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Starting from seminal neglected work by Rappeport
(1968), we revisit and expand on the exact algorithms
to compute the distribution of the maximum, the
minimum, the range, and the sum of the J largest
order statistics of a multinomial random vector
under the hypothesis of equiprobability. Our exact
results can be useful in all those situations in which
the multinomial distribution plays an important
role, from goodness-of-fit tests to the study of
Poisson processes, with applications spanning from
biostatistics to finance. We describe the algorithms,
motivate their use in statistical testing and illustrate
two applications. We also provide the codes and
ready-to-use tables of critical values.

1. Introduction
The multinomial random vector arises naturally in
several statistical problems, from queuing theory to
software reliability models, from clinical trials to financial
mathematics, from goodness-of-fit tests to transportation
problems [1,2]. The multinomial experiment is a common
way of representing the multinomial random
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vector as the result of throwing n independent balls into m independent urns, each with a given
probability of attraction pi, and of counting the number ni of balls that fall into urn i, for i=
1, ...,m [3]. The probability mass function (pmf) of the resulting vector of counts (N1, . . . , Nm)T

is

P (N1 = n1, . . . , Nm = nm;p,m, n) =
n!

n1! · · ·nm!

m∏
i=1

pni
i ,

where p= (p1, . . . , pm)T and
∑m
k=1 nk = n.

A common statistical hypothesis of interest is whether the underlying multinomial distribution
is equiprobable, so that the probability for a ball of falling in any of the urns is always the same,
i.e. H0 : P = P0 vs. H1 : P 6= P0, where P0 is the equiprobable pmf

P0(N1 = n1, . . . , Nm = nm;p= (p, . . . , p)T ,m, n) =
n!

n1!n2! . . . nm!
pn, (1.1)

with p= 1
m . From now on we indicate the pmf in Equation (1.1) as Mult (n,p0), where p0 =

(m−1, . . . ,m−1)T .
Many procedures have been proposed to test the equiprobability hypothesis, a good review

being [2]. The classical way is to use the χ2 goodness-of-fit test, first introduced by Pearson [4]
and based on the statistic

X2 =

m∑
i=1

(Ni − np)2

np
.

Other approaches replace X2 with the Neyman modified X2 [5], with the log-likelihood ratio
statistic

G2 = 2

m∑
i=1

Ni ln

(
Ni
np

)
,

or with the Freeman-Tukey statistic [6].
In 1962, Young [7] revisited this problem and proposed two alternatives based on the rescaled

range

Wm =

(
max

1≤k≤m

Nk
n
− min

1≤l≤m

Nl
n

)
(1.2)

and the rescaled mean

Mm = (mn)−
1
2

m∑
i=1

∣∣∣Ni − n

m

∣∣∣ .
These new statistics revealed some power advantages under certain alternatives [7].

In testing the equiprobability hypothesis, all the statistics above rely on approximations (like
the Normal, the χ2, the Beta, the Dirichlet, or the Gumbel), being their exact distributions not
known. This requires that the original data satisfy some often heuristic conditions: for instance,
the χ2 approximation for the Pearson statistic is typically recommended when n≥ 5m [2,6]. In
several applications, especially when dealing with small samples, these conditions are rarely
satisfied and as a consequence the tests may be unreliable.

More recently, Corrado [8] has offered a solution, based on what he calls stochastic matrices, for
computing the exact probabilities of the multinomial maximum, minimum, and range. Corrado’s
approach clearly solves the problem of using potentially inaccurate approximations but–as we
shall see–it represents an unsatisfactory solution, since it requires ad-hoc computations for each
combination of n and m. Our aim is thus to propose a more general and flexible approach.

Our investigation originates from an old PhD thesis by Rappeport [9], in which two algorithms
for the exact computation of the distributions of the multinomial maximum and of the sum of
the 3 largest multinomial order statistics were proposed. We first describe Rappeport’s results,
and then we present novel general algorithms for computing the exact distributions of the
multinomial minimum, of the range and of the sum of the J largest order statistics. This means
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that, for example, the distribution of the test statistic Wn in Equation (1.2) can now be obtained
exactly.

The article develops as follows. Section 2 provides a quick overview of the existing
distributional approximations for the multinomial range and other order statistics, whereas
Section 3 contains the exact results of Corrado [8]. Section 4 is devoted to the original
algorithms by Rappeport, while Sections 5 and 6 introduce our results for the minimum and the
range respectively. Section 7 discusses some non-trivial accuracy issues of the commonly used
approximations. In Section 8 we provide some additional motivation for the use of the (sums of)
the largest multinomial counts in hypothesis testing. In Section 9 we shortly describe some of the
many possible applications that involve these exact results. We close with a discussion in Section
10. The Appendix contains tables of critical values for the multinomial maximum, minimum,
range and sums, as well as codes for all algorithms.

2. Approximations
Starting from some results of Pearson & Hartley [10], a first approximation for the multinomial
distribution under equiprobability was introduced by Johnson & Young [11]. Young [7] used this
approximation to derive a limiting distribution for the range of the multinomial sample.

The limiting distribution of the maximum, using a Gumbel approximation, was initially
introduced by Kolchin in 1978 [12], with some errors that were later corrected in DasGupta [13].
No general result appears to be available for the multinomial minimum or other order statistics.
Some specific cases, easily computable by hand, are described in [2].

All the approximations presented below are derived under the hypothesis of equiprobability.

(a) Approximation of the Distribution of the Range
It is well-known that, marginally, for i= 1, . . . ,m one has Ni ∼Binom(n, pi), so that under
the null hypothesis E(Ni) = npi = np and Var(Ni) = np(1− p) with p= 1/m. Using the
multidimensional central limit theorem, the joint distribution of the standardized multinomial
vector (ω1, . . . , ωm)T , with

ωi =
Ni − np√
np(1− p)

=
mNi − n√
n(m− 1)

,

converges in distribution, as n→∞, to a multivariate normal distribution with zero mean vector,
unit variances, and covariance between ωi and ωj equal to (1−m)−1 for i 6= j. Note that the
limiting distribution is actually degenerate, i.e. its support is (m− 1)-dimensional due to the n-
sum constraint that applies to the Ni terms (or, equivalently, the zero-sum constraint on the ωi
terms). One has a non-degenerate limiting distribution for any choice of a set ofm− 1 terms from
the set (ω1, . . . , ωm).

The distribution of the range of m i.i.d standard normal variables X1, X2, . . . , Xm is a known
quantity, and it can be computed as

P

(
max

1≤i≤m
Xi − min

1≤j≤m
Xj ≤ r

)
=m

∫∞
−∞

φ(x)

(∫x+r
x

φ(u)du

)m−1
dx,

where φ(x) is the probability density function of a standard normal random variable. Using this,
Young [7] shows that the distribution of the scaled multinomial range can be approximated as

P

(
max

1≤i≤m

Ni
n
− min

1≤j≤m

Nj
n
≤ r
)
≈ P

(
max

1≤i≤m
Xi − min

1≤j≤m
Xj ≤ (r + δm)

√
nm

)
,

where δm is a continuity factor such that

δm =
1

n
for m= 2, and δm =

1

2n
for m> 2.

The approximation works best for large values of the ratio n/m (our simulations suggest n> 5m).
We refer to [2,7] for additional details.
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(b) Approximation of the Distribution of the Maximum
The approximating distribution for the maximum of a multinomial sample was proposed by
Kolchin [12] and improved by DasGupta [13], to which we refer for all technical details.

Set

µ=
n

m
and κ=

logm− 1
2 log logm

µ
,

and let ε be the unique positive root of the equation

(1 + ε) log(1 + ε)− ε= κ.

Then the law of the maximum of a multinomial sample converges in distribution to a Gumbel
random variable, i.e.

P

 max
1≤i≤m

Ni − µ(1 + ε)√
n

2m logm

+
log(4π)

2
≤ z

 d→ e−e
−z

,

for all real z, as n→∞. As observed in [2,8], the approximation by Kolchin and Dasgupta is the
best one available for the multinomial maximum in the literature so far.

We now turn to the exact results.

3. Exact Results by Corrado (2011)
Corrado’s approach [8] is based on a matrix representation for the construction of the transition
probabilities for the number of balls in the different urns. The main advantage of Corrado’s
method is that it does not require equiprobability.

Let Nk be the random number of balls in urn k. The sequence Sk = Sk−1 +Nk describes the
cumulative ball count from S0 = 0 to Sm = n, where m is the total number of urns. The transition
probability from Sk−1 to Sk is equal to

P (Sk = sk |Sk−1 = sk−1; p
∗
k) = (3.1){( n−sk

sk−sk−1

)
(p∗k)

sk−sk−1(1− p∗k)
n−sk sk ≥ sk − 1

0 otherwise
,

where p∗k =
pk∑m

j=k pj
(so that in particular p∗1 = p1). For brevity, in what follows we write

P (sk | sk−1; p∗k).
From Equation (3.1), for k= 1, ...,m, we can determine upper-triangular matrices of the form

Qk =


P (0 | 0; p∗k) P (1 | 0; p∗k) . . . P (n | 0; p∗k)

0 P (1 | 1; p∗k) . . . P (n | 1; p∗k)
. . . . . . . . . . . .

0 0 . . . 1

 .
These matrices provide a straightforward way to calculate the desired exact probabilities of the
multinomial order statistics. The first transition from s0 = 0 to s1 travels across a starting row
vector Q1

1 defined as
Q1

1 = [P (0 | 0; p1) P (1 | 0; p1) . . . P (n | 0; p1)].

