of the Pitman–Yor process, see Sec-
tion 4 for details. In particular, the convergence of Rn can be expressed in terms of Tα,θ.
In Theorem 1 the a.s. limit of logN(t) as t → ∞ is obtained from that of Tn = − logRn

as n → ∞ by showing that N(t) → ∞ a.s. as t → ∞ and by an application of the law
of large numbers for randomly indexed sequences.
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Theorem 1. Let N(t) be defined in (7)–(8) and Tα,θ be the random variable with
density in (9). Then t− (1/α− 1) logN(t) + logα →a.s. log Tα,θ as t → ∞.

Proof. By definition (8), the renewal process N(t) is related to the sequence of renewal
epochs Tn through

{Tn ≤ t} = {N(t) ≥ n}. (10)

Since N(Tn) = n, we have TN(t) = Tn when t = Tn, thus 0 = t − TN(t) for t = Tn.
Moreover, since N(t) is increasing, when Tn < t < Tn+1, N(Tn) < N(t) < N(t) + 1,
hence TN(t) < t < TN(t)+1, i.e. 0 < t− TN(t) < TN(t)+1 − TN(t) = YN(t)+1. Together the
two relations above yield

0 ≤ t− TN(t) < YN(t)+1. (11)

From Lemma 3.11 of Pitman (2006) and an application of the continuous mapping
theorem (see Theorem 10.1 in Gut, 2013) the asymptotic distribution of Tn is obtained
as

Tn − (1/α− 1) logn+ logα →a.s. log Tα,θ as n → ∞.

Now we would like to take the limit with respect to n = N(t) as t → ∞, that is apply
the law of large numbers for randomly indexed sequence (see Theorem 6.8.1 in Gut,
2013). To this aim, we first need to prove that N(t) →a.s. ∞ as t → ∞. Since N(t)
is non decreasing, by an application of Theorem 5.3.5 in Gut (2013), it is sufficient to
prove that N(t) → ∞ in probability as t → ∞, that is P(N(t) ≥ n) → 1 as t → ∞
for any n ∈ N. But this is an immediate consequence of the inversion formula (10). We
have then established that

TN(t) − (1/α− 1) logN(t) + logα →a.s. log Tα,θ as t → ∞.

To conclude the proof, we need to replace TN(t) with t in the limit above. Note that,
from (11), |t− TN(t)| ≤ YN(t)+1 so it is sufficient to show that the upper bound goes to
zero a.s.. Actually, by a second application of Theorem 6.8.1 in Gut (2013) it is sufficient
to show that Yn →a.s. 0 as n → ∞. This last result is established as follows. Recall that

Yj = − log(1− Vj) for Vj
ind∼ beta(1− α, θ + jα). For ε > 0,

P(1− Vn < e−ε) =

∫ e−ε

0

Γ(θ + nα+ 1− α)

Γ(θ + nα)Γ(1− α)
vθ+nα−1(1− v)−αdx

≤ (1− e−ε)−α

Γ(1− α)

Γ(θ + nα+ 1− α)

Γ(θ + nα)

e−ε(θ+nα)

θ + nα

=
(1− e−ε)−α

Γ(1− α)
(θ + nα)−αe−ε(θ+nα)

(
1 +O

( 1

θ + nα

))
, (12)

where in equality (12) we have used Euler’s formula

Γ(z + α)/Γ(z + β) = zα−β

[
1 +

(α− β)(α+ β − 1)

2z
+O(z−2)

]

for z → ∞, see Tricomi and Erdélyi (1951). Since P(Yn > ε) = P(1 − Vn < e−ε), (12)
implies that P(Yn > ε) is exponentially decreasing in n and, in turn, that

∑
n≥1 P(Yn >

ε) < ∞. An application of Borel–Cantelli Lemma yields Yn →a.s. 0 and the proof is
complete.
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The asymptotic distribution of τ(ε) is readily derived from Theorem 1 via the formula
τ(ε) = N(log 1/ε)+1 and an application of the continuous mapping theorem. The proof
is omitted.

Theorem 2. Let τ(ε) be defined in (4) and Tα,θ be the random variable with density
in (9). Then τ(ε)− 1 ∼a.s. (εTα,θ/α)

−α/(1−α) as ε → 0.

In order to sample from the asymptotic distribution of τ(ε), the key ingredient is
random generation from the polynomially tilted stable random variable Tα,θ. Following
Devroye (2009), we resort to Zolotarev’s integral representation, so let A(u) be the
Zolotarev function

A(x) =

(
sin(αx)α sin((1− α)x)1−α

sin(x)

) 1
1−α

, x ∈ [0, π]

and Zα,b, α ∈ (0, 1) and b > −1 be a Zolotarev random variable with density given by

f(x) =
Γ(1 + bα)Γ(1 + b(1− α))

πΓ(1 + b)A(x)b(1−α)
, x ∈ [0, π].

