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Summary. We propose a Monte Carlo algorithm to sample from high dimensional probability
distributions that combines Markov chain Monte Carlo and importance sampling. We provide a
careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit
comparison with standard Markov chain Monte Carlo methods and illustrations of the potential
improvements in efficiency. Simple and concrete intuition is provided for when the novel scheme
is expected to outperform standard schemes. When applied to Bayesian variable-selection prob-
lems, the novel algorithm is orders of magnitude more efficient than available alternative sam-
pling schemes and enables fast and reliable fully Bayesian inferences with tens of thousand
regressors.
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1. Introduction

Sampling from high dimensional probability distributions is a common task arising in many sci-
entific areas, such as Bayesian statistics, machine learning and statistical physics. In this paper we
propose and analyse a novel Monte Carlo scheme for generic, high dimensional target distribu-
tions that combines importance sampling and Markov chain Monte Carlo (MCMC) sampling.
There have been many attempts to embed importance sampling within Monte Carlo schemes
for Bayesian analysis; see for example Smith and Gelfand (1992), Gramacy et al. (2010) and be-
yond. However, except where sequential Monte Carlo approaches can be adopted, pure Markov-
chain-based schemes (i.e. schemes which simulate from precisely the right target distribution
with no need for subsequent importance sampling correction) have been far more successful.
This is because MCMC methods are usually much more scalable to high dimensional situations
(see for example Frieze et al. (1994), Belloni and Chernozhukov (2009), Yang et al. (2016) and
Roberts and Rosenthal (2016)), whereas importance sampling weight variances tend to grow
(often exponentially) with dimension. In this paper we propose a natural way to combine the
best of MCMC and importance sampling in a way that is robust in high dimensional contexts
and ameliorates the slow mixing which plagues many Markov-chain-based schemes. The scheme
proposed, which we call tempered Gibbs sampling (TGS), involves componentwise updating
rather like Gibbs sampling (GS), with improved mixing properties and associated importance
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weights which remain stable as the dimension increases. Through an appropriately designed
tempering mechanism, TGS circumvents the main limitations of standard GS, such as the slow
mixing that is induced by strong posterior correlations. It also avoids the requirement to visit
all co-ordinates sequentially, instead iteratively making state-informed decisions about which
co-ordinate should be next updated.

Our scheme differentiates from classical simulated and parallel tempering (Marinari and
Parisi, 1992; Geyer and Thompson, 1995) in that it tempers only the co-ordinate that is currently
being updated, and compensates for the overdispersion that is induced by the tempered update
by choosing to update components which are in the tail of their conditional distributions more
frequently. The resulting dynamics can dramatically speed up convergence of the standard GS,
both during the transient and the stationary phase of the algorithm. Moreover, TGS does not
require multiple temperature levels (as in simulated and parallel tempering) and thus avoids the
tuning issues that are related to choosing the number of levels and collection of temperatures,
as well as the heavy computational burden that is induced by introducing multiple copies of the
original state space.

We apply the novel sampling scheme to Bayesian variable-selection (BVS) problems, observing
multiple orders of magnitude improvements compared with alternative Monte Carlo schemes.
For example, TGS enables us to perform reliable, fully Bayesian inference for spike-and-slab
models with over 10000 regressors in less than 2 min by using a simple R implementation and
a single desktop computer.

The paper is structured as follows. The TGS scheme is introduced in Section 2. There we
provide basic validity results and intuition on the potential improvement that is given by the
novel scheme, together with an illustrative example. In Section 3 we develop a careful analysis
of the scheme. First we show that, unlike common tempering schemes, TGS is robust to high
dimensionality of the target as the co-ordinatewise tempering mechanism that is employed is
actually improved rather than damaged by high dimensionality. Secondly we show that TGS
cannot perform worse than standard GS by more than a constant factor that can be chosen
by the user (in our simulations we set it to 2), while being able to perform orders of magnitude
better. Finally we provide concrete insight regarding the type of correlation structures where
TGS will perform much better than GS and the structures where GS and TGS will perform sim-
ilarly. In Section 4 we provide a detailed application to BVS problems, including computational
complexity results. Section 5 contains simulation studies. We review our findings in Section 6.
Short proofs are directly reported in the paper, whereas longer proofs can be found in the on-line
supplementary material.

2. The tempered Gibbs sampling scheme

Let f(x) be a probability distribution with x = (xq,...,xq) € X1 x ... x Xy =X Each iteration of
the classical random-scan GS scheme proceeds by pickingi from {1, ...,d} uniformly at random
and then sampling x; ~ f(x;|x—;). We consider the following tempered version of the Gibbs
sampler, which depends on a collection of modified full conditionals denoted by {g(x;|x—;) }i.x_;
withie{l,...,d} and x_; € X_;. The only requirement on g(x;|x_;) is that, for all x_;, it is a
probability density function on A; absolutely continuous with respect to f(x;|x_;), with no need
to be the actual full conditional of some global distribution g(x). The following functions play
a crucial role in the definition of the TGS algorithm:

g(xi|x—;)

)= Sxilx—p)

d
fori=1,...,d,; Z(X):;Z:lpi(x)' €))
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TGS algorithm: at each iteration of the Markov chain,

(a) (co-ordinate selection) sample i from {1,...,d} proportionally to p;(x);
(b) (tempered update) sample x; ~ g(x;|X_;);
(c) (importance weighting) assign to the new state x a weight w(x) = Z(x) .

The Markov chain x!),x® | ... that is induced by steps (a) and (b) of the TGS algorithm is
reversible with respect to fZ, which is a probability density function on X defined as (fZ)(x) =
f(x)Z(x). We shall assume the following condition on Z which is stronger than necessary, but
which holds naturally for our purposes later on:

Z(x) is bounded away from 0, and bounded above on compact sets. 2)

Throughout the paper Z and w are the inverse of each other, i.e. w(x)=Z (x)"! for all xe X.
As usual, we denote the space of f-integrable functions from X to R by L! (X, f) and we write
h]= [y h(x) f(x)dx for every h e L1 (X, f).

Proposition 1. fZ is a probability density function on X’ and the Markov chain x(V, x® ...
induced by steps (a) and (b) of the TGS algorithm is reversible with respect to fZ. Assuming
that condition (2) holds and that TGS is fZ irreducible, then

n
S w(x®)h(xD)
AYCS==L L Fn), as n— oo, 3)
S w(x®)
t=1
almost surely for every h e L' (X, f).

Proof. Reversibility with respect to f(x)Z(x) can be checked as in the proof of proposition
6 in section A.4 of the on-line supplement. Representing f(x)Z(x) as a mixture of d probability
densities on X we have

/ FX)Z(x)dx = / Zf( )i{xil"_i; ;l_ Fx_)g(lx_p)dx =1.

The functions & and hw have identical support from condition (2). Moreover it is clear that
heLY(Xx, f)if and only if hwe L' (X, fZ) and that in fact

Er[h] =/h(x)f(x)dx= /h(x)w(x)f(x)Z(x)dx: Erz[Aw] .

Therefore from theorem 17.0.1 of Meyn and Tweedie (1993) applied to both numerator and
denominator, result (3) holds since by hypothesis TGS is fZ irreducible so (x(’));’i1 is ergodic.
O

We note that fZ-irreducibility of TGS can be established in specific examples by using stan-
dard techniques; see for example Roberts and Smith (1994). Moreover under condition (2)
conditions from Roberts and Smith (1994) which imply that f-irreducibility of the standard
Gibbs sampler readily extend to demonstrating that TGS is fZ irreducible.

The implementation of TGS requires the user to specify a collection of densities { g (x;[X—) }i x_;-
Possible choices of these include tempered conditionals of the form

flxilx—p)?

T fOiX_)Pdy;” 4
S Filx—Pdy; 4)

g(xilx_)) = £ (xix_p) =
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where (3 is a fixed value in (0, 1), and mixed conditionals of the form
g(xilx—i) =5 foxilx—i) + 5 £ P (xix ), (5)

with € (0,1) and f? defined as in equation (4). Note that g(x;|x_;) in equation (5) are
not the full conditionals of % fx)+ % £ (x) as the latter would have mixing weights depending
on X. Indeed g(x;|x—;) in equation (5) are unlikely to be the full conditionals of any distribution.

The theory that is developed in Section 3 will provide insight into which choice for g(x;|x_;)
leads to effective Monte Carlo methods. Moreover, we shall see that building g(x;|x_;) as a
mixture of f(x;|x_;) and a flattened version of f(x;|x_;), as in equation (5), is typically a robust
and efficient choice.

The modified conditionals need to be tractable, as we need to sample from them and to
evaluate their density. In many cases, if the original full conditionals f(x;|x_;) are tractable (e.g.
Bernoulli, normal, beta or gamma distributions), then also the densities of the form £ (x;|x_;)
are. More generally, one can use any flattened version of f(x;|x_;) instead of f® (x;|x_;). For
example in Section 3.5 we provide an illustration using a z-distribution for g(x;|x_;) when
f(x;|x—;) is normal.

