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RANDOM PARTITION MODELS AND COMPLEMENTARY
CLUSTERING OF ANGLO-SAXON PLACE-NAMES
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University of Warwick

Common cluster models for multi-type point processes model the ag-
gregation of points of the same type. In complete contrast, in the study of
Anglo-Saxon settlements it is hypothesized that administrative clusters in-
volving complementary names tend to appear. We investigate the evidence for
such a hypothesis by developing a Bayesian Random Partition Model based
on clusters formed by points of different types (complementary clustering).

As a result, we obtain an intractable posterior distribution on the space
of matchings contained in a k-partite hypergraph. We apply the Metropolis–
Hastings (MH) algorithm to sample from this posterior. We consider the prob-
lem of choosing an efficient MH proposal distribution and we obtain consis-
tent mixing improvements compared to the choices found in the literature.
Simulated Tempering techniques can be used to overcome multimodality and
a multiple proposal scheme is developed to allow for parallel programming.
Finally, we discuss results arising from the careful use of convergence diag-
nostic techniques.

This allows us to study a data set including locations and place-names
of 1316 Anglo-Saxon settlements dated approximately around 750–850 AD.
Without strong prior knowledge, the model allows for explicit estimation of
the number of clusters, the average intra-cluster dispersion and the level of
interaction among place-names. The results support the hypothesis of orga-
nization of settlements into administrative clusters based on complementary
names.

1. Introduction.

1.1. The historical problem. The starting point of this work is a data set sup-
plied by Professor John Blair of Queen’s College, Oxford. The data set consists
of the locations and place-names of 1316 Anglo-Saxon settlements dated approx-
imately around 750–850 AD [data set fully available in Zanella (2015a)]. In the
data set there are 20 different kinds of place-names in total. Place-names form an
important source of information regarding the Anglo-Saxon civilization and are
intensively studied by the historical community [see, e.g., Gelling and Cole (2000)
and Jones and Semple (2012)].
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In particular, the place-names included in this data set are often described as
functional place-names, as they were probably used to indicate specific functions
or features of their corresponding settlements. For example Burton is thought to
label fortified settlements having a military role, Charlton the settlements of the
peasants and Drayton the settlements dedicated to portage.

Moreover, historians expect the settlements in this data set (especially those
having one of the place-names underlined in Table 1) to have been formed approx-
imately at the same time and in the same context (specifically, royal administration
in the period c. 750–850). This suggests that there could be some coherence in the
distribution of such place-names. In particular, Professor Blair’s hypothesis is that
those settlements were not independent units, but rather that they were organized
into administrative clusters (or districts) where place-names were used to indicate
the role of each settlement within the district. According to this hypothesis, such
clusters would tend to involve a variety of complementary place-names in each of
them. For example, Figure 1 indicates a plausible administrative cluster made of
four settlements, with, for example, a settlement dedicated to military functions
(Burton) and one dedicated to agriculture (Carlton).

The objective of our statistical approach to the study of settlements names and
geographical locations is to address the following questions: Is there statistical
support for Blair’s hypothesis? What is the typical distance between settlements in
the same cluster? How many settlements are clustered together and how many are
singletons? Which place-names tend to cluster together? Can we provide a list of
those clusters which are more strongly supported by the analysis?

Our intention is to provide a useful contribution to historical research on this
topic based on a quantitative approach, bearing in mind the scarcity of textual
evidences regarding the Anglo-Saxon period. Since there is a lot of uncertainty and
controversy regarding the meaning of place-names, even the apparently obvious
ones, we should try to be fairly neutral from the historical point of view, avoiding
strong assumptions on the functions of place-names and relationships among them.
This will help our statistical analysis to be a genuine contribution to the ongoing
historical debate on this topic.

FIG. 1. A cluster of four Anglo-Saxon settlements (highlighted in green and circled) in the region
of Great Glen (highlighted in red).
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We note that there has already been statistical work related to Anglo-Saxon
place-names. In particular, Keith Briggs did various works on this topic (see
http://keithbriggs.info/place-names.html for a full list). Nevertheless, both the his-
torical questions considered and the statistical methodologies used are substan-
tially different from ours.

1.2. Modeling approach. By considering the place-names as marks attached
to points, we model our data as the realization of a k-type point process (also called
k-variate point process), where k is the number of different place-names available
[see Baddeley (2010)]. We can view our problem as a clustering problem based
on aggregations of points of different types. In fact, we seek a complementary
clustering: each cluster may contain at most one settlement for each place-name.
This simplifying requirement is motivated by the assumption that each place-name
represents a different administrative function (role) within the cluster.

Our intention is to perform explicit inferences on the partition of settlements
into clusters. As with hierarchical models, it would be desirable to analyze the data
set all at once, so as not to loose statistical power, and also to provide inferences
at the single cluster level to facilitate visualization and historical interpretation of
the results of the analysis.

We employ Random Partition Models (RPMs), often used in the Bayesian Non-
parametric literature [e.g., Lau and Green (2007)], as they permit natural infer-
ences on the cluster partition and they have enough flexibility to allow specification
of a useful model for complementary clustering.

Standard approaches for point process cluster modeling, like the Log-Gaussian
Cox Processes [see Lawson and Denison (2010), Chapter 3] or the Neyman–Scott
model [e.g., Loizeaux and McKeague (2001)], are not appropriate here, as such
models usually provide inferences on the cluster centers or on the point process in-
tensity, while we seek explicit inferences on the cluster partition. Moreover, stan-
dard cluster methods for marked point process consider the marks as an additional
dimension and search for aggregations of points with similar marks. In complete
contrast, we seek aggregations of points of different types.

Diggle, Eglen and Troy (2006) seek evidence for repulsion among points of dif-
ferent types in a bivariate spatial distribution of amacrine cells. They use a pairwise
interaction model, which has theoretical limitations which prevent its use for clus-
tering. While this approach could be extended to our case by using area-interaction
point processes, which can model clustering [Baddeley and van Lieshout (1995)],
it would not provide us with explicit estimates of the cluster partition and it would
not easily allow complementary clustering specification (at most one point of each
type in each cluster).

Multitarget tracking involves the Data Association problem, that is to group to-
gether measurements recorded at different time intervals to create objects tracks
[e.g., Oh, Russell and Sastry (2009)]. This problem is similar to the problem of

http://keithbriggs.info/place-names.html
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performing complementary clustering of a k-type point process. In Data Associ-
ation problems, however, the interest is to find the best association, while we are
interested in assessing the strength of clustering and the level of interaction be-
tween different place-names, and in quantifying the uncertainty of our estimates.
In fact, the modeling aspects we have to be careful about are different from the
ones of Data Association problems, while the computational challenges are simi-
lar (see Sections 3.6 and 4).

1.3. Organization of the paper. In Section 2 we perform preliminary analysis
of the data set, testing whether there is a significant clustering interaction between
points of different types by using common Spatial Statistics tools such as K-cross
functions. In Section 3 we define a RPM for complementary clustering and dis-
cuss appropriate prior distributions for the cluster partition [see also Section 3.1
of Zanella (2015b)]. The resulting model leads to an intractable posterior distribu-
tion. We express such a posterior in terms of matchings contained in hypergraphs.
We thus link the problems of sampling from the posterior and finding the posterior
mode to the more classical problems of Data Association and Optimal Assign-
ment. In Section 4 we design a Metropolis–Hastings algorithm to obtain approx-
imate samples from the posterior. We carefully consider the problem of choosing
an efficient proposal distribution, we explore the use of Simulated Tempering to
overcome multimodality, and we develop a multiple proposal scheme to allow for
parallel computation. In Section 5 we analyze the Anglo-Saxon place-name loca-
tion data with our RPM, using the algorithm of Section 4. The results support the
hypothesis of settlements being organized into administrative clusters and give ex-
plicit inferences of various quantities of historical interest. Finally, in Section 6 we
discuss future directions of research. Supplementary material includes extensive
calculations, additional tables and plots, the settlements data set and R codes to
perform the data analysis.

2. Preliminary analysis of the Anglo-Saxon settlements data set. We de-
scribe the Anglo-Saxon settlements data set supplied by Professor John Blair and
the data cleaning operations that we carried out. We then perform preliminary
analysis on the resulting point pattern using Spatial Statistic tools.

