
 

QFE, 2(3): 661–701. 

DOI: 10.3934/QFE.2018.3.661 

Received: 16 April 2018  

Accepted: 27 June 2018  

Published: 17 August 2018 

http://www.aimspress.com/journal/QFE 

 

Research article 

Comparing in- and out-of-sample approaches to variance 

decomposition-based estimates of network connectedness an 

application to the Italian banking system 

Andrea Ferrario1, Massimo Guidolin2 and Manuela Pedio2,* 

1 Bocconi University, Via Roentgen 1, 20136 Milan, Italy  
2 Baffi-CAREFIN Centre and Department of Finance, Bocconi University, Via Roentgen 1, 20136 

Milan, Italy  

* Correspondence: Email: Manuela.pedio@unibocconi.it; Tel: +0258365885. 
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systemic risk may be reliably estimated turns out to depend on the methodology adopted when 
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1. Introduction 

In this paper, we estimate the connectedness of the Italian banking system through in- and 
out-of-sample dynamic of the set of measures introduced in Diebold and Yilmaz (2009, 2012, 2014, 
2015) and further developed in Gätjen and Schienle (2015). This method aims to assess the existence 
and to measure any spill-overs between different banks through the recursive, rolling window 
application of forecast error variance decomposition in a general, flexible vector autoregressive 
(VAR) framework. Such a variance decomposition is defined in Lütkepohl (2005) as “the proportion 
of the H-step forecast error variance of variable i accounted for by innovations in variable j”. Given 
two variables of interest i and j, the more variable j affects the forecast error variance of variable i, 
the more we consider the former to be connected to the latter. Specifically, in our application 
the variables of interest are the (logarithms of) the daily variances of the share price of pairs of 
financial institutions.1 

The empirical application to the Italian banking system turns out to be particularly interesting; 
indeed, despite the systemic, global threats that it would pose to the rest of the World have been 
largely debated by financial commentators (see e.g., Davies, 2017; Friedman, 2016; The Economist, 
2016), there is limited academic literature that explores the interconnectedness of the Italian banks. 
For instance, Gropp and Moerman (2014) examine contagion in a sample of 67 large European banks 
(including all major Italian banks) aiming to identify systematically important financial institutions. 
Betz et al. (2016) analyze a sample of 51 European banks to show how banking sector fragmentation 
and sovereign-bank linkages evolved over the European sovereign debt crisis. With reference to 
network measures of systemic risk in the Italian banking system, Borri et al. (2014) have proposed to 
use differential CoVaR to measure the contribution of each bank to the overall VaR of the financial 
system when that bank is in a state of distress. Di Biase and D’Apolito (2012) find regression 
evidence based on bank stock betas consistent with the fact that the systemic risk of Italian banks 
would grow with their size but not with leverage. However, in contrast to ours, none of these papers 
adopts an explicit network VAR decomposition approach. 

Beside the relevant empirical application, our goal is to perform a comparison of two alternative 
methodologies to infer network connectedness from VAR models. In fact, we derive connectedness 
measures using both the in-sample estimation first proposed by Diebold and Yilmaz (2014, 2015) 
and the out-of-sample approach of Gätjen and Schienle (2015), under a range of VAR(p) 
specifications. Similarly to earlier literature, we implement a dynamic version of the two methods 
based on a one-sided rolling window estimation/forecasting approach. Moreover, we proceed to 
carefully test the significance of each of the two measures by bootstrapping the test distributions 
under the null hypothesis of absence of connectedness. Because the application of sequential testing 
to time series of spill-over measures based on a rolling window scheme complicates the distribution 

                                                            
1 As suggested in Diebold and Yilmaz (2014, 2016), we choose as the reference variable for our model the 

logarithm the intraday share price volatility of each bank and apply a generalized variance decomposition 

following the seminal work by Koop, Pesaran, and Potter (1996) and Pesaran and Shin (1998). The underlying 

assumption is that the stock market is informationally efficient and the public information about the 

connectedness between financial institutions is incorporated in the stock price. Moreover, the logarithmic 

transformation helps ensure that at least in approximate terms the majority of the variables follows an approximate 

marginal normal distribution, which is in principle required by the variance decomposition technology. 
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of the test statistics (even when they are bootstrapped) because the sample test statistics are based 
on overlapping data, we also apply recent methods appropriate to sequential p-values to control the 
false discovery rate. Finally, in order to assess the differential reliability of the two types—in- vs. 
out-of-sample—connectedness measures, we also (rank) correlate them with a range of five 
additional measures of connectedness and systemic risk, including the well-known Marginal 
Expected Shortfall, CoVaR, and change in CoVar measures.2 

We find three key results. First and foremost, as far gross connectedness measures are 
concerned, adopting in- or out-of-sample measures makes no substantial or qualitative difference in 
terms of resulting economic implications. Even though in general the out-of-sample measures tend to 
be higher than the in-sample ones, their dynamics is strikingly similar. This result partially differs 
from Gätjen and Schienle’s (2015), who, however, study contagion and spill-over in the European 
sovereign market. Second, yet we find more important differences in the empirical implications of 
in- vs. out-of-sample measures when these are applied to estimate net network connectedness. 
Indeed, even modest differences in gross measures seem (they do not necessarily have) to compound 
in non-negligible divergences in net measures. Third, and this appears in line with the existing 
limited empirical evidence (see e.g., Betz et al., 2016), the Italian banking system is characterized by 
a substantial degree of connectedness which makes it prone to contagion and systemic crisis. The 
highest gross connectedness scores concern the largest banks that are especially inclined to export 
variance to the other smaller banks, but also appear to be rather susceptible to shocks coming from 
all other banks under examination. Interestingly, under in-sample variance decomposition, we obtain 
evidence that no Italian bank is consistently exporting or importing volatility on a net basis and 
appears to be producing a negative externality or to bear the costs of systemic risk. In contrast, when 
we adopt the out-of-sample method, we find that there may be a few large, net exporters of volatility 
among Italian banks, that should be on the top of the list of supervised and regulated banks (at the 
European level, one may add, in the light of the global importance of the Italian banking system).3 

There is an ever-expanding literature on measuring and testing network connectedness with the 
aim of controlling and managing potential network spillover risks. In a series of papers, Diebold and 
Yilmaz (2009, 2012, 2014, 2016) show how VAR models and the associated variance 
decompositions may be used—under a variety of identification schemes of structural shocks—as 
tools to produce variance contribution matrices that are informative on network structure. Diebold 
and Yilmaz (2015) show that such methods are equivalent to classical empirical (directed) network 
methods and concepts (for instance based on the notion of nodes, degrees, and distance among 
nodes), when the adjacency matrix is identified with the matrix of bilateral variance decompositions. 

                                                            
2 Systemic risk shall be defined as the risk of collapse of the entire financial system, triggered by the default of 

one, or more, interconnected financial institutions. 
3 Our focus on Italian banks in isolation from global influences finds justification in recent results by Demirer, 

Diebod, Liu, and Yilmaz (2018) who study global network connectedness by addressing the dimensionality 

problem in standard VAR-based analysis applied to 150 important banks globally, using Least Absolute 

Shrinkage and Selection Operator (LASSO) methods. Over a 2004–2014 sample, they find that banks’ 

connectedness has a strong geographical component and that this increases during crises. Also, Italian banks 

have long been mostly dependent upon domestic funding sources; additionally, after the subprime mortgage 

crisis, the banking sectors in the Euro Area considerably reduced their degree of cross-border integration. 

Betz et al. (2016) report a similar finding using a rather different method. 
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We contribute to this literature by providing an additional application and especially by performing a 
comparison between in-sample and out-of-sample forecast error-based variance decompositions.4 

Of course, other approaches to the empirical estimation of network structure would have been 
possible. For instance, there is a growing literature based on Bayesian graphs that has addressed the 
same issues in our paper. Ahelegbey et al. (2016) apply a Bayesian graph-based MCMC approach 
to identification in structural VARs applied to systemic risk and report evidence of strong, 
unidirectional linkages from financial to non-financial super-sectors in the Eurozone from the 
2007–2009 financial crisis but of bi-directional linkages during the 2010–2013 European sovereign 
debt crisis. 

There are also other strands of literature that have used a variety of methods to jointly assess 
the existence of spillovers and network effects among banks and sovereign debt. For instance, 
Alter and Beyer (2015) assess the dynamics of financial contagion among sovereigns and banks 
using medium-size VARs with exogenous common factors that account for common global and 
regional trends. They report that the strength of contagion fluctuated within a stable interval between 
October 2009 and July 2012 but the components from banks-to-sovereigns and sovereigns-to-banks 
increased signaling an intensifying feedback loop between euro area banks and sovereigns. 
Betz et al. (2016) stress that for regulatory purposes, network dependencies in extreme risks are 
more relevant than simple correlations. This requires focusing on connections between time-varying 
tails, as, e.g., represented by conditional quantiles. They quantify the systemic impact of an 
individual bank with the marginal effect of its Value-at-Risk (VaR) on the VaR of the system, giving 
rise to an estimated risk network. They report that the density of the tail dependence network based 
on equity prices increased after 2006 peaking around the height of the global financial crisis and 
significantly declined thereafter. However, during the European debt crisis in 2011–2012, the 
markets were characterized by increased interconnectedness between sovereigns and banks and 
fragmented along national borders as reflected by a strong increase of within-country linkages, 
which are more pronounced for countries engulfed by the sovereign crisis, like Italy. 