Q1
1 indicates the first row of matrixQ1. The productQ1

1 ×Q2 is a row vector whose elements give
the convolution distribution of S2 =N1 +N2, whileQ1

1 ×Q2 × · · ·Qk represents the convolution
distribution of the random sum Sk. Naturally Q1

1 ×Q2 × · · ·Qm = 1 concentrates all the mass on
Sm = n, so that Qm is equal to a column vector of ones.

In order to calculate the exact probability for the maximum amount of balls in the urns not to

exceed a given r, i.e. P
(

max
1≤i≤m

Ni ≤ r
)

, Corrado suggests the following procedure:
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(i) In all the matrices Qk, k= 1, ...m, set to 0 all the transition probabilities P (sk | sk−1; p∗k)
for which sk − sk−1 > r. This defines a new series of sub-matrices, Q∗1, ..., Q

∗
m, called

culled.

(ii) The product of the sub-matricesQ∗1, ..., Q
∗
m gives the exact probability ofP

(
max

1≤i≤m
Ni ≤ r

)
.

A simple example taken from [8] will clarify the method. Imagine to throw 3 balls across 3 urns,
so that n=m= 3. Then we can easily verify that Q1

1 = [0.296 0.444 0.222 0.037], Q3 = [1 1 1 1]

and

Q2 =


0.125 0.375 0.375 0.125

0 0.25 0.5 0.25

0 0 0.5 0.25

0 0 0.5 0.5

0 0 0 1

 .
Now, suppose that one is interested in computing the probability that the multinomial
maximum is smaller than or equal to 2 . The matrices above need to be modified as Q∗11 =

[0.296 0.444 0.222 0], Q∗3 = [0 1 1 1] and

Q∗2 =


0.125 0.375 0.375 0

0 0.25 0.5 0.25

0 0 0.5 0.25

0 0 0.5 0.5

0 0 0 1

 .

Then P
(

max
1≤i≤m

Ni ≤ 2

)
=Q∗11 ×Q∗2 ×Q∗3 = 0.889.

The distribution of the minimum can be obtained similarly, if one modifies each matrix Qk,
by setting P (sk|sk−1; p∗k) equal to 0 for sk − sk−1 < r (please notice the change in the inequality
sign). Additional details are available in [8].

Interestingly, the distribution of the multinomial range can also be computed using the matrix
representation. Set Qk(ak, bk) to be the culled matrix for urn k, where P (sk | sk−1; p∗k) = 0 for
all Nk >ak or Nk < bk. Introducing the set of all possible allocations of n balls across m urns as
∩mk=1{ak ≥Nk ≥ bk}, one can express the joint probability of the maximum and the minimum
ball counts as

P
(
∩mk=1ak ≥Nk ≥ bk

)
=Q∗11 ×

m−1∏
k=2

Qk(ak, bk)×Q∗m. (3.2)

Note that the set of allocations described above have intersecting intervals, so that to compute the
exact probabilities for the range the intersection probabilities should be subtracted:

P

(
max

1≤k≤m
Nk − min

1≤l≤m
Nl < r

)
=

=

n−r+1∑
h=0

Q∗11 ×
m∏
k=2

Qk(h+ r − 1, h)×Q∗m −
n−r∑
h=0

Q∗11 ×
m∏
k=1

Qk(h+ r − 1, h+ 1)×Q∗m.

Corrado’s method works nicely and allows for the exact probability computations of the
multinomial maximum, minimum and range. However, it has a strong limitation: for every new
composition, and for every value of r, the culled matrices have to be redesigned and recalculated,
something not very efficient.

4. Rappeport’s Algorithms
In 1968, Rappeport [9] proposed two iterative algorithms for the distribution of the multinomial
maximum, and for the sum of the 3 largest multinomial order statistics. That work remained
unpublished, and Rapperport’s idea has been mostly ignored. These algorithms are based on the
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Figure 1: Tree representation of the possible outcomes of the multinomial experiment of throwing
6 balls into three equiprobable urns.

representation of all the possible outcomes of the multinomial experiment in the form of a tree.
The desired probabilities are computed by moving across the branches of this tree according to
certain rules. A relevant feature of Rappeport’s approach is the possibility of deriving a general
algorithm, which does not require adjustments that depend on the specific parameters and values
of interest.

Consider 6 balls thrown across 3 equiprobable urns. The possible outcomes of this multinomial
experiment can be represented with the tree in Figure 1, where each branch corresponds to a
particular partition (up to rearrangement) of the balls into the urns. For instance, the blue path on
the left, characterized by the squares with bold edges, represents the situation in which one of the
urns contains all the 6 balls, while the other two are empty. Conversely, the green path with the
dotted squares represents the configuration where one urn contains three balls, one urn contains
two balls, and the remaining urn contains only one ball. And so on for all the other branches.

Rappeport also discusses the case of urns with different attraction probabilities, under the
assumption that they can be collected into two or three same-probability groups. In these non-
equiprobable situations, Rappeport’s approach loses its generality, and it necessarily requires
case-specific adjustments that do depend on the characteristics of the groups of urns. For
this reason, and since the main null hypothesis in multinomial statistical tests is that of
equiprobability, we do not discuss the details of the two- and three-group cases.

(a) Distribution of the Maximum
Let N<1>, ..., N<m> be the order statistics of the multinomial counts N1, ..., Nm in descending
order, so that N<1> is the maximum, N<2> is the second largest order statistics, and so on, up to
the minimum N<m>. Note that, just like the counts, the ordered counts clearly need not to be all
different.

In the tree representation, to compute the exact probabilities P (N<1> ≤ r;n,m) of the
multinomial maximum under equiprobability, one sums the probabilities of all the paths, whose
nodes are characterized by zeros for all the levels from r + 1 to n. For example, suppose that one
wants to compute the probability that no urn contains more than r= 3 balls, when n= 6 and
m= 3. Then she needs to sum the probabilities of the green dotted and the red dashed paths in
Figure 1, because in all the other situations (gray and blue) N<1> ≥ 4.

To perform such computations, Rappeport develops an efficient iterative procedure, in which
the probability P (N<1> ≤ r;n,m) is explicitly obtained from P (N<1> ≤ r − 1;n,m) and some
initial value.
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Let us compute the probability that the maximum number of balls in the m urns is exactly
equal to r, and let us assume that such a maximum is unique, i.e. all the others urns have at
most r-1 balls. Using Equation (1.1), and introducing the operator W2, which is the sum over all
possible values n<2>, ..., n<m> such that n<1> >n<2>, we can write

P (N<1> = r |N<1> >N<2>;n,m) =
1

r!
W2

(
n!

mn
∏m
i=2 n<i>!

m!∏r−1
k=0((#ni = k)!)

)
.

Forcing notation, here (#ni = k) denotes the number of ni’s equal to k, that is to say the number of
urns containing k balls. The fraction m!∏r−1

k=0(#ni=k)!
arises from a simple combinatorial argument:

since the urns are equiprobable, the probability of a given composition of n1, ..., nm should be
multiplied by the total number of its unique permutations.

Let us now relax the assumption of uniqueness for the maximum, to obtain

P
(
N<1> = r |N<1> =N<q> >N<q+1>;n,m

)
=

=
1

(r!)q q!
Wq+1

(
n!

mn
∏m
i=q+1 n<i>!

m!∏r−1
k=0((#ni = k)!)

)
.

Let q= 0 indicate the case of n<1> < r. Summing over q then yields

P (N<1> ≤ r;n,m) =
∑
q

1

(r!)q q!

n!m!

mn

× Wq+1

(
1∏m

i=q+1(n<i>!)
∏r−1
k=0((#ni = k)!)

)
. (4.1)

The number of urns containing exactly r balls cannot be greater than bnr c, which therefore defines
the upper limit of the summation. Moreover, since all the other n− rq balls should be placed in
the remaining m− q urns, with maximum not exceeding r − 1, one must have (m− q)(r − 1)≥
(n− rq), therefore the lower limit for q is max(0, n− rm+m). The range of the summation in
Equation (4.1) thus becomes

max(0, n− rm+m)≤ q≤ bn
r
c. (4.2)

Noting that

Wq+1

(
1∏m

i=q+1(n<i>!)
∏r−1
k=0((#ni = k)!)

(m− q)! (n− rq)!
(m− q)n−rq

)
= P (N<1> ≤ r − 1;n− rq,m− q) ,

the following iterative formula for the probability of the multinomial maximum holds:

P (N<1> ≤ r;n,m) =
∑
q

AqP (N<1> ≤ r − 1;n− rq,m− q), (4.3)

where

Aq =
n!m!

mn

1

(r!)q q!

(m− q)n−rq

(m− q)! (n− rq)! .

The starting point of the iteration is represented by the probability that the maximum is smaller
than or equal to 1 (where the former clearly cannot occur for n,m> 0), i.e.

P (N<1> ≤ 1;n,m) = P (N<1> = 1;n,m) =

{
m!

mn(m−n)! if m≥ n

0 m<n
.

This quantity can be easily derived from Equation (1.1), since the only possible configurations
corresponding to {N<1> = 1} are those with n frequencies equal to 1 and n−m frequencies
equal to 0, and there are

(m
n

)
such sequences.
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Table 3 contains critical values for the maximum as obtained with this algorithm, for different
combinations of n and m. As expected, these exact numbers coincide with those obtainable using
Corrado’s stochastic matrices [8] (and the same will be true for the minimum and the range).

(b) Distribution of the Sum of the J Largest Order Statistics
The algorithm for the maximum can also be used for the calculation of the exact distribution of
the sum of the J largest order statistics. Rappeport discusses explicitly the cases J = 2, 3, and only
gives some hints about the general case 3<J <m.