2.1. Format of the data set. The data set [available in Zanella (2015a)] is made
of 20 different groups, each of which contains the list of settlements having one of
the 20 place-names (see Table 1). The historians involved in the project expect the
clustering behavior to involve, in particular, 13 of those place-names, indicated in
Table 1. We refer to the settlements relative to those 13 place-names as the reduced
data set, and to all the settlements recorded as the full data set. We will perform
the analysis on both data sets.

For each settlement the following variables are given: County, place, Parish or
Township, grid ref, date of first evidence (see Table 2).
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TABLE 1
Number of settlements in the Anglo-Saxon place-names location data set supplied by Professor
Blair. The historians expect the clustering behavior mainly to involve 13 of those place-names

(underlined and emboldened in this table). Settlements with less precise locations (third columns)
are settlements whose location is given with 1 km accuracy, rather than 100 m, or having a more

uncertain location (see Section 2.1). The term “couples” (last two columns) refers to multiple
records of the same settlements (see Section 2.2 for discussion). The “total number”

column refers to the count after merging the couples classifieds by historians

# of settlements # of couples # of couples
Total with less precise (as classified (as classified

Place-names number location by historians) by proximity)

Aston/Easton 90 0 1 8
Bolton 17 1 1 0
Burh-Stall 29 2 1 0
Burton 108 2 1 7
Centres 46 0 0 0
Charlton/Charlcot 98 3 7 1
Chesterton 9 0 0 0
Claeg 84 13 0 5
Draycot/Drayton 55 1 0 2
Eaton 33 1 1 5
Kingston 71 1 1 1
Knighton 26 1 0 0
Newbold 34 3 1 0
Newton 191 5 4 5
Norton 74 1 8 1
Stratton 37 0 5 0
Sutton 101 2 4 5
Tot 77 17 1 1
Walton/Walcot 51 4 1 0
Weston 85 3 3 2

Total 1316 60 40 43

TABLE 2
Data available regarding the first 6 settlements with the name Burton. The acronym DB stands for

Domesday Book, compiled in 1086

Date of first
County Place Parish or Township Grid ref. evidence

BRK Bourton Bourton SU 230870 c. 1200
BUC Bierton Bierton with Broughton SP 836152 DB
BUC Bourton Buckingham SP 710333 DB
CHE Burton Burton (T) SJ 509639 DB
CHE Burton Burton (T) SJ 317743 1152
CHE Buerton Buerton (T) SJ 682433 DB
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The locations are expressed through the Ordnance Survey (OS) National Grid
reference system. A set of OS National Grid coordinates, like SU 230870, identify
a 100 m×100 m square on a grid covering Great Britain. Some locations have just
2 letters and 4 digits (e.g., SU 2387) and they identify a 1 km × 1 km square, and
some have a letter c in front of them (e.g., c. SU 2387) to indicate that the location
is less accurate (see Table 1 for amounts).

2.2. Data cleaning and data assumptions. Our analysis is concerned with
place-names (variable “place”) and geographical locations (variable “Grid refer-
ence”). We convert the data to a k-type point process form as described below.
Such a data cleaning process entails historical assumptions on the data set and,
thus, we have been guided by the judgment of the subject-specific historians in-
volved in this project in doing so.

Place-names: we express the variable “place” as a categorical variable with k

possible values (i.e., k types). By doing so we ignore minor variations in place-
names. For example, we consider the settlements of Table 2 as having place-name
Burton: their actual recorded place-names vary among Burton, Bourton, Bierton,
Buerton.

Four groups (out of 20) are made up of two subgroups each with similar place-
names: Aston–Easton, Charlton–Charlcot, Drayton–Draycot and Walton–Walcot.
We consider such subgroups to be the same, for example, Charlton and Charlcot
are treated as the same place-name.

Locations: we convert OS National Grid coordinates to two-dimensional Eu-
clidean coordinates and each settlement is assumed to be located at the center of
the corresponding OS National Grid square.

“Multiple” records: it is sometimes indicated in the original data set that some
couples (or triples) of settlements, with same place-name and very close locations,
have to be considered as multiple records of the same settlement. We replaced
such couples (or triples) of settlements with one settlement located at their mid-
point. Moreover, there are some other pairs of records having very close locations
and the same place-name (see Table 1 for amounts). It is primarily a matter of his-
torical interpretation whether these couples have to be considered as single settle-
ments. We performed the analysis under both hypotheses (keeping them separated
and merging them) without seeing significant changes in the results. The analysis
presented here is made with those settlements merged together (3 km is the thresh-
old distance below which we identify two records of settlements with the same
place-name).

Observation region W : a point processes realization consists of points locations
and of the region W where the points have been observed. Indeed, both the K-cross
function analysis of Section 2.3 and the Bayesian analysis of Section 3 will use in-
formation about W . In our case we define W as Great Britain [coastline obtained
from the mapdata R package Becker, Wilks and Brownrigg (2013)] cropping the
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region where the point process intensity g falls below a certain threshold, approx-
imately at the borders between England–Scotland and England–Wales. We also
added a small buffer zone of 3 km around the region to include the few points that
were falling outside the region (e.g., because the coastline has moved or because
the location was inaccurate). See Figure 12 for a plot of the region.

2.3. K-cross function analysis. Second moment functions are a useful tool to
investigate interpoint interaction [e.g., Chiu et al. (2013)]. In particular, given a
multitype point pattern, bivariate (or cross-type) K-functions provide good sum-
mary functions of the interaction across points of different types. The bivariate
K-function Kij (r) is the expected number of points of type j closer than r to a
typical point of type i, divided by the intensity λj of the type j subpattern of points
xj [e.g., Baddeley (2010), Section 6]. For testing and displaying purposes we de-
fine a single summary function, a multitype K-function Kcross(r), as the weighted
average of Kij (r) for i �= j , where the weights are the product of the intensities
λiλj .

Classical K-functions, however, rely strongly on the assumption that the point
pattern is stationary, which is not appropriate for our data set. Therefore, we use
the inhomogeneous version of the K-functions, where the contribution coming
from each couple of points is reweighted to take into account for spatial inhomo-
geneity [Baddeley, Møller and Waagepetersen (2000)]. Standard estimates of the
inhomogeneous bivariate K-functions K̂ij are obtained using the spatstat R pack-
age [Baddeley and Turner (2005)].

2.3.1. Null hypothesis testing. In order to test whether the interaction shown
by K-functions is significant or not, we need to define a null hypothesis (rep-
resenting no interaction among place-names). Section 8 of Baddeley (2010) de-
scribes three classical null hypotheses for multivariate point processes: random
labeling (given the locations the point types are i.i.d.), Complete Spatial Random-
ness and Independence (CSRI, the locations arise from a uniform Poisson point
process and the point types are i.i.d.) and independence of components (points of
different types are independent). The random labeling and the CSRI hypotheses
are unrealistic assumptions for our data set because our point pattern is clearly not
stationary and the distribution of place-names is not spatially homogeneous (some
place-names are more concentrated in the South, some in the North and so on). The
independence of components hypothesis is realistic, but, in order to test it, station-
arity of the points pattern is usually assumed. Instead, we define the following
no-interaction null hypothesis: each subpattern of points xj is an inhomogeneous
Poisson point process [with intensity function λj (·) potentially varying over j ].
Note that a more realistic null hypothesis would also include repulsion among
points of the same type. In Section 1 of Zanella (2015b) we implement such a null
hypothesis using Strauss point-processes. The results are very similar to the ones
presented here and require additional tuning of various parameters.
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Given the null hypothesis, we perform the following approximate Monte Carlo
test. First, we estimate the intensities λj (·) with λ̂j (·) [see Figures 4 and 5
of Zanella (2015c)] obtained through standard Gaussian kernel smoothing with
bandwidth chosen according to the cross-validation method [e.g., Diggle (2003),
pages 115–118], and edge correction performed according to Diggle (1985). Sec-
ond, we sample 99 independent multivariate inhomogeneous Poisson point pat-
terns according to {λ̂j (·)}kj=1. Finally, we use those samples to plot simulation
envelopes and to perform a deviation test with significance α = 0.05 using as

a summary function a centered version of the L-function L̂cross(r) =
√

K̂cross(r)
π

for r ∈ (0, rmax), with rmax = 15 km. The deviation test [Grabarnik, Myllymäki
and Stoyan (2011)] summarizes the summary function with a single value D =
maxr∈(0,rmax) L̂cross(r) − E[L̂cross(r)] and compares it to the ones obtained from
the 99 simulated samples.