The rest of the paper is structured as follows. Section 2 reviews the key elements of our 
VAR/variance decomposition-based methodologies and compares the key choice that is tested in our 
paper, i.e., in-sample vs. out-of-sample variance decompositions. Moreover, a number of innovative 
methods geared towards testing the statistical significance of the estimated connectedness measures 
are developed that can keep track of the inferential problems created by the sequential nature of the 
measures estimated in this paper, such as the false discovery rate. A few benchmarks useful to assess 
the economic meaning and significance of our connectedness measures are also defined. Section 3 
presents the data and summary statistics. Section 4 contains our novel empirical results and it is 
organized along two axes: First, the comparison between the estimates and economic plausibility 
of connectedness measured estimates on in-sample vs. out-of-sample variance decompositions; 
second, the key empirical insights we derive on the state and nature of the Italian banking system. 
Section 5 concludes. 

                                                            
4 It could be also interesting to incorporate in the analysis other markets/asset classes. For instance, Fengler 

and Gisler (2015) evaluate the relevance of covariances in the transmission mechanism of spillovers across 

US stock, bond, and gold markets, in the period July 2003–December 2012. They adapt Diebold and Yilmaz’s 

forecast-error variance decomposition methods by incorporating covariances into the VAR measurement of 

variance spillovers. 
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2. Methodology 

2.1. Definition of the connectedness measures 

We follow Diebold and Yilmaz (2014) in defining the connectedness measures that we shall 

analyze in this paper. If we denote the proportion of the H-step ahead forecast error variance of a 

variable ,  explained by the innovations in the variable ,  by , , we can arrange such variance 

decomposition terms/effects into a  variance decomposition matrix ≡ , , where N is 

the number of variables under investigation. The matrix  defined in this way, is not symmetric, 

which means that the connectedness ,  from ,  to ,  is in general different from the 

connectedness ,  from ,  to , . The main advantage of this pairwise directional connectedness 

measure is that, for each variable, we can distinguish the connectedness arising from the other 

variables and reflected by the variable, from its connectedness transmitted to the other variables. We 

thus define the connectedness “from-others” for the ith variable as: 

, ∑ , ,         (1) 

which is the total proportion of the forecast error variance not explained by innovations to the ith 
variable itself. In turn, we define the connectedness “to-others” for the jth variable as: 

, ≡ ∑ ,           (2) 

These two measures are the sums by row and by column, respectively, of the elements  
in  without considering its main diagonal. In a similar way, we define the net connectedness 
for the ith variable as: 

, , , ,         (3) 

which measures its connectedness to the other variables net of the connectedness from the other 
variables. Lastly, we define total connectedness as: 

∑ ,, ∑ , ∑ ,    (4) 

with the objective of measuring the overall connection between the N variables under investigation. 

2.2. In-sample variance decomposition 

The in-sample variance decomposition method is based on the generalized impulse function of 
Pesaran and Shin (1998). Similarly to Diebold and Yilmaz (2014, 2016), the generalized error 
variance decomposition is preferred over a standard Cholesky-factor decomposition because it is 
independent from the ordering of the variables. Consider a vector stochastic process  of N 
random variables which follows a vector autoregressive model of order p: 

∑ , 1, 2, … ,  ,    (5) 
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where  is a 1  vector of deterministic variables,  and  are  and  coefficient 
matrices, and  is a -dimensional innovation process with ,  and 

|  for ∀ ,  for ′. Assuming that the process in 5 is covariance stationary, 
the VAR(p) model in 5 can be expressed as an infinite-order vector moving average process5: 

	 	∑ 	 		 	 ∑ 	 		 	 , 1, 2, … , ,    (6) 

where the sequence of coefficient matrices  can be recursively calculated as: 

	 	0	 	 	 	0, 	 	 , 	 	 ∑      (7) 

Given 6, Pesaran and Shin (1998) derive the fraction of the H-step ahead general forecast 
error variance of the ith variable explained by innovations in the jth variable as: 

, 	 	
∑ ′

∑ ′ ′        (8) 

Where  is the column vector with ith element equal to 1 and 0 otherwise,  are the 

coefficient matrices in 6,  is the covariance matrix of innovations in 5 and  is the jth element 

on the diagonal of . As the innovations are not orthogonal and the sum of the contributions to 
forecast error variance by the ith variable is not 1, in the in-sample variance decomposition 

matrix , , in what follows we shall use a ,
,  re-scaled as: 

, ≡
,

∑ ,          (9) 

so that ∑ , 1 and ∑ ,
,  by construction. 

2.3. Out-of-sample variance decomposition 

Gätjen and Schienle (2015) propose a modification of 8 in which the variance decomposition is 
based on the out-of-sample (OOS) forecast error variance, rather than the in-sample forecast error 
variance as in Diebold and Yilmaz (2014). Given the VAR(p) in 5 and under the same assumptions 
on the N-dimensional innovation process  introduced before, we define the OOS, H-step ahead 
forecast error variance-covariance matrix as: 

, 	 	 | |  ,    (10) 

where |  is the minimum mean square error (MSE) forecast of  conditional on information 
up to t. Thus, the proportion of the out-of-sample, H-step ahead forecast error variance of the ith 
variable explained by innovations in the jth variable may be defined as: 

, 	 	
,

, ,
       (11) 

                                                            
5 This is equivalent to assume that the roots of det ( ∑ 0 fall outside the unit circle, see 

Guidolin and Pedio (2018) for details. 
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As before, in the OOS variance decomposition matrix , , we use a re-scaled version 
of 11 calculated as: 

, ≡
,

∑ ,          (12) 

so that ∑ , 1 and ∑ ,
, , by construction. 

2.4. The estimation of the connectedness measures 

We follow Diebold and Yilmaz (2014) and focus our analysis on a predictive horizon of H = 12 
days, which seems economically meaningful to traders and also supervisory authorities in the 
context of episodes of panic and contagion. As we keep this parameter fixed throughout the entire 
paper, we omit the H superscript in the subsequent notation. To obtain robust results, we use two 
different VAR(p) specifications with different deterministic variables, : We will refer to the model 
with a constant term 1  as the VARC(p) and to the model with both a constant and a linear 
trend 1 ′ as the VARCT(p). To account for time-varying parameters and, most importantly, 
time-varying connectedness, we estimate the connectedness measures using a one-sided rolling 
window of length . As in Diebold and Yilmaz (2014, 2016), we use the observations , 

1,… ,  to estimate the parameters of model 5 by standard OLS, given that the model is 
unrestricted. The estimated values ,  (i = 1, 2, …, p) and ,  are used in equations 7–9 to obtain 
the in-sample variance decomposition matrix  at time  and the respective in-sample 
connectedness measures at time , as defined in 1–4. In the case of the out-of-sample connectedness, 
we employ two one-sided rolling windows as in Gätjen and Schienle (2015): 

1. The first is a window of length  used to estimate the VAR(p) model in 5 by OLS using 
observations , 1,… ,  to obtain the time series of the minimum MSE 
estimator | ; 

2. The second window of length  is used to estimate the out-of-sample H-step ahead forecast 
error covariance matrix: 

∑ | |    (13) 

The estimator  is then used in 11–12 to obtain the OOS variance decomposition 
matrix  at time  and the corresponding OOS connectedness measures at time  defined as in 
equations 1–4. Both procedures are applied to both the VARC(p) and the VARCT(p) specifications. 
We set 200 days and 200 days as in Gätjen and Schienle (2015). The lag order p in the 
VAR(p) models is chosen for each rolling window by minimization of the Akaike Information 
Criterion, which in any event, always determined p = 1 as the optimal selection for all the 
applications that we present. 

2.5. Testing the statistical significance of the connectedness measures 

We are interested in assessing the significance of the connectedness measures in order to 
perform meaningful comparisons between different methodological specifications, across different 
financial institutions, and over time. In particular, we aim at testing the null hypothesis of the 
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absence of connectedness between the N realized volatility series whose dynamics shall be jointly 
modelled in 5. To limit the number of assumptions under which we conduct the tests, we do not 
impose any distribution on the innovations  under the null hypothesis. We use instead a parametric, 
residual-based bootstrap as in Mackinnon (2009) to determine p-values of our tests. Because the in- 
and out-of-sample connectedness measures are formulated differently, the associated null hypotheses 
and bootstrapping procedures are different. However, the underlying intuition is that, in absence of 
connectedness, each variable follows a univariate autoregressive process of order p and is unaffected 
by either the realized values or the innovations of the other variables. 