TGS has various potential advantages over GS. First it makes an ‘informed choice’ on which
variable to update, choosing with higher probability co-ordinates whose value is currently in the
tail of their conditional distribution. Secondly it induces potentially longer jumps by sampling x;
from a tempered distribution g(x;|x—;). Finally, as we shall see in the next sections, the invariant
distribution fZ has potentially much less correlation between variables compared with the
original distribution f.

2.1. lllustrative example

Consider the following illustrative example, where the target is a bivariate Gaussian distribution
with correlation p=0.999. Posterior distributions with such strong correlations naturally arise
in Bayesian modelling, e.g. in the context of hierarchical linear models with a large number of
observations. Fig. 1(a) displays the first 200 iterations of GS. As expected, the strong correlation
slows down the sampler dramatically and the chain hardly moves away from the starting point,
in this case (3,3). Figs 1(b) and 1(c) display the first 200 iterations of TGS with modified
conditionals given by equations (4) and (5) respectively, and 3=1— p2. See Section 3 for some
discussion on the choice of 3 in practice. Now the tempered conditional distributions of TGS
allow the chain to move freely around the state space despite correlation. However, the version
of TGS that uses tempered conditionals as in equation (4), which we refer to as “TGS vanilla’
here, spends the majority of its time outside the region of high probability under the target. This
results in high variability of the importance weights w(x?) (represent%g by the size of the black
dots in Fig. 1), which deteriorates the efficiency of the estimators ﬁ, defined in expression
(3). In contrast, the TGS scheme that uses tempered conditionals as in equation (5), which we
refer to as TGS mixed here, achieves both fast mixing of the Markov chain x® and low variance
of the importance weights w(x”). For example, for the simulations of Fig. 1, the estimated
variances of the importance weights for the TGS vanilla and TGS mixed methods are 16.2 and
0.88 respectively. In Section 3 we provide theoretical analysis, as well as intuition, to explain the
behaviour of TGS schemes.

Remark 1. The TGS algorithm inherits the robustness and tuning-free properties of GS, such
as invariance to co-ordinate rescalings or translations. More precisely, the MCMC algorithms
that are obtained by applying TGS to the original target f(x) or to the target that is obtained by
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Fig. 1. Comparison of (a) GS with two versions of TGS, (b) ‘vanilla’ (var(W) = 16.2) and (c) ‘mixed’
(var(W) = 0.88) for n =200 iterations on a strongly correlated bivariate distribution: the sizes of the black dots
are proportional to the importance weights (W(X(t)))zf’=1 ; \Te_YréW) refers to the estimated normalized variance
of the importance weights, defined as var(W) = (1/n)S)_, w; — 1, where w; = w(x\)/{(1/n)27_, w(x(9)}

applying any bijective transformation to a co-ordinate x; are equivalent, provided that g(x;|x_1)
are also transformed accordingly. A practical implication is that the TGS implementation does
not require careful tuning of the scale of the proposal distribution such as typical Metropolis—
Hasting algorithms do. It is also trivial to see that TGS is invariant to permutations of the order
of co-ordinates.

Remark 2 (extended target interpretation). The TGS scheme has a simple alternative con-
struction that will be useful in what follows. Consider the extended state space X x {1,...,d}
with augmented target

~ 1
S D=2 fX-)g(xilX—) (x,)eX x{l,....d}.



6 G. Zanella and G. Roberts

The integer i represents which co-ordinate of x is being tempered, and g(x;|x—;) is the tempered
version of f(x;|x_;). The extended target f is a probability density function over X x {1,...,d}
with marginals over i and x given by

fi)= / fx,idx = é

- no 1 d
fx)= ; fx,0)= 7 21 Jx—Dg(xilx—i) = f(X) Z(x).

TGS can be seen as a scheme that targets f by alternating sampling from f(i|x) and f (x;|i,X_;),
and then corrects for the difference between f and f with Z(x)~!. A direct consequence of this
extended target interpretation is that the marginal distribution of i is uniform, meaning that
each co-ordinate becomes updated every 1/d iterations on average.

3. Analysis of the algorithm

In this section we provide a careful theoretical and empirical analysis of the TGS algorithm.
The first aim is providing theoretical guarantees on the robustness of TGS, both in terms of
variance of the importance sampling weights in high dimensions and mixing of the resulting
Markov chain compared with the GS mixing. The second aim is to provide understanding about
which situations will be favourable to TGS and which will not. The main message is that the
performances of TGS are never significantly worse than the GS performance and, depending
on the situation, can be much better.

A key quantity in the discussion of TGS robustness is the following ratio between the original
and the modified conditionals:

b=sup Slxilx—p)

ix 9(xilx_;) ®)

To ensure robustness of TGS, we want the constant b to be finite and not too large. This can be
easily achieved in practice. For example setting g(x;|x—;) as in equation (5) we are guaranteed
to have b < 2. More generally, choosing

g(x-|x_->=if<x-|x_i>+if@(mx_»)
e 1+ 1+€ !

we obtain b < 1+ €. The important aspect to note here is that equation (6) involves only ratios
of one-dimensional densities rather than d-dimensional ratios (more precisely densities over A;
rather than over X)).

Throughout the paper, we measure the efficiency of Monte Carlo algorithms through their
asymptotic variances. The smaller the asymptotic variance, the more efficient the algorithm. For
any h € L>(X, f), the asymptotic variance that is associated with TGS is defined as var(h, TGS) =
lim,_00n Var(ﬁzc’s), where ﬁg(}s is the TGS estimator defined in expression (3). The following
lemma provides a useful representation of var(h, TGS).

Lemma 1. Lethe LY(X, f) and h(x) =h(x) — E¢[h]. If var(h, TGS) < 0o then

var(h, TGS) = ;[ w] (1 23 p,>, 0

=1

where p; is the lag ¢ auto-correlation of (w(x)a(x?))%, and (x)2°, is the discrete time
chain that is induced by TGS started in stationarity.
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The term [Ef[ﬁzw] in equation (7) equals the asymptotic variance of the hypothetical im-
portance sampler that uses fZ as a proposal. More formally, for any h € L' (X, f) define the
self-normalized importance sampling (SIS) estimator as

n

S w(yDhy?)
};SIS =l
SIS _

n >

2 w(y®)

i=1

where (y("))j?i1 is a sequence of independent and identically distributed (IID) random variables
with distribution fZ. Standard impor‘gimt sampling theory (see for example Deligiannidisﬂ and
Lee (2018), section 3.2) tells us that E s[1” w]=var(h, SIS), where var(h, SIS)=lim,,_, nvar(hgls).
Therefore the two terms on the right-hand side of equation (7), E f[ﬁ w] and 1+ 2%, p,
can be interpreted as respectively the importance sampling and the MCMC contributions to
var(h, TGS).

3.1. Robustness to high dimensionality

A major concern with classical importance tempering schemes is that they often collapse in high
dimensional scenarios (see for example Owen (2013), section 9.1). The reason is that the ‘overlap’
between the target distribution f and a tempered version, such as g= £ with € (0, 1), can
be extremely low if f is a high dimensional distribution. In contrast, the importance sampling
procedure that is associated with TGS is robust to high dimensioqzzil scenarios. This can be
quantified by looking at the asymptotic variances var(h, SIS) = ¢[h"w], or at the variance of
the importance weights W =w(X) for X~ fZ.

Proposition 2. Given X~ fZ and W =w(X), we have
var(W)<b—1
and

var(h, SIS) <bvary(h),
with b defined in equation (6) and vary(h) =L f[hz] — [Ef[h]z.

Proof. Equation (6) implies that p;(x) >b~! and thus w(x) = Z(x) ! <bforeveryx € X. Com-
bining the latter inequality with var(W)=[ fz[wz] —E fz[w]2 =[E¢[w] -1, we obtain var(W) =

E¢[w]—1<b—1. Again from w(x) < b, we have var(h, SIS) = [Ef[ﬁ wl<b [Ef[hz] =bvary(h).

Proposition 2 implies that, regardless of the dimensionality of the state space, the asymptotic
variance var(h, SIS) is at most b times var ¢ (h). Therefore, by equation (7), setting b to a low
value is sufficient to ensure that the importance sampling contribution to var(x, TGS) is well
behaved. For example, if g(x;|x_;) are chosen to be the mixed conditionals in equation (5) we
are guaranteed to have var(W) <1 and var(h, SIS) <2var (k). Note that the theoretical bound
var(W) < 1 is coherent with the estimated variance of the importance weights of the TGS mixed
algorithm in Fig. 1.

An even stronger property of TGS than the bounds in proposition 2 is that, under appro-
priate assumptions, var(W) converges to 0 as d — co. The underlying reason is that the weight
function w(x) depends on an average of d terms, namely (1 /d)Zfl 12i(x), and the increase of
dimensionality has a stabilizing effect on the latter. If, for example, the target has indepen-
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dent components with common distribution fj, f(x) = H;’Zl fo(x;), one can show that var(W)
converges to 0 as d — oo.