The null hypothesis is rejected for both the full and the reduced data set (see
Figure 2). For the reduced data set this provides evidence of a stronger clustering
effect. The R code used to perform this test and produce Figure 2 is given in Zanella
(2015a). Application of the same deviation test on the bivariate L-functions L̂ij (r)

provides an indication of which couples of place-names exhibit significant inter-
action [see Figure 6 of Zanella (2015c)].

The preliminary analysis we just presented indicates a clustering interaction be-
tween points of different types. Nevertheless, K-functions do not provide explicit
estimates and quantification of uncertainty for the parameters of interest (including
the cluster partition itself). In the next section we develop a more advanced model
in order to provide more informative answers to the questions of historical interest.
We regard K-functions as a useful exploratory tool and the fact that they indicate
interaction is a motivation to pursue further statistical analysis.

We note that Dr. Stuart Brookes from UCL has already used second moment
functions to do some preliminary analysis on the Anglo-Saxon settlements data
set presented here (personal communication by Professor John Blair).

FIG. 2. Black solid lines represent L̂cross(r) − E[L̂cross(r)] for the observed pattern, the 95% en-
velopes (gray areas) are obtained using 99 simulated patterns and the (red) dashed lines indicate the
upper deviations. Deviation test: if the (black) solid line rises above the (red) dashed line, then the in-
teraction can be considered significant at significance level α = 0.05. The values of E[L̂cross(r)] are
estimated using independently simulated point patterns generated according to the null hypothesis.
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3. A Bayesian complementary clustering model.

3.1. Random Partition Models. We present Random Partition Models (RPMs)
in the specific context of planar k-type point processes. For more general
and detailed discussions see Lau and Green (2007) and Müller and Quin-
tana (2010). Let ρ be a partition of an ordered set of marked points x =
((x1,m1), . . . , (xn(x),mn(x))), with each (xi,mi) belonging to R

2 × {1, . . . , k}.
Thus, ρ can be represented as an unordered collection {C1, . . . ,CN(ρ)} of dis-
joint nontrivial subsets of the indices {1, . . . , n(x)} whose union is the whole set
{1, . . . , n(x)}. RPMs are used to draw inferences on the partition ρ given the ob-
served points x. Given Cj = {i(j)

1 , . . . , i
(j)
sj }, we define xCj

= {(x
i
(j)
1

,m
i
(j)
1

), . . . ,

(x
i
(j)
sj

,m
i
(j)
sj

)}, for j running from 1 to N(ρ). We call xCj
cluster and sj the size of

the cluster. Given the partition ρ, we suppose that locations in each cluster xCj
are

generated independently of locations in other clusters, according to a probability
density function h(sj ,σ )(·) depending on sj and on a global intra-cluster dispersion
parameter σ . Thus, the probability density function of x conditional on ρ and σ is∏N(ρ)

j=1 h(sj ,σ )(xCj
).

We assign independent prior distributions to ρ and σ . With a slight abuse of
notation, we denote them by π(ρ) and π(σ), respectively. We require π(ρ) to
be exchangeable with respect to the point indices {1, . . . , n(x)} to reflect the fact
that point labels are purely arbitrary and have no specific meaning. We obtain the
following expression for the posterior density function:

π(ρ,σ |x) ∝ π(ρ)π(σ )

N(ρ)∏
j=1

h(sj ,σ )(xCj
).

3.2. Likelihood function. Given ρ and σ , each cluster xCj
is constructed as

follows. First, an unobserved center point zj is sampled from the observation re-
gion W ⊆ R

2 with probability density function g(·). Then the observed points
x
i
(j)
1

, . . . , x
i
(j)
sj

are given by

x
i
(j)
l

= zj + y
i
(j)
l

, l = 1, . . . , sj ,(3.1)

where y
i
(j)
l

is defined as w
i
(j)
l

− s−1
j

∑sj
l=1 w

i
(j)
l

with w
i
(j)
1

, . . . ,w
i
(j)
sj

being inde-

pendent bivariate N(0, σ 2

π
I2) random vectors, where I2 is the 2×2 identity matrix.

The variance parametrization σ 2

π
is chosen so that σ equals the expected distance

between two points in the same cluster, independently of the value of sj . In fact, if
x1 and x2 belong to the same cluster, it holds

E
[√

(x1 − x2)�(x1 − x2)
] = E

[√
(w1 − w2)�(w1 − w2)

] =
√

π

2

√
2σ 2

π
= σ,
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where a�a = ∑2
i=1 a2

i for a in R
2, and we used the fact that the Euclidean norm

of a two-dimensional N(0, η2
I2) random vector follows the Rayleigh distribution

and its mean equals
√

π
2 η for η ≥ 0.

Finally, the marks m
i
(j)
1

, . . . ,m
i
(j)
sj

are sampled uniformly from the set {{m1, . . . ,

msj } ⊆ {1, . . . , k}|ml1 �= ml2 for l1 �= l2}.
The resulting likelihood function is

h(sj ,σ )(xCj
) = g(xCj

)
∏

l1,l2∈Cj ;l1 �=l2
1(ml1 �= ml2)( k

sj

)
sj (2σ 2)sj−1

exp
(
−

πδ2
Cj

2σ 2

)
(3.2)

[Section 1 of Zanella (2015d) gives calculations], where xCj
is the Euclidean

barycenter of xCj
and δ2

Cj
= ∑

i∈Cj
(xi − xCj

)�(xi − xCj
).

Here we treat g(·) as a known function. For the purposes of data analysis we
will replace g with an estimate using Gaussian kernel smoothing [see, e.g., Fig-
ure 4 of Zanella (2015c)] with bandwidth chosen according to the cross-validation
method Diggle [(2003), pages 115–118] and edge correction performed according
to Diggle (1985). Note that this replacement commits us to the use of a data-driven
prior.

REMARK 1. Given the heterogeneity in the number of settlements across dif-
ferent place-names, the assumption of the marks being sampled uniformly seems
not to be very realistic. In Zanella (2015b) we propose an empirical Bayes ap-
proach to include nonuniformity of marks in the model while keeping the compu-
tation feasible and we present inferences under that assumption. Here we retain the
uniform marks assumption for simplicity and because the two approaches produce
similar inferences. Moreover, the inferences with the uniform marks assumption
are more conservative [see Zanella (2015b)] and therefore preferable in this con-
text.

REMARK 2. This model does not constrain x
i
(j)
l

= zj + y
i
(j)
l

to lie in the ob-

servation region W . To make the model more realistic, one could condition the
distribution of y

i
(j)
l

in (3.1) on zj + y
i
(j)
l

∈ W (which would be an additional form

of edge correction). Nevertheless, in our application the density function g is not
concentrated on the borders and the values of σ are small (below 10 kilometers)
compared to the size of W . Therefore, most correction terms would be negligi-
ble. Moreover, computing a correction term for each center point zj would result
in a consistent additional computational burden for each step of the Markov chain
Monte Carlo (MCMC) algorithm in Section 4. Therefore, we avoid such correction
terms here. Note that, since such correction terms would increase the probability
of points being clustered, this approximation has a conservative effect.
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3.3. Prior distribution on σ . History and context suggest some considerations
regarding the expected intra-cluster dispersion (in particular, σ between 3 and
10 km). For example, a basic consideration is that settlements of the same clus-
ter needed to be at no more than a few hours walking distance in order for the
inhabitants of the settlements to interact administratively and politically. Never-
theless, we prefer not to impose strong prior information on σ , as this gives us
the opportunity to see whether our study of geographical location is in accordance
with available contextual information. We use a flat uniform prior for σ , as, for
example, it is recommended in Gelman (2006), Section 7.1:

σ ∼ Unif(0, σmax).