In the case of in-sample connectedness, the null hypothesis is based on 5 as follows: 

: ∀ ⇒ ∧ ,

: ∃ ⇒ ∨ , ,       (14) 

where ∈ 1, 2, … ,  and  and ,  are diagonal matrices. A valid bootstrapping procedure is 
illustrated in Appendix A. In the case of out-of-sample connectedness, the null hypothesis must 
be broadened to also include , , on the basis of which we calculate the OOS variance 
decomposition matrix: 

: ∀ ⇒ ∧ , ∧ ,

: ∃ ⇒ ∨ , ∨ ,
,    (15) 

where ∈ 1, 2, … ,  and , ,  and ,  are diagonal matrices. The bootstrapping procedure 
consists of steps detailed in Appendix B. We apply the bootstrap with 5000  
re-samples which guarantees a good balance between calculation speed—given the many complex 
iterations to be performed—and the accuracy (granularity) of the bootstrap distribution of the test 
statistics. Because in the case of both in- and out-of-sample connectedness, the bootstrap is applied 
to rolling windows of data, the resulting output for the hypotheses tests consists of 12 4  
time-series of p-values, one for each connectedness measures under analysis. 

A first issue is that, in the context of the multiple, sequential hypothesis tests that we plan to 
perform, comparing the p-values of each test with a threshold  is generally invalid because the 
probability of making a type I error increases with the number of hypotheses sequentially tested. 
Unfortunately, this is our case, as for each connectedness measure (⋆ , we have a time series of  

p-values ⋆,  of length L, which takes values 3207  for the in-sample measures and 

2996 for the OOS measures. As a result, a first statistic that we can calculate on the basis of 

the sequence ⋆,  is the true null ratio ⋆,
⋆,

⋆
, which is the ratio between the number of 

“true” null hypotheses  over the total number of hypotheses under testing. We use the estimator of 
the true null ratio for one-sided tests introduced in Pounds and Cheng (2006): 

⋆, min 1,
⋆
∑ ⋆, , 1 ⋆,

⋆      (16) 

This estimator is conservatively biased, in the sense that ⋆, ⋆, . Even though it is 

biased, its conservativeness will not invalidate the following analysis because a large value of ⋆,  
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implies high connectedness and this is—at least on logical grounds—what our paper intends to 
empirically prove. 

Yet, we want to focus on controlling the False Discovery Rate (henceforth, FDR), i.e., the 

expected proportion of rejected hypotheses which are falsely positive. Given the time-series nature 

of our sequence of p-values, we are not interested in rejecting the intersection of all null 

hypotheses, but rather in assessing the reliability of the connectedness measures when they suggest 

a significant connection in the banking system. Here the main issue is that the p-values in the 

sequence ⋆,  cannot be generally assumed to be independent because they are obtained from 

overlapping windows of data. However, Benjamini and Yekutieli (2001) have proven that a 

modification of the Benjamini-Hochberg procedure controls the FDR at a level less than or equal 

to  (for a given selection of the parameter q), even under non-independence of the time series of p-

values. Their procedure is as follows. Let ⋆, ⋆, ⋯ 	 ⋆,  be the ordered p-values under 

the null hypotheses , , … , , respectively. Define the index k as: 

:	 ⋆, ∑        (17) 

If we reject the first k ordered null hypotheses , , … , , for which it holds that 

⋆, ⋆,  for 1,… , , the procedure always controls the FDR at a level: 

         (18) 

We proceed by setting a maximum level of false discovery ratio 0.05 and we divide 
it by the estimated true null ratio in 16 to obtain the constant  to use in 17, as in 18,  

/ . Subsequently, we use kth p-value ⋆ ⋆,  as our reference and simply reject all 
null hypotheses for which the p-value is smaller than ⋆ . 

Because the estimator defined in 16 is conservatively biased, on average we obtain a higher q 

than the one that could be computed using the true value ⋆, . Thus, we expect k to be higher than 

needed and to reject more null hypotheses than we should. However, this fact does not diminish the 

achieved reliability in the matter of the rejection of , , … , , because the modified 

Benjamini-Hochberg procedure guarantees that the expected proportion of false positives is below 

the value  we have set. 

2.6. The definition of the benchmarks and associated comparisons 

To favor the economic interpretation of our empirical results, we also compare the 
connectedness measures estimated on the basis of the variance decompositions against a set of 
benchmark indexes which quantify connectedness in a broader sense, that is not linked to a structural 
framework that measures interdependence in variance, differently from the VAR(p) in equation 5. 
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The first benchmark is simply the sample linear correlation coefficient between the 
logarithmic return of the sector (bank) market index ,  and the contemporaneous logarithmic 
return of the jth bank , :6 

, , , ,         (19) 

The higher ,  is across different financial institutions, the more they will also move together. The 

second benchmark is the sample correlation coefficient between ,  and the H-lagged logarithmic 
return of the jth bank , : 

, , , ,        (20) 

20 attempts to capture the ability of the equity valuation of the jth bank to influence the overall index 

H periods ahead, where H is the predictive horizon used in 8–10. Both ,  and ,  are estimated 

using the sample linear correlation over a rolling window of length . 
The third benchmark is Marginal Expected Shortfall (MES), defined as: 

, , , , ,     (21) 

Where  is the Value at Risk at % of the sector market index. MES estimates the 
expected loss conditional on the occurrence of a left-tail event in the sector. Similarly to the 
connectedness from-others, MES is the higher the stronger the spill-over of the whole banking system 
on the jth bank. We estimate 30 using the historical returns over a rolling window of length : 

,

∑ , , ,
,

∑ , ,
,       (22) 

where ∙  is the indicator function and ,
,  is the estimator of the % percentile of the sector 

index returns between  and . 
The fourth benchmark is the market index CoVaR conditional to the jth bank: 

, ,
| ,        (23) 

defined as: 

, ,
|

, ,     (24) 

where  is the Value at Risk at % of the jth bank. The CoVaR measures the left-tail risk 

measured with reference to the whole system if the jth bank is in distress. Because it measures the 

tail impact of the jth bank on the other banks, it is comparable to the connectedness to-others. We 

                                                            
6 We define the market index as the equally weighted portfolio that includes all banks in our sample, so that it 

is effectively a sectoral sub-index. 
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estimate ,
|  through a quantile regression over a rolling window of length , assuming 

that ,  follows: 

, , , , ,    (25) 

and estimating the parameters  and  for the %  quantile following Koenker and  
Bassett (1978). Therefore, the estimated % quantile of the market return, conditional on the 
return of the jth bank, is: 

, ,         (26) 

From 26, we can derive the estimator of ,
|  as: 

, ,
| ,      (27) 

where ,
,  is the estimator of the % percentile of the returns of the jth bank. 

The fifth benchmark is the market index Δ  conditional on the jth bank: 

, Δ ,
|

,
|

,
| ,   (28) 

where CoVaR ,
|  is defined as in 24 and ,

|  is defined as: 

, ,
|

, , ,    (29) 

i.e., ,  is the median of , . Δ ,
|  measures the increase in left-tail risk in the 

banking system due to the jth bank being in an ordinary state (as represented by its median return) 

rather than in a distressed one. Because it is directly derived from ,
| , it is analogous to the 

connectedness to-others. We estimate Δ ,
|  through a rolling window of length  as: 

, Δ ,
|

,
. , ,     (30) 

where  is the same as in 36 and ,
. ,  is the estimated median return of the jth bank. 

Once we have estimated all five benchmarks, we proceed to compare them with the 
connectedness measures based on the forecast error variance decomposition. To do so, we compute the 
Spearman’s rank correlation coefficient between each connectedness measure ⋆  and each benchmark: 



672 

Quantitative Finance and Economics  Volume 2, Issue 3, 661–701. 

⋆, ,
⋆, 	 1, … , 5 .      (31) 

We resort to the Spearman’s rank correlation as it does not impose a linear relationship between 
the connectedness measure and the benchmarks, but it assumes only a monotonic relationship 
between the two. The non-parametric nature of the Spearman’s coefficient allows us to capture the 
common behavior between the time-series from which it is computed, while being unaffected by 
their different range of values.7 In fact, we test the null hypothesis of absence of correlation, against 
the alternative of a positive rank correlation: 

: ⋆, , 0

: ⋆, , 0
         (32) 

Under the null hypothesis, the statistic: 

⋆, ,
⋆, ,

        (33) 

is distributed as a t-student distribution with 2 degrees of freedom, where n is the number of 

observations used to compute ⋆, , . 

3. Data 

We include in our sample 10 Italian banks which were quoted in the MTA segment of Borsa 
Italiana over the period July 1, 2003–December 22, 2016. Table 1 shows the composition of our 
sample, together with the bank’s tickers and the value of their total assets as of the end of fiscal 
year 2015. The data consist of the daily open, high, low and close quotes for each trading day over 
sample period. We estimate their intraday realized volatility  using the range-based estimator of 
Garman and Klass (1980): 

0.511 0.019 2 0.383 ,   (34) 

where ⁄ , ⁄  and ⁄ . The opening 
quotes of CE, Banco di Desio e della Brianza, Banca Piccolo Credito Valtellinese, and Banca 
Carige are not reported with continuity, so we estimate their intraday volatility using Garman and 
Klass’s (1980) estimator: 

,        (35) 

                                                            
7 For instance, note that the connectedness from-others indices, B1 and B2 are bounded, while the other 

measures are unbounded. 
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which is based solely on the daily high and low quotes. Table 2 shows the summary statistics of 
estimated intraday volatilities for each bank. As in Diebold and Yilmaz (2014, 2016) we estimate the 
VAR(p) in 5 on , log	 , the logarithm of intraday volatility. Panel B of Table 2 shows in fact 
that by considering the natural logarithm of estimating decreases both the skewness and the excess 
kurtosis of the data, even though the Jarque-Bera test reject normality for most banks (the 5% size 
critical value is approximately 5.99). According to the Augmented Dickey-Full statistic, we can 
reject the null hypothesis of a unit root in the data at a 1% size for all banks, thus we can model the 
data with a VAR(p) model without taking into account cointegration, e.g., differently from Heinz and 
Sun (2014) in their application to CDS and bond yields data. 

