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here proxied by the VIX index) as an asset class in a fully optimizing asset allocation framework, 
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by VXX does not appear excessive, taking into account transaction costs worsens considerably its 

performance and even casts doubts as to whether volatility ought to be considered as an alternative asset class 

altogether. Direct strategies that trade appropriate futures on the VIX improve somewhat realized 

performance, but not enough to tilt over the balance of our conclusions. 
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properties volatility itself has gradually emerged as such an asset class (see Alexander et al., 2015; 
Grant et al., 2007; Hafner and Wallmeier, 2007).1 

Among the volatility indices used to assess the value of volatility as an asset class, the VIX—
publicly reported by the Chicago Board of Exchange (CBOE)—has naturally emerged as a primary 
reference. The VIX index reflects volatility expectations at a 30-day horizon on the S&P 500 index 

implicit in option prices. For instance, DeLisle et al. (2011) have studied the relationship between the 
S&P 500 and VIX, to demonstrate an asymmetric relationship by which their correlation turns higher 
in bear market states.2 However, VIX and therefore the literature that has made a reference to it, 

faces one key limitation: albeit it has become one of the most useful indices available in academic as 
well as in practitioners’ research (see Whaley, 2000, 2009), VIX is not an investable index. 
Although, it may be possible to replicate the VIX by investing in the underlying basket of options, it 

appears either technically hard or costly to continuously replicate VIX index returns this way, as 
such a strategy would entail investing in a large number of options and rebalancing the position at 
least on a daily basis (see the discussion in Whaley, 2009).  

The obvious reaction to such impediments has been to argue (and to invest accordingly) that 
even though VIX is not tradable, derivatives (exchange traded products, ETPs) exist that allow us to 
trade exposures on the VIX (see, e.g., Alexander and Korovilas, 2013). ETPs—such as exchange-

traded funds, notes, covered warrants, and investment certificates—represent a key financial 
innovation of the last few decades. Their success is due to their versatility and liquidity that derives 
from being traded on regulated exchanges, so that they are now routinely used both in strategic and 

tactical portfolio applications (see Amenc et al., 2010). In this paper, we use data on one specific 
Exchange Traded Fund (ETF) with a low commission profile, listed on a stock exchange as ordinary 
share, which aims at passively replicating the performance of the VIX. This is usually achieved 

synthetically, often using appropriately structured, over-the-counter swap contracts. When compared 
to futures on the VIX, ETFs and ETNs are often advertised as cheaper alternatives, as they are 
characterized by low transaction costs and are not subject to the mispricing of futures contracts close 

to roll-over date (see Madhavan et al., 2014).3 To test whether this is the case or not in an empirical 
perspective, represents one of our goals. 

In this paper, we use weekly data for the period January 2009–February 2016 to assess realized 

portfolio outcomes from taking long-only positions in the VIX either directly or through what is 
arguably the most popular exchange traded note written on the VIX, Barclays’ iShares S&P 500 VIX 

                                                             
1 Such a search for better diversifiers of market returns was made even more desperate by the fact that many classical hedging strategies 
previously fashionable with asset managers did break down during the Great Financial Crisis. For example, the negative correlation that has 
historically characterized the relationship between equities and commodities became positive by 2009 (see Szado, 2009). Moreover, in 2008 
the HFRX Global Hedge Fund lost about 25% while the loss on the S&P GSCI spot commodity index was also 70%; yet, historically, the two 
asset classes show negative correlation. The HFRX Global Hedge Fund index includes all eligible strategies and hedge funds, such as 
convertible arbitrage, distressed securities, equity speculation, neutral equity strategies (long-short), event- and macroeconomic-driven, 
arbitrage mergers and arbitrage of relative value. 
2 Whaley (2013) has also shown that VIX is an interesting investable asset in itself: investors may try and exploit the mean-reverting patterns 
in VIX created by the existence of a cyclical process that defines a trend in volatility movement reverting to its mean. 
3 A recent literature has also found that ETFs may incorporate and discount new information faster than the underlying spot or futures 
markets (see Bollen, O'Neill, and Whaley, 2017, for an application to VIX futures markets). For instance, when changes in the price of 
futures contracts on the S&P 500, and the price of ETFs written on the same index (SPDR) are compared, there is some evidence in 
favor of this hypothesis. Therefore, besides being simple and relatively cost-effective, trading ETNs may also represent an 
informationally efficient strategy. 
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ST Futures (identified by the VXX ticker) exchange traded note (ETN). VXX provides passive 
replication of the S&P VIX Short Term Futures Index Total Return (SPVXSTR): changes in the 

index level are supposed (intended to be) highly correlated with changes in market volatility. We 
select VXX over alternative ETNs (such as VIIX, issued by Velocity Share and XVZ also issued by 
iShares which however tracks an index that can take long or short positions on futures contracts on 

the VIX depending implied changes in forward VIX) because it allows us to access the longest time 
series among all similar ETPs. However, to show that the exact choice of VXX does not represent 
the key choice, we also test the robustness of our results to directly trading short-term VIX futures. 

Specifically, we solve recursive asset allocation problems at a monthly frequency with 
references to an expanding, out-of-sample (OOS) February 2010–February 2016 window, analyzing 
alternative asset menus—without volatility-trading, with VIX added, with VXX instead, or with 

strategies based on trading only the closest-to-maturity VIX futures. The other assets in the selection 
menu are represented by ETFs that allow us to invest in equities, real estate, and bonds. The portfolio 
outcomes that we track and comment are, besides optimal portfolio composition, the realized Sharpe 

and Sortino ratios, the information ratio, portfolio turnover, and average certainty equivalent returns 
(CERs). Because the portfolio problems are solved under three alternative types of preferences—
mean-variance, power, and negative exponential utility functions—the CER measures are computed 

under each of the three metrics. Although shorting volatility had become an extremely popular 
strategy with a sub-class of investors during the 2006–2007 bubble years leading to the spectacular 
crash during the Great Financial Crisis, in our paper we limit ourselves to long-only strategies that 

make more sense for a variety of institutional investors that are restricted from (or strongly advised 
against) shorting volatility or be contractually restricted from futures roll-over strategies. 

Our key result is that while going long in the VIX remains a good idea—thus confirming earlier 

results in Black (2006) and Dash and Moran (2007)—the ETPs that are commonly used (or at least, one 
of the key ETPs that have become popular) to actually trade volatility give very different results and have 
structural difficulties in creating risk-adjusted economic value, especially after transaction costs are netted 

out. This holds in a range of experiments and under a variety of preferences. This confirms a result in 
Hancock (2013) and Whaley (2013) who has analyzed a fixed buy-and-hold position in volatility ETNs 
and obtained evidence of poor performance mostly caused by the tendency of ETN prices to decline over 

time due to a “bleeding” effect caused by the need to roll over expiring VIX futures contracts with 
longer-maturity but more expensive ones, due to the typical (and yet sensible, as more distant events are 
more uncertain) downward sloping term structure of the VIX futures curve. Interestingly, his result 

obtains even though VXX is strongly negatively correlated with other asset classes. Differently from 
Whaley (2013) however, in this paper we perform such tests in a fully optimized framework in which an 
investor is recursively allowed to select her commitment to VXX based on the maximization of standard 

(expected) utility criteria popular in the literature. This means that the hedging power of VIX or VXX are 
taken into account, and the reported risk-adjusted performance metrics are the most appropriate.4 

                                                             
4 One referee has correctly pointed out that many practitioners are likely to interpret ETPs such as the VXX as tools to hedge left-tail risk of a given portfolio more than as an asset class by itself 

in a fully optimized portfolio strategy. On the one hand, our approach is instead to ask whether and how VXX may surrogate VIX as an alternative asset class; we find that while VIX may 

represent such a new asset class, VXX faces severe difficulties in that respect, and that rolling over futures strategies directly leads to similar results. On the other hand, even though VXX might 

remain quite effective as a tool to control and trade left-tail risk only (see Bhansali, 2008), one of our utility functions, power utility, fully reflects the co-skewness and co-kurtosis properties of 

returns, in the sense that an investor is allowed to strongly dislike left-tail excessive risk. 
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The paper is organized as follows: section 2 reviews the literature on volatility trading and 
volatility in asset management, when assessed as an additional asset class. Section 3 describes the 

framework of analysis and our methodology and Section 4 reports summary statistics concerning the 
data. Section 5 presents the recursive results on optimal asset allocation and portfolio weights. 
Section 6 performs a back-test OOS evaluation of the risk adjusted value created by VIX vs. VXX. 

Section 7 deals with the case in which we simulate a strategy that directly trades VIX futures 
contracts to tease out from our result what portion of the poor performance of ETNs is due to their 
high costs and low efficiency in “riding” the futures curve. Section 8 concludes. 

2. Our Research Question: A Review of the Literature 

Volatility plays a decisive role in the dynamics of financial markets and volatility is considered a 
key driver in Merton’s, intertemporal CAPM-style analyses. Also to favor the development of trading 

strategies concerning volatility, in 1993, the Chicago Board Options Exchange (CBOE) introduced the 
first version of its volatility index known as VXO, based on the implied volatility of eight at the money 
options written on the S&P 100. A revised version of the index, since then known as VIX, was 

introduced in 2003 (see CBOE, 2003). VIX uses a formula that extracts implied volatilities from far more 
extensive basket of options on the S&P 500. 