Proposition 3. Suppose that f(x) =Hf’:1f0(xi) and g(x;|x—;) = go(x;) where fy and go are
univariate probability density functions that are independent of i. If sup,. fo(x;)/go(x;) <b <00,
then

var(W)— 0 as d — oo. ()

Proof. By assumption we have

1 i gO(xi')
d ;=1 folxi)
Thus, given x ~ f, w(x)~! is the average of IID random variables with mean 1 and converges

almost surely to 1 by the strong law of large numbers. It follows that w(x) — 1 almost surely as
d — o0o. Also, sup,, fo(xi)/go(x;) <b implies that

1 g
W(X)_{dg fo(Xi)} <P

Thus by the bounded convergence theorem E¢[w] — 1 as d — oo. It follows that var(W) =
(Ef[w]—1)—0. g

w(x)*1 =

By contrast, recall that the importance weights that are associated with classical tempering
(e.g. setting g = @ as importance distribution) in an ITD context such as proposition 3 would
have a variance growing exponentially with d (see examples 9.1-9.3 of Owen (2013) for a more
detailed discussion).

Proposition 3 makes the assumption of IID components for simplicity and illustration. In
fact, inspecting the proof of proposition 3, we can see that result (8) holds whenever b < co and
limg_, 0 (1 /a’)E;.’:1 pi(x) =1 in probability for x ~ f. Therefore, one could extend proposition 3
to any scenario where the law of large numbers for { p;(x)}; holds. These include, for example,
the case where f has independent but non-identical components such that the variance of p;(x)
is bounded, i.e. f(x)= Hle fi(xi), g(xi1x—;) =gi(x;) and

9i(x;)
i (x;)dx;
J, Fayocas

bounded over i. More generally, one could exploit laws of large numbers for dependent random
variables in cases where the d components of x ~ f enjoy some appropriate local dependence
structure which is sufficient to have (1 /d)E;i:1 pi(x) converging to a constant as d — oo.

3.2. Explicit comparison with standard Gibbs sampling

We now compare the efficiency of the Monte Carlo estimators that are produced by TGS with
the estimaters that are produced by classical GS. For any function & € L1(X, f) define the
GS estimator of Es[h] as h$S = (1/m)E0_ h(y®), where y,y®), ... is the X-valued Markov
chain generated by GS, and denote the corresponding asymptotic variance by var(h, GS) =
limy,_ oo n Var(ﬁg‘s). The following theorem shows that the efficiency of TGS estimators can
never be worse than the efficiency of GS estimators by a factor larger than b2.
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Theorem 1. For every h e L2(X, f) we have

var(h, TGS) < b*var(h, GS) + bzvarf (h). )

Remark 3. In most non-trivial scenarios, var ¢ (1) will be small in comparison with var(h, GS),
because the asymptotic variance that is obtained by GS is typically much larger than that of an
IID sampler. In such cases we can interpret inequality (9) as saying that the asymptotic variance
of TGS is at most b* times those of GS plus a smaller order term. More generally, since the
Markov kernel that is associated with GS is a positive operator, we have var(h, GS) > var ¢ (h)
and thus, by inequality (9),

var(h, TGS) < 2b*var(h, GS) for all h e L>(X, ). (10)

Remark 4. Assuming that b < oo, theorem 1 implies that whenever var(h, GS) is finite then
also var(h, TGS) is finite. In general it is possible for var(k, TGS) to be finite when var(k, GS)
is not. The simplest example can be obtained setting d = 1, in which case GS and TGS boil
down to respectively IID sampling and importance sampling. In that case, any function &
such that [ h(x)? f(x)dx =00 but [, h(x)?w(x) f(x)dx < co will satisfy var(h,GS) = oo and
var(h, TGS) < co.

As discussed after equation (6), it is easy to set b to a desired value in practice, for example
using a mixture structure as in equation (5), which leads to the following corollary.

Corollary 1. Lete, 3>0.If

1 €
. ) — . . B (. .
g(x,|x,l)_ 1+€f(xl|xfl)+ 1+€f (xilx—;)
then
var(h, TGS) < (1 + €)>var(h, GS) + (1 + e)zvarf (h).

By choosing € to be sufficiently small, we have theoretical guarantees that GS is not doing more
than (1 + ¢)? times better than TGS. Choosing e too small, however, will reduce the potential
benefit that is obtained with TGS, with TGS collapsing to GS for e =0, so optimizing involves
a compromise between these extremes. The optimal choice involves a trade-off between small
variance of the importance sampling weights and fast mixing of the resulting Markov chain. In
our examples we used e =1, leading to equation (5), which is a safe and robust choice both in
terms of importance sampling variance and of Markov chain mixing.

3.3. Tempered Gibbs sampling and correlation structure

Theorem 1 implies that, under suitable choices of g(x;|x_;), TGS never provides significantly
worse (i.e. worse by more than a controllable constant factor) efficiency than GS. In contrast,
TGS performances can be much better than standard GS. The underlying reason is that the
tempering mechanism can dramatically speed up the convergence of the TGS Markov chain x
to its stationary distribution fZ by reducing correlations in the target. In fact, the covariance
structure of fZ is substantially different from the structure of the original target f and this
can prevent the sampler from becoming stuck in situations where GS would. Fig. 2 displays the
original target f and the modified target fZ for a bivariate Gaussian distribution with increasing
correlation. Here the modified conditionals are defined as in equation (4) with 3=1— p?. It
can be seen that, even if the correlation of f goes to 1, the importance distribution fZ does not
collapse on the diagonal (note that fZ is not Gaussian here). As we show in the next section, this
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allows TGS to have a mixing time that is uniformly bounded over p. Clearly, the same property
does not hold for GS, whose mixing time deteriorates as p— 1.

A classical tempering approach would not help the Gibbs sampler in this context. In fact, a
Gibbs sampler targeting f» with § < 1 may be as slow to converge as a sampler targeting f.
For example, in the Gaussian case the covariance matrix of £ is simply 3 times the matrix of
f and thus, using the results of Roberts and Sahu (1997), a Gibbs sampler targeting f» has
exactly the same rate of convergence as a sampler targeting f. In the next section we provide
some more rigorous understanding of the convergence behaviour of TGS to show the potential
mixing improvements compared with GS.

3.4. Convergence analysis in the bivariate case

In general, the TGS Markov chain x evolves according to highly complex dynamics and
providing generic results on its rate of convergence of fZ is extremely challenging. Nonetheless,
we now show that, using the notion of deinitializing chains from Roberts and Rosenthal (2001)
we can obtain quite an explicit understanding of the convergence behaviour of x”) in the bivariate
case. The results suggest that, for appropriate choices of modified conditionals, the mixing time
of x® is uniformly bounded regardless of the correlation structure of the target. This must be
contrasted with the chain that is induced by GS, whose mixing time diverges to oo as the target’s
correlation goes to 1.

Our analysis proceeds as follows. First we consider the augmented Markov chain (x®, 1(’))oo
onX x {1,...,d} obtained by including the index i, as in remark 2. The transition from (x?, z(t))
to (x( D (’“)) is given by the following two steps:

(a) sample "D from {1,...,d} proportlonally to (p1 (x(t)) ed(x(t)))

(b) sample x((’ill)) g(x;a+n Ixfl<f+1) =X (,H)) and set x (,H) _x_l(m)
Once we augment the space with i), we can ignore the component x(m, whose distribution is
fully determined by x(’Jr ) and i®. More precisely, consider the stochastic process (2, M,
that is obtained by takmg

(’)—x()l(,>, t>0,

where x (,) denotes the vector x without the i’th component. The following proposition
shows that the process (z, z(’))Oo i1s Markovian and contains all the information that is needed
to characterize the convergence to stationarity of x®,

Proposition4. The process (z(, i) isa Markov chain and is deinitializing for (x®, i),
meaning that

LD {OxO 0 50 0y £xO 0,0 ;0 1>1, an

where L£(-|-) denotes conditional distributions. It follows that for any starting state x4 € X
1L X =x4) = fZlry = 1£@", 01X =x4) = 7l1v, (12)
where ‘|| - ||Tv’ denotes total variation distance and 7 is the stationary distribution of (z?,i®).

Note that the conditioning on x?) in equation (12) is equivalent to conditioning on (x(@, ;©®),
because the distribution of (x®,i®) for r> 1 is independent of i,

Proposition 4 implies that the convergence to stationarity of x® is fully determined by that of
(z®,i®). In some situations, by looking at the chain (z,i?) rather than x, we can obtain a
better understanding of the convergence properties of TGS. Consider for example the bivariate
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case, with X = R? and target f(x1,x2). In this context (z(’))f’io is an R-valued process, with
stationary distribution 3 f1(2) + 3 f2(2), where f1(2) = [ f(z,x2)dx2 and f2(2) = [, f(x2, 2)dx
are the target marginals. To keep the notation light and to have results that are easier to inter-
pret, here we further assume exchangeability, i.e. f(x],x3) = f(x2,x1), whereas lemma 5 in the
on-line supplementary material considers the generic case. The simplification that is given by
exchangeability is that it suffices to consider the Markov chain (z(t));’io rather than (z®, i (I));’io.