Table 1. Structure of the Sample. 

 
Note: The “total assets” column shows data as of the end of the fiscal year 2015 with the exception of 

Mediobanca, whose fiscal year ends on June 30, 2016. Unicredit is the only bank in our sample to be included 

continuously from 2011 to 2016 in the G-SIB list published by the Financial Stability Board. 

Table 2. Summary statistics for Intra-Day volatility. 

Panel A 

 

Continued on next page 

Bank	Name Ticker Total	Assets	FY	2015	(mln	€)

UniCredit UCG 860,433

Intesa	Sanpaolo ISP 676,568

Banca	Monte	dei	Paschi	di	Siena BMPS 169,012

Banco	Popolare BP 120,161

UBI	Banca UBI 117,201

Mediobanca MB 69,819

Credito	Emiliano CE 37,455

Banca	Piccolo	Credito	Valtellinese CVAL 26,902

Banca	Carige CRG 30,299

Banco	di	Desio	e	della	Brianza BDB 12,248

Bank
Number	of	
observations

Mean Median Maximum Minimum Std.dev. Skewness
Excess	
Kurtosis

ADF	
statistic

Jarque‐Bera	
statistic

UCG 3,427 0.020 0.016 0.122 0.001 0.014 2.116 6.456 ‐18.438 8,521

ISP 3,426 0.019 0.015 0.127 0.003 0.012 2.441 9.730 ‐18.514 16,940

BMPS 3,424 0.023 0.018 0.331 0.003 0.018 3.628 34.509 ‐23.453 177,632

BP 3,425 0.022 0.019 0.131 0.002 0.015 1.820 5.511 ‐19.276 6,235

UBI 3,426 0.019 0.016 0.123 0.002 0.012 1.627 4.360 ‐20.862 4,232

MB 3,427 0.017 0.015 0.078 0.002 0.009 1.690 4.842 ‐22.227 4,986

CE 3,427 0.019 0.016 0.124 0.003 0.012 2.014 7.111 ‐22.498 9,553

CVAL 3,427 0.017 0.014 0.097 0.001 0.012 1.875 5.253 ‐24.997 5,956

CRG 3,427 0.020 0.016 0.197 0.001 0.015 2.308 11.071 ‐23.125 20,574
BDB 3,413 0.017 0.015 0.107 0.000 0.010 1.899 6.678 ‐25.822 8,406
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Panel B 

 

4. Empirical results 

4.1. In-sample connectedness 

We start by estimating the connectedness of the Italian banking system using the in-sample 
method of Diebold and Yilmaz (2014, 2016). Figure 1 shows the time series of the resulting 
measures. Observing the plots, we note that there is no noteworthy difference between the VARC(p), 
in red, and the VARCT(p), in black, specifications: The time series of total connectedness evolve in 
similar ways. The total connectedness of the banking system in panel A shows a general upward 
trend starting in mid-2005 and ending in 2012, which includes the Financial Crisis of 2007–2008 and 
the European Debt Crisis of 2009–2012. Even though the total connectedness started rising two years 
before the subprime crisis in the United States, it is when the US crisis propagates to Europe and 
takes “trans-Atlantic” proportions (see Diebold and Yilmaz, 2016) that total connectedness increases 
sharply and reaches 0.65 at the end of 2008, doubling the starting level in 2005. Such an alarmingly 
high level is only exceeded between 2010 and 2012, when Italian banks came directly under market 
pressures and were often alleged to be on the brink of default because of their large holdings of 
peripheral sovereign debt, as total connectedness came to oscillate in the range 0.55–0.70.8 The last 
four years in our time-interval record a decline in 2013–2014 followed by an increase in 2015–2016, 
which are marked by the demise of Banca Monte dei Paschi di Siena (rescued by the government) 
and the obvious difficulties of Carige. Clearly, the connectedness is found to be highly significant 
throughout the entire sample (see lower plot in Figure 1, panel A), with p-values that are always 
below the FDR threshold.

                                                            
8 The Italian banking sector was severely hit by the sovereign debt crisis in 2010–2011, when the Italian FTSE 

Bank Index dropped by nearly 50 per cent (10 percent more than the MSCI‐EMU Bank Index). Italian banks 

directly or indirectly owned a large share of the domestic government debt and, at the end of 2011, the total 

exposure of the Italian banking system to the domestic public sector amounted to €272 billion, 10 per cent of 

their total assets (source: Bank of Italy). 

Bank
Number	of	
observations

Mean Median Maximum Minimum Std.dev. Skewness
Excess	
Kurtosis

ADF	
statistic

Jarque‐Bera	
statistic

UCG 3,427 ‐4.157 ‐4.162 ‐2.107 ‐6.560 0.664 0.078 ‐0.210 ‐17.269 9.682

ISP 3,426 ‐4.130 ‐4.169 ‐2.063 ‐5.851 0.554 0.304 0.118 ‐19.042 54.803

BMPS 3,424 ‐4.003 ‐4.037 ‐1.106 ‐5.725 0.644 0.251 ‐0.164 ‐21.919 39.888

BP 3,425 ‐4.026 ‐3.982 ‐2.030 ‐6.305 0.653 ‐0.118 ‐0.311 ‐18.420 21.714

UBI 3,426 ‐4.174 ‐4.149 ‐2.093 ‐6.055 0.618 ‐0.038 ‐0.451 ‐20.255 29.672

MB 3,427 ‐4.200 ‐4.184 ‐2.549 ‐6.195 0.526 ‐0.082 0.039 ‐22.264 4.119

CE 3,427 ‐4.105 ‐4.113 ‐2.089 ‐5.946 0.547 0.063 0.010 ‐22.907 2.261

CVAL 3,427 ‐4.316 ‐4.295 ‐2.335 ‐7.223 0.699 ‐0.115 ‐0.254 ‐23.838 16.715

CRG 3,427 ‐4.186 ‐4.140 ‐1.624 ‐6.763 0.736 ‐0.255 ‐0.071 ‐20.523 37.879
BDB 3,413 ‐4.232 ‐4.222 ‐2.234 ‐8.111 0.588 ‐0.490 2.065 ‐27.387 745.106
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Panel A 
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Figure 1 (continued) 

Panel B 

 



677 

Quantitative Finance and Economics  Volume 2, Issue 3, 661–701. 

Figure 1 (continued) 

Panel C 
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Figure 1 (continued) 

Panel D 

 
Figure 1. Dynamics of the estimated in-sample connectedness measure.
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The plots concerning connectedness from-others in Figure 1, panel B follow roughly the same 
evolution as general connectedness in panel A. An inspection of the plots for individual banks reveal 
that the decline in connectedness from- during 2013–2014 has been more pronounced for BMPS, CE 
and CRG (see Table 1 for a definition of all acronyms). For these three banks the connectedness 
returns to the pre-crisis level before reverting to high levels during the last two years in our sample. 
Although the case of CE is not completely obvious (or it may simply have a benign interpretation), 
BMPS and CRG benefitted from rescue attempts in 2013–2014 that are likely to have temporarily 
“detached” them from the rest of the banks in the sector. However, the two most important banks, 
UCG and ISP, are characterized by a rather permanent increase in the sensitivity to volatility shocks 
from other banks, as their estimated connectedness simply increases from 0.2–0.3 in 2004, to 
approximately 0.7 by the end of the sample. Because the same pattern also characterized major banks 
such as UBI and MB, this represents a worrisome development. By the end of the sample, the connectedness 
from of all banks turns out to be highly statistically significant, with the only exceptions/doubts 
concerning BDB, which appears in fact rather disconnected from the rest of the system. 

The connectedness to-others measures in panel C show a more heterogeneous behavior. The 
connectedness of UCG, ISP, BMPS and BP, the largest banks according to total assets, follows the 
same pattern described in panels A and B, while the other banks show a fluctuating upward trend 
in connectedness with peaks in 2008 and 2011. Here a few empirical results are unexpected and 
isolate the most systematically “dangerous”—in terms of their volatility being transmitted to 
others—banks in the Italian system. Besides UCG, ISP, and BP that are expected to be able to 
“export” volatility because of their size, banks such as UBI and MB are estimated to have recorded 
an increase in their connectedness to-others from 0.25–0.3 in 2005 to an index close or even in 
excess of 1.0 by the end of our sample. Interestingly, the connectedness of BDB, which is the bank 
with the smallest total assets at the end of FY 2015 in our sample, stays to a low level for the entire 
period under analysis and it is frequently not statistically significant. 

Although it is characterized by the least statistical significance in Figure 1, panel D is in some 
way the most interesting among the panels. With few exceptions, the estimated net connectedness 
measures fail to follow any particular pattern, except a rather unsurprising peak in 2009–2010 
concerning the banks with higher total assets. This means that in the banking system, all banks 
influence and are influenced by all other banks, creating an approximately homogeneous and 
compact system. The exceptions are represented by UBI which, after 2015, has taken to export much 
more volatility than it imports from the rest of the banking system, and CE and BDB (the former, 
after 2010) that on the contrary play a passive role and import more risk than they export. 
Interestingly, the most troubled Italian banks during our sample period, BMPS and CRG, display an 
approximate zero net connectedness that is hardly ever statistically different from zero. 