According to Theorem 1 of Devroye (2009), for Ga a gamma distributed random variable
with shape a > 0 and unit rate,

Tα,θ
d
=

(
A(Zα,θ/α)

G1+θ(1−α)/α

) 1−α
α

so that random variate generation simply requires one gamma random variable and one
Zolotarev random variable. For the latter, rejection sampler can be used as detailed in
Devroye (2009). See Algorithm 3 in Supplementary Material.

2.2 Simulation of the ε-PY process

Given α, θ, ε and a probability measure P0 on X , an ε-PY process can be generated by
implementing the stopping rule in the definition of τ(ε), cf. (4). The algorithm consists
in a while loop as follows:

Algorithm 1 (Exact sampler of ε-PY)

1. set i = 1, R = 1

2. while R ≥ ε: generate V from beta(1− α, θ + iα).
set pi = V R, R = R(1− V ), i = i+ 1

3. set τ = i, Rτ = R

4. generate τ + 1 random variates ξ0, ξ1, . . . , ξτ from P0

5. set Pε(dx) =
∑τ

i=1 piδξi (dx) +Rτ δξ0 (dx)

When ε is small, the while loop happens to be computationally expensive since
conditional evaluations at each iteration slow down computation, and memory allocation
for the frequency and location vectors cannot be decided beforehand. In order to avoid
these pitfalls and make the algorithm faster, one should generate the stopping time τ(ε)
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first, and the frequencies up to that point later. We propose to exploit the asymptotic
distribution of τ(ε) in Theorem 2 as follows:

Algorithm 2 (Approximate sampler of ε-PY)

1: generate T
d
= Tα,θ

2: set τ ← 1 + �(εT/α)−α/(1−α)�
3. for i = 1, . . . , τ: generate Vi from beta(1− α, θ + iα).

set pi = Vi
∏i−1

j=1(1− Vj)

4. set Rτ = 1−
∑τ

i=1 pi =
∏τ

i=1(1− Vj)

5: generate τ + 1 random variates ξ0, ξ1, . . . , ξτ from P0

6: set Pε(dx) =
∑τ

i=1 piδξi (dx) +Rδξ0(dx)

Algorithm 2 is an approximate sampler of the ε-PY process (while Algorithm

1 is an exact one) since it introduces two sources of approximations. First, through the
use of the asymptotic distribution of τ(ε). Second, through Step 3 since the Vi’s are not
generated according to the conditional distribution given τ(ε), rather unconditionally.
Finding the conditional distribution of Vi, or an asymptotic approximation thereof,
is not an easy task and is object of current research. In terms of the renewal process
interpretation in (7)–(8), the problem is to generate the waiting times Yi = − log(1−Vi),
i = 1, . . . , n, from the conditional distribution of the renewal epochs (T1, . . . , Tn) given
N(t) = n for t = − log 1/ε.

A typical use of samples from the Pitman–Yor process we have in mind is in in-
finite mixture models. In fact, the discrete nature of the Pitman–Yor process makes
it a suitable prior on the mixing distribution. Algorithm 1 or Algorithm 2 can be
then applied to approximate a functional of the posterior distribution of the mixing
distribution. In such models, the process components can be seen as latent features
exhibited by the data. Let P denote such a process, n denote the sample size and

X1:n = (X1, . . . , Xn) be an exchangeable sequence from P , that is X1:n|P i.i.d.∼ P . Vari-
ables X1:n are latent variables in a model conditionally on which observed data Y1:n

come from: Yj |Xj
ind∼ f( · |Xj) where f denotes a kernel density. Actually, indepen-

dence is not necessary here and applications also encompass dependent models such as
Markov chain transition density estimation. In order to deal with the infinite dimen-
sionality of the process, a strategy is to marginalize it and to draw posterior inference
with a marginal sampler. Since draws from a marginal sampler allows to make inference
only on posterior expectations of the process, for more general functionals of P , in the
form of ψ(P ), one typically needs to resort to an additional sampling step. Exploiting
the composition rule L(ψ(P )|Y1:n) = L(ψ(P )|X1:n)× L(X1:n|Y1:n) this additional step
boils down to sampling P conditional on latent variables X1:n. At this stage, recall-
ing the conditional conjugacy of the Pitman–Yor process is useful. Among X1:n, there
are a number k ≤ n of unique values that we denote by X∗