Proposition 5. Let X = R? and f be a target distribution with f(x1,x2) = f(x2,x1), and
marginal on x; denoted by f;. For any starting state X4 = (z«, z%) € R> we have

LGP X =x4) = fZ)rv =1L 120 =20 = fillTv,
where 7 is an R-valued Markov chain with stationary distribution fi(z) and transition kernel
P('|2) =r(2)6)(2) + q(Z'|2)ap (' |2), (13)

where

riz)=1 —/ ap(Z'|2)q(Z|2)d7,
R

f1@Nq(z|Z)
f1(@q(@'2) + f1(z)q(z]z)

ap(2) =

and ¢(Z'|2) =g(x;=2|x_; =2).

The transition kernel (13) coincides with that of an accept-reject algorithm with proposal
distribution ¢(z’|z) = g(x; = 7'|x_; = z) and acceptance given by the Barker rule, i.e. accept with
probability a(z'|z). The intuition behind the appearance of an accept-reject step is that up-
dating the same co-ordinate x; in consequent iterations of TGS coincides with not moving the
chain (V) and thus having a rejected transition. Proposition 5 implies that, given the modi-
fied conditionals g(x;|x—;), the evolution of (z(t))fio depends on f only through the marginal
distributions, fi or f», rather than on the joint distribution f(x1, x7).

Proposition 5 provides quite a complete understanding of TGS convergence behaviour for
bivariate exchangeable distributions. Consider for example a bivariate Gaussian target with
correlation p, as in Section 2.1. From remark 1, we can assume without loss of generality that f
has standard normal marginals and thus is exchangeable. In this case (Z(l))f’io is a Markov chain
with stationary distribution f; = N(0, 1) and proposal g(z’|z) = g(x; =7'|x_; =z). For example,
choosing modified conditionals as in equation (4) with 5 =1 — p? we obtain ¢(-|z) = N(pz, 1).
The worst-case scenario for such a chain is p=1, where ¢(:|z) = N(z, 1). Nonetheless, even in this
case the mixing of (z(’));’io, and thus of (x(’));’io, does not collapse. By contrast, the convergence
of GS in this context deteriorates as p— 1 as it is closely related to the convergence of the
auto-regressive process zTD |z ~ N(pz, 1 — p?). The discussion about the bivariate Gaussian
case provides theoretical insight for the behaviour that was heuristically observed in Section
2.1. Proposition 5 is not limited to the Gaussian context and thus we would expect that the
qualitative behaviour just described holds much more generally.

3.5. When does tempered Gibbs sampling work and when does it not?

The previous two sections showed that in the bivariate case TGS can induce much faster mixing
compared with GS. A natural question is how much this extends to the case d > 2. In this
section we provide insight into when TGS substantially outperforms GS and when instead they
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are comparable (we know by theorem 1 that TGS cannot converge substantially slower than
GS). Whether or not TGS substantially outperforms GS depends on the correlation structure of
the target with intuition as follows. When sampling from a d-dimensional target (xp, ..., x4), the
tempering mechanism of TGS enables us to overcome strong pairwise correlations between any
pair of variables x; and x; as well as strong k-wise negative correlations, i.e. negative correlations
between blocks of k variables. In contrast TGS does not help significantly in overcoming strong
k-wise positive correlations. We illustrate this behaviour with a simulation study considering
multivariate Gaussian targets with increasing degree of correlations (controlled by a parameter
p €[0,1]) under three scenarios. Given the scale and translation invariance properties of the
algorithms under consideration, we can assume without loss of generality that the d-dimensional
target has zero mean and covariance matrix X satisfying ¥;; =1 fori=1,...,n in all scenarios.
The first scenario considers pairwise correlation, with d being a multiple of 2 and 35;_1 »; = p for
i=1,...,d/2and %;; =0 otherwise; the second exchangeable, positively correlated distributions
with X;; = p for all i # j; the third exchangeable, negatively correlated distributions with ¥;; =
—p/(n—1)foralli# j.Inall scenarios, as p— 1 the target distribution collapses to some singular
distribution and the GS convergence properties deteriorate (see Roberts and Sahu (1997) for
related results).

Fig. 3 reports the (estimated) asymptotic variance of the estimators of the co-ordinates mean
(i.e. h(x) = x;; the value of i is irrelevant) for d = 10. We compare GS with two versions of TGS.
The first has mixed conditionals as in equation (5), with 3= 1 — p?. By choosing a value of 3 that
depends on p we are exploiting explicit global knowledge on ¥ in a potentially unrealistic way,
matching the inflated conditional variance with the marginal variance. Thus we also consider
a more realistic situation where we ignore global knowledge on ¥ and set g(x;|x_;) to be a
t-distribution centred at E[x;|x_;], with scale /var(x;|x_;) and shape v =0.2. As expected, the
asymptotic variance of the estimators that are obtained with GS deteriorate in all cases. In
contrast, TGS performances do not deteriorate or deteriorate very mildly as p— 1 for scenarios
1 and 3. For scenario 2, TGS has very similar performances compared with GS. In all cases,
the two versions of TGS perform quite similarly, with the first of the two being slightly more
efficient. The qualitative conclusions of these simulations are not sensitive to various set-up
details, such as the value of d, the order of variables (especially in scenario 1) or the degree of
symmetry. Also, it is worth noting that TGS does not require prior knowledge of the global
correlation structure or of which variables are strongly correlated to be implemented.

The reason for the presence or lack of improvements given by TGS lies in the different geo-
metrical structure that is induced by positive and negative correlations. Intuitively, we conjecture
that, if the limiting singular distribution for p — 1 can be navigated with pairwise updates (i.e.
moving on (x;, x;) ‘planes’ rather than (x;) ‘lines’ as for GS), then TGS should perform well (i.e.
uniformly good mixing over p for a good choice of 3); otherwise it will not.

The intuition that is developed here will be useful in the BVS application of Section 4; see for
example the discussion in Section 4.5.

3.6. Controlling the frequency of co-ordinate updating

In the extended target interpretation that was discussed in remark 2 we have shown that the
marginal distribution of i under the extended target f is uniform over {1,...,d}. This implies
that, for every i, j€{l,...,d}, the TGS scheme will update x; and x; the same number of
times on average. In the absence of prior information on the structure of the problem under
consideration, updating each co-ordinate the same number of times on average is a desirable
robustness property as it prevents the algorithm for updating some co-ordinates too often and
ignoring others. However, in some contexts, we may want to invest more computational effort
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Fig.3. Log-log-plots of estimated asymptotic variances for GS(O) compared with two versions of TGS (A, 3;
+, Student t) on Gaussian targets with different covariance structures: (a) pairwise correlation; (b) k-wise
positive correlation; (c) k-wise negative correlation

-

in updating some co-ordinates rather than others (see for example the BVS problems that are
discussed below). This can be done by multiplying the selection probability p;(x) for some
weight function 7;(x_;), while leaving the rest of the algorithm unchanged. We call the resulting
algorithm weighted tempered Gibbs sampling (WTGS).

WTGS algorithm: at each iteration of the Markov chain do

(a) sample i from {1,...,d} proportionally to

g(xilX—)

pi(x) = Ui(Xfi)m,
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(b) sample x; ~ g(x;[x—;);
(c) weight the new state x with a weight Z(x)~! where Z(x) =¢"12%_ p;(x) and
C=5L B plmi(x-0)]-

The normalizing constant ¢ in the definition of Z(x) is designed so that [ s[Z]=1 as for TGS.
When implementing WTGS, one needs to compute the weights Z(x)~! only up to proportion-
ality and thus ¢ need not be computed explicitly. TGS is a special case of WTGS obtained when
n;(x—;) =1, in which case ( =d.

As shown by the following proposition, the introduction of the weight functions 7;(x_;) does
not impact the validity of the algorithm and it results in having a marginal distribution over the
updated component i proportional to E[7;(x—;)], where x ~ f.

Proposition 6. The Markov chain x(,x® ... that is induced by steps (a) and (b) of the
WTGS algorithm is reversible with respect to fZ. The frequency of updating of the ith co-
ordinate equals ¢ 1 Ey~ [ (x—1)]-

By choosing 7;(x—_;) appropriately, we can control the frequency with which we update each
co-ordinate. In Section 4.3 we show an application of WTGS to BVS problems.

4. Application to Bayesian variable selection

We shall illustrate the theoretical and methodological conclusions of Section 3 in an important
class of statistical models where Bayesian computational issues are known to be particularly
challenging. Binary inclusion variables in BVS models typically have the kind of pairwise and/or
negative dependence structures that have been conjectured to be conducive to successful appli-
cation of TGS in Section 3.5 (see Section 4.5 for a more detailed discussion). Therefore, in this
section we provide a detailed application of TGS to sampling from the posterior distribution
of Gaussian BVS models. This is a widely used class of models where posterior inferences are
computationally challenging because of high dimensional discrete parameters. In this context,
the Gibbs sampler is the standard choice of algorithm to draw samples from the posterior
distribution (see section B.6 in the on-line supplement for more details).