After the VIX had been introduced, a literature has developed that studies volatility as an asset 

class and that proposed a range of strategies to exploit volatility trading in its fullest. Whaley (2009) 
explains the structure and role of the index, emphasizing the inability to directly invest and assume 
positions in it. In particular, although it is generally possible to replicate the payoff of any non-traded 

index by investing in the underlying basket of securities, it would be almost impossible to replicate 
the performance of the VIX index through the same process. This is directly caused by the nature of 
the VIX formula, which uses only out-of-the money (OTM) call and put market prices at one month 

to expiration: therefore, creating a portfolio that replicates VIX on any given day, would mean 
investing in numerous options and rebalancing such positions on a daily basis, thus incurring in 
elevated transaction costs. 

Although VIX may represent an asset class in which it is difficult to invest in and that implies 
considerable transaction costs, its investment benefits have immediately attracted attention. For instance, 
the relationship between the underlying stock index and the VIX displays an asymmetric profile depending 

on whether the index is rising or falling (see Stanton, 2011). Whaley (2009) explains what happens during 
market downturns: in this scenario, the demand for OTM and at the money (ATM) defensive puts 
increases, driving up their price and implied volatilities; such an increase in the price of options causes an 

increase, albeit not proportional, in the VIX, that therefore provides a natural hedge against sudden and 
sharp bear market phases. On the contrary, during a market expansion, few investors resort to the implicit 
leverage offered by the purchase of call options, while contrarians may also engage in writing calls: as a 

result the corresponding implicit volatilities tend to be constant or even to slowly decline over time, and 
therefore the VIX tends to display low volatility and drift lower, during bull markets. Hafner and Wallmeier 
(2008) link such negative correlation between equity indices and the VIX to the absence of arbitrage 

opportunities in the options market, when it is characterized by a marked skew of volatility, i.e., the 
tendency of OTM puts to quote higher than they should, given ATM prices. In the literature, since Bekaert 
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and Wu (2000), such a pattern has been dubbed the volatility feedback effect: assuming that volatility is one 
of the drivers of equity prices, a positive change in perceived variance increases future performance while at 

the same time it reduces the stock price today. 
Given such an inverse relationship between key equity indices and the VIX, a small portfolio 

management literature has investigated the benefits of investing in the VIX and the possibility of 

replicating its payoffs via strategies that simply trade options and futures. Black (2006) and Dash and 
Moran (2007) have shown that by adding VIX futures to a passive portfolio strategy may help reduce 
the volatility of realized returns. However, VIX futures contracts yield performances that are inferior 

to directly investing in the VIX or even the options themselves. The lower benefits are caused by the 
roll-over costs of the VIX future, that is, the cost incurred to close the position on the expiring 
contract and to open a new one on contracts with a later expiration date. Even though Black and 

Dash and Moran ask the same research question as we do, their effort does not directly quantify the 
risk-adjusted benefits of the VIX vs. rolling futures contracts on the VIX, when interpreted as an 
additional asset class in portfolio construction.5 

DeLisle et al. (2010) demonstrate that taking a direct position in the VIX is an effective hedge 
during market downturns that, at the same time, does not penalize returns in the upswing. The 
alternative represented by futures contracts leads instead to a mean differential return of -3.12% on a 

monthly basis for the period April 2004–August 2009, against a VIX average contribution to total 
portfolio returns of + 1.8%. Doran and Krieger (2010) have also studied the possibility of replicating 
the VIX index through the construction of a synthetic portfolio in order to obtain the best hedge 

against S&P 500 losses, but obtain mixed results. Brenner et al. (2006) build a straddle option as the 
hedging instrument from the volatility of the S&P500 and observe that it may lead to performances 
that approximate those from the VIX. 

Another strand of literature has analyzed not the power of VIX to hedge portfolio losses during 
market busts, but has instead considered volatility investing as an alternative investment strategy. For 
instance, Kuenzi and Xu (2007) define volatility as an alternative source of beta, for example, 

compared to hedge funds, namely an asset class whose yield is linked to exposure to a specific and 
novel systematic risk factor. In this context, Brière et al. (2010) assess volatility in the perspective of 
a long-term investor. They analyze two alternatives: a direct position in the VIX vs. investing in 

variance swaps that allow them to take a position on the difference between realized volatility and 
implied volatility.6 The strategy that invests in the VIX has the effect of reducing extreme risks and 
the result is a less risky strategic allocation vis-à-vis traditional investments in a balanced portfolio 

that includes bond positions. In addition, the combination of the two volatility strategies improves 
performance. However, variance swaps alone cannot replace the VIX. 
                                                             
5 Most of these papers either impose long, defensive positions in the VIX and the replicating strategies or obtain endogenously such a 

defensive position. On the contrary, Fallon, Park and Yun (2015) estimate the contribution that the exposure to volatility may generate in terms 

of strategic portfolio allocation and—because their distinctive objective is to analyze the role of volatility within the portfolio of institutional 

investors—they demonstrate that taking short positions in volatility turns out to be extremely profitable, boosting long-term investment 

performance. In particular, they estimate an increase of about 12% in Sharpe's index against an increase in short-term risk.  
6 A variance swap is a contract that allows an investor to take a position on volatility through the exchange of flows linked to the 

realized volatility and implied volatility: a leg of the swap will pay an amount based on the realized variance of the underlying, while 

the other leg will pay a flow-maturity equal to the implied variance from option prices. 
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3. Methodology 

3.1. Baseline mean-variance preferences 

We start by using standard mean-variance theory and look for a constrained, optimal 
combination of the assets in the selection menu that minimizes risk and maximizes (i.e., for a fixed 
level of) expected returns 

 𝑚𝑖𝑛𝝎  
ଵ

ଶ
𝝎′𝚺𝝎 (1) 

under the constraints ∑ 𝜔௜
ே
௜ୀଵ =1, 𝜔௜ ∈ [0,1], and 𝛍′𝝎 = 𝜇௉, where 𝝎 is the N x 1 vector of portfolio 

weights, 𝚺 is the covariance matrix of asset returns, 𝛍 is the vector of expected returns, and 𝜇௉ is 

some pre-fixed target for expected portfolio returns. The two constraints ∑ 𝜔௜
ே
௜ୀଵ =1 𝜔௜ ∈ [0,1] 

jointly imply that it is impossible to sell assets/securities short.7 In practice, we model a risk-averse 

investor who selects the portfolio that maximizes her expected utility from portfolio returns, given an 

assumed level of risk aversion, 𝜆: 

                                                     𝑉(𝑅௧ାଵ
௉ ) = 𝐸௧[𝑅௧ାଵ

௉ ] −  
1

2
 𝜆𝑉𝑎𝑟௧[𝑅௧ାଵ

௉ ].                                        (2) 

Because it can be shown that maximization of (2) subject to a choice of a mean-variance efficient 

portfolio, is equivalent to the maximization of the Sharpe ratio, defined as  𝑆𝑅(𝑅௧ାଵ
௉ ) ≡ (𝐸[𝑅௧ାଵ

௉ ] −

𝑟
௙

)/ඥ𝑉𝑎𝑟[𝑅௧ାଵ
௉ ] , ex-post, after appropriate recursive back-tests are performed, the appropriate 

metric to assess the effective, risk-adjusted performance is therefore represented by the realized 

Sharpe ratio: 

                                  𝑆𝑅෢
் ≡

𝑇ିଵ ∑ ൫𝑅௧ାଵ
௉ − 𝑟௧

௙
൯்ିଵ

௧ୀଵ

ට𝑇ିଵ ∑ [൫𝑅௧ାଵ
௉ − 𝑟௧

௙
൯ −்

௧ୀଵ 𝑇ିଵ ∑ ൫𝑅௧ାଵ
௉ − 𝑟௧

௙
൯]ଶ்ିଵ

௧ୀଵ

,                      (3) 

where 𝑟௧
௙ is the risk-free rate between time t and t+1, and 𝑆𝑅෢

் denotes the realized Sharpe ratio over 

a back-testing sample of length T. The 𝑅௧ାଵ
௉  are realized portfolio returns that depend on the optimal 

portfolio weights determined in the course of the exercise, 𝑅௧ାଵ
௉ = 𝑅௧ାଵ

௉ (𝝎ෝ ௧,௧ାଵ), where 𝝎ෝ ௧,௧ାଵ is the 

vector of optimal portfolio weights. For the time being, we ignore transaction costs and taxes. 

3.2. Additional preferences 

Although mean-variance analysis finds widespread application because of its simplicity and intuitive 

appeal, as it is well known, the type of preferences (utility function of terminal wealth) that provides micro-
foundations to mean-variance—essentially, quadratic utility, unless further restrictive assumptions are 
imposed on the joint distribution of asset returns—may imply the existence of a bliss point for wealth beyond 

which any additional increase in wealth causes a reduction in realized utility, i.e., preferences may be plagued 
by satiation issues to the point of allowing arbitrage. Moreover, in empirical applications, mean-variance 
analysis is well known to often deliver extreme and erratice portfolio weights (see e.g., Guidolin, 2013). 

                                                             
7 We could have extended the analysis to also include a risk-free asset, but, as it is well known from the separation theorem, the same 

risky portfolio would then be selected independently of the risk-aversion parameter, 𝜆. 
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Because of these limitations of standard mean-variance analysis, a literature has developed that 
assumes instead a power utility function of portfolio returns (or terminal wealth, which is identical 

for one-period horizons): 

                                             𝑉(𝑅௧ାଵ
௉ ) = ቐ

(1 + 𝑅௧ାଵ
௉ )ଵିఊ

1 − 𝛾
𝛾 ≠ 1, 𝛾 > 0

𝑙𝑛(1 + 𝑅௧ାଵ
௉ ) 𝛾 = 1

  .                                      (4) 

The preferences in (4) imply constant relative risk aversion (CRRA) and practically that investment 
and consumption decisions will not be affected by the scale of the problem, i.e., the optimization will be 

framed in terms of relative quantities, such as portfolio weights and the consumption-wealth ratio. Since 
the seminal work by Scott and Horvath (1980) (see also the review in Guidolin, 2013), it is well known 
that under appropriate conditions (such as continuity and differentiability) a simple Taylor expansion of 

the expected utility in (4) around expected portfolio return, 

                               𝐸௧[𝑉(𝑅௧ାଵ
௉ )] = ෍

1

𝑘!