Consider the case J = 3 as in the original work by Rappeport1. To compute P (N<1> +

N<2> +N<3> ≤ r;n,m) one may partition this probability into different terms, corresponding
to the different possible ranges of N<1> and N<2>. Indeed, one can distinguish among three
disjoint cases:

(i) N<1> ≤ r
3 . In this case

P

(
3∑
i=1

N<i> ≤ r;n,m

)
= P

(
N<1> ≤

r

3
;n,m

)
.

(ii) N<1> >
r
3 and N<2> ≤ r−N<1>

2 . Here one can fix a value of N<1> = t1, thus forcing
one urn to contain exactly t1 balls. The remaining urns define a smaller sample with n∗ =
n− t1 andm∗ =m− 1. If the maximum of this new sample is smaller or equal than r−t1

2 ,
the original inequality for the sum of the three largest order statistics will automatically
hold. The total probability in this case is equal to the sum over all possible values of t1,
i.e.

P

(
3∑
i=1

N<i> ≤ r;n,m

)
=

r∑
t1=b r3+1c

At1P

(
N<1> ≤

r − t1
2

;n− t1,m− 1

)
,

with

At1 =
n!m!

mn

1

t1!

(m− 1)n−t1

(m− 1)! (n− t1)!
.

(iii) N<1> >
r
3 andN<2> >

r−N<1>

2 .One may proceed as in the previous case, but now both
values of N<1> and N<2> must be fixed, so that

P

(
3∑
i=1

N<i> ≤ r;n,m

)
=

r−1∑
t1=b r3+1c

min(t1,r−t1)∑
t2=b r−t1

2 +1c

At1,t2Bt1,t2 × P (N<1> ≤ r − t1 − t2;n− t1 − t2,m− 2),

where

At1,t2 =
n!m!

mn

(m− 2)n−t1−t2

(m− 2)! (n− t1 − t2)!
1

t1! t2!
,

and Bt1,t2 = 0.5 if t1 = t2, and it is equal to 1 otherwise. The term Bt1,t2 accounts for the
possibility of t1 and t2 being equal.

Collecting the probabilities from points 1, 2 and 3 above yields the desired probability.

The more general distribution of the sum of the J <m largest order statistics can be computed

similarly to the J = 3 case, by splitting the probability P
(∑J

i=1N<i> ≤ r;N,m
)

into J terms,
each one dealing with some combinations of values for the first J − 1 order statistics.

1The original formulation of Rappeport contained a few errors, here corrected.
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The general explicit formula for the distribution of the sum of the J largest order statistics is

P

(
J∑
i=1

N<i> ≤ r;n,m

)
= (4.4)

P
(
N<1> ≤

r

J
;n,m

)
+

r∑
t1=b r

J +1c
At1P

(
N<1> ≤

r − t1
J − 1

;n− t1,m− 1

)
+

· · ·+
∑
t1

· · ·
∑
tJ−1

At1,...,tJ−1Bt1,...,tJ−1 × P

(
N<1> ≤ r −

J−1∑
i=1

ti;n−
J−1∑
i=1

ti,m− J + 1

)
.

If we denote with I the total number of summations for a particular range of values, then the
relative summation limits are defined asb

r
J + 1c ≤ t1 ≤ r − I + 1 if i= 1

b r−
∑I−1

i=1 ti
J−I+1 + 1c ≤ ti ≤min

(
tI−1, r −

∑I−1
i=1 ti

)
if 2≤ i≤ I

.

The coefficients A and B are calculated according to the formulas

At1,...,tI =
n!m!

mn

1∏I
i=1(n<i>)!

(m− I)(n−
∑I

i=1 ti)

(m− I)!(n−
∑I
i=1 ti)!

, (4.5)

and

Bt1,...,tI =
1∏tI

k=t1
(#ti = k)!

,

where, again, (#ti = k) denotes the number of ti’s equal to k.
In the Appendix we report MATLAB code to compute the distribution of the sum of the

J <m largest order statistics. In Tables 4 and 5 we provide critical values for J = 2 and J = 3.
Importantly, note that the algorithm for the sum can also be used immediately to compute the
exact probabilities of the second, the third and all the other order statistics.

5. The exact distribution of the multinomial minimum
The distribution of the smallest order statistic N<m> can be easily derived, by using the
probability of the sum of the m− 1 largest order statistics, given that P (N<m> ≥ r;n,m) =

P
(∑m−1

i=1 N<i> ≤ n− r;n,m
)

. However, it is not difficult to see that this approach turns out
to be very computationally inefficient already for quite small values of n and m.

A new, efficient algorithm for the multinomial minimum can be constructed starting from that
of the multinomial maximum. One needs to slightly modify the way in which we move across the
branches of the tree. We start by assigning probability 0 to all the branches of the tree that contain
urns with less than r balls. By iterating through all the possible values of the maximum, from r to
n, we then compute

P (N<m> ≥ r) =
n−1∑
t=r

P (N<1> ≤ t;n,m), (5.1)

with the conditions P (N<1> ≤ r − 1;n,m) = 1 if n=m= 0, and P (N<1> ≤ r − 1;n,m) = 0 if
n 6= 0 or m 6= 0. Then, by computing 1− P (N<m> ≥ r + 1), one can easily obtain the probability
mass function of the multinomial minimum.

The MATLAB code is once again available in the Appendix, and Table 6 provides some useful
critical values.
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6. The Exact Distribution of the Multinomial Range
We now introduce a new iterative algorithm for computing the exact distribution of the
multinomial range. Unlike the solution proposed by Corrado [8], our approach does not require
any modification of the algorithm for every new urn composition.

Back to our earlier example with n= 6 balls and m= 3 urns, consider the probability that the
range is smaller than or equal to 3. Such a probability can be split into two terms corresponding
to the different ranges of variation of the maximum. That is,

P (N<1> −N<3> ≤ 3) = P (N<1> −N<3> ≤ 3 |N<1> ≤ 3) + P (N<1> −N<3> ≤ 3 |N<1> > 3).

The first term can be computed using Equation (4.3), since P (N<1> −N<3> ≤ 3 |N<1> ≤ 3) =

P (N<1> ≤ 3).
To compute the second term one may use a procedure similar to the one for the minimum: to
iterate through all the possible values for the maximum, while assigning zero probability to
all the branches that have urns with less balls than the current maximum, i.e. 3 balls in our
example. For instance, we compute P (N<1> ≤ 4 |N<1> > 3) with the additional conditions that
P (N<1> < 1;n,m) = 1, if n=m= 0, and P (N<1> < 1;n,m) = 0, when n 6= 0 or m 6= 0, so to
avoid meaningless paths.

The general algorithm is therefore as follows:

P (N<1> −N<m> ≤ r;n,m) = P (N<1> ≤ r;n,m)

+ P (N<1> −N<m> ≤ r |N<1> > r;n,m). (6.1)

The first term is easily computed using the algorithm for the maximum, so we focus our attention
on the second term. Assume, for the time being, that N<1> =N<q> = r + 1>N<q+1> . Then,
one can rewrite the second term on the right-hand side of Equation (6.1) as

P (N<1> −N<m> ≤ r|N<1> =N<q> = r + 1>N<q+1>;n,m) =

=

Fq+1,1

(
n!m!

mn
∏m

i=q+1(n<i>!)
∏r

k=t−r((#ni=m)!)

)
((r + 1)!)q q!

,

where Fq+1,1 is the operator that sums over all possible values of n<q+1>, . . . , n<m> such that
the minimum n<m> ≥ 1, and n<1> = n<q> >n<q+1>. Summing over q thus gives the total
probability

P (N<1> −N<m> ≤ r|N<1> = r + 1;n,m) =

=
∑
q

n!m!

mn((r + 1)!)qq!
× Fq+1,1

(
1∏m

i=q+1(n<i>!)
∏r
k=t−r((#ni =m)!)

)
. (6.2)

In this case, N<1> > r, and the term corresponding to q= 0 should be excluded, so that

max (1, n− (r + 1)m+m)≤ q≤ b n

r + 1
c.

Now, multiplying and dividing Equation (6.2) by [(m− q)(n−(r+1)q)][(m− q)! (Nn(r + 1)q)!]−1

yields

P (N<1> −N<m> ≤ r |N<1> = r + 1;n,m) =
∑
q

n!m!

mn((r + 1)!)qq!

(m− q)(n−(r+1)q)

(m− q)! (N − (r + 1)q)!
×

×Fq+1,1

(
(m− q)!(n− (r + 1)q)!

(m− q)(n−(r+1)q)

1∏m
i=q+1 n<i>!

∏r
k=t−r(#ni = k)!

)
. (6.3)
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Note that the term

Fq+1,1

(
1∏m

i=q+1 n<i>!
∏r
k=t−r(#ni = k)!

(m− q)!(n− (r + 1)q)!

(m− q)(n−(r+1)q)

)
is an alternative way of writing

P (N<m> ≥ 1 |N<1> ≤ r;n− (r + 1)q,m− q) .

The condition N<1> ≤ r can be imposed to the algorithm by changing the threshold for the
maximum. In other words,

P (N<m> ≥ 1|N<1> ≤ r;n− (r + 1)q,m− q) = P (N<1> ≤ r;n,m),

with, similarly to what we have seen before, P (N<1> ≤ 0;n,m) = 1, when n=m= 0, and
P (N<1> ≤ 0;n,m) = 0, if n 6= 0 or m 6= 0.