4.1. Model specification

BVS models provide a natural and coherent framework to select a subset of explanatory variables
in linear regression contexts (Chipman et al., 2001). In standard linear regression, an n x 1
response vector Y ismodelled as Y| 3, 02 ~ N(X 3, 02), where X isann x p design matrix and 8 an
n x 1 vector of coefficients. In BVS models a vector of binary variables y = (71,...,7,) €{0, 1 }7is
introduced to indicate which regressor is included in the model and which is not (; = 1 indicates
that the ith regressor is included in the model and ~; =0 that it is excluded). The resulting model
can be written as

Y|6"/9 s ol ~ N(X'yﬁ'ya Uzl]n);
ﬁﬂ% 02 ~ N(Oa 0-22’\/)9
po®) ox1/o?,

where X, is the n x |y| matrix containing only the included columns of the n x p design matrix X,
B, is the |y| x 1 vector containing only the coefficients corresponding to the selected regressors
and X, is the || x |7y| prior covariance matrix for the || selected regressors. Here |y|= Ef’: 1Yi
denotes the number of ‘active’ regressors. The covariance 3, is typically chosen to be equal to
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a positive multiple of (XEXW)_1 or the identity matrix, i.e. ¥, =c(X$X7)‘1 or ¥, =cl}y for
fixed ¢ > 0. The binary vector + is given a prior distribution p(vy) on {0, 1}”, e.g. assuming that

~ilh "2 Bern(h) i=1,....p,

where A is a prior inclusion probability, which can either be set to some fixed value in (0, 1) or
be given a prior distribution (e.g. a distribution belonging to the beta family).

Remark 5. One can also add an intercept to the linear model obtaining Y|3,,, o2, o~
N(a+ X453, 0?). Assigning a flat prior, p(«) o1, to such an intercept is equivalent to centring
Y, Xy,..., X, to have zero mean (Chipman et al. (2001), section 3).

Under this model set-up, the continuous hyperparameters 8 and o can be analytically inte-
grated and we are left with an explicit expression for p(|Y). Sampling from such a {0, 1}”-valued
distribution enables us to perform full posterior inferences for the BVS models that were speci-
fied above since p(3,,7, o2|Y) = p(By, a2|7y,Y) p(y|Y) and p(By, o2|7,Y) is analytically tractable.
The standard way to draw samples from p(v|Y) is by performing GS on the p components
(1, ---,7p), repeatedly choosing i € {1,..., p} either in a random or a deterministic scan fash-
ion and then updating v; ~ p(v;|Y, v—i).

4.2. Tempered Gibbs sampling for Bayesian variable selection
We apply TGS to the problem of sampling from v ~ p(y|Y). Under the notation of Section 2,
this corresponds tod = p, X ={0, 1 }” and f() = p(7|Y). For every value of i and _;, we set the
tempered conditional distribution g;(+;|y—;) to be the uniform distribution over {0, 1 }. It is easy
to check that the supremum b that is defined in expression (6) is upper bounded by 2 and thus
we have theoretical guarantees on the robustness of TGS from proposition 2 and theorem 1.
Since the target state space is discrete, it is more efficient to replace the Gibbs step of updating
~; conditionally on i and ~_;, with its Metropolized version (see for example Liu (1996)). The
resulting specific instance of TGS is the following algorithm.
TGS for BV'S algorithm: at each iteration of the Markov chain do

(a) sample i from {1,..., p} proportionally to p;(v) =1/{2p(yilv-i, D };
(b) switch ~; to 1 —~;;
(c) weight the new state v with a weight Z(v)~! where Z(y) = (1/ p)Zf’:1 pi(y).

In step (a), p(vily—i, Y) denotes the probability that ~; takes its current value conditionally on
the current value of v_; and on the observed data Y. In the remainder of Section 4, the expression
TGS will refer to this specific implementation of the generic scheme that was described in
Section 2, and Prggs to the Markov transition kernel of the resulting discrete time chain (7(’));’21 .

4.3. Weighted tempered Gibbs sampling for Bayesian variable selection

As discussed in Section 6, TGS updates each co-ordinate with the same frequency. In a BVS
context, however, this may be inefficient as the resulting sampler would spend most iterations
updating variables that have low or negligible posterior inclusion probability, especially when
p becomes large. A better solution would be to update more often components with a larger
inclusion probability, thus having a more focused computational effort. In the WTGS framework
of Section 3.6, this can be obtained by using non-uniform weight functions #; (y—;). For example,
proposition 6 implies that choosing 7;(y—;) = p(v; = l|y—;, ¥) leads to a frequency of updating
of the ith component equal to ¢~ E[n;(7_)]=s"'p(7; = 1|Y), where s=2f:1p(fyj =11Y) is
the expected number of active variables a posteriori. Here p(y; =1|Y) denotes the (marginal)
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posterior probability that v; =1, whereas p(y; = 1|v—;, ¥Y) denotes the probability of the same
event conditional on both the observed data Y and the current value of ~v_;. With WTGS we
can obtain a frequency of updating of the ith component proportional to p(y; =1|Y) without
knowing the actual value of p(+; =1|Y), but rather using only the conditional expressions p(y; =
Hy—i, V).

The optimal choice of frequency of updating is related to an exploration versus exploitation
trade-off. For example, choosing a uniform frequency of updating favours exploration, as it
forces the sampler to explore new regions of the space by flipping variables with low conditional
inclusion probability. In contrast, choosing a frequency of updating that focuses on variables
with high conditional inclusion probability favours exploitation, as it allows the sampler to
focus on the most important region of the state space. For this reason, we use a compromise
between the choice of 1; (y—;) that was described above and the uniform TGS, obtained by setting
i (v=i) = p(yi =1|v—i, Y) + k/ p with k being a fixed parameter (in our simulations we used k =5).
Such a choice leads to frequencies of updating given by a mixture of the uniform distribution
over {1,..., p} and the distribution proportional to p(y; = 1|Y). More precisely we have

¢MEm-=o 0= 4 —a>;,

where . =s/(k+s). The resulting scheme is as follows (see above for the definition of p(y; =
lv-i, V).
WTGS algorithm for BVS: at each iteration of the Markov chain do

(a) sample i from {1,..., p} proportionally to

pvi=1lv—i,Y)+k/p
2p(yilv=i, )

pi(y)=

(b) switch v; to 1 —~;;
(c) weight the new state v with a weight Z(v)~! where Z(7) « Z}D:l pi(y).

In the remainder of Section 4, the expression WTGS will refer to this specific implementation
of the generic scheme that was described in Section 3.6, and Pwrgs to the Markov transition
kernel of the resulting discrete time Markov chain ()%,

4.4. Efficient implementation and Rao—Blackwellization
Compared with GS, TGS and WTGS provide substantially improved convergence properties
at the price of an increased computational cost per iteration. The additional cost is computing
{p(yilY, 7_,»)};”:1 given v € {0, 1}7, which can be done efficiently through vectorized operations
as described in section B.1 of the on-line supplement. Such efficient implementation is crucial
to the successful application of these TGS schemes. The resulting cost per iteration of TGS and
WTGS is of order O(np+ || p). For comparison, the cost per iteration of GS is O(n|y| + |7|?).
If XT X has been precomputed before running the MCMC algorithm then the costs per iteration
become O(|y|p) for TGS and O(||?) for GS. In both cases, the relative additional cost of TGS
over GS is O(p/|v|). See section B.2 of the supplement for derivations of these expressions.
Interestingly, {p(yi|Y, v,i)}le are the same quantity that is needed to compute Rao-
Blackwellized estimators of the marginal posterior inclusion probabilities (PIPs) { p(v; = 1Y) }{’zl .
Therefore, using TGS enables us to implement Rao—Blackwellized estimators of PIPs (for all
ie{l,..., p}ateach flip) without extra cost. See section B.3 of the on-line supplement for more
details.
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4.5. Computational complexity results for simple Bayesian variable-selection scenarios
In this section we provide quantitative results on the computational complexity of GS, TGS
and WTGS in some simple BVS scenarios. In particular, we consider two extreme cases: one
where all regressors in the design matrix X are orthogonal to each other (Section 4.5.2), and
one where some of the regressors are perfectly collinear (Section 4.5.3). In the first case the
posterior distribution p(vy|Y) features independent components and thus it is the ideal case for
GS, whereas the second case features some maximally correlated components and thus it is a
worst-case scenario for GS. Our results show that the computational complexity of TGS and
WTGS is not impacted by the change in correlation structure between the two scenarios. This is
coherent with the conjecture of Section 3.5 that the convergence of TGS and WTGS is not slowed
down by pairwise and/or negative correlation. In fact, a block of collinear regressors in the design
matrix X induces a corresponding block of negatively correlated inclusion variables in p(+|Y).
See section B.4 of the on-line supplement for a quantitative example. More generally, strong
correlation between regressors induces strong negative correlation between the corresponding
inclusion variables in p(+|Y). Intuitively, strongly correlated regressors provide the same type of
information regarding Y. Thus, conditionally on the ith regressor being included in the model,
the regressors that are strongly correlated with the ith regressor are not required to explain
the data further and thus have a low probability of being included. Such a behaviour holds
regardless of whether the original correlation between regressors is positive or negative.