1:k. Let n∗
1:k denote their

frequencies. Then the following identity in distribution holds

P |X1:n =

k∑
j=1

qjδX∗
j
+ qk+1P

∗,
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where, independently, (q1, . . . , qk, qk+1) ∼ Dirichlet(n∗
1−α, . . . , n∗

k−α, θ+αk) and P ∗ is
a Pitman–Yor process of parameter (α, θ+αk), see Corollary 20 of Pitman (1996). Thus
sampling from L(P |X1:n), hence from L(ψ(P )|X1:n), requires sampling the infinite di-
mensional P ∗. Cf. Ishwaran and James (2001, Section 4.4). For the sake of comparison,
the conjugacy of the Dirichlet process similarly leads to the need of sampling an infinite
dimensional process, where P |X1:n takes the form of a Dirichlet process. As already no-
ticed, the truncation of the Dirichlet process is very well understood, both theoretically
and practically. The popular R package DPpackage (Jara, 2007; Jara et al., 2011) makes
use of the posterior truncation point τ∗(ε), as defined in (5), but here with respect to the
posterior distribution of the process. Thus, it satisfies τ∗(ε)−1 ∼ Pois((θ+n) log(1/ε)),
where θ + n is the precision of the posterior Dirichlet process. Adopting here similar
lines for the Pitman–Yor process, we replace P ∗ by the truncated process P ∗

ε

P ∗
ε (dx) =

τ∗(ε)∑
i=1

p∗i δξi(dx) +Rτ∗(ε)δξ0(dx),

cf. (5). Here (p∗i )i≥1 are defined according to (2) with θ + αk in place of θ, i.e. Vj
ind∼

beta(1− α, θ + α(k + j)). Hence, according to Theorem 2 we have

τ∗(ε)− 1 ∼a.s. (εTα,θ+αk/α)
−α/(1−α), as ε → 0

hence Algorithm 2 can be applied here.

3 Simulation study

3.1 Stopping time τ (ε)

According to Theorem 2, the asymptotic distribution of τ(ε) changes with ε, α and θ.
For illustration, we simulate τ(ε) from Steps 1.-2. in Algorithm 2 using Devroye’s
sampler, cf. Algorithm 3 in Supplementary Material. In Figure 1 we compare density
plots obtained with 104 iterations with respect to different combinations of ε, α and
θ. The plot in the left panel shows how smaller values of ε result in larger values
of τ(ε). In fact, as ε → 0, τ(ε) increases proportional to 1/εα/(1−α). Note also that
(εTα,θ/α)

−α/(1−α) is nonnegative for Tα,ε < α/ε, which happens with high probability
when ε is small. As for α, the plot in the central panel shows how τ(ε) increases as
α gets large. In fact, it is easy to see that (εTα,θ/α)

−α/(1−α) is increasing in α when
Tα,ε < e1−αα/ε, which also happens with high probability when ε is small, so the larger
α, the more stick-breaking frequencies are needed in order to account for a prescribed
approximation error ε. Finally, the plot in the right panel shows that the larger θ,
the larger τ(ε). In fact, by definition, the polynomial tilting makes Tα,θ stochastically
decreasing in θ.

In order to illustrate the rate of convergence in Theorem 2, we compare next the
exact distribution of τ(ε) with the asymptotic one. To do so, we repeat the following
experiment several times: we simulate τ(ε) from Steps 1.-3. in Algorithm 1, then
we compare the empirical distribution of (ε/α)α(τ(ε) − 1)1−α with T−α

α,θ , the latter
corresponding to the α-diversity of the PY process, see Section 4 for a formal definition.
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Figure 1: Density plot for the asymptotic approximation of τ(ε) based on 104 values
under the following parameter configurations. Left: ε ∈ {0.10, 0.05, 0.01}, α = 0.4, θ = 1.
Center: α ∈ {0.4, 0.5, 0.6}, θ = 1, ε = 0.1. Right: θ ∈ {0, 1, 10}, α = 0.25, ε = 0.05.

In Table 1 we report the Kolmogorov distance together with expected value, median,
first and third quartiles for both the exact and the asymptotic distribution obtained with
104 iterations. This is repeated for α = 0.5, θ = {0, 1, 10} and ε = {0.10, 0.05, 0.01}. As
expected, as we decrease ε, the Kolmogorov distance gets smaller to somehow different
rates according to the parameter choice. The derivation of convergence rates is left for
future research.

dK Mean 25% Median 75%
θ ε As Ex As Ex As Ex As Ex
0 0.10 3.42 1.06 1.05 0.45 0.45 0.89 0.89 1.61 1.55
0 0.05 2.17 1.10 1.08 0.45 0.45 0.95 0.95 1.64 1.58
0 0.01 1.73 1.14 1.11 0.45 0.45 0.97 0.95 1.64 1.60
1 0.10 4.79 2.24 2.14 1.55 1.48 2.14 2.10 2.86 2.76
1 0.05 2.38 2.25 2.20 1.55 1.52 2.17 2.14 2.86 2.79
1 0.01 1.40 2.26 2.25 1.57 1.54 2.19 2.19 2.87 2.85
10 0.10 11.93 6.39 6.07 5.69 5.40 6.34 6.06 7.04 6.72
10 0.05 6.12 6.39 6.24 5.70 5.56 6.34 6.22 7.05 6.88
10 0.01 1.93 6.40 6.37 5.71 5.70 6.34 6.34 7.05 7.00