Plugging this into Equation (6.3) produces

P (N<1> −N<m> ≤ r|N<1> = r + 1;n,m) =∑
q

1

((r + 1)!)qq!

n!m!

mn
=

(m− q)(n−(r+1)q)

(m− q)!(n− (r + 1)q)!
× P (N<1> ≤ r;n− (r + 1)q,m− q),

with the same conditions on P (N<1> ≤ 0;n,m).
Recalling Equation (4.3) for the distribution of the maximum, we can finally calculate the

second term on the rhs of Equation (6.1), by summing over all the possible values of N<1>. Thus

P (N<1> −N<m> ≤ r|N<1> > r;n,m) =

n∑
t=r+1

P (N<1> ≤ t |N<1> > t− 1;n,m),

where P (N<1> ≤ t− r − 1;n,m) = 1, if n=m= 0, and P (N<1> ≤ t− r − 1;n,m) = 0, if n 6= 0

or m 6= 0.
The condition N<1> > t− 1 is introduced at every summation step in order to avoid multiple

calculations for the same branches of the outcome tree. This results in different ranges of
summation in the recursion, i.e.

max (1, n− tm+m)≤ q≤ bn
t
c if N<1> > r

and
max (0, n− tm+m)≤ q≤ bn

t
c if N<1> ≤ r.

Summarizing, the distribution of the range can be evaluated via the iteration step

P (N<1> −N<m> ≤ r;n,m) = P (N<1> ≤ r;n,m) +

n∑
t=r+1

P (N<1> ≤ t |N<1> > t− 1;n,m), (6.4)

with the same conditions as above for P (N<1> ≤ t− r − 1;n,m), when N<1> > r.
As for the other exact algorithms, in Table 7 we provide a selection of critical values, and the

related code is in the Appendix.

7. Approximations vs. Exact Results
One may want to compare the exact probabilities computed with the new algorithms with the
approximations seen in Section 2. More generally, the operating characteristics of the exact vs. the
approximate tests can be explored. Here we mainly focus our attention on the multinomial range,
given that its use has been proposed in the literature for several statistical tests [2].

In goodness-of-fit tests, under the name "urn tests" [3], i.i.d. data generated from a statistical
distribution and properly binned can be described as the result of a multinomial experiment.

Using the approximations given in Section 2, Young showed that a goodness-of-fit test based
on the multinomial range has power advantages with respect to classical alternatives such the
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Figure 2: Comparison between the exact probabilities for the range and the approximation by
Young [7] for n= 30 and m= 20 (left), and for n= 100 and m= 25 (right).

χ2 [7]. For a more general comparison between tests based on the multinomial order statistics
and the classical χ2 goodness-of-fit test statistic, we refer to [14] and [9].

Consider a sample of i.i.d. observationsX1, . . . , Xn from a distribution F on the real line, with
interest in testing some null hypothesis H̃0 : F = F0.

The support of the distribution hypothetical F0 can be partitioned into m equiprobable non-
overlapping sub-intervals B1, . . . , Bm (for the optimal choice of the number of intervals we
refer to [7,15]). We then define the variables N1, . . . , Nm as the absolute frequencies of the
actual observations in the sample that fall in the intervals B1, . . . , Bm, that is Ni =

∑n
j=1 I(Xj ∈

Bi) for 1≤ i≤m.
By construction of the bins, under H̃0, the random vector of counts (N1, . . . , Nm)T follows the

Mult(n,p) distribution with p= p0 =
(
1
m , . . . ,

1
m

)T
. Note that H̃0 is then transformed into the

multinomial null hypothesis H0. Hence we can assess the goodness-of-fit to F0 by considering
the transformed hypothesis testing problem: H0 : p= p0 vs. H1 : p 6= p0.

To test the multinomial equiprobability hypothesis, we can use the multinomial range as test
statistic, as suggested in [7]. In what follows we compare the performances of our exact results,
with those of the approximation discussed in Section 2.
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Figure 3: Densities of a Normal(1.3,0.25) and of a Lognormal(0,0.25).
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Figure 4: Power comparison of the goodness-of-fit tests when using 5 equiprobable bins (left) or
10 equiprobable bins (right).
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Figure 5: Power comparison of the goodness-of-fit tests when using 30 equiprobable bins (left) or
50 equiprobable bins (right).

Figure 2 shows two comparisons between the exact and the approximate cumulative
distribution functions of the multinomial range, in the multinomial experiment, for n= 30 and
m= 20, and for n= 100 and m= 25. As expected, when the number of balls is small with respect
to the number of urns, the approximation is rather poor. Good results are only obtainable for
n≥ 5m. This is in line with the findings in [7].

In our experiments, given the discrete nature of the test statistic, we constructed randomized
testing procedures to ensure that the desired level of significance α (0.05) could indeed be
achieved exactly in all cases [16].

As the null distribution F0 we used a normal distribution N(µ, σ2) with µ= 1.3 and σ= 0.25,
while as the alternative distribution F1 we considered a lognormal distribution LN(µ, σ) with
µ= 0 and σLN = 0.25. The two densities are shown in Figure 3.

The power of the exact and of the approximate test procedures were computed via Monte
Carlo estimation: for each combination of number of bins (m), and number of observations (n),
we generated 3000 i.i.d. samples.

Figure 4 shows the power advantage of the test based on the exact distribution, for all test
sample sizes, and for the alternative hypothesis we have considered here. The figure tells that,
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when using m= 5 or 10 urns, the exact test outperforms the approximate one for sample sizes
smaller than 25, and it is at least as powerful as the approximate test in the other cases.

Figure 5 compares the powers of the tests for m= 30 and m= 50, respectively. The figure
shows that the exact-distribution-based test is more powerful than the approximate one, for all
values of n up until about 50, when all powers approach one.

While this small simulation exercise clearly has no ambition of being exhaustive, on the basis
of the findings above, we can say that–as one would expect–the exact test appears to perform
better than the approximate one, over a wide range of sample sizes, and for different numbers of
urns. Moreover, the improvement in power seems to increase with the number of urns, and it can
be very large for the smaller sample sizes.

8. Uniformly Most Powerful Tests and Sums of Multinomial
Counts

We now discuss two constructions of testing procedures for the multinomial probabilities that
motivate the use of the largest and of the sum of the J largest multinomial counts.

We consider one sample N= (N1, . . . , Nm)T = (n1, . . . , nm)T = n, where
∑m
j=1 nj = n, from

the Multinomial(n,p) distribution with p= (p1, . . . , pm)T . We focus on the null hypothesis H0 :

p1 = p2 = . . .= pm = 1/m, or H0 : p= p0 in the notation of Section 1.
In this section we use the notation L(p;n,m, n) for the likelihood function corresponding to a

sample of size one from the multinomial distribution (i.e. its pmf).
Similar arguments to those that follow, with the appropriate changes, can be exploited to

motivate the use of the minimum (or the sum of the J smallest) counts.

(a) Uniformly Most Powerful Test for an increase in one probability
First, note that if we restrict all the pj for j 6= i to be equal (and still

∑m
j=1 pj = 1), then for a

given value of pi one necessarily has pj = (1− pi)/(m− 1), for all j 6= i. Now, consider testing
the null hypothesis H0 of equiprobabilty against the alternative hypothesis that corresponds to
an increased probability of attraction for the i-th urn, with all other probabilities being equal:

H1i : pi = p+ >
1

m
, pj =

1− p+
m− 1

∀j 6= i,

where p+ ∈ (1/m, 1). The Most Powerful (MP) level α test (α∈ (0, 1)) for the problem H0 vs. H1i

can be easily obtained by direct application of the Neyman-Pearson’s lemma (see, e.g., [17]). The
rejection region of the MP test is defined by

L
(
p=

(
1
m , . . . ,

1
m

)
;n,m, n

)
L (p+;n,m, n)

=

n!
n1!···nm!

(
1
m

)n
n!

n1!···nm!p
ni
+

(
1−p+
m−1

)n−ni

=

[
m− 1

m(1− p+)

]n [
1− p+

p+(m− 1)

]ni

being less than or equal to some constant such that the probability of rejection under the null
be equal to α (note the slightly inconsistent – but convenient – notation for L (p+;n,m, n)

vs. L (p;n,m, n)). Since p+ > 1/m, it follows immediately that (1− p+)< (m− 1)p+, so that
the rejection region can be written equivalently as Ni ≥ kα. Given the discrete nature of the
multinomial random vector, the rejection region must be augmented by construction of a
randomization procedure to allow the test to have size α.

Since this rejection region does not depend on the choice of p+, the MP test is actually Uniformly
Most Powerful (UMP) for the wider testing problem

H0 : p1 = . . .= pm =
1

m
vs. H1i : pi >

1

m
, pj =

1− pi
m− 1

∀j 6= i.
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Notice that this same rejection region emerges as the UMP test if one considers just the i-th
marginal count Ni, which is distributed as a Binomial(n, pi) random variable, and the alternative
testing problem H∗0i : pi =

1
m vs. H∗1i : pi >

1
m .

Let us now combine the collection of such tests obtained by letting i= 1, . . . ,m. Within
the parameter space Θ= {pi ∈ (0, 1), i= 1, . . . ,m :

∑m
i=1 pi = 1}, the null hypothesis H0 can

be written equivalently as H0 : p∈Θ0 = {1/m, . . . , 1/m}. Trivially, Θ0 =∩mi=1Θ0, so we may
construct a global union-intersection test that rejects H0 whenever at least one of the m tests
rejects (see, e.g., [18]). Easily, such test would then have a rejection region of the form

∪mi=1{Ni ≥ k
∗}= {max(N1, . . . , Nm)≥ k∗}, (8.1)

where k∗ is common to the m tests due to the symmetric nature of the individual tests over
i= 1, . . . ,m under the null. To control the overall type I error probability α, the test should
therefore reject if and only if max(N1, . . . , Nm)≥ k∗, where the constant k∗ should satisfy the size
requirement that P(max(N1, . . . , Nm)≥ k∗;H0) = α, and it should therefore be obtained from
the distribution of the test statistic N<1> =max(N1, . . . , Nm) under H0. Please observe that,
in practice, the m individual tests (and the global test) are randomized, so that 8.1 holds only
approximately. Nevertheless, the construction provides quite a strong motivation for the use of
the test based on the largest observed count.