As a preliminary step for the results in Sections 4.5.2 and 4.5.3, we now discuss the definition
of computational complexity that we shall use.

4.5.1.  Computational complexity for Markov chain Monte Carlo sampling and importance
tempering

In classical contexts, we can define the computational complexity of an MCMC algorithm as
the product between the cost per iteration and the number of iterations that are required to
obtain Monte Carlo estimators with effective sample size of order 1. One way to define such
a number of iterations is the so-called relaxation time, which is defined as the inverse of the
spectral gap that is associated with the Markov kernel under consideration (for instance the
second-largest eigenvalue in the case where the Markov kernel has a purely discrete spectrum).
Such a definition is motivated by the fact that the asymptotic variances that are associated with
an f-reversible Markov kernel P satisfy

2vary(h)

hel*(X, ), 14
gap(P) SLAXx.D (19

var(h, P) <

where gap(P) is the spectral gap of P (Rosenthal (2003), proposition 1). Note that here gap(P)
refers to the spectral gap of P and not the absolute spectral gap; see Rosenthal (2003) for
more discussion. In what follows we denote the relaxation time of GS as rgs = gap(Pgs) ~!. By
condition (14), we can interpret 2tgs as the number of GS iterations that are required to have
effective sample size equal to 1.

In contrast, TGS asymptotic variances include also an importance sampling contribution; see
equation (7). Thus the direct analogue of condition (14), i.e. var(h, TGS) < 2gap(Prgs) ' var r(h),
does not hold anymore and defining the TGS relaxation time as gap(Prgs)~! would be inap-
propriate. As shown by the following lemma, the problem can be circumvented by using the
spectral gap of a continuous time version of TGS. To simplify the lemma’s proof and notation,
we assume that | X'| < co, which always holds in the BVS context. We expect an analogous result
to hold in the context of general state spaces X.
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Lemma?2. Let|X|< oco.Define the jump matrix Qtgs on X as Qtgs(v,7) =Z(y) Prgs(v,7)
for all ' #~ and Q1Gs(7,7) =Xy 2, 01Gs(7,7). Then

2var ¢ (h)
gap(0TGs)

where gap(Qtgs) is the smallest non-zero eigenvalue of —Qr1gs.

var(h, TGS) < h:X—R, (15)

Lemma 2 implies that gap(Qtgs) implicitly incorporates both the importance sampling and
the auto-correlation terms in var(k, TGS). Motivated by condition (15), we define the relaxation
time of TGS as trgs = gap(QTGs)_l. By lemma 2, we can still interpret 2¢tgs as the number of
TGS iterations that are required to have effective sample size equal to 1. Similarly, we define the
relaxation time of WTGS as the inverse spectral gap of its continuous time version (see section
A.5 in the on-line supplement).

It can be shown that in cases where the importance tempering procedure coincides with
classical MCMC sampling (i.e. when Z () = 1) the two definitions of relaxation times discussed
above coincide.

4.5.2. Diagonal XTX

Consider the case where all regressors are orthogonal to each other, i.e. XTX is diagonal.
This requires that n > p. The resulting posterior distribution for the inclusion variables v =
(71, ---,7p) is a collection of independent Bernoulli random variables. Denoting by ¢; the PIP
of the ith regressor, the posterior distribution of interest f(y) = p(|Y) has the form

p )
fon=11g/c —q)' . (16)

Sampling from a target with independent components as in distribution (16) is the ideal scenario
for GS, and we are interested in understanding how suboptimal TGS and WTGS are compared
with GS in this context. The following theorem provides expressions for the relaxation times of
GS, TGS and WTGS.

Theorem 2. Under distribution (16), the relaxation times of GS, TGS and WTGS satisfy

IGs=o1p,
ITGs = p, (17
twrGs =S(1 — gmin)»

Where a1 =max{gmax, | = qmin}, =maX;e(y,..,p} qi(1 —gi), gmax =maX;e(y,...,p} 9i> Ymin =
mingeqy 1 qi and s=%7 ;.

.....

Theorem 2 implies that tGs and trgs are proportional to the total number of variables p,
whereas twtgs depends only on the expected number of active variables s = Zf: 19i» which is
often much smaller than p. Assuming that a; and g, are bounded away from respectively 0
and 1 as p — oo, the results in expression (17) imply that both GS and WTGS have O(pns)
computational complexity, whereas the complexity of TGS is O(p?n). If XT X is precomputed
before the MCMC run (see Section 4.4), the complexities are reduced to O(ps?) for GS and
WTGS and to O(p?s) for TGS. It follows that, even in the case of independent components,
WTGS has the same theoretical cost of GS. In contrast, TGS is suboptimal by an O(p/s) factor.

Remark 6. The analysis above ignores Rao—Blackwellization, which can be favourable to
TGS and WTGS. In fact, when XT X is diagonal the Rao—Blackwellized PIP estimators of TGS
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and WTGS are deterministic and return the p exact PIPs in one iteration with cost O(np). By
contrast, GS has an O(n ps) cost for each IID sample.

4.5.3.  Fully collinear case

‘We now consider the other extreme case, where there are maximally correlated regressors. In par-
ticular, suppose that m out of the p available regressors are perfectly collinear among themselves
and with the data vector (i.e. each regressor fully explains the data), whereas the other p —m
regressors are orthogonal to the first m regressors. For simplicity, assume that 3., = c(X$X7)_1
and i € (0, 1) fixed. The X T X-matrix resulting from the scenario described above is not full rank.
In such contexts, the standard definition of g-priors, ¥, = c(XEX,Y)_l, is not directly applicable
and needs to be replaced by the more general definition involving generalized inverses (details
are in section B.4 of the on-line supplement).

The posterior distribution of interest, f(y)= p(y|Y), has the structure

p
f=foonseoomm) 11 g (1—gn' 7, (18)
i=m+1

where ¢; € (0, 1) is the posterior inclusion probability of the ith variable fori=m+1,..., p and
fo denotes the joint distribution of the first m variables. By construction, the distribution fj is
symmetric, meaning that fo(vi,...,7m) =¢ XL, for some ¢:{0,...,m} — [0, 1]. See section
B.4 of the on-line supplement for the specific form of g. Under mild assumptions, we have
q(s)/q(1) — 0 as p— oo for all s 1, meaning that the distribution f; concentrates on the
configurations having one and only one active regressor as p increases.

We study the asymptotic regime where m is fixed and p — oo. This corresponds to the com-
monly encountered scenario of having a small number of ‘true’ variables and a large number
of noise variables. This asymptotic regime has been the focus of much of the recent BVS liter-
ature (Johnson and Rossell, 2012) and is motivated, for example, by applications to genomics
(see the examples in Section 5.3). In our analysis, the number of data points n, as well as the
hyperparameters ¢ and &, can depend on p in an arbitrary manner, provided that the following
technical assumption is satisfied.

Assumption 1. lim,_, oo h(1+¢)~1/2 =0, lim SUp,,_, ooh < 1and lim inf,—0oh?(1+¢)"=2/2 >

0.

Assumption 1 is weak and satisfied in nearly any realistic scenario. For example, it is satisfied
whenever ¢ > 1 and h — 0 at a slower than exponential rate in p. Note that the assumptions on
XTX impose the constraint n > p —m + 1.

The following theorem characterizes the behaviour of the relaxation times of GS, TGS and
WTGS as p increases.

Theorem 3. As p — o0, the relaxation times of GS, TGS and WTGS satisfy

19

tgs = O(c!*h~ 1 p),
ttgs = O(p), }
twrgs =0(s),

where s =[E¢[|v[] is the expected number of active variables a posteriori.

Theorem 3 implies that WTGS has O(pns) computational complexity, whereas TGS has
complexity at least O(p2n). We conjecture that rrgs < O(p) and we discuss a proof strategy
in remark 7 of the on-line supplementary material. If such a conjecture is correct, then TGS
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has complexity exactly O(p2n). In contrast expression (19) implies that the computational
complexity of GSis at least O(pnsc!/>h~1), whose asymptotic behaviour depends on the choices
of ¢ and h. In general, WTGS provides an improvement over GS of at least O(c!/?h~1). If
h= (;)(p_l) and ¢ =n such an improvement is at least O(pn!/?), whereas if ¢ = p? it is at least
O(p).

Theorems 2 and 3 suggest that the relaxation times of TGS and WTGS are not significantly
impacted by changes in correlation structure between equations (16) and (18). As discussed in
Section 4.5.1, this supports the conjectures of Section 3.5.

5. Simulation studies

In this section we provide simulation studies illustrating the performances of GS, TGS and
WTGS in the BVS context that was described in Section 4.

5.1.  lllustrative example
The differences between GS, TGS and WTGS can be well illustrated considering a scenario
where two regressors with good explanatory power are strongly correlated.

In such a situation, models including one of the two variables will have high posterior prob-
ability, whereas models including both variables or none of the two will have a low posterior
probability. As a result, the Gibbs sampler will become stuck in one of the two local modes
corresponding to one variable being active and the other inactive.