Table 1: Summary statistics for the asymptotic distribution (As) and exact distribution
(Ex) of τ(ε) at the scale of the α-diversity based on 104 values. The Kolmogorov distance
(dK) is between the empirical cumulative distribution function of the sample from the
exact distribution and the asymptotic one (multiplied by a factor of 100). The parameter
values are α = 0.5, θ ∈ {0, 1, 10} and ε ∈ {0.10, 0.05, 0.01}.

3.2 Functionals of the ε-PY process

In the case that P is defined on X ⊆ R, the total variation bound (6) implies that
|F (x) − Fε(x)| < ε almost surely for any x ∈ R, where Fε and F are the cumulative
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distribution functions of Pε and P . Also, measurable functionals ψ(P ) such as the mean
μ =

∫
xP (dx) can be approximated in distribution by the corresponding functionals

ψ(Pε). For illustration, we set X = [0, 1] and P0 the uniform distribution on [0, 1]. For
given α and θ, we then compare the distribution under P with that under the ε-PY
process Pε for F (1/2), F (1/3) and μ =

∫
xP (dx). As for the distribution of the finite

dimensional distributions F (1/2) and F (1/3) under the full process P , we set α = 0.5
so to exploit results in James et al. (2010). According to their Proposition 4.7, the finite
dimensional distributions of P when α = 0.5 are given by

f(w1, . . . , wn−1) =
(
∏n

i=1 pi)Γ(θ + n/2)

π(n−1)/2Γ(θ + 1/2)

w
−3/2
1 · · ·w−3/2

n−1 (1−
∑n−1

i=1 wi)
−3/2

An(w1, . . . , wn−1)θ+n/2

for any partition A1, . . . , An of X with pi = P0(Ai) and An(w1, . . . , wn−1) =∑n−1
i=1 p2iw

−1
i + p2n(1−

∑n−1
i=1 wi)

−1. Direct calculation shows that F (1/2) has beta dis-
tribution with parameters (θ + 1/2, θ + 1/2) while F (1/3) has density

f(w) =
2√
π
9θ

Γ(θ + 1)

Γ(θ + 1/2)

(w(1− w))θ−1/2

(1 + 3w)θ+1
.

As for the mean functional μ =
∫
xP (dx), the distribution under the full process P

is approximated by simulations by setting a deterministic truncation point sufficiently
large. As for the distribution under Pε, we use both Algorithm 1 and Algorithm 2.

In Figure 2 we compare the density plots of F (1/2) for ε = {0, 1.0.05, 0.001} and
θ = {0, 10} under Pε with the beta density under P so to illustrate that the two
distributions get close as ε gets small. As for F (1/3) and μ =

∫
xP (dx), in Tables 2 and

3 we report the Kolmogorov distance between P and Pε for the two sampling algorithms,
together with expected value, median, first and third quartiles. For each case and each
parameter configuration, we have sampled 104 trajectories from the ε-PY process and
104 trajectories from the Pitman–Yor process in the case of μ =

∫
xP (dx). As expected,

the Kolmogorov distances are generally larger, still close, when using Algorithm 2

versus Algorithm 1 due to the approximate nature of the former.

3.3 Computation time

In this section, we provide a concrete justification of the computational advantage of
using Algorithm 2 versus Algorithm 1. We simulate 104 ε-PY iterations by using
Algorithm 1 and Algorithm 2 for different combinations of the α and θ parameters
and of the ε error threshold. In Table 4 (resp. Table 5), we report the average computing
time1 per iteration (resp. per support point) for Algorithm 1 and Algorithm 2.
By iteration, we mean a full realization of the ε-PY process including frequencies and
locations, while by support point, we mean that we divide the total time by the number
of support points τ(ε) + 1. In order to account for the computational task required
per iteration, the expected stopping time E[τ(ε)] is also reported. Both tables illustrate
that our proposed approach is faster than Algorithm 1 when the ε-PY is composed
of about 20 support points or more. The more support points, the faster Algorithm 2

1The experiments were conducted on an Intel Core i5 processor (3.1 GHz) computer.
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Figure 2: Density plots for the random probability F (1/2) using the Algorithm 2

(in red solid curve) and Algorithm 1 (in blue dashed curve) to sample from the
ε-PY process. The density under the Pitman–Yor process is the black dotted curve.
The parameter α is fixed equal to 0.5, θ is equal to 0 on the first row and 10 on the
second row, while ε is respectively equal to {0.10, 0.05, 0.01} in the left, center and right
columns.