𝜕௞𝑉(𝐸௧[𝑅௧ାଵ
௉ ])

𝜕(𝑅௧ାଵ
௉ )௞

𝐸௧[(𝑅௧ାଵ
௉ − 𝐸௧[𝑅௧ାଵ

௉ ])௞]

ஶ

௞ୀ଴

                   (5) 

allows us to establish a precise functional relationship between the classical mean-variance objective 

in (2) and power utility in (4). Because when a truncation is applied at k = 4 and 𝐸௧[(𝑅௧ାଵ
௉ −

𝐸௧[𝑅௧ାଵ
௉ ])] = 0 (when k = 1), we have 

    𝐸௧[𝑉(𝑅௧ାଵ
௉ )] ≅ 𝑉(𝐸௧[𝑅௧ାଵ

௉ ]) +
1

2
𝑉 ′′(𝐸௧[𝑅௧ାଵ

௉ ])𝑉𝑎𝑟௧[𝑅௧ାଵ
௉ ] +

1

6
𝑉 ′′′(𝐸௧[𝑅௧ାଵ

௉ ])𝑆௧,௧ାଵ
௉

+
1

24
𝑉 ′′′′(𝐸௧[𝑅௧ାଵ

௉ ])𝐾௧,௧ାଵ
௉ ,                                                                                        (6) 

(𝑆௧,௧ାଵ
௉  and 𝐾௧,௧ାଵ

௉  indicate the third and fourth moments of portfolio returns), for k = 2 

     𝑉ெ௏(𝑅௧ାଵ
௉ ) ≡

𝐸௧[𝑉(𝑅௧ାଵ
௉ )]𝐸௧[𝑅௧ାଵ

௉ ]

𝑉(𝐸௧[𝑅௧ାଵ
௉ ])

≅ 𝐸௧[𝑅௧ାଵ
௉ ] +

1

2

𝑉 ′′(𝐸௧[𝑅௧ାଵ
௉ ])𝐸௧[𝑅௧ାଵ

௉ ]

𝑉(𝐸௧[𝑅௧ାଵ
௉ ])

𝑉𝑎𝑟௧[𝑅௧ାଵ
௉ ]

= 𝐸௧[𝑅௧ାଵ
௉ ] −  

1

2
 𝜆𝑉𝑎𝑟௧[𝑅௧ାଵ

௉ ].                                                                                  (7) 

gives mean variance preferences in which the coefficient of risk aversion is proportional, apart from 

a positive constant 𝐸[𝑅௧ାଵ
௉ ]/𝑉(𝐸௧[𝑅௧ାଵ

௉ ]), to the second derivative of the utility function 𝑉(𝑅௧ାଵ
௉ ) to 

portfolio returns. In the case of risk aversion, we therefore expect 𝑉 ′′(𝐸௧[𝑅௧ାଵ
௉ ]) < 0 and therefore 

𝜆 ≡ −𝑉 ′′(𝐸௧[𝑅௧ାଵ
௉ ])𝐸௧[𝑅௧ାଵ

௉ ]/𝑉(𝐸௧[𝑅௧ାଵ
௉ ]). When k > 2, (5) and (6) allow us to consider preferences 

that assign a weight to moments greater than the second, especially skewness and kurtosis, therefore 

incorporating both asymmetries and fat tails in portfolio choice. Note that even though in principle 
(5) features an infinite sum while (6) stops the Taylor expansion at the fourth order, Guidolin and 
Timmermann (2005) and Jondeau and Rockinger (2006) have shown that for many often-used utility 

functions, the four-moment functional in (6) provides a close approximation to the convergent series 
in (5). 

Applying now the result in (6) to the case of power utility function, we have (for the case 

𝛾 ≠ 1): 
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    𝐸௧[𝑉(𝑅௧ାଵ
௉ )] ≅

(1 + 𝐸௧[𝑅௧ାଵ
௉ ])(ଵିఊ)

1 − 𝛾
−

𝛾

2
(1 + 𝐸௧[𝑅௧ାଵ
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ଶ
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6
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−
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24
(1 + 𝐸௧[𝑅௧ାଵ

௉ ])(ఊିଶ)𝐾௧,௧ାଵ
௉ ,                                              (8) 

Note that when  > 0, then /2 > 0 so that the investor dislikes variance, ( + 1)/6 > 0 and the 
investor shall prefer to have a larger exposure to  𝑆௧,௧ାଵ

௉ , and ( + 1)( + 2)/24 > 0 so that the 
approximate expected utility functional declines in 𝐾௧,௧ାଵ

௉ . In what follows, we shall use (8) to 

approximate power utility-driven asset allocation results. Under approximate power utility, different 
strategies or portfolios can be ranked either directly on the basis of their OOS average realized utility, 

                                           𝑉ത(𝑅௧ାଵ
௉ ) =

1

𝑇
෍

ቀ1 + 𝑅௧ାଵ
௉ ൫𝝎ෝ ௧,௧ାଵ൯ቁ

(ଵିఊ)

1 − 𝛾

்ିଵ

௧ୀଵ

,                                         (9) 

or through the corresponding certainty equivalent return (CER): 

                       
(1 + 𝐸[𝑅௧ାଵ

௉ ])(ଵିఊ)

1 − 𝛾
= 𝑉ത(𝑅௧ାଵ

௉ ) ⟹ 𝐶𝐸𝑅 = [(1 − 𝛾)𝑉ത(𝑅௧ାଵ
௉ )]

భ

భషം − 1              (10) 

Because it is a standardized, relative measure, we prefer the latter. Finally, we also consider the 
case of an investor whose preferences are described through a negative exponential, CARA 
(Constant Absolute Risk Aversion) utility function, 

                                                        𝑉(𝑅௧ାଵ
௉ ) = −𝑒𝑥𝑝 [−𝜃(1 + 𝑅௧ାଵ

௉ )],                                            (11) 
where 𝜃 is the coefficient of absolute risk aversion. Again we consider a Taylor expansion of the 
fourth order to determine the optimal allocation: 

            𝐸௧[𝑉(𝑅௧ାଵ
௉ )] ≅ 𝑒𝑥𝑝[-𝜃(1+𝐸௧[𝑅௧ାଵ
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6
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24
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Also in this case, the realized risk-adjusted performances in back-testing OOS exercises are 

either computed as 𝑉ത(𝑅௧ାଵ
௉ ) =

ଵ

்
∑ 𝑒𝑥𝑝 ቂ−𝜃 ቀ1 + 𝑅௧ାଵ

௉ ൫𝝎ෝ ௧,௧ାଵ൯ቁቃ்ିଵ
௧ୀଵ  or 

                      𝑒𝑥𝑝[−𝜃(1 + 𝐸[𝑅௧ାଵ
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௉ ) ⟹ 𝐶𝐸𝑅 = −
1

𝜃
[𝑙𝑛𝑉ത(𝑅௧ାଵ

௉ )] − 1                  (13) 

3.3.  Backtesting design 

Under each of the three utility functions in (2), (4), and (11)—always approximated as a fourth-order 

Taylor expansion (but in the case of mean-variance preferences, k = 2 and the formula becomes exact)—we 
compute optimal portfolio weights and realized, risk-adjusted performances, in three scenarios: 

 A baselines case where investment in volatility is not available, and the asset menu is limited 

to three US risky assets, that is, equities, government and corporate bonds, and real estate. 
 Next, we expand this asset menu by introducing volatility as an asset class, in this case 

proxied by the non-investable VIX index. 

 Finally, in the asset menu we replace VIX with an exchange traded note that in principle 
replicates the movements in the VIX (see Section 4 for details). 
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Under each of the three scenarios and for each week in the back-testing period t = 1, 2, …, T, 
we choose the optimal portfolio, subject to no short-sale constraints, by solving (see Sharpe, 2006): 

   max
𝝎೟,೟శభ
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where 𝑉(∙)  is the function in (2), (4), or (11), and the conditional central moments 
(𝐸௧[𝑅௧ାଵ

௉ ൫𝝎ෝ ௧,௧ାଵ൯], 𝑉𝑎𝑟௧[𝑅௧ାଵ
௉ ൫𝝎ෝ ௧,௧ାଵ൯] , 𝑆௧,௧ାଵ

௉ ൫𝝎ෝ ௧,௧ାଵ൯ , and 𝐾௧,௧ାଵ
௉ ൫𝝎ෝ ௧,௧ାଵ൯) are computed on the 

basis of the sample up to time t. In other words, we use expanding window sample estimators of 

mean, variance, asymmetry, and tail-thickness as a function of the portfolio weights. In particular, 

for the quadratic utility case, we consider 𝜆 = 0.1, 0.2, 0.5, or 1; for the power utility function we 
entertain the values 𝛾 = 2, 4, 7, and 10 (see also Hafner and Wallmeier, 2008); finally, for the 
negative exponential utility function, we use alternative values θ = 0.5, 1, 1.25, and 2. 

The back-testing sample is built in the following way. The first 56 weekly observations provide a 
starting estimation sample for all the exercises subsequently performed. We then recursively updated 

and expand the corresponding sample at a monthly frequency, i.e., at each step we increase the 
estimation sample by 4 observations.8 Therefore, for each choice of utility function and risk aversion 

parameters (𝜆, 𝛾, and θ, respectively), we obtain 86 monthly portfolios. Each time series of portfolios 
generates 86 realized monthly returns of which we compute and compare both basic summary statistics 
and risk-adjusted performances, in the form of Sharpe ratios and appropriate CER estimates. 