Table 3 offers a summary of these results by reporting the estimated Pounds and Cheng’s true 
null ratio ⋆,  and Benjamini and Yekutieli’s k-th p-value that maximizes 26 controlling for the 
possibility of false discovery caused by the sequential nature of the tests performed by setting a 
maximum level of false discovery ratio 0.05. While with the former test, the lower  
is ⋆,  the stronger is the evidence against the null hypothesis of no connectedness in the data, under 
the second methodology, because one rejects all null hypotheses for which the p-value is smaller 
than ⋆ , the higher is ⋆ , the stronger is the evidence in the data against the null hypothesis of 
no connectedness. While total connectedness is highly significant under both VARC(p) and VARCT(p) 
in terms of ⋆, , the evidence is more mixed when one accounts for the FDR, as the smallest ⋆  
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is 0.0002, which is well below a classical 0.05. As one would expect from Figure 1, there is little 
evidence of non-zero net connectedness in the data, as all estimated ⋆, s are large while the values 
for ⋆  are generally small, occasionally 0.000. There is instead no doubt that, even when FDR 
effects are considered, the connectedness to- and from-others measures are largely statistically 
significant in overall terms. This is certainly the case of UCG, ISP, BMPS, BP, MB, and CE, in some 
ways the largest banks and a few more; however, the smaller banks seem to be on the verge of no 
gross connectedness, as signaled by ⋆,  exceeding 0.1 and ⋆  never exceeding 0.05, which may 
be indicators of weak evidence in the data. This confirms the picture found above: the Italian 
banking systems appear to be mildly connected—especially as far as the largest banks are 
concerned—the large banks are both active exporting and importing volatility with a net balance 
close to zero, and only the smallest banks such as CVAL, CRG, and BDB carry weaker links. 

Table 3. Statistical significance of estimated connection measures. 

 

Continued on next page 

From‐
others

To‐
others

Net
From‐
others

To‐
others

Net

π0 0.000 0.007 0.223 0.000 0.000 0.014

pFDR 0.006 0.191 0.015 0.002 0.018 0.238
π0 0.004 0.022 0.252 0.001 0.001 0.005

pFDR 0.186 0.253 0.012 0.038 0.049 1.000

π0 0.008 0.014 0.314 0.001 0.005 0.048

pFDR 0.294 0.305 0.007 0.040 0.109 0.092
π0 0.005 0.010 0.312 0.000 0.000 0.006

pFDR 0.233 0.218 0.008 0.006 0.010 0.749

π0 0.033 0.064 0.666 0.011 0.028 0.158

pFDR 0.168 0.086 0.000 0.269 0.203 0.008
π0 0.057 0.064 0.659 0.014 0.019 0.019

pFDR 0.093 0.085 0.000 0.409 0.299 0.074

π0 0.045 0.022 0.545 0.001 0.028 0.120

pFDR 0.123 0.255 0.000 0.054 0.202 0.034
π0 0.043 0.029 0.589 0.002 0.003 0.024

pFDR 0.127 0.194 0.000 0.064 0.102 0.187

π0 0.000 0.001 0.402 0.000 0.000 0.100

pFDR 0.001 0.045 0.005 0.000 0.009 0.050
π0 0.000 0.000 0.429 0.000 0.000 0.015

pFDR 0.001 0.007 0.004 0.000 0.000 0.345

π0 0.006 0.023 0.507 0.000 0.001 0.179

pFDR 0.140 0.253 0.001 0.006 0.024 0.016
π0 0.010 0.020 0.520 0.001 0.001 0.020

pFDR 0.296 0.245 0.000 0.048 0.077 0.171

π0 0.001 0.047 0.149 0.000 0.009 0.127

pFDR 0.048 0.114 0.005 0.037 0.113 0.006
π0 0.007 0.067 0.155 0.000 0.001 0.027

pFDR 0.296 0.080 0.005 0.032 0.060 0.044

Bank In‐sample Out‐of‐sample

UCG

VARC

VARCT

ISP

VARC

VARCT

BMPS

VARC

VARCT

BP

VARC

VARCT

MB

VARC

VARCT

UBI

VARC

VARCT

CE

VARC

VARCT
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4.2. Out-of-sample connectedness 

In Figure 2, we present results based on the OOS realized forecast error variance decomposition 
methodology proposed by Gätjen and Schienle (2015). While Figure 2 has a structure that is identical 
to Figure 1, Figure 3 directly compares the in- and out-of-sample connectedness estimates derived 
from the two methods. 

Panel A of Figure 2 is virtually indistinguishable from panel A of Figure 1 so that the same 
comments apply. Figure 3 directly performs the comparison and shows that, although as already 
noted by Gätjen and Schienle, the OOS measures are generally higher than the in-sample ones, the 
general patterns of the IS and OOS measures are approximately identical. In panels B and C of 
Figure 2, there are neither significant qualitative differences in connectedness from-others and 
to-others between the in-sample and out-of-sample connectedness. Here qualitative means that the 
patterns and dynamics over time of the estimated measures are identical, even though the plotted 
numerical values may differ. Moreover, also in this case, the inclusion of specific deterministic 
components makes little difference to the empirical estimates reported.9 

                                                            
9 In fact, panels B and C of Figure 2 are just reported for completeness. 

From‐
others

To‐
others

Net
From‐
others

To‐
others

Net

π0 0.148 0.106 0.450 0.007 0.058 0.047

pFDR 0.031 0.046 0.000 0.219 0.096 0.007
π0 0.202 0.131 0.481 0.016 0.032 0.016

pFDR 0.022 0.037 0.000 0.351 0.173 0.040

π0 0.121 0.107 0.501 0.001 0.031 0.149

pFDR 0.042 0.048 0.000 0.039 0.182 0.004
π0 0.129 0.143 0.561 0.014 0.044 0.013

pFDR 0.038 0.035 0.000 0.410 0.125 0.046

π0 0.186 0.536 0.311 0.089 0.293 0.006

pFDR 0.024 0.003 0.000 0.057 0.012 0.000
π0 0.194 0.489 0.350 0.010 0.055 0.001

pFDR 0.022 0.002 0.000 0.208 0.101 1.000

π0 0.055 0.093 0.407 0.011 0.046 0.095

pFDR 0.079 0.044 0.002 0.409 0.097 0.021
π0 0.065 0.097 0.431 0.006 0.016 0.015

pFDR 0.066 0.042 0.001 0.423 0.289 0.151

π0
pFDR

π0
pFDR

Out‐of‐sampleBank In‐sample

CVAL

VARC

VARCT

CRG

VARC

VARCT

BDB

VARC

VARCT

VARCT

All	Banks

VARC

VARCT

0.0005 0.0000

0.0272 0.0002

Total	
Connectedness

VARC
0.0000 0.0000

0.0002 0.0000
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The key distinction that can be draw between in- and out-of-sample connectedness indices 
concerns the net measures, plotted in panel D of Figure 2. Differently from Figure 1, now banks can 
be classified in three starkly different groups: 
 Banks for which net connectedness is largely positive, UCG, ISP, BP, UBI, i.e., the 

largest banks; 
 Banks for which net connectedness fluctuates around 0: BMPS and MB; 
 Banks for which net connectedness is largely negative: CE, CVAL, CRG, BDB, i.e., the 

smallest banks in the system. 
This division reflects rather closely the dimensions of the banks in our sample and confirms the 

systemic role of UCG, the only Italian bank and the only bank in the sample to be included 
continuously from 2011 to 2016 in the list of global systemically important banks (G-SIB list) 
published by the Financial Stability Board (FSB). However, when the time series of bootstrapped 
p-values that appear underneath each row of connectedness measures are taken into account, it 
emerges that only UCG and ISP (to some lesser extent UBI, but only after 2011) imply small p-values 
that allow us to reject the null of zero net connectedness. 
 

Panel A 
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Figure 2 (continued) 

Panel B 
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Figure 2 (continued) 

Panel C 
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Figure 2 (continued) 

Panel D 

 

Figure 2. Dynamics of the Estimated Out-Sample Connectedness Measure.
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Figure 3. Comparisons of In-Sample vs. Out-of-Sample Total Connectedness Measure. 

Finally, the last three columns of Table 3 show overall, FDR-adjusted tests of the hypothesis of 
zero net connectedness estimated from OOS forecast errors. Differently from the case of in-sample 
measures, we now obtain evidence of stronger rejections of the null of zero net linkages among 
Italian banks. This can be seen from the fact that the reported estimates ,  are predominantly 
small and below 0.10 under both VARC and VARCT (this occurs in the case of UCG, ISP, UBI, 
CVAL, and BDB) and that the computed  is large and actually in excess of 0.1 especially for 
estimated computed from VARCT (this is the case of UCG, ISP, UBI, MB, and BDB). In overall 
terms, there are little doubts left on the non-zero net connectedness of UCG, ISP, UBI—as 
“exporters” of volatility to the Italian banking system—and BDB—as an “importer” of risk and 
instability—when OOS measures are employed. 