is compared to Algorithm 1. This disadvantage of the former for small numbers of
support points comes from the fixed cost of initially generating a random variable with
the same distribution as Tα,θ. Conversely, as the number of support points increases,
this fixed cost is largely counterbalanced by the fast vector-sampling of a prescribed
size, which is in contrast with Algorithm 1 while loop whose cost increases with
the number of support points. This can be seen in Table 5 where the actual sampling
time per support point is essentially increasing for Algorithm 1 and decreasing for
Algorithm 2. With the parameter configurations tested, Algorithm 2 can be up to
90 times faster Algorithm 1 for α = 0.6, θ = 10 and ε = 0.01.

4 Connections with random partition structures

4.1 α-diversity and asymptotic distribution of Rn

The random variable Tα,θ in Theorem 1 plays a key role in the Pitman–Yor process,
in particular for its link with the α-diversity of the process. The α-diversity is defined
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dK Mean 25% Median 75%
θ ε Al1 Al2 Al1 Al2 PY Al1 Al2 PY Al1 Al2 PY Al1 Al2 PY

0 0.10 16.29 16.48 0.33 0.33 0.33 0.04 0.01 0.04 0.20 0.16 0.20 0.60 0.64 0.59
0 0.05 11.53 12.52 0.33 0.33 0.33 0.05 0.01 0.04 0.20 0.17 0.20 0.58 0.63 0.59
0 0.01 5.49 5.60 0.34 0.33 0.33 0.04 0.03 0.04 0.21 0.19 0.20 0.59 0.61 0.59
1 0.10 3.08 5.65 0.33 0.33 0.33 0.14 0.12 0.14 0.29 0.28 0.28 0.49 0.50 0.49
1 0.05 1.34 3.11 0.33 0.33 0.33 0.14 0.13 0.14 0.28 0.28 0.28 0.48 0.50 0.49
1 0.01 0.56 0.89 0.33 0.34 0.33 0.14 0.14 0.14 0.28 0.29 0.28 0.49 0.49 0.49
10 0.10 3.10 3.81 0.33 0.33 0.33 0.25 0.25 0.26 0.32 0.32 0.32 0.40 0.41 0.40
10 0.05 1.41 1.38 0.33 0.33 0.33 0.26 0.26 0.26 0.32 0.32 0.32 0.40 0.40 0.40
10 0.01 0.75 0.65 0.33 0.33 0.33 0.26 0.26 0.26 0.33 0.32 0.32 0.40 0.40 0.40

Table 2: Simulation study on F (1/3).

dK Mean 25% Median 75%
θ ε Al1 Al2 Al1 Al2 PY Al1 Al2 PY Al1 Al2 PY Al1 Al2 PY

0 0.10 1.60 3.57 0.50 0.50 0.50 0.36 0.34 0.36 0.50 0.50 0.50 0.64 0.67 0.65
0 0.05 0.94 2.72 0.50 0.50 0.50 0.35 0.34 0.36 0.50 0.50 0.50 0.64 0.66 0.65
0 0.01 1.18 2.10 0.50 0.50 0.50 0.36 0.35 0.36 0.50 0.50 0.50 0.64 0.65 0.65
1 0.10 1.61 3.18 0.50 0.50 0.50 0.40 0.39 0.40 0.50 0.50 0.50 0.60 0.61 0.60
1 0.05 1.28 2.32 0.50 0.50 0.50 0.40 0.40 0.40 0.50 0.50 0.50 0.59 0.60 0.60
1 0.01 1.12 0.57 0.50 0.50 0.50 0.40 0.41 0.40 0.50 0.50 0.50 0.60 0.60 0.60
10 0.10 2.81 4.18 0.50 0.50 0.50 0.45 0.46 0.46 0.50 0.50 0.50 0.55 0.55 0.54
10 0.05 1.78 1.28 0.50 0.50 0.50 0.46 0.46 0.46 0.50 0.50 0.50 0.54 0.54 0.54
10 0.01 2.01 1.09 0.50 0.50 0.50 0.46 0.46 0.46 0.50 0.50 0.50 0.54 0.54 0.54

Table 3: Simulation study on μ =
∫
xP (dx).