4. The Data 

4.1. Asset classes and their ETP proxies 

Our empirical analysis is based on weekly (Wednesday-to-Wednesday, whenever possible) 
series of discretely compounded (dividend-adjusted) return data from January 2009 to February 

2016. The investment universe includes four asset classes, stocks, bonds, real estate, and—in two 
exercises out of three—volatility. To be consistent with the analysis performed in the case in which 
volatility is tradable, we have a preference for ETF returns data also in the case of asset classes 

different from volatility. In particular, we opt for ETFs that engage in the physical replica of the 
underlying indices. Equities are represented by the SPDR S&P 500 ETF (ISIN: US78462F1030, 
ticker SPY) that replicates the S&P 500 index. Bond performance is reflected by returns on the 

iShares Core US Aggregate Bond ETF (ISIN: US4642872265, ticker AGG). The iShares US Real 
Estate ETF is used as a proxy for the performance of real estate investments (ISIN: US4642877397, 
ticker IYR). Subsequently, this baseline asset menu is extended to include alternately the VIX index 

(see http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index) or the 
iPath S&P 500 VIX ST Futures ETN (ISIN: US06740Q2527, ticker VXX). The latter ETN reflects 
                                                             
8 Expanding the estimation window on every single week would imply rebalancing the optimal portfolio on a weekly basis. This would 
be unusual because in most real-life situations, this would imply very high transaction costs and fail to reflect the practice of the asset 
management industry. 
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the returns on a strategy that continuously owns a rolling portfolio of one- and two-month VIX 
futures contracts to target a constant weighted average futures maturity of 1 month. All these ETPs 

are chosen among a few similar alternatives because of their high liquidity, trading volumes, and 
size: in fact, amongst all listed ETFs and ETNs, these report the largest daily volume and largest 
number of outstanding shares.9 This reduces possible data biases due to poor liquidity. Of course, we 

must accept that our empirical conclusions will be affected by our specific selection of the ETPs 
analyzed, even though these four ETPs are based on a physical replica of the underlying indices that 
should somewhat minimize the margins for discretionary choices. However, should we have 

considered other EPTs that are not subject to physical replica or that over time may have switched on 
and off to synthetic replication strategies (e.g., based on OTC swaps), then the corresponding returns 
may have significantly differed in spite of an identical underlying index/asset. The data on VXX 

prices are taken from Bloomberg and, given the good traded volume of this ETN, these represent 
Wednesday, last-traded market prices gross of fund expenses and fees. No data cleaning were 
applied to purge spikes or “winsorize” the data, as these are weekly return data that correspond to 

market transactions. 
On the one hand, our choice of the sample period—starting right in the middle of the US Great 

Financial Crisis—is entirely due to data availability, without any subjective meddling or discretion. 

Although the VIX has been computed and reported by the CBOE since 1992, the first ETN that 
tracks VIX performance was indeed listed in January 2009, and it is indeed VXX, the iPath S&P 500 
VIX ST Futures ETN. On the other hand, a weekly frequency ensures a sample of 400 observations 

for each asset class, which guarantees a sufficient size for expanding window sample moments to be 
estimated with some precision. In what follows and in the tables and figures, the different asset 
classes will be often identified by their acronyms/tickers (SPY, AGG, IYR, VIX or VXX, 

respectively) to save space. 

4.2. Summary statistics 

Table 1 presents summary statistics. The first column shows the average performance for each 
asset class. As expected, bonds are the asset class with the lowest mean return and risk, 0.01% and 

0.25% (standard deviation), respectively. Equities and real estate show instead similar average 
returns and risk, 0.14% and 1.15% per week in the case of SPY and 0.15% and 1.74% in the case of 
IYR. Interestingly, in spite of the financial crisis, real estate still gave an annualized mean return of 

almost 8% over our sample (that does not include 2008); however, the effects of the crisis emerge in 
the relatively high standard deviation, 12.5% in annualized terms. Both equities and real estate imply 
rather striking Sharpe ratios of 0.11 and 0.08 per week. However, IYR returns imply large excess 

kurtosis, to indicate that risks not completely captured by classical variance may be present. 
It is most interesting to analyze the properties of volatility as an asset class. In Table 1, it 

emerges that—on the wake of its surge during 2009–2010, in the midst of the financial crisis—VIX 
                                                             
9 Two obvious alternatives would have been VIIX and the VXZ ETNs. VIIX, issued by Credit Suisse/Velocity Shares, 

has been launched in 2010 and as of mid-2017 had a size of approximately 12.5 million USD vs. approximately 1 billion 

for VIX; XVZ, issued by Barclays iShare, was launched in 2011 and has AUM of approximately 16 million USD, and 

with positions in medium-term VIX futures. However, the trading volumes of VIIX and XVZ over October 2016 – 

August 2017 have been 70 miilion and approximately half a million USD vs. 11 billion USD in the case of VIX. 
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is characterized by a large and positive weekly mean return of 0.46% per week, but also by negative 
and large median, of -0.70%. This is indeed an indication of massive right-skewness (1.97) and 

kurtosis (9.14): the VIX spiked up in a few weeks only in our sample, but slowly declined most of 
the time, which explains the massive difference between mean and median. As a result, also the 
weekly standard deviation of VIX exceeds 8%, i.e., it is almost 5 times that of IYR and 7 times that 

of stocks. Of course, while a simple mean-variance framework will be unfit to capture these 
differences, other types of utility function may succeed in capturing the interaction between the 
estimated joint density of the data and optimal portfolio weights. Interestingly, the ETN returns on 

VXX have radically different properties: both mean and median are negative in this case, even 
though positive skewness remains (1.06). This is due to the well-known tendency of ETPs written on 
the VIX to “bleed” funds due to the massive roll costs when the term structure of VIX futures is 

downward sloping (in contango, which happens most of the time, see Alexander and Korovilas, 
2013) and expiring futures have to be replaced by more expensive, longer-term futures, see e.g., the 
analysis in Whaley (2013). Moreover, the asset management firms in charge of managing ETNs do 

charge annual fees, for instance a 0.89% annual expense ratio in the case of VXX. 

Table 1. Summary statistics. 

  Mean Median Std. Deviation Max Min Skewness Kurtosis 

SPY 0.14 0.18 1.15 5.41 -3.72 -0.06 1.99 

AGG 0.01 0.03 0.25 0.79 -1.04 -0.79 1.32 

IYR 0.15 0.22 1.74 10.4 -6.23 0.51 5.89 

VIX 0.46 -0.7 8.56 30.61 -22.18 1.97 9.14 

VXX -0.67 -1.46 4.52 19.71 -11.57 1.06 2.3 

Correlation matrix. 

  SPY AGG IYR VXX VIX 
SPY 1.00         
AGG -0.27 1.00       
IYR 0.75 -0.04 1.00     
VXX -0.76 0.22 -0.52 1.00   
VIX -0.72 0.22 -0.44 0.85 1.00 

Note: The table reports the summary statistics for weekly return series over the period Jan. 2009– Feb. 2016.  

As a result, a mean return of -0.67% per week is hard to ignore. However, rolling over VIX futures 

seems at least to have stabilizing effects in terms of realized standard deviation of VXX returns, with a 
4.52% per week that halves the volatility of the underlying VIX index. Interestingly, this occurs mainly 
because VXX reduces portfolio exposure to extremely negative relative changes in the VIX: the minimum 

of VIX is -22.2% in a single week vs. -11.6% only for VXX. Figure 1 shows that VIX and VXX display a 
similar return dynamics over time, but that the amplitude of the two series turns out to be rather different, 
with VIX relative percentage changes covering a weekly range that is visually approximately half the one 

shown by VIX. In fact, the pairwise correlation between VIX and VXX is 0.85. 
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Figure 1. Historical returns: VIX index vs ETN VXX. 

A Reader may feel hurried to conclude that while VIX is a value-enhancing but very risky asset 

class, to entertain VXX exposures turns out to be utterly pointless. However, the lower panel of 
Table 1 that displays pairwise correlations complicates the picture somewhat. VIX and VXX display 
essentially identical correlations with respect to stocks (negative and large) and bonds (small, yet 

allowing considerable hedging); however, when it comes to real estate, VXX returns a correlation that is 
even more negative vs. the underlying VIX. Therefore volatility is clearly useful for hedging purposes and, 
if any, VXX is a bit more valuable than VIX itself. 

5. Empirical Results 

5.1. Recursive optimal portfolio weights 

In this section, we analyze the results from recursive portfolio choice under the different preference 

frameworks introduced in Section 3. Starting from the mean-variance case, Figure 2 shows the composition 
of optimal portfolios between February 2010 and February 2016. The four plots on the left, for different 

choices of the risk aversion coefficient , show weights when VIX is part of the asset menu; the 
corresponding plots to the right display comparable figures when VXX replaces VIX in the asset menu. On 
the left, VIX carries high weights, especially during the Fall 2010 European sovereign debt crisis and 

starting in late 2014. In the case of a highly risk averse investor ( = 1), in fact VIX comes to completely 
dominate the portfolio. On the contrary, VXX only finds a limited role—in the order of 10-15% at most and 
only episodically—for highly risk-averse investors. In fact, the role of moderating the total amount of risk 
taken up as a result of portfolio optimization is instead played by bonds, which practically denies a 

role to the de-correlation properties of volatility-related ETPs. Equivalently, while if the VIX were 
directly available, we would expect to see a modest demand for bonds at best and the level of 
portfolio risk would be controlled by varying over time the commitment to VIX, thanks to its low or 
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negative correlations, when an investor can at most trade VXX the result is that the most effective 
way to limit risk exposure is to reduce the overall weight of real estate and equities in favor of 

relatively riskless bonds, a rather traditional strategy. 
 