Figure 4 closes this section by investigating one special and rather interesting case, the network 
connectedness of Banca Monte dei Paschi di Siena in Italian banking system. We devote our 
attention to such a case both because interesting per se, given the notoriety of the bank and its 
difficult balance sheet conditions emerged after the financial crisis, and because the empirical 
findings in Table 3 and in Figures 1–2 lead to an apparent paradox. Indeed, despite being probably 
the most debated and feared among the large-size Italian banks, BMPS reveals a pattern of estimated 
connectedness that is far from explosive and net connectedness that in general oscillates around zero. 
Figure 4 shows the in-sample and OOS connectedness measures in plots that also report the major 
events that have affected the stock market valuation and the realized volatility of BMPS. The first 
plot reveals that even though, in Tables 2 and 3 we have failed to report in overall terms any major 
differences between in-sample and OOS estimates, in a few individual cases, such differences may 
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show up. In the last two panels of the figure, it turns out that while OOS connectedness tends to be 
higher than the in-sample measure, such a difference is particularly strong in the case of 
connectedness to-others and during the most difficult period, 2008–2012, before the Italian 
government’s interventions in February 2013. Such departures yield in the first panel of Figure 4 a 
plot of estimated net connectedness that is drastically different under the in-sample vs. the OOS 
measures. Although not in the massive proportions that one may expect, according to OOS estimates, 
BMPS has been a net export of systemic risks between 2009 and 2012 and again in late 2016. This 
contrasts with the evidence arising from in-sample estimates. 

Panel A 

 
 
Panel B  

 
 
Panel C 
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Figure 4 (continued) 

Panel D 

 
Panel E 

 

Figure 4. Dynamics of the estimated benchmark measures of connectedness. 

The figure shows the time series of the five benchmarks for each bank in our sample. Panel A 

plots , , , , , panel B shows , , , , , panel C shows , , , , 

panel D shows , ,
| , and panel E is devoted to , Δ ,

| . 

4.3. Comparison and causality links between in- and out-of-sample connectedness measures 

In this section we therefore go at the heart of our research question: Does it matter whether the 
network connectedness estimates are computed on the basis of standard, in-sample variance 
decompositions vs. a more careful scheme that separates in-sample window estimation from OOS 
calculation of forecast errors? On the one hand, Table 3 and to a larger extent Figures 1 and 2 have 
provided a largely negative answer. Even though occasional departures may be detected, as far as 
gross connectedness to- and from-other are concerned, the differences are modest and never 
qualitatively (i.e., economically) important. At worst, one can detect a few differences in the mean 
and dynamics of the net connectedness measure. However, whether this may represent key 
information in terms of risk management, portfolio decisions, or system risk regulation and control 
(see Diebold and Yilmaz, 2015) is not obvious ex-ante. In our application, both in-sample and OOS 
measures suggest that there is a considerable degree of connectedness among Italian banks, 
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around 0.67 as of the end of the sample. On the contrary, in net terms, it remains hard to isolate 
which banks (with the obvious exception of the systemically large UCG, ISP, and possibly UBI) are 
net exporters of risk using in-sample measures, while the OOS measures provide a starker answer 
that is supported by considerable statistical significance. 

However, even though their average level, statistical significance, or dynamics over time may 
fail to be starkly different, there is another way through which the difference between in-sample and 
OOS estimation may matter: It remains possible that one measure may reveal a superior degree of 
predictability of some measures based on the past of others, that we interpret as an indication that a 
bank may react to the arrival of new information more promptly than the others do. Therefore, in 
Figure 5, we have performed standard VAR-based Granger causality tests.10 In panels A through C, 
we analyze the direct relationship between individual banks. The in-sample and OOS measures 
reveal starkly different pictures. In the OOS case and especially from the gross to- and from-others 
measures, two-way causality dominates; this means that most indices do forecast most of the others 
and contribute to a view of the Italian banking system as a one with widespread and complex 
linkages in which all or most banks are closely tied to one another. However, especially in the case 
of connectedness from-others, the in-sample estimates reveal in the heat maps a prevalence of 
one-way causality relationships (darker colors below the main diagonal and clear color above, in the 
corresponding square). For instance, an increase in the connectedness from-others of UCG and ISP 
forecast that similar measures for the smallest Italian banks are about to increase as well after a few 
days, but the opposite is not true. Therefore, if they were validated as superior, in a few supervisory 
applications, standard in-sample estimates of gross connectedness from- may prove more informative 
than the OOS ones. However, we must caution a Reader on the fact that in panel C of Figure 6, such 
differences are almost completely lost and for most pairs there is no linear causality relationship 
emerging from either in-sample or OOS network measures, i.e., in both cases no banks become today 
a net importer/exporter of risk may be used to forecast whether the same fate will be followed by one 
or more other banks in subsequent periods. 

 
                                                            
10 Importantly, in the figure, the order of the testing VAR p is chosen according to the AIC. We test 

using standard Wald statistics the null hypotheses that for each possible pair of banks either the in-

sample connectedness fails to predict the OOS measure or that OOS connectedness fails to predict the 

in-sample measure. 
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Figure 5 (continued) 

 
 

 
 

Figure 5. Estimated Connectedness Measure for Banca Monte dei Paschi di Siena. 
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The figure shows the time series of the five benchmarks for each bank in our sample. Panel A plots 

, , , , , Panel B shows , , , , , Panel C shows , , , , Panel 

D shows , ,
| , and Panel E is devoted to , Δ ,

| . 
The figure shows in detail the estimated connectedness from-others, to-others and net of Banca 

Monte dei Paschi di Siena (MPS). To save space, only the measure computed under the VARC 
specification is presented. The shaded areas highlight the quarters of recession of the Italian 
economy. The vertical dotted lines mark events which were relevant to Banca MPS: 

1- Nov. 2007: MPS announces the acquisition of Banca Antonveneta for €6.6 bln. 
2- Mar. 2010: MPS reports a 76% drop in net profits in 2009 caused by the impact of the financial crisis. 
3- Dec. 2011: The European Banking Authority reports Banca MPS’s capital shortfall for €3.3 bln. 
4- Mar. 2012: MPS discloses a loss of €4.7 bln in 2011 due to the re-assessment of goodwill 

originated from past deals, including Antonveneta. 
5- Feb. 2013: The Italian government underwrites €4.07 bln worth of bond issued by Banca 

MPS. One month later, the bank reveals losses of €730 mln and €3.2 bln which originated 
from its exposure to derivatives and Italian bonds, respectively. 

6- Mar. 2014: Banca MPS reports a loss of €1.44 bln in 2013 due to its stock of NPLs. 
7- Oct. 2014: The banking stress test conducted by the European Banking Authority revels that 

MPS is the least capitalized institute between the ones under analysis. 
8- Jul. 2016: A stress test reports that BPS would be the only bank with negative CET1 ratio in 

the occurrence of the adverse scenario; the bank announce a recapitalization of €5 bln and the 
securitization and sale of €9.2 bln non-performing loans. 

9- Dec. 2016: After that the issue of €5 bln new shares fails, Banca MPS invokes a 
precautionary recapitalization from the Italian Government of €8.1 bln. 

4.4. Comparison with the benchmarks 

We compute the benchmarks as defined in 28–32, and 37 after setting 200	days and 

0.05. Figure 6 shows the five benchmarks computed for each bank in our sample. In panel A, 

correlations with the volatility of the sector market portfolio are generally slowly increasing over 

time, with a local maximum at around 0.75 between 2009 and 2011 and subsequent modest decline 

between 2012 and 2014. However, after 2015, for many banks the increase in pairwise correlations 

with the banking sector resumes and a few banks have reached correlations in excess of 0.8 by the 

end of the sample (e.g., BP, UBI, and MD).11 However, panel B shows that no bank’s volatility 

consistently predicts subsequent bank sector volatility, in spite of a few spikes in , , ,  

for UCG, ISP, and UBI between 2008 and 2012. In panel C, we note that the dynamics of MES 

classifies banks in three groups: Those banks with no obvious trend in the measure but visible spikes 

in the worst crisis periods in 2009 and 2011–2012 (UCG, ISP, and BP), banks with an upward trend 

in MES (BMPS, UBI, MD, CVAL, and CRG), and banks with approximately constant and generally 

low MES (CE and BDB, that in fact have almost zero MES). Interestingly enough, all pictures 

                                                            
11 Of course, it is to be expected that Unicredit and Intesa San Paolo ought to display correlations with the 

banking sector in excess of 0.8, given their sheer size and weight in the sector. 
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describing the rolling window dynamics of CoVaR in panel D are strikingly similar, and display a 

visible upward trend with spikes in correspondence to 2009, 2012–2013, and 2016. The same 

comment applies to the change in CoVaR in panel E, even though the picture for Banco Desio shows 

a constant and almost nil change in CoVaR, ,
|

,
| . 

Panel A 

 

Panel B 
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Figure 6 (continued) 

Panel C 

 

Figure 6. Granger causality tests. 