We set σmax = 50 km. Given the historical context, such an upper bound for σ

constitutes a safe and conservative assumption. We tested other values of σmax,
namely, 20 and 100 km, and the inferences presented in Section 5 were not sensible
to such changes, which is in accordance with Gelman (2006), Section 2.2.

3.4. Prior distribution on ρ. We need to model a partition made up of many
small clusters. In fact, each cluster can contain at most k points (one for each
color), and the historians expect most of the original clusters to have had fewer
than 6 settlements. Common RPMs usually result in clusters with many data points
each, and therefore do not seem to be appropriate to our case (see, e.g., Remark 3).
We now define a prior distribution π(ρ) designed for situations where each cluster
can have at most k points, with k small compared to the number of points n.

3.4.1. Poisson model for π(ρ). The number of clusters N(ρ) follows a Pois-
son distribution with mean λ and each cluster size sj is sampled from {1, . . . , k}
according to a probability distribution p(c) = (p

(c)
1 , . . . , p

(c)
k ). Note that in such a

model the (unobserved) point process of centers {z1, . . . , zN(ρ)} is a Poisson point
process with intensity measure λg(·) and the number of observed points need not
equal n. Conditioning on observing n points, the induced prior distribution on ρ is
π(ρ|λ,p(c)) ∝ ∏N(ρ)

j=1 λp
(c)
sj . We assign the following conjugate priors to λ and p(c):

λ ∼ Gamma(kλ, θλ), p(c) = (
p

(c)
1 , . . . , p

(c)
k

) ∼ Dir
(
α

(c)
1 , . . . , α

(c)
k

)
.

Combinations of the following choices of hyperparameters did not change the
posterior significantly: kλ = 100, 300, 600; θλ = 0.5,1,3 and (α

(c)
1 , . . . , α

(c)
k ) =

(1/k, . . . ,1/k), (1, . . . ,1) and (1,1/(k − 1), . . . ,1/(k − 1)). In the data analysis
of Section 5 we set kλ = 300, θλ = 1 and (α

(c)
1 , . . . , α

(c)
k ) = (1/k, . . . ,1/k).

REMARK 3. In the RPMs literature it is common to assign a Dirichlet Process
(DP) prior to ρ, which is π(ρ|θ) ∝ ∏N(ρ)

j=1 θ(sj − 1)!. The parameter θ is often
called a concentration parameter and can be either fixed or random. A DP prior
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(conditioning on having no cluster with more than k points) would be equivalent
to the Poisson model with fixed p(c) given by p

(c)
l = (l−1)!∑k

l=1(l−1)! , for l = 1, . . . , k.

Such a choice would enforce most clusters to have almost k points, and thus is not
appropriate to this context where we expect most clusters to be smaller.

REMARK 4. In Zanella (2015b) we describe an alternative model for π(ρ)

based on the Dirichlet-Multinomial distribution rather than the Poisson one. Al-
though the inferences we obtain from the two models are almost equivalent, the
Poisson model is preferable because its posterior distribution factorizes over clus-
ters and thus allows for cheaper computation.

3.5. Model parameters and Posterior Distribution. The model presented
above results in the following unknown elements:

(
ρ,σ,p(c), λ

) ∈ Pn ×R+ × [0,1]k ×R+,

where Pn is the set of all partitions of {1, . . . , n}. Figure 3 provides a graphical rep-
resentation of the underlying conditional independence structure. Given the prior
and likelihood distributions described in Sections 3.2, 3.3 and 3.4, we obtain the
following conditional posterior distributions:

π
(
ρ|x, σ,p(c), λ

)
(3.3)

∝
N(ρ)∏
j=1

(
g(xCj

)λp
(c)
sj

csj σ
2(sj−1)

exp
(
−

πδ2
Cj

2σ 2

) ∏
i,l∈Cj ,i �=l

1(mi �= ml)

)
,

π
(
σ |x, ρ,p(c), λ

) ∝ 1(0,σmax)(σ )

σ 2(n−N(ρ))
exp

(π
∑N(ρ)

j=1 δ2
Cj

2σ 2

)
,(3.4)

p(c)|x, ρ, σ,λ ∼ Dir
(
α

(c)
1 + N1(ρ), . . . , α

(c)
k + Nk(ρ)

)
,(3.5)

λ|x, ρ, σ,p(c) ∼ Gamma
(
kλ + N(ρ), θλ/(θλ + 1)

)
,(3.6)

where cs = ( k
sj

)
sj 2sj−1 and 1(0,σmax)(·) is the indicator function of (0, σmax).

FIG. 3. Conditional independence structure of the random elements involved in the Poisson model.
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3.6. The posterior distribution of the partition ρ. The posterior distribution
π(ρ|x, σ,p(c), λ) in (3.3) is intractable, meaning that we cannot obtain exact in-
ferences from it and even performing approximate inferences is challenging. In
fact, the posterior sample space Pn is too large (of order between n! and nn) to
perform brute force optimization or integration, and the complementary clustering
condition makes it not easy to move in the state space. To make these statements
more precise, we describe π(ρ|x, σ,p(c), λ) in terms of hypergraphs and then we
consider complexity theory results regarding its intractability. For simplicity, we
will denote π(ρ|x, σ,p(c), λ) by π̂(ρ).

Note that, although we have little hope of solving the problem in its general form
(see Section 3.6.2), Monte Carlo methods, for example, can still give satisfactory
results in specific applications.

3.6.1. Formulation of the model in terms of hypergraphs. Hypergraphs are the
generalization of graphs where each hyperedge can contain more than two vertices
[Berge (1973)]. In particular, the complete k-partite hypergraph induced by k sets
V1, . . . , Vk is defined as G = (V ,E), where V = V1 ∪ · · · ∪ Vk and E = {e ⊆ V :
|e∩Vl| ≤ 1 ∀l, |e| ≥ 2}. See Figure 4(a). A partition ρ ∈ Pn of n points into clusters
is admissible for our model if and only if no cluster of ρ contains two points of
the same type. Therefore, a set of points is an admissible cluster if and only if the
hyperedge connecting them belongs to the complete k-partite hypergraph induced
by the k set of points corresponding to the k types. Every admissible partition ρ

can then be interpreted as a partial matching (i.e., hypergraph with at most one
hyperedge containing each point) contained in G as follows: each cluster with at
least two points corresponds to a hyperedge and each unlinked point is a cluster by
itself [see Figure 4(b)]. Moreover, we can define a weight w(e) for each hyperedge
e = {x1, . . . , xs} in E,

w(e) = (c1)
sλp

(c)
s g(x)σ−2(s−1)

cs(λp
(c)
1 )sg(x1) · · ·g(xs)

exp
(
−π

∑s
i=1(xi − x)2

2σ 2

)
,(3.7)

in such a way that π̂(ρ) is proportional to the weight of the matching ρ, defined as∏
e∈ρ w(e). In (3.7) x denotes the barycenter of x1, . . . , xs .

FIG. 4. (a): Complete 3-partite hypergraph induced by the sets V1 = {1,2}, V2 = {3} and
V3 = {4} corresponding to the colors blue, red and green. (b)–(c): Partial matching corresponding
to ρ = {{1}, {2,3,4}} and ρ = {{1}, {2,6}, {3}, {4,7}, {5}}, respectively.
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In the remainder of the paper we will treat ρ indifferently as a partition or as a
matching, as the two formulations are equivalent. Note that in the two-color case
ρ reduces to a matching in a bipartite graph; see Figure 4(c).

3.6.2. Complexity theory results for π̂(ρ). Given the hypergraph formulation
of Section 3.6.1, we can appeal to complexity theory results to obtain rigorous
statements on the intractability of π̂(ρ). In particular, we consider the follow-
ing tasks: (a) finding the normalizing constant of π̂(ρ), (b) finding the mode
ρmax = arg maxρ∈Pn π̂(ρ) and (c) sampling from π̂ (ρ). In this section we briefly
summarize the complexity of such tasks. Zanella (2015e) provides a more detailed
analysis. Note that the two-color case (k = 2) and the multicolor case (k ≥ 3)
present substantially different complexity issues.