   

( a ) 

 

( b ) 

 
( c ) 

 

(d ) 

Figure 2. Optimal Portfolio Weights under Mean-Variance Preferences. (a)  Risk aversion coefficient 𝜆 = 0.1; (b) 

Risk aversion coefficient 𝜆 = 0.2; (c) Risk aversion coefficient 𝜆 = 0.5; (d) Risk aversion coefficient 𝜆 = 1. 
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     ( d ) 

Figure 3. Optimal Portfolio Weights under Power Utility. (a) Risk aversion coefficient γ = 2; (b)     Risk 

aversion coefficient γ = 4; (c) Risk aversion coefficient γ = 7; (d) Risk aversion coefficient γ = 10. 

Figure 3 shows the composition of the optimal portfolios for an investor who maximizes 

expected CRRA utility when the risk aversion parameter takes the alternative values of 2, 4, 7, or 10. 
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As explained in Section 3, by contrasting these weights with those in Figure 2, one may derive a 
visual summary of the relevance of higher-order moments for the composition of the optimal 

portfolio. The optimal portfolio shares—also because the riskless asset is excluded from the menu—

do not seem to strongly depend on the assumed value for  even though the role played by the 
investment in volatility and in bonds increases slightly as we move down the plots. The fact that the 

percentage invested in bonds does not strongly increase may seem surprising at first, even though 
from Table 1 one should note that under CRRA preferences—because of their large negative 
skewness and positive excessive kurtosis—also bonds are quite risky in spite of their modest 

volatility. However, the percentage committed to bonds appears to be structurally high, ranging 

between an average 40% in the case of  = 2 to 80% in the case of a highly risk-averse individual 
characterized by  = 10. At low risk aversion levels, a substantial weight also goes to real estate, 
while equities always enter modestly. 

As far as volatility is concerned, we obtain indications that are very different from Figure 2: the 
optimal weight assigned to long volatility positions is always positive but modest over time; it is 

slightly higher when VXX is used (15-20%) than under VIX (less than 15% but with a spike in 
excess of 30% in late 2015, in correspondence to the so-called “taper tantrum”). Moreover, the 
dynamics over time of the two positions appear to be similar. These results are interesting besides the 

case under consideration: there is persistent, albeit modest, demand of an asset with a large, negative 
mean and median return; this occurs because the asset has large and negative correlation with the 
asset class in the highest demand, real estate. In fact, even though VXX has an average return that is 

considerably inferior to VIX, it is in higher demand because it brings positive skewness and low 
(negative) excess kurtosis to the portfolio. In other words, while the standard VIX is a good hedge 
only in the classical portfolio mean-variance dimension, VXX acts as a hedge also in additional 

dimensions that a power utility function is able to pick up, skewness and kurtosis. The full 
importance of higher-order moments in portfolio choice (see also Guidolin, 2013, and Guidolin and 
Timmermann, 2008) can be easily appreciated by contrasting Figures 2 and 3, that give rather 

different portfolio allocations based on identical asset classes and data: contrary to what one 
sometimes reads, mean-variance can be—and in this case is—a very poor approximation to CRRA-
implied portfolio allocation. Interestingly, but consistently with what has been already observed in 

earlier research (see Guidolin, 2013), power utility-driven portfolio decisions turn out to be more 
stable than typical mean-variance selections. 

An unreported series of charts similar to Figure 2 (and available upon request) examine the 

optimal allocation under negative exponential, CARA preferences. It is well known that when the 
joint, multivariate distribution of the N asset returns is normal, the overall portfolio return 
distribution will be normal and CARA preferences give the same optimal portfolio allocation as the 

mean-variance case. However, as emphasized by Table 1, this is not exactly the case for our asset 
menu. Therefore the CARA case may lead to different portfolio decisions vs. the mean-variance 

framework. While CARA preferences with   1 yield rather cautious portfolio decisions in which 
only 60% at most of the portfolio is invested in real estate and stocks, the way in which such risk 
mitigation is obtained depends on whether the VIX is (counter-factually) assumed to be an investable 
index or not. In the former case, the portfolios include a substantial proportion, up to an average 35% 

and increasing over time in the case of  = 2, with the rest of the portfolio largely invested in real 
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estate; in the latter case, the optimal portfolios use little or no VXX and instead exploit the low risk 
exposure of bonds, as noted in Figure 2. Therefore, the CARA utility is indeed the case in which the 

differences in the attractiveness of VXX vs. VIX are the largest, as the former vehicle is tradable but 
essentially never part of the optimal investment decision of an investor. Implicitly, it is then clear 
that maximizing the approximate expected utility in (12) must lead in this case to a strong aversion to 

the negative mean returns of VXX manifested during the latter part of our sample that prevails over 
the liking for its positive skewness and negative excess kurtosis, contrary to what had occurred in 
Figure 3. Figure 4 is then helpful to drive home one of the key implications of our analysis: in 

general, the attitude of an optimizing investor with regards to a negative mean (and median) asset 
strictly depends on her specific preferences; in particular, whether or not popular ETPs used to trade 
US aggregate market volatility may be beneficial to portfolio decisions, strongly depends on the 

specific preferences of an investor. In short, optimal portfolio management ought to be strictly tailor-
made, even in the face of an identical representation of the set of efficient investment opportunities. 

6. Backtesting Risk-Adjusted Economic Value 

On the basis of the optimal, recursive estimates of portfolio shares obtained through the 
recursive process implemented in Section 5, in this section we focus on indicators that allow to 
quantify the costs and benefits of investing in volatility and whether the specific tradable vehicle 

through which this is performed carries any importance. In practice, we compute, average, and report 
a range of performance measures across the 86 monthly portfolio allocations, each updated at a 
monthly frequency, already visualized in Figures 2-4. In Section 6.1, we focus on a small set of 

general-interest and commonly reported measures in money management, such as Sharpe ratios. In 
Section 6.2, we focus instead on CERs, utility-based measures that perform the risk adjustment in a 
way that is fully consistent with the structure of the assumed preferences. In all cases, we compute 

the measures as means of 5-year moving averages to simulate the perspective of an investor with 
a plausible 5-year horizon.10 

6.1. Classical performance measures 

Table 2 reports Sharpe ratio indices as in (3) for each of the three preferences frameworks 
investigated in Section 5. The risk-free rate is proxied by the 1-month T-bill rate. Although the 
Sharpe index tends to be publicized by asset managers irrespectively of the preferences of their 

investors more as a description of the relationship of their selected portfolio to the MVF than 
anything else, from Section 3, we already know that (3) represents the correct performance measure 
to rank portfolios only in a mean-variance perspective. 

We start with panel B of Table 2, i.e., under power utility preferences, the case in which in 
Section 5 we have obtained the biggest quantitative role for VXX. In spite of this, it is clear that 

while for  = 4 and higher (i.e., intermediate and high risk aversion), the availability of VIX would 

increase the realized Sharpe ratio (e.g., from 0.015 to 0.028 in the case of  = 7), VXX fails to do 
that uniformly and it always implies a visible decline in Sharpe ratio vs. VIX. However, VXX does 

                                                             
10 Results turned out to be robust to using the full sample or different rolling window lengths. 
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better than dropping volatility as an asset class altogether in the case of  = 7. Interestingly, this 
result weakens in panel A, for the case of simpler, mean-variance preferences: VIX sometimes 

improves the realized OOS Sharpe ratio (it happens for  = 0.1 and 0.5, therefore when risk aversion 
is low to intermediate), but VXX does that only one case. Under mean-variance preferences the 
result is hard to interpret because it seems to suffer from being based on a back-test sample that is 

not long enough to reach a firm conclusion. Panel C, devoted to the negative exponential utility case, 
confirms these conclusions: while VIX may create economic value under some risk aversion 
assumptions, this is not likely when VXX is used. 

Table 2. Realized out-of-sample sharpe ratios. 

  Baseline Portfolio with VIX Portfolio with VXX 

Panel A – Quadratic utility function 
   

5 yrs RW 

 = 0.1 0.0477 0.0509 0.0128 
 = 0.2 0.0273 0.0233 0.0166 
 = 0.5 0.0219 0.0439 0.0310 
 = 1 0.0415 0.0381 0.0174 

Panel B – Power utility function   

5 yrs RW 

γ = 2 0.1308 0.0537 0.0256 
γ = 4 0.0154 0.0614 0.0056 
γ = 7 0.0154 0.0278 0.0197 
γ = 10 0.0077 0.0454 0.0058 

Panel C – Negative exponential utility function 

5 yrs RW 

θ = 0.5 0.0395 0.0254 0.0104 
θ = 1 0.0480 0.0266 -0.0146 

θ = 1.5 0.0400 0.0943 0.0327 
θ = 2 0.0229 0.0851 0.0734 

Note: This table reports the ex-post, realized Sharpe ratios under alternative preferences and asset menus. Each panel 

shows results for different assumptions on the risk aversion coefficients.  

Another indicator often reported to evaluate performance is the index proposed by Sortino, a 
version of (3) where the denominator is just downside standard deviation, i.e., 
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, (15) 

The idea of (15) is that only under-performance vs. the mean represents genuine risk. Table 3 
shows the realized, OOS Sortino ratios under alternative preferences. The comments and conclusions 
drawn from the analysis of the realized Sharpe ratios are confirmed and strengthened here. VIX often 

improves realized performance, although in panel B this happens to a larger extent only for low-risk 
averse investors. Possibly, the presence of VIX in the portfolio during 2010 would have simply 
helped to avoid some substantial losses that were otherwise incurred. In general, an analysis of the 

realized downside volatility of portfolios including VIX/VXX vs. the benchmark, shows that 
although including volatility always reduces it, in the case of VXX the effect of mean reduction 
prevails, leading to an overall decline of the Sortino index. In panel B, for highly risk averse 
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investors, in fact we obtain a few negative Sortino ratios when VXX investing occurs, indicating that 
the benchmark would be superior. 