The figure shows the results of the Granger causality test between connectedness measures. In 
panels A–C, we analyze the direct relationship between individual banks. Given the connectedness 
measures ,  and ,  for banks i and j, we estimate the VAR(p) model: 

,

,

,

,

,

,
 

Where the order p is chosen according to the AIC. We test the null hypothesis :	 0 
against :	 0 using the Wald statistic of the estimated coefficients . We repeat the 
test for each pair  and for each specification of the connectedness measure. The p-values of the 
tests are reported in panels A–C, respectively, for the connectedness from-others, to-others and net. 
Because we are testing N null hypotheses for any given connectedness specification ( 10), the 
significance levels  are divided by N, so that the probability of committing at least one type I error 
is smaller than , according to a Bonferroni’s inequality. 

In Table 4, we proceed to compute the Spearman’s rank correlation between the various, in- and 

out-of-sample estimated connectedness measures and the benchmarks. The rank correlation 

coefficients and the p-values of the corresponding no-correlation hypothesis tests are reported in 

Table 4 (under each coefficient, the p-value of the one-sided test of the corresponding null 

hypothesis ρ⋆, , 0 is reported in brackets). In general, especially in panels A, C, D, and E, we can 
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reject the null hypothesis at 1% significance level for the connectedness from-others indicators for 

almost all banks in our sample.12 Although the result is weaker, we can draw the same conclusion 

with reference to the connectedness to-others. Given the established trustworthiness of the 

benchmarks, in particular of MES, CoVaR and ΔCoVaR, in measuring the interdependence between 

the whole banking system and individual banks, such a statistically significant rank correlation 

suggests that the connectedness from-others and to-others is able to reflect the evolution of the same 

underlying interconnection across time, as in Diebold and Yilmaz (2014). Although the correlation is 

estimated to be lower for the smallest bank in our sample, in particular for BDB, it is still significant 

at 1% level even though the associated null hypothesis of absence of connectedness cannot be 

rejected for the majority of days in our sample. Importantly, in all panels of Table 4 we fail to detect 

any meaningful differences between the rank correlations derived from the in-sample vs. the OOS 

connectedness measures, another result fully consistent with Section 5.3 above. 

Table 4. Spearman’s rank correlation coefficients among connectedness measures. 

Panel A 

 

Continued on next page 

                                                            
12 In panel B, concerning the predictive power of the volatility of each bank for market volatility, we find rank 

correlations with estimated connectedness measures that are lower than in other panels, but generally positive. 

The little predictability that we manage to capture, is positively associated with connectedness. In particular 

the rank correlations are all positive and significant for the measures estimated from the VARC model and in 

the case of connectedness from-others. 

VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT

0.873 0.884 0.735 0.861 0.719 0.743 0.674 0.731 0.486 0.518 0.542 0.523
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.876 0.911 0.818 0.905 0.878 0.862 0.779 0.901 0.681 0.628 0.657 0.789
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.895 0.895 0.882 0.906 0.864 0.858 0.875 0.882 0.085 0.057 0.602 0.334
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

0.860 0.880 0.769 0.845 0.845 0.853 0.801 0.824 0.475 0.499 0.656 0.612
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.843 0.860 0.682 0.831 0.760 0.828 0.768 0.826 0.423 0.444 0.565 0.539
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.860 0.891 0.659 0.831 0.833 0.856 0.752 0.821 0.214 0.228 0.501 0.464
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.713 0.683 0.665 0.772 0.506 0.514 0.568 0.631 ‐0.209 ‐0.223 ‐0.183 ‐0.156
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.890 0.935 0.718 0.824 0.779 0.841 0.693 0.698 ‐0.453 ‐0.433 ‐0.107 ‐0.151
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.843 0.862 0.819 0.852 0.727 0.807 0.787 0.835 ‐0.032 ‐0.036 0.137 0.013
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.964) (0.979) (0.000) (0.245)

0.232 0.351 ‐0.085 0.040 0.321 0.442 0.138 0.318 ‐0.084 ‐0.143 0.285 0.347
(0.000) (0.000) (1.000) (0.014) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (0.000) (0.000)

UBI

Benchmark:	ρ(Rm,t,	Rj,t)

Bank

Connectedness	From‐others Connectedness	To‐others Net	Connectedness
In‐sample Out‐of‐sample In‐sample Out‐of‐sample In‐sample Out‐of‐sample

UCG

ISP

BMPS

BP

MB

CE

CVAL

CRG

BDB
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Panel B 

 
Panel C 

 
Continued on next page 

VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT

0.037 0.025 0.151 0.155 0.047 ‐0.003 0.091 0.128 ‐0.056 ‐0.034 0.071 0.082
(0.018) (0.078) (0.000) (0.000) (0.004) (0.572) (0.000) (0.000) (0.999) (0.972) (0.000) (0.000)

0.426 0.437 0.336 0.365 0.333 0.313 0.334 0.375 0.144 0.093 0.259 0.340
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.468 0.492 0.410 0.445 0.388 0.422 0.413 0.410 ‐0.160 ‐0.127 0.230 0.053
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (0.000) (0.002)

0.157 0.115 0.308 0.254 0.089 0.060 0.267 0.219 ‐0.019 ‐0.005 0.112 0.083
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.859) (0.619) (0.000) (0.000)

0.264 0.208 0.187 0.153 0.089 0.079 0.060 0.070 ‐0.094 ‐0.133 ‐0.059 ‐0.010
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (1.000) (1.000) (0.999) (0.716)

0.477 0.493 0.410 0.413 0.529 0.545 0.485 0.490 0.176 0.228 0.238 0.293
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.540 0.540 0.402 0.406 0.252 0.273 0.270 0.239 ‐0.212 ‐0.307 ‐0.186 ‐0.306
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.086 0.075 0.038 0.165 ‐0.016 0.030 ‐0.114 0.071 ‐0.155 ‐0.103 ‐0.417 ‐0.280
(0.000) (0.000) (0.020) (0.000) (0.822) (0.047) (1.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.290 0.253 0.244 0.135 0.389 0.379 0.220 0.086 0.209 0.171 ‐0.129 ‐0.202
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000)

‐0.330 ‐0.364 ‐0.286 ‐0.247 0.023 0.083 ‐0.270 ‐0.243 0.399 0.423 0.197 0.147
(1.000) (1.000) (1.000) (1.000) (0.100) (0.000) (1.000) (1.000) (0.000) (0.000) (0.000) (0.000)

UBI

Benchmark:	ρ(Rm,t,	Rj,t‐H)

Bank

Connectedness	From‐others Connectedness	To‐others Net	Connectedness
In‐sample Out‐of‐sample In‐sample Out‐of‐sample In‐sample Out‐of‐sample

UCG

ISP

BMPS

BP

MB

CE

CVAL

CRG

BDB

VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT

0.781 0.743 0.824 0.794 0.776 0.711 0.689 0.650 0.604 0.608 0.501 0.497
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.840 0.810 0.838 0.842 0.793 0.740 0.819 0.859 0.628 0.497 0.700 0.769
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.610 0.635 0.533 0.553 0.525 0.580 0.447 0.422 ‐0.175 ‐0.143 0.007 ‐0.254
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (0.352) (1.000)

0.768 0.728 0.759 0.737 0.829 0.773 0.777 0.723 0.558 0.566 0.630 0.553
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.847 0.816 0.804 0.847 0.718 0.735 0.759 0.793 0.337 0.276 0.499 0.477
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.790 0.788 0.703 0.764 0.686 0.704 0.670 0.634 ‐0.008 ‐0.016 0.184 0.100
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.680) (0.821) (0.000) (0.000)

0.825 0.789 0.843 0.802 0.515 0.529 0.661 0.643 ‐0.338 ‐0.325 ‐0.159 ‐0.227
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.801 0.774 0.684 0.732 0.771 0.726 0.774 0.803 ‐0.310 ‐0.338 0.137 0.060
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (0.000) (0.000)

0.639 0.669 0.520 0.647 0.492 0.621 0.347 0.502 ‐0.206 ‐0.203 ‐0.451 ‐0.424
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.520 0.506 0.388 0.455 0.242 0.231 0.302 0.384 ‐0.411 ‐0.404 ‐0.375 ‐0.352
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

UBI

Benchmark:	MESα,j

Bank

Connectedness	From‐others Connectedness	To‐others Net	Connectedness
In‐sample Out‐of‐sample In‐sample Out‐of‐sample In‐sample Out‐of‐sample

UCG

ISP

BMPS

BP

MB

CE

CVAL

CRG

BDB
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Panel D 

 

Panel E 

VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT

0.805 0.783 0.771 0.779 0.747 0.693 0.646 0.613 0.534 0.543 0.436 0.442
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.779 0.764 0.734 0.756 0.712 0.708 0.655 0.732 0.542 0.479 0.537 0.625
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.696 0.720 0.647 0.688 0.604 0.704 0.555 0.600 ‐0.164 ‐0.032 0.125 ‐0.060
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (0.965) (0.000) (0.999)

0.801 0.780 0.780 0.758 0.845 0.811 0.776 0.698 0.527 0.534 0.545 0.450
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.817 0.765 0.790 0.776 0.700 0.687 0.756 0.762 0.317 0.229 0.530 0.514
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.790 0.773 0.728 0.736 0.610 0.675 0.640 0.569 ‐0.163 ‐0.067 0.015 ‐0.035
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (0.213) (0.972)