(a) The normalizing constant of π̂(ρ) is the sum of the weights of all the match-
ings ρ contained in G, that is, the total weight of G. The problem of computing
the total weight of a k-partite hypergraph is an #P -hard counting problem [Valiant
(1979)], even for k = 2. The #P -hard complexity class for counting problems
is analogous to the NP-hard complexity class for decision problems [see Valiant
(1979) or Jerrum (2003) for definitions of these terms].

(b) Finding the posterior mode ρmax = arg maxρ π̂(ρ) can be reduced to a
k-dimensional optimal assignment problem [see Zanella (2015e)]. For k = 2 this
problem is efficiently solvable, for example, in O(n3) steps with the Hungarian
Algorithm [Kuhn (1955)]. In contrast, for k ≥ 3 this is an NP-hard optimization
problem. Even more, unless P = NP , there is no deterministic polynomial-time
approximation algorithm for a general cost function (i.e., the problem is not in
APX). Heuristics algorithms exist, but no constant of approximation is provided
[see Zanella (2015e)]. Therefore, while heuristics might still work in particular
cases, the literature does not appear to provide a generic bounded-complexity
method to obtain or approximate ρmax.

(c) For k = 2, π̂(ρ) can be interpreted as a monomer-dimer system [see Zanella
(2015e)]. Jerrum and Sinclair (1996) describe a polynomial-time MCMC algo-
rithm to draw approximate samples from π̂(ρ). Unfortunately, the polynomial
bound they provide on the number of MCMC steps needed is not practically fea-
sible [more details in Zanella (2015e)]. More recent results [Karpinski, Rucinski
and Szymanska (2012)] suggest that the techniques used by Jerrum and Sinclair
(1996) cannot be extended to k ≥ 3, and they prove a negative result for k ≥ 6 [see
Zanella (2015e)].

Theoretical results like the ones above do not rule out, for example, the possi-
bility of obtaining approximate samples in specific situations, but do exclude the
possibility of finding a scheme that does so (in polynomial time) for arbitrary in-
stances of a certain class of distributions. Since the problem we consider is by no
mean arbitrary, it is feasible that special methods may produce good approximate
samples. In Section 4 we propose an MCMC algorithm for the two-color case and
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one for the k-color case. As a consequence of the results presented in this section,
it is clear that additional care is needed when empirically studying MCMC mixing
properties.

4. Description of proposed MCMC algorithm. We use the Metropolis-
within-Gibbs algorithm to sample from π(ρ,σ,p(c), λ|x) given in (3.3)–(3.6). Di-
rect sampling from π(p(c)|ρ,σ,λ,x) and π(λ|ρ,σ,p(c),x) is straightforward and,
given (ρ,p(c), λ,x), few steps of the Metropolis–Hastings algorithm are sufficient
for the distribution of σ to be close to its stationary distribution π(σ |ρ,p(c), λ,x).
In contrast, sampling from π(ρ|x, σ,p(c), λ), which for simplicity we will denote
by π̂(ρ), is challenging (see Section 3.6.2). To do this, we use the Metropolis–
Hastings (MH) algorithm. We consider ways of improving the efficiency and of
assessing the convergence of MH algorithms in this framework.

4.1. 2-color case. We commence by considering the two-color case because
there is more known theory than in the general case and because the combinatorial
structure of the sample space is simpler. We view ρ as a matching in a bipartite
graph with n1 red points and n2 blue points (see Section 3.6.1). We denote the
edge connecting the ith red point and the j th blue point by the ordered couple
(i, j) ∈ {1, . . . , n1} × {1, . . . , n2}.

The proposal Q2D(ρold, ρnew) for ρ is defined in two steps. First, we select an
edge (i, j) according to some probability distribution qρold(i, j) on {1, . . . , n1} ×
{1, . . . , n2}. Then, having defined i ′ as the index such that (i ′, j) ∈ ρold, if such an
i′ exists, and similarly j ′ as the index such that (i, j ′) ∈ ρold, if such a j ′ exists, we
propose a new state ρnew = ρold ◦ (i, j) defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρold + (i, j),

if neither i′ nor j ′ exists, (Addition)
ρold − (i, j),

if (i, j) ∈ ρold, (Deletion)
ρold − (

i, j ′) + (i, j),

if j ′ exists and i ′ does not exists, (Switch)
ρold − (

i ′, j
) + (i, j),

if i′ exists and j ′ does not exists, (Switch)
ρold − (

i ′, j
) − (

i, j ′) + (i, j) + (
i ′, j ′),

if i′ and j ′ exist and (i, j) /∈ ρold, (Double-Switch)

(4.1)

where ρ − (i, j) and ρ + (i, j) denote the matchings obtained from ρ by respec-
tively removing or adding the edge (i, j). Display (4.1) defines the set of allowed
moves starting from ρold and it induces a neighboring structure on the space of
matchings as follows: ρnew is a neighbor of ρold if ρnew = ρold ◦ (i, j) for some
(i, j). Jerrum and Sinclair (1996) and Oh, Russell and Sastry (2009) consider sim-
ilar but slightly smaller sets of allowed moves, given by the addition and deletion



COMPLEMENTARY CLUSTERING FOR ANGLO-SAXON PLACE-NAMES 1807

moves and addition, deletion and switch moves, respectively. It is plausible that in-
creasing the set of allowed moves improves the mixing of the MH Markov chain.

Display (4.1) does not identify uniquely the proposal Q2D(ρold, ρnew) because
we still need to choose qρold(·, ·). Different choices of qρold(·, ·) will affect the
mixing properties of the MH algorithm. Previous works [e.g., Jerrum and Sinclair
(1996) and Oh, Russell and Sastry (2009)] chose qρold(i, j) to be a uniform mea-
sure over the edges (i, j) ∈ E. A naive implementation of such choice leads to
poor mixing because most proposed matchings ρnew are improbable and therefore
are typically rejected (in our experiments usually less than 1% of the proposed
moves were accepted). Some authors overcome this problem using a truncation
approximation of the posterior: they force edge weights below a certain threshold
δ to be zero, and then choose

qρold(i, j) ∝ 1{wij>δ},(P1)

where wij is the weight of the edge (i, j) defined in (3.7) and 1 denotes the indi-
cator function. See, for example, the measurement validation step in Oh, Russell
and Sastry (2009).

In the following we propose a choice of qρold that achieves a better mixing than
(P1) and does so without requiring to target an approximation of the posterior.

First note that, especially when π̂(ρ) has a factorization in terms of edge
weights, it is straightforward to evaluate π̂ up to a multiplicative constant on
the set of neighbors of ρold defined in (4.1). For example, for the addition move,
π̂(ρold◦(i,j))

π̂(ρold)
= wij . Thus, one may be tempted to propose proportionally to π̂ re-

stricted on the set of allowed moves as follows:

qρold(i, j) ∝ π̂(ρnew) where ρnew = ρold ◦ (i, j).(P2)

Such a choice, however, does not take into account the fact that the normalizing
constants of qρold(·, ·) and qρnew(·, ·) differ for ρold �= ρnew. As a consequence, for

example, detailed balance conditions, Q2D(ρold,ρnew)

Q2D(ρnew,ρold)
= π̂(ρnew)

π̂(ρold)
, are not satisfied, not

even approximately. A better choice for qρold(·, ·) is

qρold(i, j) ∝ π̂(ρnew)

π̂(ρold) + π̂(ρnew)
where ρnew = ρold ◦ (i, j).(P3)

Our experiments show that the latter choice leads to a significant improvement in
the mixing of the MH Markov chain compared to (P1) and (P2) (see Section 4.1.2).
The main reason is that the MH algorithm induced by such a proposal has a very
high acceptance rate (usually above 99%) without changing the set of allowed
moves. It can be shown that, under some regularity assumption on the weights, the
proposal given by (P3) satisfies the detailed balance condition in the asymptotic
regime (i.e., when the number of points tends to infinity), and this helps to ex-
plain why the acceptance rate is so high. Similarly, one could also derive Peskun
ordering arguments in the asymptotic regime. We omit those theoretical results



1808 G. ZANELLA

here in favor of demonstrating the mixing improvement given by (P3) using the
convergence diagnostic techniques in Section 4.1.2.