Summary statistics for F (1/3) (Table 2) and μ =
∫
xP (dx) (Table 3) using Algo-

rithm 1 (Al1) and Algorithm 2 (Al2) to sample from the ε-PY process. The Kol-
mogorov distance (dK) is between the cumulative distribution functions with respect to
the Pitman–Yor (PY) process (multiplied by a factor of 100). The parameter values are
α = 0.5, θ ∈ {0, 1, 10} and ε ∈ {0.10, 0.05, 0.01}.

as the almost sure limit of n−αKn where Kn denotes the (random) number of unique
values in the first n terms of an exchangeable sequence from P in (1). According to
Theorem 3.8 in Pitman (2006), n−αKn ∼a.s. (Tα,θ)

−α, in particular, for θ = 0, T−α
α has

a Mittag-Leffler distribution with p-th moment Γ(p+1)/Γ(pα+1), p > −1. According to
Pitman (2006, Lemma 3.11, eqn (3.36)), the asymptotic distribution of the truncation
error Rn can be derived from that of Kn to get Rn ∼a.s. α(Tα,θ)

−1 n1−1/α as n → ∞.
The proof relies on Kingman’s representation of random partitions (Kingman, 1978)
together with techniques set forth by Gnedin et al. (2007). In the proof of Theorem 1
the asymptotic distribution of Tn = − logRn is a direct consequence of the above by
an application of the continuous mapping theorem.

When θ = 0 it is possible to give an interpretation of the asymptotic distribution
of Rn in terms of the jumps of a stable subordinator. In this case the weights of P can
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α = 0.4 α = 0.5 α = 0.6
θ ε Al1 Al2 n Al1 Al2 n Al1 Al2 n
0 0.10 0.01 0.20 5 0.02 0.04 11 0.11 0.05 38
0 0.05 0.01 0.04 8 0.04 0.04 21 0.20 0.06 105
0 0.01 0.04 0.04 20 0.36 0.05 101 15.10 0.26 1163
1 0.10 0.03 0.19 17 0.07 0.05 31 0.23 0.07 92
1 0.05 0.06 0.06 26 0.13 0.06 61 0.80 0.12 258
1 0.01 0.18 0.09 73 0.80 0.12 301 27.75 0.57 2877

10 0.10 0.22 0.15 121 0.61 0.10 211 2.11 0.18 567
10 0.05 0.45 0.10 191 1.52 0.15 421 9.22 0.37 1603
10 0.01 1.93 0.20 558 13.24 0.48 2101 760.68 4.01 17911

Table 4: Computing time (ms) per iteration.

α = 0.4 α = 0.5 α = 0.6
θ ε Al1 Al2 n Al1 Al2 n Al1 Al2 n
0 0.10 1.92 38.46 5 1.82 3.64 11 2.91 1.32 38
0 0.05 1.30 5.22 8 1.90 1.90 21 1.91 0.57 105
0 0.01 1.95 1.95 20 3.56 0.50 101 12.98 0.22 1163
1 0.10 1.81 11.45 17 2.26 1.61 31 2.50 0.76 92
1 0.05 2.33 2.33 26 2.13 0.98 61 3.10 0.46 258
1 0.01 2.45 1.23 73 2.66 0.40 301 9.65 0.20 2877

10 0.10 1.82 1.24 121 2.89 0.47 211 3.72 0.32 567
10 0.05 2.35 0.52 191 3.61 0.36 421 5.75 0.23 1603
10 0.01 3.46 0.36 558 6.30 0.23 2101 42.47 0.22 17911

Table 5: Computing time (μs) per support point.

Average computing time per iteration (in millisecond in Table 4) and per support point
(in microsecond in Table 5) for Algorithm 1 (Al1) and Algorithm 2 (Al2) based
on 104 iterations, and expected stopping time n = E[τ(ε)]. The parameter values are
α ∈ {0.4, 0.5, 0.6}, θ ∈ {0, 1, 10} and ε ∈ {0.10, 0.05, 0.01}.

be represented as the renormalized jumps of a stable subordinator, with Tα denoting
the total mass. Denote the (unormalized) jumps as (Ji)i≥1 in decreasing order and as

(J̃i)i≥1 when in size-biased order,

Tα =
∑
i≥1

Ji =
∑
i≥1

J̃i, and TαRn =
∑
i>n

J̃i.

By the asymptotic distribution of Rn, n
1/α−1

∑
i>n J̃i →a.s. α as n → ∞. That is,

once properly scaled, the small jumps of the stable subordinator (in size-biased random
order), interpreted as the “ dust ”, converge to the “ proportion ” α. This is reminis-
cent to the number of singletons which is asymptotically (n → ∞) a α proportion of
the number of groups in a sample of size n, see Lemma 3.11, eqn (3.39), of Pitman
(2006).
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4.2 Regenerative random compositions and Anscombe’s theorem

We review next the connections of the counting renewal process N(t) defined in (7)–
(8) and the theory of regenerative random compositions. The reader is referred to
the survey of Gnedin (2010) for a review. Recall that, when α = 0 (Dirichlet pro-

cess case), Vi
i.i.d.∼ beta(1, θ) in the stick-breaking representation (2), and in turns