(b) Uniformly Most Powerful Test for an equal increase in two probabilities
Let us now consider the case of an equal increase of two of the m≥ 3 attraction probabilities,
corresponding to the two urns i and j, i 6= j. The level α UMP test for the problem

H0 vs. H1ij : pi = pj = p+ > 1/m, ph =
1− 2p+
m− 2

∀h 6= i, j

can also be obtained from the Neyman-Pearson’s lemma. Note that p+ < 0.5 must hold.
The likelihood function2 corresponding to the two probabilities pi and pj being the same, with

all the others being equal, is

L(p+;n,m, n) =
n!

n1! · · ·nm!
pni
+ p

nj

+

(
1− 2p+
m− 2

)n−(ni+nj)

.

And the MP test rejects if and only if the likelihood ratio

L
(
1
m ;n,m, n)

)
L (p+;n,m, n))

=

n!
n1!···nm!

(
1
m

)n
n!

n1!···nm!p
ni+nj

+

(
1−2p+
m−2

)n−(ni+nj)

is less than or equal to some constant. It is easy to see that since p+ > (1− 2p+)/(m− 2),
the rejection region can be written equivalently as Ni +Nj ≥ k (again with randomization
adjustment). Since the test does not depend on the value of p+ as long as it is greater than 1/m

(and smaller than 0.5), the same test is UMP level α for the testing problem H0 vs. Hij : pi = pj >

1/m, ph = (1− 2pi)/(m− 2) ∀h 6= i, j.
For this case one should note that the test that we have derived would not be UMP if we

allowed pi and pj to take different values (both greater than 1/m, with sum less than one)
under the alternative hypothesis H̃ij . Indeed, simple calculations show that, in such a case, the
rejection region of the MP test for H0 vs. H̃ij : pi = p̃i, pj = p̃j , ph = (1− p̃i − p̃j)/(m− 2) ∀h 6=
i, j would look like γNi

i γ
Nj

j >k, where γi = p̃i(m− 2)/(1− p̃i − p̃j)> 1, and similarly for γj .
The (randomized) MP level α test would therefore require the rejection threshold k to be obtained
from the distribution, under H0, of the test statistic γNi

i + γ
Nj

j , or equivalently of the test statistic
Ni log(γi) +Nj log(γj). As a consequence, the rejection threshold would depend on the specific
values p̃i and p̃j , and the resulting test could therefore not be UMP for the wider testing problem
H0 vs. H∗ij : pi > 1/m, pj > 1/m, ph = (1− pi − pj)/(m− 2) ∀h 6= i, j.
2For ease of notation, we still call it L(p+;n,m, n).
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On the other hand, if we restrict ourselves to the case pi = pj , then we can again generalize
this UMP level α test to reject against the alternative hypothesis that, for some pair (i, j) of
probabilities, there has been an equal increase from 1/m. Here, too, the

(m
2

)
UMP level α tests can

be combined–up to the mentioned approximation due to the randomized nature of the tests–by
rejecting H0 whenever at least one among them does. The resulting rejection region is then

∪i6=j{Ni +Nj ≥ k}= {N<1> +N<2> ≥ k},

where the equality of the two rejection regions can be easily verified. Again, the constant k that
would ensure the overall type I error probability α should be obtained from the distribution of
the sum of the two largest observed multinomial counts N<1> +N<2>.

The discussion in this subsection can be easily extended to the case of an equal increase in
more than two of the m probabilities.

9. Two Illustrations

(a) Test for the Homogeneity of a Poisson Process
Suppose M(t) is a homogeneous Poisson process on the line. If we partition its time domain
into m non-overlapping equal-length sub-intervals B1, . . . , Bm, then, conditionally on the total
number of events observed n, the numbers of events Ni in the intervals Bi, i= 1, ...,m, follow an
equiprobable multinomial distribution [2]. Thus, a test for the homogeneity of the Poisson process
is readily constructed from the absolute frequencies.

We simulate a non-homogeneous Poisson process (NHPP) and check whether the multinomial
range test is able to identify the non-homogeneity. We use the time-scale transformation of a
homogeneous Poisson process (HPP) with (constant) rate equal to one to generate the desired
NHPP.

Intensity function Parameters Exact test Approximate test
λ(t) = 2 + 0.01 ∗ t m= 30 and T = 20 0.184 0.037
λ(t) = 0.3 ∗ t m= 20 and T = 200 0.427 0.371
λ(t) = 0.05 ∗ t m= 15 and T = 20 0.133 0.059
λ(t) = 2 + sin(2πt) m= 30 and T = 200 0.213 0.084

Table 1: Power of the exact and approximate test in case of Poisson processes with intensity
function λ(t).

The interarrival times T of a HPP with rate one are known to be exponentially distributed
with intensity one, i.e. P (T ≥ t) = exp(−t). The interarrival times T ′ for a NHPP are such that
P (T ′ ≥ t) = exp(−Λ(t)), whereΛ(x) is the integrated rate function of the process, i.e. the expected
number of points in the interval (0, x], with Λ(0) = 0 (this is also called the cumulative hazard
function). It is immediate to see that if T1, . . . , Tn are a sample of interarrival times generated from
the HPP with rate one, then the transformed times T ′i =Λ−1(Ti), i= 1, . . . , n, are a sample from
a NHPP with integrated rate function Λ(t). Hence we can simulate a NHPP by simply sampling
exponential variables with parameter equal to one, and by taking the inverseΛ−1 of the generated
interarrival times.

Four examples of power comparison (based on 1000 simulated samples each) between the
exact and the asymptotic test are shown in Table 1, where three linear assumptions and a sin-
shaped one for the NHPP intensity function are considered, for different numbers of bins (m) and
maximum overall time length (T ). Type I error probability was set equal to 0.05. One can easily
appreciate the evident advantage of the exact test over the asymptotic one.
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Let us focus a bit more on the the effect of choosing different numbers of disjoint intervals,
when testing for the homogeneity of a Poisson Process. Assume that the true intensity function
is described by the harmonic function λ(t) = 2 + sin(5πt). Figure 6 shows the power of the two
tests when the time domain (T = 200) is split into 10 or 20 disjoint intervals. The blue and the
red lines represent the case with 10 intervals, while the black and the green the one with 20. We
can observe once again the better power performances of the exact test. The huge power gain
between the two cases with 10 and 20 bins can be explained by the following fact: if we split the
time domain into 20 non-overlapping, equal-length intervals, each of them covers the period of
the intensity function, averaging out the effect of the harmonic function.

Therefore, the exact range-based test shows better performances with respect to the
approximate one, when dealing with Poisson processes, but the specific performance may be
quite dependent on the width (i.e. the number) of the bins.

(b) An Application to Disease Clustering
We now discuss a simple application of the multinomial range test to the problem of disease
clusters’ detection, something frequently of interest to epidemiologists and biostatisticians [19,20].

Often, disease clustering is initially approached as a hypothesis testing problem. The main
goal is to test a null hypothesis of no clustering, i.e. a common rate of disease across the study
region, against an alternative hypothesis of presence of clusters, or more generally of deviations
from the null spatial distribution.

Numerous ways to construct such tests were proposed over the years, and one of the possible
approaches is based on the multinomial distribution. In this case, the study region is divided
into (roughly) equal population subregions. Then, under the null hypothesis of a common rate of
disease across the wider region, and conditionally on the total number of cases observed in the
region, the number of events (cases) observed in the different subregions follows an equiprobable
multinomial distribution.

We briefly illustrate this approach by using a well-known epidemiological data set of
diagnosed leukaemia cases over 8 counties in upstate New York [20]. This data originated from
the New York State Cancer Registry, and were gathered during the 5-year period 1978-1982,
with a total of 584 individuals diagnosed with leukaemia over a population of approximately
1 million people. The original data contain spatial information about registered events split into
790 census tracts, which however have different population sizes. Their spatial distribution is
shown in Figure 7 (left map).
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Figure 6: Power of the tests in case of harmonic intensity function λ(t) = 2 + sin(5πt) for the
NHPP.
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In order to perform the multinomial tests based on the range, we have to group the data points
into subregions of approximately equal population. Ideally, the population of these subregions
should be exactly the same, but that is impossible due to the original grouping in census tracts.
To our knowledge, there is no existing unique algorithm to create spatial partitions such that the
elements of the partition have equal population. We propose the following (admitteldly ad-hoc)
procedure:

(i) Define the number of the new subregions to be constructed.
(ii) Use that number to compute a desired value for the population of each subregion.

(iii) Create subregions, roughly satisfying the desired population size, around locations with
high initial population. Specifically, use the k-means algorithm to create subregions for
the rest of the observations, initializing the subregions with locations that have the
highest populations.

(iv) Trade observations between subregions based on the population and the distance, until
the population constraints are satisfied.

MADISONONONDAGA

CORTLAND

CHENANGO

BROOME

TOMPKINS

CAYUGA

TIOGA

Figure 7: Distribution of leukaemia cases over the 8 counties of the state of New York (left map),
and positions of the centroids of the 32 new subregions (right map).