0.743 0.748 0.648 0.629 0.279 0.332 0.369 0.350 ‐0.471 ‐0.485 ‐0.409 ‐0.536
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.798 0.758 0.813 0.827 0.690 0.695 0.720 0.738 ‐0.411 ‐0.375 ‐0.215 ‐0.247
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.668 0.668 0.611 0.691 0.477 0.552 0.405 0.509 ‐0.278 ‐0.325 ‐0.492 ‐0.535
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.598 0.521 0.590 0.593 0.233 0.139 0.359 0.311 ‐0.494 ‐0.469 ‐0.713 ‐0.748
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

UBI

Benchmark:	CoVaRα,mkt|j

Bank

Connectedness	From‐others Connectedness	To‐others Net	Connectedness
In‐sample Out‐of‐sample In‐sample Out‐of‐sample In‐sample Out‐of‐sample

UCG

ISP

BMPS

BP

MB

CE

CVAL

CRG

BDB

VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT VARC VARCT

0.847 0.824 0.824 0.843 0.777 0.719 0.687 0.660 0.555 0.554 0.483 0.472
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.835 0.831 0.807 0.835 0.759 0.748 0.714 0.805 0.565 0.493 0.569 0.679
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.805 0.827 0.760 0.807 0.713 0.794 0.681 0.731 ‐0.138 ‐0.039 0.255 0.073
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (0.986) (0.000) (0.000)

0.836 0.823 0.817 0.810 0.860 0.834 0.808 0.745 0.516 0.524 0.570 0.478
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.860 0.813 0.821 0.832 0.725 0.728 0.783 0.796 0.332 0.263 0.539 0.514
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.808 0.799 0.746 0.766 0.628 0.701 0.657 0.593 ‐0.146 ‐0.040 0.042 ‐0.003
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (0.988) (0.011) (0.561)

0.771 0.778 0.683 0.669 0.370 0.428 0.429 0.416 ‐0.393 ‐0.401 ‐0.386 ‐0.474
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.828 0.815 0.851 0.872 0.717 0.749 0.724 0.726 ‐0.420 ‐0.378 ‐0.245 ‐0.259
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.764 0.777 0.712 0.805 0.563 0.651 0.537 0.648 ‐0.235 ‐0.265 ‐0.327 ‐0.399
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

0.562 0.529 0.511 0.485 0.215 0.160 0.333 0.266 ‐0.525 ‐0.507 ‐0.603 ‐0.586
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) (1.000) (1.000) (1.000)

UBI

Benchmark:	ΔCoVaRα,mkt|j

Bank

Connectedness	From‐others Connectedness	To‐others Net	Connectedness
In‐sample Out‐of‐sample In‐sample Out‐of‐sample In‐sample Out‐of‐sample

UCG

ISP

BMPS

BP

MB

CE

CVAL

CRG

BDB
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As for the net connectedness estimates, the correlation against the benchmarks is lower 

than the one of the connectedness from-others and to-others. The null hypothesis can always  

be rejected at 1% significance level against all benchmarks, with the limited exception of 

, , , ,  in panel B, in the case of UCG, ISP, BP and UBI, i.e., the four largest, not 

nationalized banks. In general, the null hypothesis cannot be rejected against all benchmarks for the 

other banks. This is the same subset of banks we found previously when dividing the cross-sectional 

sample according to the predominant sign of the OOS net connectedness or according to the 

significance of net connectedness, both in-sample and out-of-sample. This outcome suggests that 

net-connectedness can be relied upon when it is significant, which can be inferred by the sign of 

OOS connectedness. This is in fact the only profile according to which we manage to report in this 

paper an economically meaningful difference between in-sample and OOS connectedness measures, 

i.e., the meaning and association with benchmarks of net estimated connectedness. 

5. Conclusions 

In this paper, we have used modern methods that exploit variance decompositions from 
standard (rolling window) estimates of VAR(p) models to obtain estimates of network connectedness 
and distances among nodes. In particular, we have compared the empirical plausibility and results 
derived under two alternative approaches: To base the decompositions on in-sample forecast errors 
as recommended by Diebold and Yilmaz (2012, 2014, 2016) or on out-of-sample forecast errors 
derived from a separation between estimation and forecast evaluation window. In the process, we 
also derive novel empirical results on the level and structure of network connectedness and systemic 
risk of the Italian banking system. 

Our results are twofold. Under a methodological perspective, it seems that in-sample and 
OOS yield similar results for what concerns gross connectedness among banks. However, when it 
comes to estimate net-connectedness, that is, to determinate whether a bank is either a net importer 
or exporter of volatility to the system, in-sample measures fail to provide significant evidence of 
net-connectedness. On the contrary, OOS measures allow us to identify a number of banks that are 
net-exporters of volatility (UCG, ISP, BP, and UBI) and banks that are net-importers (CE, CVAL, 
CRG, BDB). This has implications for the nature of the Italian banking system: Although there is an 
undisputable evidence of gross-connectedness that emerges independently from the measures that we 
use, it is less obvious to identify which banks are influencing the others. In other words, it may seem 
that all banks influence and are influenced by all other banks, creating an approximately symmetric 
and compact system. However, when OOS measures are adopted, it appears evident that large banks 
(such as UCG and ISP) are net-exporters of volatility shocks, while smaller banks are net-importers. 

As it is often the case with applied studies, there are a number of parameter and methodological 
selections that it may be interesting to experiment with, adopting solutions that differ from the ones 
followed in this paper. For instance, the implementation of an OOS variance decomposition implies 
balancing a training/estimation sample with an OOS assessment period that we have simply kept 
fixed to a reasonable as well as conventional choice in our work. However, different choices could and 
should be explored. Additionally, it would be useful to develop a framework to proceed to a rigorous 
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form of back-testing of the different methodologies that however would require the definition of one 
or more compelling loss functions to perform the evaluation. 
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Supplementaries 

Appendix A. Bootstrapping p-values for in-sample variance decomposition connectedness measures. 

The bootstrap consists of the following steps: 

1. For a given set of observations , corresponding to a single rolling window, we 

estimate 5 under : 

∑        (A1) 

Where  is restricted to be a diagonal matrix. 
2. Using the estimated coefficients  and , we calculate the residual series: 

∑        (A2) 

With 1,… , .  From these vector residuals  we extract the 

series of residuals of the jth variable ̂ , . 

3. We proceed by rescaling the residuals ̂ ,  so that their sample variance matches 

the value of the unbiased estimator for : 

, ̂ ,    (A3) 

Where 1 for the VARC(p) and 2 for the VARCT(p). 

4. From the jth set of rescaled residuals , , we draw with replacement M 
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independent series , ,
∗  of length  with 1,… , . 

5. For each 1,… , , the series , ,
∗  are used as random innovations to generate a new, 

bootstrapped stochastic process through the recursion: 

,
∗ ∑ ,

∗
, ,
∗

, ,
∗ ⋯ , ,

∗ ′    (A4) 

Which mimics 15. 

6. Each series ,
∗  is now used in place of  in 5–9 to obtain a set of M 

variance decomposition matrices under , ,
, , and M connectedness measures under , 

⋆, ,
, , as defined in 1–4.13 

7. Given the M connectedness measures ⋆ ,
,  under  and the connectedness measure ⋆, , 

the bootstrap p-value for an upper tail test is then: 

⋆, ∑ ⋆, ,
,

⋆,        (A5) 

Where ∙  is an indicator function that takes a value of 1 if the condition ⋆, ,
,

⋆,  holds 

and 0 otherwise. We reject  if ⋆, , where  is the chosen significance level of the test. 

Appendix B. Bootstrapping p-values for OOS variance decomposition connectedness measures. 

The bootstrap consists of the following steps: 
1. For a given set of observations  corresponding to the first rolling window of 

length , we estimate 5 under : 

∑        (B1) 

Where  is restricted to be diagonal. 

2. Using the estimated coefficients  and , we calculate the minimum MSE forecast |  

under  and the corresponding out-of-sample forecast error under : 

,
|         (B2) 

3. For a given set of out-of-sample forecast errors under  , , corresponding 

to the rolling window of length , we extract the set of out-of-sample forecast errors of the 

                                                            
13 ⋆ is the placeholder for one of the four connectedness measures, FROM, TO, NET or TOTAL. 
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jth variable ,
, . From this set, we draw with replacement M independent series 

, ,
∗,  of length  with 1,… , . 

4. For each 1,… , , we calculate the out-of-sample H-step ahead forecast error covariance 
matrix under  as: 

, ∑
̂ , ,
∗,

⋮
̂ , ,
∗,

̂ , ,
∗, ⋯ ̂ , ,

∗,    (B3) 

5. The resulting M matrices ,  are used in place of ,  in equations 11–12 to obtain a set 

of M variance decomposition matrices under , ,
, , and M connectedness measures 

under , ⋆, ,
, , as defined in 1–4. 

6. Given the M connectedness measures ⋆, ,
,  under  and the connectedness measure 

⋆, , the bootstrapped p-value for the upper tail test is: 

⋆, ∑ ⋆, ,
,

⋆,       (B4) 

Where ∙  is the indicator function, with has value 1 if the condition ⋆, ,
,

⋆,  holds 

and 0 otherwise. We reject  if ⋆, , where  is the significance level of the test. 
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