Table 3. Realized out-of-sample sortino ratios. 

  Baseline Portfolio with VIX Portfolio with VXX 

    Panel A – Quadratic utility function 
   

5 yrs RW 
 

 = 0.1 0.0975 0.0890 0.0235 
 =  0.2 0.0822 0.0756 0.0226 
 =  0.5 0.0791 0.0567 -0.0475 
 =  1 0.0469 0.0991 0.0213 

Panel B – Power utility function 

5 yrs RW 
 

γ = 2 0.0978 0.1227 0.0152 
γ = 4 0.0277 0.0980 0.0079 
γ = 7 0.0412 0.0644 -0.0058 
γ = 10 0.0289 0.0512 -0.0081 

Panel C – Negative exponential utility function 

5 yrs RW 
 

θ = 0.5 0.0395 0.0254 0.0104 
θ = 1 0.0480 0.0266 -0.0146 

θ = 1.25 0.0400 0.0943 0.0327 
θ = 2 0.0229 0.0851 0.0734 

Note: This table reports the ex-post, realized Sortino ratios under alternative preferences and asset menus. Each panel 

shows results for different assumptions on the risk aversion coefficients.  

Finally, in Table 4, we consider the realized OOS information ratios. This indicator is defined as 
the ratio between the average return in excess of the market portfolio (here proxied by the S& P 500) 

and the realized sample standard deviation of this excess, also known as tracking error volatility: 

      Information Ratio =  
𝑇ିଵ ∑ ൫𝑅௧ାଵ
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.      (16) 

The point of this indicator is to measure abnormal performance generated by a portfolio strategy vs. 
a benchmark. In this sense, in the asset management industry, (16) is often perceived to be more practical 

and relevant than the Sharpe and Sortino ratios, that instead implicitly adopt riskless cash investments as 
their benchmarks. In a CAPM perspective, it is natural to center the IR index on the market portfolio, 
even though the subsequen identification of the latter with a broad market index is somewhat arbitrary. 

Moreover, on a closer inspection, in our study, producing IR rankings may be felt as natural because—
when it comes to assess the use VIX/VXX as an asset class—we are considering an investor willing to 
take on a certain level of risk which suggests that her natural benchmark will not be represented by 1-

month T-bills. The evidence provided by the realized OOS information ratios in Table 4 is in line with 
what is shown by the Sharpe and Sortino ratios: including the VIX in the asset menu tends to produce 
positive and often relevant economic value; with very few exceptions, replacing VIX with tradable VXX 

considerably lowers the information ratios; occasionally, the asset menus that include VXX give negative 
information ratios, i.e., trading volatility through the ETN gives realized OOS information ratios below a 
simple CAPM-like market portfolio buy-and-hold strategy. 
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To complete the analysis, we also compute and report one measure of portfolio turnover to 
quantify the needed, implied average rebalancing in each period to keep the portfolio structure at the 

optimal weights, for each strategy. The formula used follows, for instance, DeMiguel, Garlappi and 
Uppal (2009): for each asset allocation program (as defined by preferences and asset menu), 
portfolio turnover is defined as the sum of the changes in the absolute value of weights to the N 

assets between time t and t + 1 (in our application, on a monthly basis), for t = 1, 2, …, T - 1: 

                                               𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =  
1

𝑇 − 1
 ෍ ෍൫ห𝑤௝,௧ାଵ − 𝑤௝,௧ห൯

ே

௝ୀଵ

்ିଵ
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.                               (17) 

In our case, N = 3 and 4, and T = 86 months. Usually, the calculation of a measure like (17) is a 
prelude or a proxy for full consideration of transaction costs: the more a portfolio is turned over in 

time, the higher total transaction costs are, whatever is their measure per unit trade.  

Table 4. Realized out-of-sample information ratios. 

  Baseline Portfolio with VIX Portfolio with VXX 

    Panel A – Quadratic utility function 
   

5 yrs RW 
 

 = 0.1 0.0250 0.0470 0.0030 
 =  0.2 0.0237 0.0193 -0.0009 
 =  0.5 0.0559 0.1153 0.0553 
 =  1 0.0073 0.0923 -0.021 

Panel B – Power utility function 

5 yrs RW 
 

γ = 2 0.0978 0.1227 0.0152 
γ = 4 0.0277 0.0980 0.0079 
γ = 7 0.0412 0.0644 -0.0058 
γ = 10 0.0289 0.0512 -0.0081 

Panel C – Negative exponential utility function 

5 yrs RW 
 

θ = 0.5 0.0395 0.0254 0.0104 
θ = 1 0.0480 0.0266 -0.0146 

θ = 1.25 0.0400 0.0943 0.0327 
θ = 2 0.0229 0.0851 0.0734 

Note: This table reports the ex-post, realized information ratios under alternative preferences and asset menus. 

Each panel shows results for different assumptions on the risk aversion coefficients. The S&P 500 index has 

been used as benchmark. 

Table 5 shows the portfolio turnover rate for the case of power utility. We just deal with this case 
because this is the one in which both the addition of VIX and of VXX to the asset menu (occasionally) 
led to an improvement in risk-adjusted performance, according to a Sharpe ratio metric. As one would 

expect, turnover declines as the coefficient  increases: investors who are less and less aggressive in their 
portfolio approach, trade less and less. Moreover, while the asset menu that includes VIX ought to be 
approximately traded with the same intensity as the benchmark portfolio, we note that VXX-augmented 

portfolio are considerably more stable, i.e., inserting VXX has a stabilizing effect and does not lead to 
potentially higher transaction costs that would otherwise go to compound the negative mean and median 
returns from the asset class. 
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Table 5. Portfolio turnover under power utility, CRAA preferences. 

 
γ 2 4 7 10 

Benchmark Case 
 

 
   

Turnover 
 

64.93% 55.04% 50.24% 48.13% 
Portfolio with VIX 

 
 

Turnover 
 

62.52% 53.22% 54.20% 46.83% 
 Portfolio with VXX 

 
 

Turnover 
 

  50.73%    47.96% 47.86% 44.62% 

6.2. Utility-based, risk-adjusted performance 

In this Section, we proceed to comment on the most appropriate measures of risk-adjusted 
performance, the OOS realized CER estimates that take into account the specific type of preferences that 

were used to optimize and obtain portfolio weights. In fact, what we report in Table 6 are the CER 
losses/gains from switching between different portfolio rules and asset menus: VIX vs. the baseline which 
gives a virtual indication of the CER gains from adding volatility to the menu of choice; VXX vs. the 

baseline, which gives a practical estimate of the percentage gain/loss from adding to the asset menu a 
tradable ETN that should track the VIX over time; VIX vs. VXX, which measures what is the additional 
risk-adjusted performance that an investor should be able to obtain by using ETPs of better quality—with 

lower tracking error vs. the VIX—than the specific ETN used in our analysis. In the light of the literature 
reviewed in Section 2, we expect the CER difference from VIX vs. the baseline to be positive and 
potentially large; we have uncertain priors as to the difference of VXX vs. the baseline in the light of the 

evidence from Sections 3 through 5; we certainly anticipate the CER difference of VIX vs. VXX to be 
positive, even though it would be good news to practitioner were such differences to be small. It is 
important to emphasize that a positive CER gain when going from the benchmark to a VIX-augmented 

asset menu is not a logical necessity, according to the reasoning that when the asset menu is expanded, an 
investor can only gain, also after applying appropriate risk-adjustments. In fact, in this paper we are 
considering realized OOS changes in CER and even though ex-ante, based on in-sample estimates these 

cannot be but positive, out-of-sample any sign can be obtained. Note that the same applies to the 
comparison VIX vs. VXX. 

Starting from panel B of Table 6, concerning CRRA preferences, we find mixed results. In OOS 

back-testing exercises, we obtain robust evidence that all in all, VIX does not convincingly create 

economic value to power utility investors, even the very risk-averse ones. For instance, for  = 7, the 
weekly difference in CERs is 7 basis points (bps), however small, but one may argue to build up to a total 

in excess of 3% per year. However, as  increases, the standard deviation of the sample mean CER 
difference becomes very large, an indication that in a formal test, it would be unlikely that a null 
hypothesis of no difference could be rejected. When we compare VXX with the benchmark, because of 

its negative mean and median returns (and in spite of positive skewness and negative excess kurtosis), 

VXX does even worse: for instance, assuming  = 7, the weekly difference in CERs is almost 9 bps. 
Therefore going from VIX to VXX makes CERs worse and by substantial percentage amounts; for 

instance, when  = 7, an investor would pay a fee up to 2 and half bps per week to access direct VIX 
trading and avoid the VXX. However, also in this case, these sample means are estimated very 
imprecisely. All in all, panel B of Table 6 shows that in ex-ante terms, VXX would be demanded by a 
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risk-averse investor with power utility, but that—at least in our back-testing OOS period, Feb. 2010 – 
Feb. 2016—it would have betrayed this very investor in ex-post terms, by inflicting risk-adjusted 

performance losses. However, this does not derive entirely from an ineffectiveness of the ETN examined 
in this paper: the VIX itself would suffer from the same limitations. 

Table 6. Annualized certainty equivalent return loss. 