Using this approach, we were able to create new subregions with approximately equal
population (some of the points were reassigned to a different subregion in the post-processing
stage). In Figure 7 (right), 32 subregion centroids are shown. For each subregion, the population
varies from 36036 to 39528 (roughly 3.48 % of the whole population). Under the null hypothesis,
these new subregions generate cases with (roughly) the same intensity.

In this grouping, the maximum number of individuals diagnosed with leukaemia within one
subregion is 39 versus a minimum of 3 cases, so that the multinomial range statistic is equal to 33.
The total number of cases registered in each subregion is presented in Table 2.

Using the exact test based on the range of the sample, the null hypothesis of equiprobable
multinomial distribution is rejected at the 0.01 level, since the 99th percentile of the range’s exact
distribution in the case of 584 events and 32 bins is 25. The null hypothesis is also rejected when
one uses 25 subregions (results not shown), which supports previous research about leukaemia
cases for this data set [20].

Importantly, in this illustration there is no difference in our conclusions between using the test
based on the exact or the approximate distribution of the range, since for n= 584 and m= 32 the
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Subr Nr Subr Nr Subr Nr Subr Nr Subr Nr Subr Nr Subr Nr Subr Nr
1 34 5 23 9 18 13 20 17 25 21 24 25 14 29 5
2 28 6 20 10 14 14 17 18 20 22 12 26 12 30 4
3 13 7 18 11 17 15 14 19 9 23 31 27 24 31 3
4 23 8 27 12 39 16 13 20 21 24 24 28 17 32 3

Table 2: Number of subjects (Nr) diagnosed with leukaemia in each of 32 subregions (Subr).

approximate distribution is close to the exact one. For smaller data sets the use of the exact test
would however be quite preferable.

10. Discussion
The use of the order statistics computed from the (clearly dependent) multinomial counts opens
the possibility of revising several approaches, which have been followed for many decades to
assess deviations from the equal probability null hypothesis. One should expect some of the new
test statistics to perform particularly well against some alternatives, for example when one or a
few cells have very high (or very low) probabilities associated with them.

From our small simulation exercise, these test statistics appear to benefit greatly from the use
of their exact distributions, avoiding the problems due to the use of approximations. Note that
more extensive explorations can be pursued using the code that we are providing in this article.

The exact distributions could also be used to develop additional test statistics, best suited for
specific problems. For example, in the disease clustering illustration one could recognize that
disease cluster studies often originate from a perceived high risk of disease in some subregion(s).
Such investigations then run the risk of falling into what is known as the Texas sharpshooter
fallacy, i.e. finding an apparently statistically significant difference in risk, when comparing the
disease rate in that subregion to the rest of the region. The fact that one is looking at that
comparison conditionally on having observed a high rate, if not taken into account properly, can
easily produce false positive errors. Note that in such setting, one is actually comparing exactly
the largest multinomial order statistic (or one of the largest ones, or their sum) to the counts
observed in the other subregions. Given the conditioning on the total number of cases observed,
this is the same as constructing the test on just the largest (or the sum of the few largest) order
statistics form the multinomial vector. Such statistics could then naturally be used to test the
null hypothesis of homogeneous distribution of the disease risk. Our algorithms therefore allow
one to take into account the selection process of the subregion under investigation, within the
appropriate statistical testing framework.

Other interesting applications of the exact tests are in the field of risk management. In
particular, in credit risk modeling of the number of defaults of counterparties that share the same
creditworthiness in terms of rating, but belong to different industrial sectors [21]. In these settings,
given the small number of default events and the large number of sectors for the exposures in a
granular portfolio, exact multinomial tests may represent an advantage with respect to the more
commonly used χ2 approximation. A similar reasoning is even more relevant if one restricts her
attention on low default portfolios (LPDs) [22].
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Appendix: Codes and Tables
In this appendix we collect the MATLAB code that implement all the exact algorithms discussed
in this article, as well as some tables of critical values.

Algorithm for the Maximum

1 function [P] = max_order_statistic(t,N,I)

2 %% Script calculates probability of highest order statistic being <=t

3 % Under equiprobable multinomial

4 % Input : N − number of balls

5 % I − number of urns(cells)

6 % t − argument of cdf

7 P = 0;

8 if t == 0 && N~=0

9 P = 0;

10 return

11 end

12 if t==0 && N==0

13 P=1;

14 return

15 end

16 if t>=N

17 P = 1;

18 return

19 end

20 if N==0 && I~=0

21 P=1;

22 return

23 end

24 if N==0 && I==0

25 P=1;

26 return

27 end

28 common_term = gammaln(N+1)+gammaln(I+1)−N*log(I);
29 switch t

30 case 1

31 if I>=N

32 P = exp(gammaln(I+1)−gammaln(I−N+1)−N*log(I)); % explicit

calculation of P(n<1><=1)

33 calc = [calc;t,N,I,P];

34 else

35 P = 0;

36 calc = [calc;t,N,I,P];

37 end

https://www.bis.org/publ/bcbs_nl6.pdf
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38 otherwise

39 % range of summation for q

40 LowSum = max(0,N−t*I+I);
41 UpSum = floor(N/t);

42 for q = LowSum:UpSum

43 summ_term = (−q*gammaln(t+1)−gammaln(q+1)−gammaln(I−q+1)−gammaln(N−t
*q+1));

44 if I==q

45 summ_term_nominator = 0;

46 else

47 summ_term_nominator = (N−t*q)*log(I−q);
48 end

49 coef = exp(common_term+summ_term+summ_term_nominator);

50 [temp] = max_order_statistic(t−1,N−t*q,I−q);
51

52 P = P + coef*temp;

53

54 end

55 end

56 end

Sum of the J Largest Order Statistics

1 function [ P ] = highest_order_statistics( t,N,I,J )

2 %% Probability of the sum of the first J largest order statistics being smaller

than t

3 % P(sum(1:J)n<i> <= t : N,I) under H1 − equiprobable multinomial

4 % Input: N− number of trials

5 % I − number of cells(urns)

6 % t − argument of cdf

7 % J − number of largest order statistics

8 if J>I

9 error('J should be smaller or equal than I')

10 end

11 if J==I && (t<N )

12 error(' Total sum is every time equal to N')

13 end

14

15 if t == 0 && N~=0

16 P = 0;

17 return

18 end

19 if t==0 && N==0

20 P=1;

21 return

22 end

23 if t>=N

24 P = 1;

25 return

26 end

27

28 %% first term if n<1> <= t/J

29 P = max_order_statistic(floor(t/J),N,I);
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30 %% recursive summation over all possible options

31 for sum_depth = 1 : J−1
32 rangeArg = [];

33 cur_depth = 1;

34 P = P + recursive_sum(t,N,I,J,sum_depth,cur_depth,rangeArg);

35 end

36 end

37 function S = recursive_sum(t,N,I,J,sum_depth,cur_depth,rangeArg)

38 %% auxiliary function for calculating sum of nested loops

39 S = 0;

40 if cur_depth <= sum_depth % either increment summation depth or calculate the

term

41 if cur_depth == 1

42 cur_range(1) = floor(t/J+1);

43 cur_range(2) = t−sum_depth+1;
44 else

45 cur_range(1) = floor((t − sum(rangeArg(1:cur_depth−1)))/(J− cur_depth+1)

+1);

46 cur_range(2) = min( rangeArg(cur_depth−1), t − sum(rangeArg(1:cur_depth

−1)));
47 end

48 for r=cur_range(1):cur_range(2)

49 rangeArg(cur_depth) = r;

50 S = S + recursive_sum(t,N,I,J,sum_depth,cur_depth+1,rangeArg);

51 end

52 else

53 prob_arg = floor( (t−sum(rangeArg))/(J−sum_depth));
54 temp_p = max_order_statistic(prob_arg, N − sum(rangeArg),I−sum_depth);
55 common_term = gammaln(N+1) + gammaln(I+1) − N*log(I);

56 coef = (N−sum(rangeArg))*log(I−sum_depth) − gammaln(I−sum_depth+1) − gammaln

( N − sum(rangeArg)+1);

57 for k=1:numel(rangeArg)

58 coef = coef − gammaln(rangeArg(k)+1);

59 end

60 equal_statistics = unique(rangeArg);

61 for k=1:numel(equal_statistics)

62 temp = numel(find(rangeArg == equal_statistics(k)));

63 coef = coef − gammaln(temp+1);

64 end

65 S = temp_p*exp(common_term+coef);

66

67 end

68 end

Algorithm for the Minimum

1 function P = smallest_order_value( t,N,I )

2 %% Function to calculate the probability of smallest order statistic to be >=

than t for equiprobable multinomial

3 % Input:

4 % t − argument of "survival" function

5 % N − number of balls

6 % I − number of cells
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7

8 P = 0;

9 % add for exceptions for "naive" input

10 if t>floor(N/I)

11 P=0;

12 return

13 end

14 if t==0

15 P=1;

16 return

17 end

18 aux = max_for_min(N,N,I,calc,t);

19 P = P + aux;

20 end

21

22 function [aux,calc] = max_for_min(t_max,N,I,calc,t)

23 aux = 0;

24 if t_max<t

25 if N==0 && I==0

26 aux=1;

27 return

28 else

29 aux = 0;

30 return

31 end

32 else

33 if N==0 && I == 0

34 aux=1;

35 return

36 end

37 if t_max==1

38 if I==N

39 aux = exp(gammaln(I+1)−gammaln(I−N+1)−N*log(I)); % explicit

calculation of P(n<1><=1)

40 return

41 else

42 aux= 0;