Fig. 4 considers simulated data with n =100 and p =100, where the two correlated variables
are number 1 and 2. The detailed simulation set-up is described in Section 5.2 (namely scenario
1 with signal-to-noise ratio SNR = 3). All chains were started from the empty model (y; =0 for
everyi). TGS and WTGS, which have a roughly equivalent cost per iteration, were run for 30000
iterations, after a burn-in of 5000 iterations. GS was run for the same central processor unit time,
performing multiple moves per iteration so that the cost per iteration matched the cost of TGS
and WTGS. Figs 4(a) and 4(b) display the trace plots of the estimates for the PIP of variables 1
and 2 for GS, TGS and WTGS. The true PIP values are indicated with grey horizontal lines. Such
values are accurate approximations to the exact PIP obtained by running an extremely long run
of WTGS. For this illustration, it is reasonable to treat these values as exact as the associated
Monte Carlo error is orders of magnitude smaller than the other Monte Carlo errors that are
involved in the simulation. In the run displayed, GS became stuck in the mode corresponding
to (71,72) = (1,0) and never flipped variable 1 or 2. In contrast, both TGS and WTGS manage
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Fig.4. Running estimates of PIPs for variables (a) 1, (b) 2 and (c) 3 producedby GS (- - - - - - - ), TGS (— —-)

and WTGS ( ): here p = n=100; thinning is used so that all schemes have the same cost per iteration
( , accurate approximations to the true values of the PIPs)
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to move frequently between the two modes and indeed the resulting estimates of PIPs for both
variables appear to converge to the correct value, with WTGS converging significantly faster.
It is also interesting to compare the schemes’ efficiency in estimating PIP for variables with
lower but still non-negligible inclusion probability. For example variable 3 in these simulated
data has a PIP of roughly 0.05. In this case the variable is rarely included in the model and the
frequency-based estimators have a high variability, whereas the Rao—Blackwellized estimators
produce nearly instantaneous good estimates; see Fig. 4(c).

Consider then an analogous simulated data set with p=1000 and » = 500. In this case the
larger number of regressors induces a more significant difference between TGS and WTGS as
the latter focuses the computational effort on more important variables. In fact, as shown in
Fig. 5, both TGS and WTGS manage to move across the (v1,72) =(0,1) and (y1,72) = (1,0)
modes but WTGS does it much more often and produces estimates converging dramatically
faster to the correct values. This is well explained by proposition 6, which implies that TGS
flips each variable every 1/p iterations on average, whereas WTGS has frequency of flipping
equal to ¢~'E[n;(y_;)] defined in Section 4.3, which is a function of p(v;=1|Y). The faster
mixing of WTGS for the most influential variables accelerates also the estimation of lower but
non-negligible PIPs, such as co-ordinates 3 and 600 in Figs 4 and 5 respectively.

To summarize, the main improvements of TGS and WTGS are due to

(a) tempering reducing correlation and helping to move across modes (see Figs 4(a) and 4(b)),
(b) Rao-Blackwellization producing more stable estimators (see Figs 4(c) and 5(c)) and

(c) theweighting mechanism of WTGS allowing us to focus computation on relevant variables
(see Figs 5(a) and 5(b)).

The qualitative conclusions of this illustrative example would not change if we consider a
scenario involving m strongly correlated variables, with m > 2.

5.2. Simulated data
In this section we provide a quantitative comparison between GS, TGS and WTGS under
various simulated scenarios. Data are generated as Y ~ N(X3*, 0%) with 02 =1,

2

and each row (X1, ..., X;p) of the design matrix X independently 51mulated from a multivariate
normal distribution w1th zero mean and covariance XX) having nX ; ] =1 for all j. We set the
prior probability 4 to 5/ p, corresponding to a prior expected number of active regressors equal
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Fig. 5. Analogous to Fig. 4 with p =1000 and n=500: (a) variable 1; (b) variable 2; (c) variable 600
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to 5. The values of 3} and El(])-() for i # j vary depending on the scenario considered. In particular,
we consider the following situations:

(a) two strongly correlated variables, 3§ = (1,0,...,0), Zg) = Egl() =0.99 and Eg) =0 oth-
erwise;

(b) batches ofcorrelatedvaz%bles, ﬂ(’)" =@3,3,-2,3,3,—-2,0,...,0), Elg;() =0.9ifi, je{1,2,3}
ori,je{4,5,6} and = 0 otherwise;

() uncorrelated variables, B = (2, —3,2,2, —3,3, —2,3, —=2,3,0,...,0) and %{}" =0 for
all i # j. '

Scenarios analogous to these have been previously considered in the literature. For example,
Titsias and Yau (2017), section 3.2.3, considered a scenario similar to scenario (a), Wang et al.
(2011), example 4, and Huang ez al. (2016), section 4.2, a scenario similar to scenario (b) and
Yang et al. (2016) a scenario analogous to scenario (c). We compare GS, TGS and WTGS
on all three scenarios for a variety of values of n, p and SNR. To have a fair comparison,
we implement the Metropolized version of GS, like we did for TGS and WTGS. To provide
a quantitative comparison we consider a standard measure of relative efficiency: the ratio of
the estimators’ effective sample sizes over computational times. More precisely, we define the
relative efficiency of TGS over GS as

2
Effrgs _ esstgs/Trgs  0GsIGs
Effes  essgs/Tas  o2gsTrGs

(20)

where Ués and U%GS are the variances of the Monte Carlo estimators produced by GS and
TGS respectively, whereas Tgs and Ttgs are the central processor unit time that is required
to produce such estimators. An analogous measure is used for the relative efficiency of WTGS
over GS. For each simulated data set, we computed the relative efficiency defined by equation
(20) for each PIP estimator, thus obtaining p-values: one for each variable. Table 1 reports the
median of such p-values for each data set under consideration. The variances in equation (20),
such as O'és and O'%GS, were estimated with the sample variances of the PIP estimates obtained
with 50 runs of each algorithm. See section B.5 of the on-line supplement for more details.
From Table 1 it can be seen that both TGS and WTGS provide orders of magnitude im-
provement in efficiency compared with GS, with median improvement of TGS over GS ranging
from 1.7 x 103 to 2.1 x 107 and of WTGS over GS ranging from 8.0 x 103 to 1.1 x 108. Such a
huge improvement, however, needs to be interpreted carefully. In fact, in all the simulated data
sets the fraction of variables having non-negligible PIP is small (as is typical in large p BVS
applications) and thus the median improvement refers to the efficiency in estimating a variable
with very small PIP, e.g. below 0.001. When estimating such small probabilities, standard Monte
Carlo estimators perform poorly compared with Rao—Blackwellized versions (see Figs 4(c) and
5(c)) and this explains such a huge improvement of TGS and WTGS over GS. In many practical
scenarios, however, we are not interested in estimating the actual value of such a small PIP.
Thus a more informative comparison can be obtained by restricting our attention to variables
with moderately large PIP. Table 2 reports the mean relative efficiency for variables whose PIP
is estimated to be larger than 0.05 by at least one of the algorithms under consideration. Empty
values correspond to cells where either no PIP was estimated above 0.05 or where GS never
flipped such a variable and thus we had no natural (finite) estimate of the variance in equation
(20). In both such cases we expect the improvement in relative efficiency over GS to be extremely
large (either corresponding to the values in Table 1, first case, or currently estimated at oo, sec-
ond case) and thus excluding those values from Table 2 is conservative and plays in favour of
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Table 1. Median improvement over variables of TGS and WTGS relative to GS for simulated datat

(pn) TGS versus GS for the following values of SNR:  WTGS versus GS for the following values of SNR:

0.5 1 2 3 0.5 1 2 3

Scenario (a)

(100,50)  4.0x10° 2.4x10* 2.0x10* 6.6x10% 2.1x10%  2.6x10°  34x10°  1.9x10°
(200,200) 1.0x10® 4.2x10® 4.9x10° 2.1x10° 1.6x107  53x107  1.0x107  2.4x107
(1000,500) 1.3x10% 1.2x106 1.1x10° 2.2x100 78x107  93x107  6.5x107  1.1x108

Scenario (b)

(100,50)  1.0x10* 2.9x10® 1.7x10° 3.9x104 1.5x105  4.1x10*  9.3x10®  1.6x10°
(200,200) 1.1x105 1.0x105 8.2x103 1.4x107 1.8x10°  2.8x10°  1.5x10°  3.2x10°
(1000,500) 4.6x10° 9.2x10* 6.7x10° 2.1x10° 33x107  1.1x107  L.1x107  1.5x107

Scenario (c)

(100,50)  2.5x10® 42x10® 7.7x10° 7.4x10% 29%10%  39x10*  8.0x10°  1.5x10%
(200,200)  9.1x10* 4.3x10% 2.8x107 3.5%x 100 1.0x106  3.1x10°  29x10°  8.0x10°
(1000,500) 9.8x10* 5.9x10° 1.1x107 2.1x107 7.0x10°  4.4x10°  7.6x10°  1.0x107

tScenarios (a)—(c) are described in Section 5.2.