There is a trade-off between the complexity of the proposal and the mixing
obtained (a complex proposal increases the cost of each step, while a poor proposal
increases the number of MCMC steps needed). We seek a compromise with good
mixing properties, like (P3), while still requiring little computation, like (P1). In
Section 2 of Zanella (2015d) we derive the following proposal distribution to try
to obtain such a goal:

qρold(i, j) ∝
{

q(add)(i, j), if (i, j) /∈ ρold,
q(rem)(i, j), if (i, j) ∈ ρold,

(P4)

where q(rem)(i, j) = w
−1/2
ij and

q(add)(i, j) = √
wij

(
1 − ∑

j ′ �=j

wij ′ − √
wij ′

1 + ∑
s �=i wsj ′ + ∑

l wil

)

×
(

1 − ∑
i′ �=i

wi′j − √
wi′j

1 + ∑
s �=j wi′s + ∑

l wlj

)
.

Note that q(rem)(i, j) and q(add)(i, j) do not depend on ρ and can be precomputed
at the beginning of the MCMC run. See Section 4.1.2 for discussion of perfor-
mance.

4.1.1. Scaling the proposal with a multiple proposal scheme. When using the
MH algorithm on continuous sample spaces, one can usually tune the variance
of its proposal distribution to improve the efficiency of its algorithm [see, e.g.,
Roberts, Gelman and Gilks (1997)]. Given the very high acceptance rate obtained
proposing according to (P3), it is natural to consider the possibility of scaling our
proposal in order to obtain longer-scale moves. The scaling problem for MH al-
gorithms in discrete contexts has been considered, for example, in Roberts (1998).
In that case the sample space was {0,1}N , the vertices of the N -dimensional hy-
percube, and the scaling parameter, say l, was a positive integer representing the
number of randomly chosen bits to be flipped at any given proposal.

Unfortunately, because of the nature of our sample space, it is not so straight-
forward to scale the proposal distribution Q2D(ρold, ρnew). One possibility is to
scale by choosing l edges, {(ih, jh)}lh=1, and performing l moves defined in (4.1),
proposing ρnew = ρold ◦ (i1, j1) ◦ · · · ◦ (il, jl). However, the l moves correspond-
ing to {(ih, jh)}lh=1 cannot be performed independently: consider, for example, the
case where i1 = i2. We would then have to perform l moves sequentially, at a com-
putational cost being roughly l times the one of a single move. Therefore, scaling
the proposal in such a way does not seem to be effective.

Instead, if the l moves could be performed independently, it would be possible
to implement a multiple proposal scheme using parallel computation, thus leading
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to a significant computational gain. This can be obtained by considering an approx-
imation of our model, where points at a distance greater or equal than some rmax
have probability 0 of being in the same cluster. The latter procedure is equivalent
to the truncation procedure cited in Section 4.1 and can be viewed as coming from
the use of truncated Gaussian distributions to model points distribution within clus-
ters; see (3.1). Using this truncated model and dividing the observed region into
a grid, we defined a multiple proposal scheme where the l moves are proposed
and accepted/rejected simultaneously and independently. Therefore, at each MH
step, such l moves can be performed in an embarrassingly parallel fashion, mean-
ing that they can be performed without the need for any communication between
them. In Zanella (2015f) we give more details on the implementation and we show
that in practice the mixing of the resulting MH algorithm improves by a factor
roughly equal to l itself (note that the maximum value of l is bounded above, in
a way that depends on rmax and the size of the observation region W ). A parallel-
computing implementation of this algorithm would offer significant speedups [we
anticipate speedups by a factor around 8 for our data set; see Zanella (2015f)].
Such speedups would increase with the size of the data set and window, making
this proposal scheme especially relevant for applications to very large data sets. In
Zanella (2015f) this scheme is presented and tested for fixed σ . In case σ is vary-
ing, either one requires an upper bound on σ or one needs different square grids
for different values of σ .

4.1.2. Convergence diagnostics. We used various convergence diagnostic
techniques in order to assess the reliability of our algorithm, to indicate the number
of iterations needed and to compare the efficiency of the four proposals (P1)–(P4)
of Section 4.1. We demonstrate such techniques on the posterior π(ρ|σ,p(c), λ,x)

with k = 2, σ = 0.3, p
(c)
1 = p

(c)
2 = 0.5, λ = 50 and the center intensity g(·) be-

ing the uniform measure over W = [0,10] × [0,10]. Here x is a synthetic sample
of 44 red and 47 blue points generated according to the model just defined; see
Figure 6(a). We set the threshold δ of (P1) to 0.001. The R code used to produce
the results presented in this section is available in Zanella (2015a).

We first performed some qualitative output analysis by looking at summary plots
of the MCMC samples of the partition [such as the one in Figure 6(a)]. Such plots
can be helpful to spot when mixing has not yet occurred (see Section 4.1.3).

Second, we considered different real-valued summary statistics of the chain
state (typically the number of different edges from some fixed reference match-
ing). We plotted time series (see Figure 5) and empirical distributions of such real-
valued functions for different runs of the MCMC starting from different configura-
tions. We estimated the autocorrelation functions [see Figure 6(b)], the Integrated
Autocorrelation Time (IAT) and the Effective Sample Size (ESS) of such real-
valued time series using the R package coda [see Plummer et al. (2005)] in order
to compare different versions of the algorithm (see Table 3).
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FIG. 5. Traceplots of the number of differences from a reference matching.

FIG. 6. Four convergence diagnostic techniques described in Section 4.1.2.
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TABLE 3
Performances of the four proposals of Section 4.1 on configuration in Figure 6(a) averaged over 5

independent runs for each proposal. GR denotes the multivariate Gelman and Rubin statistic
(potential scale reduction factor). The running time indicated in brackets is evaluated using R

software on a desktop computer with Intel i7 processor

Mean Estimated ESS for 104 Steps (sec) Steps (sec)
acc. rate IAT steps (for 1 sec) to D < 0.05 to GR < 0.005

P1 17% 206 262 [270] 1.4e05 [7.3] 7.6e04 [13.5]
P2 41% 108 544 [40] 7.1e04 [84.6] 6.2e04 [97]
P3 97% 40 1358 [99] 2.0e04 [32.7] 2.4e04 [27.3]
P4 68% 55 1038 [747] 3.4e04 [2.2] 1.6e04 [4.8]

Third, we used some standard convergence diagnostic techniques [see Brooks
and Roberts (1998) and Cowles and Carlin (1996) for an overview of the tech-
niques available]. In particular, we used the multivariate version of the Gelman and
Rubin diagnostic [see Gelman and Rubin (1992) and Brooks and Gelman (1998)].
Figure 6(d) shows the results obtained by using a 10-dimensional summary statis-
tic of ρ. In this context univariate summary statistics are not sufficiently informa-
tive and, therefore, misleading results can be obtained if these are used as the sole
basis for convergence diagnostics.

Finally, we compared two independent runs of the algorithm (with different
starting states) by looking at estimates of the association probabilities pij =
Pr((i, j) ∈ ρ) with ρ ∼ π̂ . We consider the following measure of proximity:

D = sup
(i,j)∈E

∣∣p̂(1)
ij − p̂

(2)
ij

∣∣,(4.2)

where p̂
(1)
ij and p̂

(2)
ij denote the proportion of time that (i, j) was present in the two

MCMC runs. As starting states we considered the empty matching (each point is
a cluster), the posterior mode (obtained with the Hungarian algorithm) and match-
ings obtained as the output of the MCMC itself. Since equation (4.2) considers
each link individually, we expect the resulting convergence diagnostic indicator
D to be more severe than the ones obtained from one or few summary statistics.
Results are shown in Figure 6(d).