   
0.1 0.2 0.5 1 

Panel A – Quadratic utility function   
 

   
Portfolio with VIX vs Baseline   

Sample Mean  0.013% 0.010% -0.001% -0.018% 
Std. Dev. of Mean  0.285% 0.216% 0.017% 0.389% 

Portfolio with VXX vs Baseline   
Sample Mean  -0.000% 0.000% 0.000% 0.000% 

Std. Dev. of Mean  0.024% 0.016% 0.001% 0.018% 
Portfolio with VIX vs Portfolio with VXX   

Sample Mean  0.013% 0.010% -0.001% -0.018% 
Std. Dev. of Mean  0.285% 0.216% 0.017% 0.389% 

Panel B – Power utility function   
Portfolio with VIX vs Baseline   

Sample Mean  -0.001% -0.023% -0.061% -0.399% 
Std. Dev. of Mean  0.152% 1.617% 5.833% 22.208% 

Portfolio with VXX vs Baseline   
Sample Mean  -0.002% -0.014% -0.087% -0.455% 

Std. Dev. of Mean   0.152% 1.525% 7.609% 25.386% 
Portfolio with VIX vs Portfolio with VXX       

Sample Mean   0.002% -0.009% 0.026% 0.056% 
Std. Dev. of Mean   0.074% 1.166% 1.660% 10.207% 

Panel C – Negative exponential utility function       
Portfolio with VIX vs Baseline       

Sample Mean   0.000% 0.001% 0.002% 0.002% 
Std. Dev. of Mean   0.152% 0.187% 0.264% 0.264% 

Portfolio with VXX vs Baseline       
Sample Mean   0.000% 0.000% 0.000% 0.000% 

Std. Dev. of Mean   0.016% 0.015% 0.013% 0.016% 
Portfolio with VIX vs Portfolio with VXX       

Sample Mean   0.000% 0.001% 0.002% 0.002% 
Std. Dev. of Mean   1.414% 1.732% 2.236% 2.449% 

Note: The certainty equivalent return (CER) loss is calculated as a difference between the certainty-equivalent returns obtained 

from two alternative portfolio strategies and can be interpreted as the maximum, yearly percentage fee that an investor should 

be ready to pay in order to switch between two alternative portfolio strategies. 

Panel A of Table 6 deals instead with the case of mean-variance preferences. Here, we obtain 

perfect consistence between in-sample and OOS results. First, whether or not volatility as an asset 

class helps in portfolio decisions depends on the risk-aversion coefficient, . Aggressive investors 
(with modest ) tend to benefit from the availability of VIX in the order of about 1 bp per week, 
which any way amounts to more than 0.5% a year; however, more risk averse investors derive small 



355 

Quantitative Finance and Economics                                                                                          Volume 1, Issue 4, 334–362  

benefits because they prefer to moderate their risk exposures by investing in bonds. Second, VXX 
yields a positive but always marginal risk-adjusted benefit, just a fraction of 1 bp. However, for the 

most risk-averse investors, interestingly this means that in our OOS tests, the ETN outperforms the 

underlying VIX. For an investor characterized by  = 1, the difference is almost 2 bp per week and 
amounts to a round 2% per year. Even though this was not obvious from Figure 2, it turns out that 

VIX would be in too high a demand because of its past positive performance so to end up hurting 
performance in OOS terms. This does not occur with VXX, that has never given high realized mean 
performances: paradoxically, worse in-sample properties would help a mean-variance investor in a 

OOS perspective. Finally, panel C of Figure 6 gives a picture that is unsurprisingly favorable to a 
modest contribution to economic value by VIX paired with a zero or modestly negative differential 
between VXX and VIX. 

6.3. The effects of transaction costs 

So far, the OOS picture turns out to be generally but mildly favorable to considering volatility—
as proxied by VIX—a novel asset class, but starkly against (with the minor exception of a few 

specific mean-variance configurations) the possibility that VXX may represent a viable tool to 
harvest the risk-adjusted gains deriving from volatility trading in asset management. There is 
however one logical possibility that needs to explored: VXX may turn out to be competitive and 

hence a useful tool to implement volatility trading in the case in which VXX implies lower trading 
volume and hence lower transaction costs than VIX does. This is in line with the evidence in Table 
5.1. In principle, it is even possible that VXX may yield negative mean and median return asset and 

yet allow an investor to hedge herself so efficiently that the transaction cost savings end up more 
than compensating the “damage” to performance deriving from a negative mean. 

Because a fair comparison based on transaction costs requires that VIX and VXX be demanded 

in similar proportions, in this Section we focus on the case of optimal allocations obtained under 
power utility. The limitation of transaction-cost based analyses is that we are compelled to introduce 

assumption on the size and “structure” of the trading costs. Define 𝐶𝑃௧  as the proportional 

component at time t and 𝐶𝐹 the fixed component, both expressed in basis points. As usual, 𝐶𝑃௧ is 
computed as a proportion of the sum of portfolio weight changes across all asset classes between t and t + 1: 

                                                         𝐶𝑃௧ାଵ =  𝛼 ෍ | 𝑤௜,௧ାଵ −  𝑤௜,௧ |

ே

௜ୀଵ

                                              (18) 

Therefore the net-of-trading costs performance can be computed as [1 − (𝐶𝑃௧ାଵ + 𝐶𝐹)] 

multiplied by the gross-of-trading costs portfolio return, 𝑅௧ାଵ
௉ . In particular, we assume 𝛼 = 9 bps 

and 𝐶𝐹 = 5 bps. We have also experimented with alternative selections in a neighborhood of these 
values (i.e., 7-8 or 10-11 bps for proportional costs and 3 and 7 bps for fixed costs) finding 

qualitatively similar results. 
Table 7 reports the key findings on average realized OOS excess returns. For added 

visibility, we have boldfaced all positive values. Interestingly, for the least risk-averse 

investors who trade the most, transaction costs lead to negative realized mean returns already 
in the benchmark case. As it sometimes happens in back-testing experiments, trading a lot ends 
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up hurting. More risk averse investors ( = 7 and 10) achieve mean realized excess returns that 
tend to be small (1-3 bps per week, at most 1.56% per year). Things worsen drastically when 

volatility—an asset class that creates additional trading opportunities—is added. Interestingly, 

VXX leads to higher mean returns than VIX does in the case of  equal to or in excess of 4, 
but once transaction costs are modeled, such a differential in performance fades. 

Table 7. Effects of including transaction costs: power utility case. 

γ 2 4 7 10 

Panel A - Baseline 
    

No transaction cost 0.183% 0.164% 0.191% 0.177% 

Including transaction cost -0.043% -0.035% 0.001% 0.003% 

Panel B – Portfolio with VIX 
No transaction cost 0.109% -0.093% -0.238% -0.078% 

Including transaction cost -0.369% -0.526% -0.677% -0.479% 

Panel C – Portfolio with VXX 
No transaction cost -0.053% 0.030% 0.029% 0.033% 
Including transaction cost -0.466% -0.369% -0.365% -0.344% 

Note: The table shows the mean excess returns for portfolio under power utility function for different alternative choices 
of  and compares then the cases of no transaction costs vs. the inclusion of transaction costs. In the table, we have 
boldfaced positive values for additional clarity. 

7. Discussion: Poor ETPs vs. Poor Portfolio Strategies  

What is the economics of the failure of volatility investment, as a part of an optimizing, risk-averse 
portfolio strategy, to deliver the benefits it is alleged to yield when one considers the underlying VIX 

index? The facts are in plain sight: its practical implementation, as achieved through the most popular (at 
least in the sense of having being traded for the longest time) ETNs written on the VIX leads to 
disappointing risk-adjusted results, with the exceptions of a handful of special cases. One therefore 

wonders whether the existence of such a differential is a reflection of the ineffectiveness of the ETN (or 
of its expensiveness due to massive losses that ETNs incur to roll over short-term futures on the VIX, as 
they expire, see the evidence in Alexander, Kapraun, and Korovilas, 2015) or of the fact that treating 

volatility as an asset class in long-only portfolios may be practically questionable. To further investigate 
this issue, we proceed to perform afresh a portion of the previous tests when an investor is assumed to be 
capable to trade and roll on short-term VIX futures, to try and approximate the virtual returns one would 

obtain going long in the VIX index directly.11 
To this end, we use weekly returns computed from the continuous series of the closest-to-expiry 

VIX from CBOE. In principle, such a strategy is what a long-VIX ought to implement, but here we 

abstract from transaction costs and margination constraints that are instead important and do worsen the 

                                                             
11 A referee correctly reminds us that many institutional investors are likely to or be contractually restricted from futures roll-over strategies. Comparing 

a strategy that rolls VIX futures and ETNs that mostly invest in futures is informative because we need to recall that because volatility indices are not 

tradable, there is no unique closed-form, arbitrage free, cost-of-carry relationship connecting them with the price of futures contracts. As a result, a 

sizeable difference between the index and futures prices may appear. Yet, the futures price represents the risk-neutral expectation of the corresponding 

volatility index at maturity, and as such, these futures offer a volatility exposure that should be still highly correlated with the volatility index. 
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realized performance of ETNs in reality. The sample period is identical to the one used above. Such a 
futures strategy implies a mean return of 0.16% per week but a median of -0.16% per week and therefore 

a high and positive skewness (0.99). Interestingly, these properties are similar, but less extreme, vs. what 
we have reported for the VIX. However, the futures roll over strategy (henceforth, FROS) implies 
slightly negative excess kurtosis. Such differences are emphasized by a pairwise correlation of 0.84 with 

VIX. Interestingly though, the correlation between FROS and VXX is slightly larger, 0.86. FROS has 
also correlations with SPY, IYR, and AGG similar to what we have reported above.  
 