GS. The mean improvements that are reported in Table 2 are significantly smaller than that in
Table 1 but still potentially very large, with ranges of improvement being (1.4,2.5 x 10°) for
TGS and (1.8 x 10, 1.9 x 10*) for WTGS. There is no value below 1, meaning that in these
simulations TGS or WTGS is always more efficient than GS, and that WTGS is more efficient
than TGS in most scenarios. Also, especially for WTGS, the improvement over GS grows larger
as p increases.

The value of ¢ in the prior covariance matrix has a large effect on the concentration of the
posterior distribution and thus on the resulting difficulty of the computational task. Different
suggestions for the choice of ¢ have been proposed in the literature, such as ¢ =n (Zellner, 1986),
c=max{n, p?} (Fernandez et al., 2001) or a fixed value between 10 and 10* (Smith and Kohn,
1996). For the simulations that are reported in Tables 1 and 2 we set ¢ =10, which provided
results that are fairly representative in terms of relative efficiency of the algorithms that were
considered. In Section 5.3 we shall consider both ¢ =7 and ¢ =max{n, p*}.

5.3. Real data

In this section we consider three real data sets with increasing number of covariates. We compare
WTGS with GS and the Hamming ball sampler, which is a recently proposed sampling scheme
designed for posterior distributions over discrete spaces, including BVS models (Titsias and
Yau, 2017). We refer to the data sets as DLD data, TGFB172 data and TGFB data. The DLD
data come from a genomic study by Yuan et al. (2016) based on ribonucleic acid sequencing
and have a moderate number of regressors, p =157 and n=192. The version of the data set
that we used is freely available from the supplementary material of Rossell and Rubio (2018).
See section 6.5 therein for a short description of the data set and the inferential questions of
interest. The second and third data sets are human microarray gene expression data in colon
cancer patients from Calon et al. (2012). The TGFB172 data, which have p=172 and n =262,
are obtained as a subset of the TGFB data, for which p=10172 and n =262. These two data
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Table 2. Mean improvement of TGS and WTGS relative to GS over variables with PIP > 0.05}

(pn) TGS versus GS for the following values of SNR:  WTGS versus GS for the following values of SNR:

0.5 1 2 3 0.5 1 2 3

Scenario (a)

(100,50) 72x10 1.8x10  2.8x10% 58x102  42x102  3.1x103
(200,200) 4.9%103 6.6x10  1.9x102 1.1x10% 1.8x103  1.6x10%
(1000,500) 27x10%2  6.3x102 1.4 8.1x10 8.8x103  2.5x10*  5.8x102  1.9x104
Scenario (b)

(100,50) 48 14x10 3.3 2.0x10 13x102  24x102  1.8x10 1.4x10?
(200,200) 8.6x10  4.7x10 3.4 2.5x 100 23x103  2.1x10®  6.0x10 4.1x10?

(1000,500) 46x10  3.7x10  13x10  45x102  1.1x10* 7.6x10® 1.1x10>  1.8x10%

Scenario (c)

(100,50) 2.7 5.3 9.2 2.5x10 6.7x10 2.1x10
(200,200) 1.1x10%2  6.6x10 1.3x103  4.6x10%
(1000,500) 1.6x10  6.8x10% 1.1x103  9.4x103

tSame simulation set-ups as in Table 1. Empty values correspond to large values with no reliable estimate available
(see Section 5.2 for discussion).

sets are described in section 5.3 of Rossell and Telesca (2017) and are freely available from the
corresponding supplementary material.

If XTX and YTX are precomputed, the cost per iteration of the algorithms under consider-
ation is not sensitive to n (see Section 4.4 and section B.2 of the on-line supplement). Thus a
data set with a large value of p, like the TGFB data, represents a computationally challenging
scenario, regardless of having a low value of n. Moreover, low values of n have been reported
to induce posterior distributions p(~|Y) that are less concentrated and more difficult to explore
(Johnson (2013), sections 3-4). In this sense, small n—large p scenarios are among the most
computationally challenging in the BVS scenario.

We performed 20 independent runs of each algorithm for each data set with both ¢ =n
and ¢ = p?, recording the resulting estimates of PIPs. We ran WTGS for 500, 1000 and 30000
iterations for the DLD, TGFB172 and TGFB data sets respectively, discarding the first 10%
of samples as burn-in. The number of iterations of GS and the Hamming ball sampler were
chosen to have the same run time as WTGS. To assess the reliability of each algorithm, we
compare results that were obtained over different runs by plotting each PIP estimate over the
estimates that were obtained with different runs of the same algorithm. The results are displayed
in Fig. 6. Points close to the diagonal indicate estimates in accordance with each other across
runs, whereas points that are far from the diagonal indicate otherwise. It can be seen that
WTGS provides substantially more reliable estimates for all combinations of data set and value
of ¢ under consideration and that the improvement in efficiency increases with the number
of regressors p. Since each box in Fig. 6 contains a large number of PIP estimates (namely
p x 20 x 19 points), we also provide the analogous figure that was obtained by running only two
runs of each algorithm in section B.7 of the on-line supplement. The latter representation may
be more familiar to the reader.

All computations reported in this section were performed on the same desktop computer
with 16 Gbytes of random-access memory and an i7 Intel processor, using the R programming
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language (R Core Team, 2017). The R code to implement the various samplers under consider-
ation is freely available from https://github.com/gzanella/TGS. For the largest data
set under consideration (p = 10172) WTGS took an average of 115 s for each run shown in Fig. 6.
We performed further experiments, to compare the WTGS performances with those of available
R packages for BVS and some alternative methodology from the literature. The results, which
are reported in section B.6 of the on-line supplement, suggest that WTGS provides state of the
art performances for fitting spike-and-slab BVS models like those of Section 4.1.

6. Discussion

We have introduced a novel Gibbs sampler variant, demonstrating its considerable potential
both in toy examples as well as more realistic BVS models, and giving underpinning theory to
support the use of the method and to explain its impressive convergence properties.

TGS can be thought of as an intelligent random-scan Gibbs sampler, using current state
information to inform the choice of component to be updated. In this way, the method is
different from the usual random-scan method which can also have heterogeneous component
updating probabilities which can be optimized (e.g. by adaptive MCMC methodology; see for
example Chimisov et al. (2018)).

There are many potential extensions of TGS that we have not considered in this paper.
For example, we could replace step (b) of TGS, where i is sampled proportionally to p;(x),
with a Metropolized version as in Liu (1996), where the new value i“*D is proposed from
{1,...,d}\{i”} proportionally to p;s1 (x) for i¥+D £ This would effectively reduce the
probability of repeatedly updating the same co-ordinate in consecutive iterations, which, as
shown in proposition 5, can be interpreted as a rejected move.

Another direction for further research might aim to reduce the cost per iteration of TGS when
d is very large. For example, we could consider a ‘blockwise’ version of TGS, where first a subset
of variables is selected at random and then TGS is applied only to such variables conditionally
on the others, to avoid computing all the values of { p;(x) };1: | ateachiteration. The choice of the
number of variables to select would then be related to a cost per iteration versus mixing trade-off.
See section 6.4 of Zanella (2019) for a discussion of similar blockwise implementations. Also,
computing p;(x) exactly may be infeasible in some contexts, and thus it would be interesting
to design a version of TGS where the terms p;(x) are replaced by unbiased estimators while
preserving the correct invariant distribution.

A further possibility for future research is to construct deterministic scan versions of TGS
which may be of value for contexts where deterministic scan Gibbs samplers are known to out-
perform random-scan samplers (see for example Roberts and Rosenthal (2015)). Also, it would
be useful to provide detailed methodological guidance regarding the choice of good modified
conditionals g(x;|x_;), e.g. good choices of the tempering level 3, extending the preliminary
results of Section 3.5.

One could design schemes where the conditional distributions of k co-ordinates are tempered
at the same time, rather than a single co-ordinate. A natural approach would be to use the TGS
interpretation of remark 2 and to define some extended target on X x {1,...,d}*. This would
enable good mixing to be achieved in a larger class of target distributions (compared with those
of Section 3.5) at the price of a larger cost per iteration.

TGS provides a generic way of mitigating the worst effects of dependence on Gibbs sam-
pler convergence. Classical ways of reducing posterior correlations involve reparameterizations
(Gelfand et al., 1995; Hills and Smith, 1992). Although these can work very well in some specific
models (see for example Zanella and Roberts (2017) and Papaspiliopoulos et al. (2018)), the
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generic implementations requires the ability to perform GS on generic linear transformations of
the target, which is often not practical beyond the Gaussian case. For example it is not clear how
to apply such methods to the BVS models of Section 4. Moreover reparameterization methods
are not effective if the covariance structure of the target changes with location. Further alterna-
tive methodology to overcome strong correlations in GS include the recently proposed adaptive
MCMC approach of Duan et al. (2018) in the context of data augmentation models.

Given the results of Sections 4 and 5, it would be interesting to explore the use of the method-
ology that is proposed in this paper for other BVS models, such as models with more elaborate
priors (e.g. Johnson and Rossell (2012)) or binary response variables.
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