Yi = − log(1 − Vi)
i.i.d.∼ Exp(θ) and Tn = − logRn ∼ Gamma(n, θ). By direct cal-

culus, N(t) ∼ Pois(θt) so that τ(ε) − 1 = N(log 1/ε) has Pois(θ log 1/ε) distribu-
tion. More generally, the stick-breaking frequencies (pi)i≥1 correspond to the gaps
in [0, 1] identified by the multiplicative regenerative set R ⊂ (0, 1) consisting of the
random partial sums 1 − Rk =

∑
i≤k pi. The complement open set Rc = (0, 1)/R

can be represented as a disjoint union of countably many open intervals or gaps,
Rc =

⋃∞
k=0(1−Rk, 1−Rk+1), R0 = 1. A random composition of the integer n into an

ordered sequence κn = (n1, n2, . . . , nk) of positive integers with
∑

j nj = n can be gen-
erated as follows: independently of R, sample U1, U2, . . . from the uniform distribution
on [0, 1] and group them in clusters by the rule: Ui, Uj belong to the same cluster if they
hit the same interval. The random composition of κn corresponds then to the record
of positive counts in the left-to-right order of the intervals. The composition structure
(κn) is called regenerative since for all n > m ≥ 1, conditionally given the first part of
κn is m, if the part is deleted then the remaining composition of n −m is distributed
like κn−m. The regenerative set R corresponds to the closed range of the multiplicative
subordinator {1 − exp(−St), t ≥ 0}, where St is the compound Poisson process with
Lévy intensity ν̃(dy) = θe−θydy. Since the range of St is a homogeneous Poisson point
process on R+ with rate θ, R is an inhomogeneous Poisson point process N (dx) on [0, 1]
with Lévy intensity ν(dx) = θ/(1− x)dx so that, for t = log 1/ε,

N(log 1/ε) = N [0, 1− ε] ∼ Pois(λ), λ =

∫ 1−ε

0

θ

1− x
dx = θ log 1/ε

as expected. Suppose now that (Vi)i≥1 are independent copies of some random variable
V on [0, 1], not necessarily beta(1, θ) distributed. The corresponding random composi-
tion structure has been studied in Gnedin (2004); Gnedin et al. (2009) as the outcome
of a Bernoulli sieve procedure. We recall here the relevant asymptotic analysis. Let
μ = E(− log(1− V )) and σ2 = Var(− log(1− V )), equal respectively to 1/θ and 1/θ2 in
the DP case, respectively. If those moments are finite, by the CLT,

Tn − nμ√
nσ

→d Z, as n → ∞,

where Z ∼ N(0, 1), and, by means of Anscobe’s Theorem, one obtains that

N(t)− t/μ√
σ2t/μ3

→d Z, as t → ∞.

It turns out that the normal limit of N(log n) corresponds to the normal limit of Kn,

Kn − logn/μ√
σ2 logn/μ3

→d Z, as n → ∞
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provided that E(− log V ) < ∞. To see why, consider iid random variables X1, X2, . . .
with values in N such that {Xi = k} = {Ui ∈ (1−Rk−1, 1−Rk)}. Hence P(X1 = k|R) =
pk. We then have that Kn = #{k : Xi = k for at least one i among 1, . . . , n}. Define
Mn = max{X1, . . . , Xn}. For U1,n ≤ U2,n ≤ . . . ≤ Un,n denoting the order statistics
corresponding to the uniform variates U1, . . . , Un, we have Mn = min{j : 1 − Rj ≥
Un,n} = min{j : Tj ≥ En,n} upon transformation x → − log(1− x), where En,n is the
maximum of an iid sample of size n from the standard exponential distribution. Since
N(t) = max{n : Tn ≤ t} = min{n : Tn ≥ t} − 1 we have Mn − 1 = N(En,n). Gnedin
et al. (2009) proves the equivalence

Mn − bn
an

→d X ⇐⇒ N(log n)− bn
an

→d X,

where X is a random variable with a proper and non degenerate distribution with
an > 0, an → ∞ and bn ∈ R. A key fact exploited in the proof is that, from extreme-
value theory, En,n− log n has an asymptotic distribution of Gumbel type. That Mn can
be replaced by Kn in the equivalence relation above follows from the fact that Mn−Kn,
the number of integers k < Mn not appearing in the sample X1, . . . , Xn, is bounded in
probability when E(− log V ) < ∞, see Proposition 5.1 in Gnedin et al. (2009).