43 return

44 end

45 end

46 if N==0 && I~=0

47 aux=0;

48 return

49 end

50 common_term = gammaln(N+1)+gammaln(I+1)−N*log(I);
51 LowSum = max(0,N−t_max*I+I);
52 UpSum = floor(N/t_max);

53 for q = LowSum:UpSum

54 summ_term = (−q*gammaln(t_max+1)−gammaln(q+1)−gammaln(I−q+1)−gammaln(N−
t_max*q+1));

55 if I==q

56 summ_term_nominator = 0;
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57 else

58 summ_term_nominator = (N−t_max*q)*log(I−q);
59 end

60 coef = exp(common_term+summ_term+summ_term_nominator);

61 [temp] = max_for_min(t_max−1,N−t_max*q,I−q,t);
62 aux = aux + coef*temp;

63 end

64 end

65 end

Algorithm for the Range

1 function [P] = range_probability( t,N,I )

2 %% Function to calculate the probability of the range to be < =than t

3 %for equiprobable multinomial

4 % Input:

5 % r − argument of "cdf" function

6 % N − number of balls

7 % I − number of cells

8 P = 0;

9 t= floor(t);

10 if t>N

11 P=1;

12 return

13 end

14

15 [P]=max_order_statistic(t,N,I);

16 prev=[t,N,I];

17 for t_max = t+1:N

18 [aux] = max_for_range(t_max,N,I,prev,t);

19 P = P + aux;

20 prev = [t_max,N,I];

21 end

22 end

23

24 function [aux] = max_for_range(t_max,N,I,prev,t)

25

26 aux=0;

27 if [t_max,N,I]==prev

28 aux = 0;

29 return

30 end

31 if prev(1)+1−t_max>t
32 if N==0 && I==0

33 aux=1;

34 return

35 else

36 aux = 0;

37 return

38 end

39 else

40 if N==0 && I == 0

41 aux=1;
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42 return

43 end

44 if t_max==1

45 if I==N

46 aux = exp(gammaln(I+1)−gammaln(I−N+1)−N*log(I)); % explicit

calculation of P(n<1><=1)

47 return

48 else

49 aux= 0;

50 return

51 end

52 end

53 if N==0 && I~=0

54 aux=0;

55 return

56 end

57

58 common_term = gammaln(N+1)+gammaln(I+1)−N*log(I);
59 LowSum = max(0,N−t_max*I+I);
60 UpSum = floor(N/t_max);

61 for q = LowSum:UpSum

62 summ_term = (−q*gammaln(t_max+1)−gammaln(q+1)−gammaln(I−q+1)−gammaln(N−
t_max*q+1));

63 if I==q

64 summ_term_nominator = 0;

65 else

66 summ_term_nominator = (N−t_max*q)*log(I−q);
67 end

68 coef = exp(common_term+summ_term+summ_term_nominator);

69 [temp] = max_for_range(t_max−1,N−t_max*q,I−q,prev,t);
70 aux = aux + coef*temp;

71 end

72 end

73 end
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t
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n m
5 5 0.710 0.966 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 5 0.012 0.433 0.836 0.968 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 5 0.000 0.006 0.284 0.700 0.910 0.979 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 5 0.000 0.000 0.003 0.200 0.584 0.840 0.950 0.987 0.997 0.999 1.000 1.000 1.000 1.000 1.000
25 5 0.000 0.000 0.000 0.002 0.147 0.490 0.769 0.913 0.972 0.992 0.998 1.000 1.000 1.000 1.000
30 5 0.000 0.000 0.000 0.000 0.001 0.113 0.415 0.701 0.872 0.953 0.984 0.995 0.999 1.000 1.000
10 10 0.396 0.873 0.984 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 10 0.000 0.127 0.603 0.889 0.976 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 10 0.000 0.000 0.049 0.394 0.753 0.923 0.980 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000
40 10 0.000 0.000 0.000 0.022 0.259 0.617 0.848 0.950 0.985 0.996 0.999 1.000 1.000 1.000 1.000
50 10 0.000 0.000 0.000 0.000 0.011 0.173 0.498 0.765 0.908 0.968 0.990 0.997 0.999 1.000 1.000
60 10 0.000 0.000 0.000 0.000 0.000 0.006 0.119 0.401 0.681 0.857 0.944 0.980 0.993 0.998 0.999
15 15 0.219 0.785 0.966 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 15 0.000 0.037 0.432 0.813 0.955 0.991 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
45 15 0.000 0.000 0.009 0.221 0.620 0.867 0.962 0.990 0.998 1.000 1.000 1.000 1.000 1.000 1.000
60 15 0.000 0.000 0.000 0.002 0.114 0.451 0.755 0.911 0.972 0.992 0.998 1.000 1.000 1.000 1.000
75 15 0.000 0.000 0.000 0.000 0.001 0.061 0.321 0.638 0.844 0.942 0.981 0.994 0.998 1.000 1.000
90 15 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.228 0.530 0.769 0.902 0.963 0.987 0.996 0.999
20 20 0.121 0.706 0.949 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 20 0.000 0.011 0.309 0.742 0.933 0.986 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 20 0.000 0.000 0.001 0.123 0.510 0.814 0.944 0.985 0.997 0.999 1.000 1.000 1.000 1.000 1.000
80 20 0.000 0.000 0.000 0.000 0.050 0.329 0.671 0.874 0.958 0.988 0.997 0.999 1.000 1.000 1.000
100 20 0.000 0.000 0.000 0.000 0.000 0.021 0.207 0.532 0.785 0.916 0.971 0.991 0.997 0.999 1.000
120 20 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.129 0.411 0.689 0.862 0.945 0.980 0.993 0.998
25 25 0.067 0.634 0.931 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 25 0.000 0.003 0.222 0.678 0.912 0.981 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
75 25 0.000 0.000 0.000 0.069 0.419 0.764 0.926 0.980 0.995 0.999 1.000 1.000 1.000 1.000 1.000
100 25 0.000 0.000 0.000 0.000 0.022 0.240 0.596 0.837 0.945 0.983 0.995 0.999 1.000 1.000 1.000
125 25 0.000 0.000 0.000 0.000 0.000 0.007 0.133 0.443 0.730 0.891 0.961 0.987 0.996 0.999 1.000
150 25 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.073 0.319 0.617 0.823 0.928 0.973 0.991 0.997
30 30 0.037 0.570 0.914 0.988 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 30 0.000 0.001 0.159 0.619 0.891 0.975 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
90 30 0.000 0.000 0.000 0.039 0.345 0.717 0.908 0.975 0.994 0.999 1.000 1.000 1.000 1.000 1.000
120 30 0.000 0.000 0.000 0.000 0.010 0.175 0.529 0.802 0.931 0.979 0.994 0.998 1.000 1.000 1.000
150 30 0.000 0.000 0.000 0.000 0.000 0.003 0.086 0.369 0.678 0.866 0.952 0.984 0.995 0.999 1.000
180 30 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.042 0.248 0.553 0.786 0.911 0.967 0.988 0.996
40 40 0.011 0.459 0.880 0.982 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 40 0.000 0.000 0.081 0.516 0.850 0.965 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
120 40 0.000 0.000 0.000 0.012 0.233 0.631 0.873 0.964 0.991 0.998 1.000 1.000 1.000 1.000 1.000
160 40 0.000 0.000 0.000 0.000 0.002 0.093 0.417 0.737 0.905 0.970 0.991 0.998 0.999 1.000 1.000
200 40 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.256 0.585 0.819 0.932 0.977 0.993 0.998 0.999
50 50 0.003 0.370 0.848 0.976 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 50 0.000 0.000 0.042 0.430 0.811 0.954 0.991 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
150 50 0.000 0.000 0.000 0.004 0.157 0.556 0.840 0.953 0.988 0.997 0.999 1.000 1.000 1.000 1.000
200 50 0.000 0.000 0.000 0.000 0.000 0.049 0.329 0.677 0.879 0.961 0.989 0.997 0.999 1.000 1.000

Table 3: Distribution of the multinomial maximum. For example, in the case with n= 10 and
m= 5, P (N<1> ≤ 3;n= 10.m= 5) = 0.433.