None of the convergence methods just presented indicate convergence issues
except in the complete matching case (when the parameter p

(c)
1 is equal or very

close to 0), that is considered in the next subsection.
All convergence diagnostic techniques agree in indicating that proposal (P3)

gives the best mixing; however, in terms of real computation time, the most effi-
cient proposal is (P4). Note that such performances depend on the measure being
targeted and, when running time is considered, on the computer implementation of
such proposals. For the case considered in this section, proposal (P4) gives a 3–4
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times speedup over the commonly used choice (P1). Depending on the configura-
tion, such a speedup may vary. According to our experiments, for “flatter” distri-
butions (e.g., increasing σ to 1 and p

(c)
1 to 0.9, while keeping the other parameters

unchanged) the speedup almost disappears, while for “rougher” distributions (e.g.,
decreasing both σ and p

(c)
1 to 0.1, while keeping the other parameters unchanged)

the speedup increases and (P4) can be up to 10 times faster than (P1).

4.1.3. Multimodality and simulated tempering. In the complete matching case
the posterior distribution of ρ presents a strongly multimodal behavior. Cycle-like
configurations like the one in Figure 7(a) are local maxima for π̂(ρ). In fact, in
order to reach a higher probability configuration (i.e., shorter links) from such a
“cycle” configuration, with the set of allowed moves defined by (4.1), the chain
needs to pass through lower probability configurations (i.e., longer links). If we
consider extreme cycle-like configurations [e.g., Figure 7(b)], then the MCMC
will typically get stuck in such local maxima. In order to overcome this poten-
tial multimodality problem, we implemented a simulated tempered version of our
MCMC algorithm; see, for example, Geyer and Thompson (1995) or Marinari and
Parisi (1992) for references. This technique manages to overcome local maxima
for the complete matching case even when extreme cycle-like configurations are
present [as in Figure 7(b)]. Nevertheless, our specific application does not present
a complete matching case and, therefore, we have a milder multimodality and the
MCMC algorithm exhibits sufficient mixing without the use of Simulated Tem-
pering. Therefore, Simulated Tempering is not used for the real data analysis, as
convergence diagnostic tools do not show suspicious behavior.

We note that Dellaert et al. (2003) deal with multimodality in a similar posterior
space (made of perfect matchings in a bipartite graph) arising from the Structure
from Motion problem. In order to allow the MH algorithm to overcome local max-
ima like the one in Figure 7(b), they allow the MH proposal to include “long”
moves that they call “chain flipping.”

FIG. 7. Configurations corresponding to local maxima of π(ρ|x) for (a) a synthetic sample and (b)
an artificially designed points configuration.
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4.2. k-color case. We now define an MCMC algorithm that targets π̂ (ρ) when
k ≥ 3. This case is harder than the two-dimensional one because it involves clusters
with different dimensions and not just pairwise interaction.

4.2.1. Description of proposed Gibbs projection MCMC algorithm. We de-
fine the transition kernel P of our MCMC algorithm as a mixture of

( k
�k/2�

)
MH

transition kernels, each of which corresponds to a group A of �k/2� colors

P(ρold, ρnew) =
(

k

�k/2�
)−1 ∑

A⊂{1,...,k},|A|=�k/2�
P (A)(ρold, ρnew),(4.3)

where �k/2� denotes the integer part of k/2 and
( k
�k/2�

)
denotes a binomial co-

efficient. Here P(·, ·) selects a set of colors A, “projects” the k-color configura-
tion to a 2-colors configuration where the new two colors correspond to A and
Ac = {1, . . . , k} \ A and then acts on the two-colors configuration. More precisely,
the action of P (A) is the following (see Figure 8):

1. reduce the k-color configuration (x, ρold) to a two-color one (x2D,ρ2D
old ) by

replacing the points having colors in A and Ac, respectively, with their cluster
centroids. We denote by di the number of points merged together into the ith
point x2D

i ,
2. obtain ρ2D

new from (x2D,ρ2D
old ) with one or more MH moves using the proposal

Q2D of Section 4.1 on a target measure π̂2D being the two-dimensional version
of π̂ [modified to take account of the multiplicity of the points di ; see Section 3 of
Zanella (2015d)],

3. obtain the k-color configuration (x, ρnew) from (x2D,ρ2D
new) by the inverse

operation of Step 1 (note that here one needs to know what A is).

FIG. 8. The action of a transition kernel P (A) for a given A.



1814 G. ZANELLA

In order for this algorithm to be correct, π̂2D must be proportional to π̂ on the
collection of possible moves of P (A), so that P (A) satisfies detailed balance condi-
tions with respect to π̂ . This follows from basic properties of the Gaussian density
function and is proven in Section 3 of Zanella (2015d). Note that, when k is even,
P (A) is the same transition kernel as P (Ac). This is not an issue and it is indeed
equivalent to never using P (Ac) and using P (A) twice more often.

By merging colors together we allow proposals which move many points at the
same time from one cluster to another. Therefore, the induced set of allowed moves
is broader than, for example, the one of a scheme that moves one point at a time.
Oh, Russell and Sastry (2009) consider also, for example, “birth” moves proposing
to create a cluster from three or more single points in one step. Such moves are
likely to be useful to speed up mixing in applications where there appear clusters
with many points.

The mixture proposal in (4.3) allows us to reuse the two-color algorithm and, in
particular, the approximation given in (P4). In fact, π̂2D involves only pairwise
interaction among points, meaning that π̂2D(ρ2D) ∝ ∏

(i,j)∈ρ2D w2D
ij for some

weights w2D
ij depending on x2D [see Remark 1 of Zanella (2015d)]. Therefore,

given (x2D,ρ2D
old ), it is possible to perform informed MH moves in the two-color

matching space in a computationally efficient way using the approximation given
in (P4) (see Table 3 for performances with two colors).

It would be desirable to design informed proposals like (P3) or (P4) directly in
the k-color space, without the need of projecting on two-color subspaces. How-
ever, it would not be easy to do so in a computationally efficient way. In fact,
given the high-dimensionality of the space of matchings contained in a complete
k-partite hypergraph, the set of neighboring states ρnew of the current state ρold
would be extremely large. Therefore, it would be very expensive to use a scheme
like (P3) in this context. Moreover, since π̂(ρ) involves interactions between three
or more points, it would be difficult to design an approximation like (P4) that can
be evaluated efficiently.

Note that the mixture proposal in (4.3) first chooses uniformly at random
a lower-dimensional subspace and then performs informed proposals in such a
space. Therefore, such a scheme is a compromise between a “fully uninformed”
proposal (which would choose uniformly at random some neighbor of ρold and
thus mix poorly) and a “fully informed” proposal (which, in order to make in-
formed proposals in the k-color space, would be computationally expensive).

Since the k-color sample space is more complicated than the two-color one, ad-
ditional care and longer MCMC runs are needed. We implemented analogous con-
vergence diagnostic techniques to the ones in Section 4.1.2. As might be expected,
the number of MCMC steps needed to reach stationarity and to obtain mixing is
much higher than in the two-color case (see end of Section 5). Nevertheless, our
experiments suggest that, as in the two-color case, the MCMC manages to mix
properly unless we are in a case close to complete matching (see Section 4.1.3).
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5. Analysis of Anglo-Saxon settlements with the Bayesian model. In this
section we present the main results obtained by analyzing the Anglo-Saxon settle-
ments data set with the Random Partition Model described in Section 3. The com-
putation is done using the MCMC algorithm described in Section 4. The analysis
gives support to the historians’ hypothesis that settlements are clustered according
to complementary functional place-names, and it permits inference about ranges
of values for relevant parameters.

Here the no-clustering null hypothesis corresponds to p
(c)
1 = 1 (see Section 3).

As shown in Figure 9(a), such a hypothesis clearly lies outside the region where the
posterior distribution is concentrated. As a sanity check we also fitted our model
to synthetic samples generated according to the no-clustering null hypothesis of
Section 2.3.1 (both with and without inhibition among points of the same type).
As one would expect, in this case p

(c)
1 = 1 is included in the posterior support [see

Figure 9(a) for an example].
Figure 10(a) shows the estimated posterior distribution of σ for the reduced data

set, which is clearly peaked around 4–5 km.
The 95% Highest Posterior Density interval is (3.3,5.9) km and the posterior

mean is 4.6 km. Therefore, according to the fit given by our model, the clustering
behavior consists of clusters with settlements having distance being approximately
5 km on average. It is satisfying to note that this value is in accordance with the
value suggested by the historians involved in the project and coherent with the
historical interpretation (see Section 3.3).