Back to the Pitman–Yor process case, by Theorem 1 we have n−α/(1−α)N(log n) →d

(Tα,θ/α)
−α/(1−α) while n−αKn →a.s. (Tα,θ)

−α. So we see that N(logn) and Kn do not
have the same asymptotic behavior as in the α = 0 case. By using the fact that

P(X1 > n|(pi)) = Rn, Rn ∼a.s. αn
−(1−α)/αT−1

α,θ,

and the fact that, conditional on (pi)i≥1, Mn belongs to the domain of attraction of
Fréchet distribution, Pitman and Yakubovich (2017, Theorem 6.1) establishes that

P(Mn ≤ xnα/(1−α)) → E
[
exp

(
− αT−1

α,θx
−(1−α)/α

)]
so we see that N(logn) and Mn do not have the same asymptotic behavior as in the
α = 0 case, although they share the same growth rate nα/(1−α). Finally, the non corre-
spondence of the asymptotic distribution of Mn and Kn suggests that the behavior of
Mn −Kn is radically different with respect to the α = 0 case.

5 Discussion

In this paper we have studied stochastic approximations of the Pitman–Yor process
consisting in the truncation of the sequence of stick-breaking frequencies at a random
stopping time τ(ε) that controls the accuracy of the approximation in the total variation
distance by ε. We name this finite dimensional approximation the ε-Pitman–Yor process.
We have derived the asymptotic distribution of τ(ε) as ε goes to zero and we have
advanced its use to devise a sampling scheme that generates the stopping time first,
and then the frequencies up to that point. The simulations in Section 3 show that the
proposed sampler proves computationally very efficient in the moderate to large stopping
time regime (for approximately τ(ε) ≥ 20). The asymptotic distribution illustrates how
large the stopping time is as the approximation error gets small in terms of the prior
parameters θ and α. In particular, it shows that the distribution of τ(ε) in the Dirichlet
process case is not recovered in the limit α → 0 in Theorem 2. In fact, in the Dirichlet
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process case τ(ε) grows at a logarithmic rate in 1/ε while in Pitman–Yor case it grows at
the polynomial rate εα/(1−α) and the first regime is not recovered by letting α approach
0 in the second regime. We have also drawn important connections with the theory of
random partition structures developed by Jim Pitman and coauthors which highlight
the relationship of the stopping time τ(ε) with the number Kn of unique values in a
sample of size n from the Pitman–Yor process.

We have left as open problem for future research the study of the conditional distri-
bution of the stick-breaking frequencies given the stopping time. In the Dirichlet process
case one can exploit the renewal process interpretation to generate exactly from this
conditional distribution. In fact, when α = 0, the sequence (− logRn)n≥1 corresponds
to the jump times of a Poisson process and the conditional distribution of the jumps
given the number of jumps at time t can be described in terms of the ordered statistics
of i.i.d. uniform random variates on (0, t). The case α > 0 does not seem to be easily
tractable, as it would be if the counting process associated to τ(ε) were a mixed sample
process or, equivalently, a Cox process, cf. Grandell (1997, Section 6.3).

It would be also interesting to compare the accuracy of our finite dimensional ap-
proximation of the Pitman–Yor process to the one proposed in Al Labadi and Zarepour
(2014). The latter is based on a representation of the frequencies in decreasing order, cf.
Pitman and Yor (1997, Proposition 22). Al Labadi and Zarepour (2014) compare the
accuracy of their approximation scheme to a stick-breaking truncation at a number n of
stick-breaking frequencies that matches the number of frequencies used in their scheme.
Not surprisingly, their approximation is superior since it generates weights in decreasing
order, specially when α is large. In contrast, Theorem 2 describes precisely how large
the truncation threshold n should be as α gets large for a given approximation level
ε, cf. the center panel of Figure 1. It also underlines that the approximation deterio-
rates for fixed n and increasing α, which is coherent with the findings in Al Labadi and
Zarepour (2014). A fair comparison with their approach can only be done for a given
nominal approximation error, but unfortunately the authors did not provide a precise
assessment of it. The number of stick-breaking frequencies needed to match the approx-
imation accuracy of Al Labadi and Zarepour (2014) would be de facto larger due to the
non monotonicity. However, since the stopping rule (4) adapts to the size of α, we do
not expect the accuracy of our approximation scheme to deteriorate for α large. As for
computation time, the techniques used by Al Labadi and Zarepour (2014) in order to
obtain decreasing frequencies are computational heavy. Their average computing time
for α = 0.5 is about 2.30 seconds/iteration with 104 locations. This amounts to 0.23
milliseconds/support point, which is 1000 times slower than the computing time for
our Algorithm 2 in the parameter configuration α = 0.5, θ = 10 and ε = 0.01, equal
to 0.23 microsecond/support point. It would be interesting to investigate what are the
consequences in terms of computation time per iteration for a given approximation error.

Supplementary Material

Supplementary Material of “Stochastic Approximations to the Pitman–Yor Process”
(DOI: 10.1214/18-BA1127SUPP; .pdf). Algorithm 3 for generating from a polynomi-
ally tilted positive stable random variable (in a separate document).

https://doi.org/10.1214/18-BA1127SUPP
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