28

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

t
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

n m
10 5 0.166 0.588 0.887 0.984 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 5 0.000 0.006 0.088 0.392 0.722 0.913 0.981 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 5 0.000 0.000 0.000 0.003 0.054 0.277 0.580 0.817 0.939 0.984 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
25 5 0.000 0.000 0.000 0.000 0.000 0.002 0.037 0.205 0.469 0.720 0.881 0.959 0.988 0.997 0.999 1.000 1.000 1.000
30 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.027 0.157 0.385 0.631 0.816 0.923 0.972 0.992 0.998 1.000
10 10 0.811 0.967 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 10 0.001 0.131 0.415 0.736 0.913 0.978 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 10 0.000 0.000 0.000 0.050 0.206 0.494 0.745 0.898 0.966 0.991 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 10 0.000 0.000 0.000 0.000 0.000 0.023 0.109 0.325 0.573 0.779 0.903 0.963 0.988 0.996 0.999 1.000 1.000 1.000
50 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.061 0.216 0.432 0.653 0.816 0.915 0.965 0.987 0.996 0.999
60 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.036 0.148 0.325 0.538 0.721 0.852 0.929 0.969
15 15 0.592 0.884 0.978 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 15 0.000 0.037 0.172 0.501 0.772 0.922 0.978 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
45 15 0.000 0.000 0.000 0.009 0.052 0.251 0.511 0.749 0.893 0.962 0.988 0.997 0.999 1.000 1.000 1.000 1.000 1.000
60 15 0.000 0.000 0.000 0.000 0.000 0.002 0.018 0.127 0.316 0.561 0.760 0.888 0.954 0.983 0.994 0.998 1.000 1.000
75 15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.067 0.193 0.405 0.616 0.786 0.894 0.953 0.981 0.993
90 15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.037 0.119 0.287 0.485 0.674 0.815 0.905
20 20 0.410 0.788 0.948 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 20 0.000 0.011 0.066 0.339 0.635 0.852 0.952 0.987 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 20 0.000 0.000 0.000 0.001 0.012 0.131 0.340 0.610 0.808 0.922 0.972 0.991 0.998 0.999 1.000 1.000 1.000 1.000
80 20 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.052 0.169 0.396 0.622 0.801 0.908 0.963 0.986 0.995 0.999 1.000
100 20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.022 0.084 0.247 0.451 0.658 0.811 0.907 0.959 0.983
25 25 0.273 0.695 0.912 0.982 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 25 0.000 0.003 0.024 0.233 0.515 0.779 0.919 0.976 0.994 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 30 0.176 0.612 0.873 0.971 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 30 0.000 0.001 0.008 0.163 0.412 0.708 0.884 0.963 0.990 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 40 0.070 0.478 0.790 0.945 0.989 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 40 0.000 0.000 0.001 0.082 0.257 0.579 0.808 0.932 0.979 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 50 0.026 0.378 0.708 0.915 0.981 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 50 0.000 0.000 0.000 0.042 0.156 0.471 0.733 0.897 0.967 0.991 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Distribution of the sum of the first two order statistics: N<1> +N<2>. For example, in
the case with n= 10 and m= 10, P (N<1> +N<2> ≤ 5;n= 10.m= 10) = 0.811.

t
8 9 10 11 12 13 14 15 16 18 20 22 24 26 28 30 32 34

n m
10 10 0.987 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 10 0.020 0.174 0.468 0.747 0.913 0.978 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 10 0.000 0.000 0.000 0.005 0.064 0.230 0.472 0.708 0.869 0.986 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 10 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.028 0.120 0.509 0.856 0.977 0.998 1.000 1.000 1.000 1.000 1.000
50 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.181 0.559 0.858 0.972 0.996 1.000 1.000 1.000
60 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.254 0.610 0.868 0.970 0.995 0.999
15 15 0.869 0.972 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 15 0.000 0.038 0.174 0.405 0.669 0.856 0.950 0.986 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
45 15 0.000 0.000 0.000 0.000 0.009 0.052 0.160 0.362 0.592 0.898 0.986 0.999 1.000 1.000 1.000 1.000 1.000 1.000
60 15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.018 0.186 0.571 0.866 0.974 0.997 1.000 1.000 1.000 1.000
75 15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.028 0.226 0.578 0.850 0.964 0.994 0.999 1.000
90 15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.053 0.269 0.598 0.846 0.958 0.991
20 20 0.714 0.908 0.979 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 20 0.000 0.011 0.066 0.197 0.448 0.697 0.864 0.950 0.985 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 20 0.000 0.000 0.000 0.000 0.001 0.012 0.047 0.172 0.373 0.770 0.953 0.994 1.000 1.000 1.000 1.000 1.000 1.000
80 20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.066 0.351 0.718 0.923 0.986 0.998 1.000 1.000 1.000
100 20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.089 0.358 0.695 0.901 0.977 0.996 0.999
25 25 0.558 0.823 0.949 0.989 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 25 0.000 0.003 0.024 0.087 0.290 0.550 0.763 0.898 0.963 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 30 0.416 0.728 0.909 0.977 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 30 0.000 0.001 0.008 0.036 0.189 0.429 0.662 0.837 0.934 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 40 0.209 0.553 0.816 0.941 0.985 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 40 0.000 0.000 0.001 0.005 0.086 0.260 0.479 0.705 0.862 0.981 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 50 0.096 0.417 0.723 0.896 0.970 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 50 0.000 0.000 0.000 0.001 0.042 0.156 0.332 0.577 0.780 0.962 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Distribution of the sum of the first three largest order statistics: N<1> +N<2> +N<3>.

For example, in the case with n= 15 and m= 15, P
(∑3

i=1N<i> ≤ 8;n= 15,m= 15
)
= 0.869.
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t
0 1 2 3 4 5 6 7

n m
5 5 0.962 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 5 0.477 0.988 1.000 1.000 1.000 1.000 1.000 1.000
15 5 0.171 0.680 0.994 1.000 1.000 1.000 1.000 1.000
20 5 0.057 0.325 0.783 0.997 1.000 1.000 1.000 1.000
25 5 0.019 0.135 0.446 0.844 0.998 1.000 1.000 1.000
30 5 0.006 0.052 0.214 0.539 0.882 0.999 1.000 1.000
40 5 0.001 0.007 0.040 0.140 0.356 0.669 0.926 0.999
30 10 0.371 0.931 0.999 1.000 1.000 1.000 1.000 1.000
40 10 0.142 0.614 0.972 0.999 1.000 1.000 1.000 1.000
50 10 0.051 0.306 0.757 0.986 1.000 1.000 1.000 1.000
60 10 0.018 0.133 0.450 0.841 0.993 1.000 1.000 1.000
80 10 0.003 0.022 0.104 0.319 0.657 0.926 0.997 0.999
90 15 0.03 0.208 0.616 0.945 0.999 1.000 1.000 1.000
100 20 0.113 0.556 0.954 0.999 1.000 1.000 1.000 1.000

Table 6: Distribution of the multinomial minimum. For example, in the case with n= 25 and
m= 5, P (minNi ≤ 2;n= 25,m= 5) = 0.446.

t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n m
5 5 0.038 0.710 0.966 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 5 0.012 0.321 0.601 0.867 0.971 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 5 0.006 0.181 0.386 0.659 0.854 0.953 0.988 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 5 0.003 0.116 0.265 0.500 0.716 0.868 0.949 0.983 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000
25 5 0.002 0.081 0.193 0.388 0.595 0.770 0.887 0.952 0.982 0.994 0.998 1.000 1.000 1.000 1.000 1.000
30 5 0.001 0.059 0.146 0.308 0.497 0.676 0.815 0.906 0.958 0.983 0.994 0.998 0.999 1.000 1.000 1.000
10 10 0.000 0.396 0.873 0.984 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 10 0.000 0.060 0.237 0.640 0.896 0.977 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 10 0.000 0.016 0.079 0.313 0.612 0.841 0.949 0.986 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000
40 10 0.000 0.006 0.032 0.158 0.380 0.637 0.831 0.935 0.978 0.994 0.998 1.000 1.000 1.000 1.000 1.000
50 10 0.000 0.002 0.015 0.086 0.236 0.458 0.679 0.840 0.932 0.974 0.991 0.997 0.999 1.000 1.000 1.000
60 10 0.000 0.001 0.008 0.050 0.151 0.325 0.535 0.724 0.858 0.935 0.973 0.990 0.997 0.999 1.000 1.000
15 15 0.010 0.061 0.510 0.875 0.978 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 15 0.000 0.016 0.079 0.313 0.612 0.841 0.949 0.986 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000
45 15 0.000 0.001 0.028 0.111 0.299 0.542 0.756 0.892 0.959 0.986 0.996 0.999 1.000 1.000 1.000 1.000
60 15 0.000 0.001 0.008 0.050 0.151 0.325 0.535 0.724 0.858 0.935 0.973 0.990 0.997 0.999 1.000 1.000
75 15 0.000 0.000 0.005 0.023 0.082 0.198 0.365 0.553 0.719 0.843 0.920 0.963 0.984 0.994 0.998 0.999
90 15 0.000 0.000 0.002 0.013 0.047 0.124 0.250 0.412 0.581 0.729 0.841 0.914 0.957 0.980 0.991 0.996
20 20 0.000 0.121 0.706 0.949 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 20 0.000 0.002 0.029 0.321 0.745 0.934 0.986 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 20 0.000 0.000 0.002 0.065 0.274 0.607 0.850 0.954 0.988 0.997 0.999 1.000 1.000 1.000 1.000 1.000
80 20 0.000 0.000 0.000 0.015 0.089 0.301 0.586 0.812 0.929 0.977 0.993 0.998 1.000 1.000 1.000 1.000
100 20 0.000 0.000 0.000 0.004 0.030 0.138 0.349 0.603 0.802 0.917 0.969 0.990 0.997 0.999 1.000 1.000
25 25 0.000 0.067 0.634 0.931 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 25 0.000 0.000 0.010 0.227 0.680 0.912 0.981 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
75 25 0.000 0.000 0.000 0.030 0.178 0.505 0.799 0.936 0.983 0.996 0.999 1.000 1.000 1.000 1.000 1.000
100 25 0.000 0.000 0.000 0.005 0.041 0.201 0.483 0.747 0.901 0.967 0.990 0.997 0.999 1.000 1.000 1.000
30 30 0.000 0.037 0.570 0.914 0.988 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 30 0.000 0.000 0.003 0.161 0.620 0.891 0.975 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 40 0.000 0.000 0.201 0.720 0.941 0.990 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 40 0.000 0.000 0.001 0.027 0.195 0.587 0.857 0.960 0.990 0.998 1.000 1.000 1.000 1.000 1.000 1.000
50 50 0.000 0.003 0.370 0.848 0.976 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 50 0.000 0.000 0.000 0.042 0.430 0.811 0.954 0.991 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7: Distribution of the multinomial range. For example, in the case of n= 15 and m= 15,
P (maxNi −minNi ≤ 3;n= 15,m= 15) = 0.51.
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