Figure 11(a) shows a box plot representation of the posterior distribution of
(Y1, . . . , Yk), where Yl is the number of settlements in clusters of size l (i.e., with

FIG. 9. (a) Estimated posterior distribution of p
(c)
1 (see Section 3) for the reduced and full data

set (13 and 20 place-names, resp.). The no-clustering hypothesis (p(c)
1 = 1) lies outside the support

of the posterior for the real data set. (b) Measure of association between place-names (see end of
Section 5).
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FIG. 10. (a) π(σ |x) for the reduced data set. (b) π(σ |x) considering only a high-density region
(see Section 6).

l settlements). Note that on average more than half of the settlements are not clus-
tered (i.e., they belong to clusters of size 1). Moreover, most of the clustered set-
tlements belong to clusters of size 2. Historians expected to see more clusters in-
volving three or four settlements than what was reported by our model. Inspection
shows that model-fitting, and the requirement to fit clusters in the low-density re-
gion (which mostly contain couples with a high posterior probability), forces all
the clusters in the high-density region to be couples too. In fact, when the high-
density region is analyzed separately (approximately 600 settlements), more triples
appear and the posterior of σ includes also slightly bigger values; see Figures 10(b)
and 11(b). This suggests that there might be a heterogeneity in the clustering be-
havior between high- and low-density regions which is not captured in the model
when applied to the whole region. This indicates a possible direction for future
work (see Section 6).

Figure 12 shows a graphical representation of the posterior distribution of the
partition ρ for the reduced data set. This representation is of considerable use since
it provides a visual understanding of how the model is fitting the data and enables
comparison with contextual information.

FIG. 11. (a) Posterior distribution of Y = (Y1, . . . , Yk) for the reduced data set. (b) Same but
considering only the settlements in a high density region (see Section 6).
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FIG. 12. Graphical representation of π(ρ|x), where x is the reduced data set (13 place-names) in
the whole observed region. The intensity of gray corresponds to the estimated posterior probability
of the cluster. The truncated kernel density estimation of g is plotted in the background, with values
expressed in relative terms with respect to the uniform measure.

We perform sensitivity analysis on the values of the hyperparameters of σ , λ

and p(c) (see Section 3 for details on tested values), and the posterior distribution
did not seem to be much sensitive to their specification. As a further sensitivity
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analysis, in Zanella (2015b) we specify and implement an alternative model for
the prior distribution of the partition ρ.

Figure 9(b) represents a measure of association between place-names. Given
two place-names, say, a and b, the measure is defined as

Pr[A|B]
Pr[A] = Pr[A ∩ B]

Pr[A] · Pr[B] = Pr[B|A]
Pr[B] ,(5.1)

where A and B are the events of observing place-name a and b, respectively, in
a cluster chosen uniformly at random from the clusters of ρ, with ρ distributed
according to π(ρ|x). In Figure 9(b) we plot the value of (5.1), estimated from
the MCMC run, in relative terms with respect to a null hypothesis. In the null
hypothesis we first choose a cluster from ρ as before and then, denoting the number
of settlements in the cluster by s, we sample s place-names independently of each
other with place-name probabilities proportional to their numerosity in the data
set, conditioning on having pairwise different place-names. The expected values
of interest under the null distribution have been estimated using standard Monte
Carlo methods. High values in Figure 9(b) suggest positive interaction between
place-names, while low values suggest negative interaction. Most of the positive
associations suggested by Figure 9(b), such as Knighton–Burton, Weston–Aston
or Eaton–Drayton, are coherent with the current historians’ hypothesis. We note
that, for a fixed ρ, the measure in (5.1) reduces to the coefficient of association
used by ecologists to measure association between species [Dice (1945)]. Many
different measures of association have been proposed in the ecological literature
[see, e.g., Janson and Vegelius (1981)]. We chose (5.1) because it is symmetric,
clearly interpretable and our experiments suggest that (5.1) is not much influenced
by the numerosity of place-names a or b, unlike most measures proposed in Janson
and Vegelius (1981).

In order to obtain the results presented in this section, the MCMC algorithm
of Section 4.2 was run for 106 steps, where at each step 200 moves of the two-
color configuration (x2D,ρ2D) were proposed. We assessed convergence using the
methods described in Section 4.1.2 [e.g., the value of D in (4.2) was approximately
0.02]. The time needed for such runs using a basic R implementation [available in
Zanella (2015a)] on a desktop computer with an Intel i-7 processor was approxi-
mately 40 hours.

6. Discussion. We have designed a Random Partition Model (RPM) that is
able to capture the clustering behavior expected by the historians involved in the
project. With no strong prior information, the model produces estimates that are
meaningful for the historical context and in accordance with contextual informa-
tion [e.g., see the posterior distribution of σ and the association between place-
names in Figure 9(b)]. We also defined a flexible prior distribution for a clusters
partition that is designed for a “small clusters” framework (where each cluster has
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at most k points with k small). In doing so we developed a RPM to perform com-
plementary clustering which is applicable to other contexts where one needs to find
aggregations of elements of different types. For example, Professor Susan Holmes
from Stanford University suggests that, in biological contexts, species living in the
same geographical area assemble by dissimilarity as they fill different ecological
niches, resulting in clusters of complementary species.

We carefully considered the computational aspects of this problem. After con-
sidering related problems in the complexity theory literature (see Section 3.6), we
employed the Metropolis–Hastings (MH) algorithm. We proposed a choice of MH
proposal distributions that, compared to the usual choices found in the literature,
achieves a significantly better mixing by approximating detailed balance condi-
tions (see Section 4.1). We developed a multiple proposal scheme to allow for
parallel computation that could be relevant for applications to bigger data sets (see
Section 4.1.1). Regarding the convergence diagnostic, we note that, when moni-
toring the convergence of the MCMC in the partition space, univariate summary
statistics appear to be not sufficiently informative to be used as a basis for conver-
gence diagnostics. Diagnostics based on multivariate summary statistics or on the
matrix of the estimated association probabilities seem to give more robust results
(see Section 4.1.2).

Although the proposed model manages to capture the pattern we were looking
for, there is much room for improvement. For example, a direction for future work
could be to extend the model in order to capture the heterogeneity in the clustering
behavior between high- and low-density regions (see Section 5). One could try to
do this by allowing the parameters p(c) and σ to vary over different regions, maybe
as a function of the points density, while taking care not to over-parametrize the
model (the amount of data is limited). An alternative approach would be to modify
the metric we use to evaluate distances between settlements. For example, one
could use a non-Euclidean distance, perhaps based on the inverse square root of
the settlements density, in order to allow for larger clusters (meaning with points
further apart) in less dense regions. One could also try to model the dispersion of
settlements in the same cluster with a non-Gaussian distribution having heavier
tails.

Another extension that could result in a better fit is to introduce spatial depen-
dence of place-names probabilities. In fact, in our model, both under the assump-
tion of uniform and nonuniform marks (see Remark 1), the probability of choosing
a certain place-name does not depend on the location, while the data suggest that
different place-names are more likely to be chosen in different regions.

The context suggests that we are observing a thinned version of the original
settlements distribution. Nevertheless, it is not obvious how to incorporate missing
data in this model without making further assumptions that do not seem realistic
and are not supported by the historical information available (e.g., that in each
cluster there is a settlement for each type).
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An interesting direction for future work is to try to incorporate other sources
of data in the model. For example, topographical information seems to be related
to the settlements clustering (e.g., historians think that settlements named Burton
are related to good viewpoints); it would be interesting to find an efficient way to
incorporate them in the model.

Acknowledgments. Thanks to Professor Wilfrid Kendall for PhD supervi-
sion, and Professsor John Blair for collaboration and arranging supply of data.
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AOAS884SUPPB; .pdf). Extensions of the null-hypothesis of Section 2.3.1 and
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Additional plots relative to the Anglo-Saxon settlements data set and the corre-
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AOAS884SUPPD; .pdf). Derivation of the expressions in (3.2) and (P3), and proof
of the correctness of the algorithm in Section 4.2.
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