 

                                  (a)                                                                             (b) 

 
                                   (c)                                                                           (d) 

Figure 4. Optimal Portfolio Weights under Power Utility – Asset Allocation Based on Rolling 

VIX Futures Over in Time. (a) Risk aversion coefficient γ = 2; (b) Risk aversion coefficient γ = 4; (c) Risk 

aversion coefficient γ = 7; (c) Risk aversion coefficient γ = 10. 

Figure 4, displays optimal recursive portfolio weights between February 2010 and February 

2016, computed on an expanding window of data, at a monthly frequency. The plot needs to be 

compared to Figure 3 for each of the assumed levels of the CRRA coefficient . Interestingly, all 
power utility investors place a higher but more stable fraction of their wealth in the FROS (on 

average 20-25%) vs. both VIX and VXX. This is not surprising because—even though FROS has 
similar correlations and skewness when compared to VIX and VXX—its mean and variance are 
different and more favorable. Correspondingly, when investors can go long in FROS, less bonds 

need to be used to moderate risk exposure, especially in the second half of the example. However, 
the real, deep difference between Figures 4 and 3 is that in the former a much higher weight is 
invested on average in equities, that seem to benefit much more from the hedge provided by FROS 

than by VIX or VXX. All in all, such differences are not major and yet they are important enough to 
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motivate us to compute and report realized OOS risk-adjusted performances compared to VIX and 
VXX long-only portfolios. 

Table 8. Realized out-of-sample sharpe ratios from an asset allocation based on rolling VIX 
futures over in Time. 

             Baseline 
Portfolio with 

VIX 
Portfolio with VXX 

Portfolio based on 
Futures 

5 yrs RW 
 

γ = 2 0.1308 0.0537 0.0256 0.1149 
γ = 4 0.0154 0.0614 0.0056 0.0106 
γ = 7 0.0154 0.0278 0.0197 0.0151 
γ = 10 0.0077 0.0454 0.0058 0.0736 

Note: This table reports the ex-post, realized Sharpe ratios under power utility function and for alternative asset menus. Each panel 

shows results for different assumptions on the risk aversion coefficients.  

Table 9. Annualized Certainty Equivalent Return Loss from an Asset Allocation Based on 
Rolling VIX Futures Over in Time. 

γ 2  4  7      10 

Portfolio with VIX vs Portfolio with VXX 
    

Mean 0.002% -0.009% 0.026% 0.056% 
Std. Dev. of Mean 0.074% 1.166% 1.660% 10.207% 

Portfolio with VXX vs Portfolio with Future-Based 

Strategies 
Mean 0.010% -0.112% -0.065% -0.189% 

Std. Dev. of Mean 0.010% 0.016% 0.041% 0.038% 

Portfolio with VIX vs Portfolio with Future-Based 

Strategies 
Mean 0.012% 0.116% 0.091% 0.256% 

Std. Dev. of Mean 0.003% 0.016% 0.023% 0.069% 

Note: The certainty equivalent return (CER) loss is calculated as a difference between the certainty-equivalent returns obtained from 
two alternative portfolio strategies and can be interpreted as the maximum, yearly percentage fee that an investor should be ready to 
pay in order to switch between two alternative portfolio strategies. 

The deficiencies and limitations of ETNs fully emerge comparing the last two columns of Table 8, 

concerning the OOS Sharpe ratios of VXX vs. FROS: for all s but one, the increase in Sharpe ratios 
is stunning. Aggressive investors benefit from FROS because it provides hedging without inflicting 
the mean losses of VXX, presumably due to the fees charged on the asset under management and roll 
costs (see Dash and Liu, 2012); very risk-averse investors benefit from FROS because it is a better 

hedge than VXX is. However, FROS is generally inferior to VIX itself. For instance, for  = 7, 
FROS leads to a realized Sharpe ratio of 0.015, similar to the benchmark, but inferior to the VIX 
Sharpe ratio of 0.028. Table 8 leads us to conclude that even though it is not easy for practical long-

only volatility strategies to outperform VIX, a large portion of the poor performance of VXX derived 
from its institutional features and the costs that the ETN structure implies. In fact, we emphasize that 
the FROS is implemented here disregarding the related costs, while our data on ETN returns do 
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discount such costs.12 Table 9 performs a similar set of calculations in terms of differences in CERs 
deriving from switching among alternative ways to invest in volatility. Clearly, trading VIX 

represents the first best in risk-adjusted terms and a FROS cannot represent a threat. However, FROS 

also turns out to be better than VXX, at least for  = 4 and higher. In our view, this represents an 
important indication that while treating VIX as a separate asset class may be sensible as represented 

in earlier literature (see Section 2), in practice this may be subject to important limitations deriving 
from the non-tradability of the VIX. 

8. Conclusion 

This paper aims at assessing the role of Exchange Traded Products in (long-only) portfolio 
strategies, focusing on volatility investing. In this sense, it differs from the previous literature that 
has assessed the role played by volatility as an asset class through the use of derivative instruments 

and futures contracts to hedge existing portfolio positions; in our analysis, instead we focus on the 
use of a ETN whose underlying is the VIX index, a weighted average of the implied volatility on the 
S&P 500. The exercise consists of the recursive calculation of optimal portfolio weights assigned to 

stocks, real estate, bonds, and volatility, when short positions are (realistically) ruled out, to 
understand how optimal asset allocation—with special emphasis on volatility trading—may vary as a 
function of alternative preference assumptions typical of the applied finance literature, i.e., mean-

variance, power, and negative exponential utility functions. 
The recursive estimation of optimal weights and the back-testing of their performance over the 

period January 2009–February 2016 shows that the VIX index generally belongs to the optimal 

allocation of investors for most preferences and risk aversion coefficients considered, leading to 
the—by now routinely encountered—claim that volatility is indeed an important asset class. 
However, such a conclusion is weakened and survives only for special preferences and assumptions 

when volatility is represented by one of the most popular ETNs written on volatility (iPath S&P 500 
VIX Short-Term Futures, with VXX ticker). The weight of the ETN tends to be smaller than the one 
of VIX and appears to be substantial only under power utility.  

Next, such weights are used to recursively construct portfolios that are then assessed on a OOS 
basis to measure their realized, risk-adjusted performance using a range of indicators, from classical 
Sharpe and Sortino ratios to theoretically appealing CERs. We find that while VIX investments tend 

to create important and often precisely estimated risk-adjusted economic value, the same does not 
apply—at least not generally—when volatility is traded using the ETN. In fact, we find a fraction of 
experiments in which trading VXX leads to a net reduction of risk-adjusted performance. This is also 

due to the large and negative mean returns of the ETN investigated in our paper. Interestingly these 
conclusions are qualitatively similar—although volatility trading tends to generate stronger value—
when ETN is replaced by a strategy that trades the closest-to-maturity VIX futures, even though in 

this case we have ignored transaction costs and all frictions an investor would come to face in reality. 

                                                             
12 Dash and Moran (2007) report that the performance of a volatility strategy based on investing in futures contracts is lower by about 40% vs. the 
performance recorded by the VIX index. This derives from the cost of rolling - over the various contracts, i.e. both by the “bleeding effect” due to 
the typical slope of the term structure of VIX futures and by the costs of trading the positions. Also note that futures imply no credit risk because 
settlement is generally guaranteed by a clearing house, while ETPs (ETNs) generally imply substantial credit risk, as documented by Alexander et 
al. (2015) for the VXX note. 
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The implication is that although ETNs may successfully track volatility indices in terms of their 
correlations with them, this is just a necessary condition for a successful ETP to support portfolio 

decision; other statistical features—such as the mean and median—may render the passive index-
tracking portfolio sufficiently “costly” in terms of risk-adjusted performance, that the high 
correlation condition fails to be sufficient. In fact, a recent applied portfolio management literature 

has shown that simpler target volatility strategies that perform systematic rebalancing between a 
risky asset and cash with dynamic weights so that ex-ante risk is kept constant, may deliver high (er) 
risk-return trade-offs with lower costs (see, e.g., Füss et al., 2014). 

Importantly, such empirical findings in no way represent evidence that ETPs are not useful: they 
may remain valuable tools to implement market timing strategies that exploit the predicted power of 
volatility for subsequent excess stock returns and to hedge left-tail risk.13  In fact, it would be 

interesting to pursue dynamic extensions (as in Adams et al., 2017 or Carroll et al., 2017 for recent, 
critical perspectives) to investigate how volatility and covariance timing may be improved by the 
availability of ETPs that allow to trade volatility directly. Our goal in this paper was simply to show 

that even in the starkest, simplest setting, VXX cannot even remotely deliver the average realized 
economic gains that in principle VIX can create. Yet, it is clear that the standard utility models we 
have assumed and the simple static framework in which investment opportunities are constant cannot 

do justice to these two additional ways in which volatility ETPs may create value, even though the 
related research questions are of great importance.  

Of course, different results might have been also obtained by the use of different and better 

optimized ETNs to track the dynamics of VIX, although such alternative ETPs did tend to report 
shorter time series. Alexander and Korovilas (2013) have studied the portfolio benefits that may 
be obtained by combining several ETNs that track the VIX. Finally, it would be interesting—

even though it is true that many institutional investors that are restricted from (or strongly 
advised against) shorting volatility (through options and futures, with all the rolling issues and 
costs that this implies)—to explore the OOS economic value to portfolio decisions of ETPs that 

allow investors to short asset classes, including volatility, with or without market timing 
opportunities. Preliminary evidence indicates that, because the mean excess returns on traditional 
asset classes turns negative and their correlation structure increases particularly during periods of 

high volatility, in large portions of our sample, volatility should have been shorted. We leave 
these extensions to future research. 
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