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Abstract

This paper focuses on evaluating the systemic risk in interbank networks, proposing a series

of measurements: risk distance, risk degree and m-order risk degree. The proposed mea-

surements are formally proven to have good basic and extended properties that are able to

reflect the effect of bank size, liability size, liability distribution, and the discount factor on the

default risk, not only of a single bank, but also of the entire system. Additionally, the above-

mentioned properties and the relationship between risk distance and financial contagion

indicate the rationality embodied in the proposed measurements. This paper also provides

some implications on how to decrease or prevent the systemic risk in an interbank system.

1 Introduction

Since the Asian financial crisis of 1997, special attention has been paid to the role of the grow-

ing interconnectedness between financial institutions among the many factors that affect

financial contagion [1,2]. Particularly after the global crisis of 2007–08, the architecture of

financial system building on the abovementioned interconnectedness was viewed as being cru-

cial for its central role in the financial contagion [3–5]. In fact, the abovementioned intercon-

nectedness between financial institutes constitutes the edge of a financial network and the

corresponding financial institutes are regarded as the nodes. Particularly, following numerous

studies in this field such as [6] and [7], we also focus on the interbank system that can be

considered as a fundamental structure for complex financial systems. Note that interbank bor-

rowing and loans, if any, form the abovementioned interconnectedness that link the corre-

sponding banks in the interbank network [8]. The network representation allows to study

propagation of failures: recalling the two mentioned financial crisis, for example, one bank’s

insolvency may lead to the default cascades in the interbank network. Here, two periods are

considered: several banks are assumed to default in the first period and the set of these banks is

named initial default set, and then in the second period, some of the remaining banks may be

induced to default because of the existing borrowing and loan links. Facing this phenomenon,

we want to explore two problems. The first one is when one bank’s insolvency occur, which

bank will be the next victim? The second one is which initial default set will cause the largest
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amount of banks to default in the second period? This paper will inherit the idea of risk propa-

gation in networks [9] to cope with the two problems by way of providing a series of conve-

nient measurements.

More concretely, if the answer of the first question is known in advance of financial conta-

gion, we can inject liquidity into the more susceptive banks to avoid the spread of the crisis.

As the first contribution, we provide a new measurement named risk distance, with the prop-

erty that a shorter risk distance with the given initial default set means a higher likelihood of

default. Among a growing literature on risk analysis in financial networks, the harmonic dis-

tance presented by [10] is noteworthy because it captures the susceptibility of each bank to the

distress of any other, so that it functions similarly to our proposed risk distance. However, the

risk distance that we define is different from the harmonic distance in two aspects: one is that

our risk distance considers the cash and marketable assets carried by the banks so that the ana-

lysed banks can be heterogeneous, the other is that the risk distance defined here does not

assume that the initial default set only contains a single bank. As a result, we prove that our

newly proposed risk distance has several different properties with the famous harmonic dis-

tance in the following parts of this paper. Overall, our risk distance is a node-level (or say

microscopic) indicator that reflects the default likelihood of the remaining banks given an ini-

tial default set.

Besides, the second question aims to find the “important” banks from the perspective of

financial system risk. To that end, this paper further provides a second new measurement

that can reflect the amount of “damage” caused by the initial default set, which is the second

contribution. Then, the “damages” caused by different initial default sets of the same size

can be compared to find which initial default set is most harmful. In particular, when the

initial default set contains only one bank, the above problem can be simplified into finding

the critical node and measuring its influence on causing financial contagion. Intuitively, the

famous Katz-Bonacich centrality can provide the basic idea concerning how to address such

a problem [11,12]. With Katz-Bonacich centrality’s becoming conventional wisdom [13,14],

we attempt to inherit the basic framework of this centrality and to further develop it to solve

the new problem, now that the classical Katz-Bonacich centrality cannot be directly adopted

here [15]. The key challenge of solving this problem is how to establish a new matrix that

fully reflects the financial system in order to replace the classical adjacent matrix used in

Katz-Bonacich centrality when an initial default set is given. Fortunately, [16] has established

a Markov transfer matrix with absorbing states, which inspires us on how to obtain a system

matrix with the information of the initial default set. As a result, this paper successfully pro-

poses the risk degree of a given initial default set and the risk degrees of an m-order initial

default set, which reflects the default risk caused by a given initial default set and the maximal

system risk caused by all possible default sets with any m banks, respectively. Overall, the

newly provided measurements, called risk degree and m-order risk degree, belong to the

type of system-level (i.e., macroscopic) indicators that reflect the collapsing force of the

default sets.

Furthermore, apart from the three newly established measurements, this paper also focuses

on uncovering these measurements’ properties and demonstrating their rationale, which con-

stitutes the third contribution. Specifically, our provided measurements are considered as a

function of liability size, liability distribution, bank size and the discount factor, and we further

find a much deeper relationship between the provided measurements and the number of failed

banks caused by financial contagion. By extending the stylized setup used in papers such as

those by [17–19], we also represent interbank systems that consists of n banks that are linked

via unsecured debt contracts. Finally, abstracting from the background of finance, the nodes of

our model have analogies with nodes of information in processes where knowledge is shared
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instead of risk [20]. So, in the future, managers or government officers monitoring the finan-

cial system may be inspired by more general results that fit this analogy.

The rest of this paper is organized as follows, to present the abovementioned ideas and con-

tributions. Section 2 starts from the balance sheet of inter-banks and then defines the three

new measurements based on the payment balance of these banks. Section 3 provides the basic

properties of the proposed measurements, and Section 4 further proves the extended proper-

ties, which are useful to validate the rationality of the proposed measurements. Section 5 con-

cludes and discusses the managerial implications.

2 Network-based risk measurements

2.1 Balance sheet and payment equilibrium

An interbank system is considered here, which consists of several banks that are linked by

interbank lending via unsecured debt contracts signed at the initial period. To better clarify

the risk contagion process, we start with the balance sheet of a stylized commercial bank within

the interbank system. As illustrated in Fig 1, bank i’s total assets Ai are composed of liquidities

ci, securities si, interbank loans li and other assets pi; thus, the following equation holds:

Ai ¼ ci þ si þ li þ pi: ð1Þ

Meanwhile, bank i’s total liabilities Hi consist of shareholder equity ei, deposits di, interbank

borrowing bi and other liabilities qi:

Hi ¼ ei þ di þ bi þ qi: ð2Þ

In fact, the risk in interbank payment systems can originate from different factors; for

example, [21] discussed how a shock to deposits could lead to the bank’s default on interbank

borrowing or even part of its retail deposits, and [22] considered that the uncertain returns

on banks’ securities and other assets were likely to cause a system risk. Unlike the abovemen-

tioned studies, this paper does not distinguish the reasons that cause the risk, but rather

focuses on the bank’s default induced by any possible initial shocks. Moreover, we further

assume that each bank embedded in the interbank system have borrowing or loans at least

with the other one bank, namely bi > 0 and li > 0, because the banks without any interbank

lending and borrowing are isolated nodes and should not be considered into the interbank

system.

Note that the liabilities displayed in the balance sheet can be divided into the senior type

and the junior type, and therefore they should be repaid in a different order when shocks

occur. Here, the deposits di have seniority relative to the bank’s other liabilities; in other

words, the available liquidities of bank i should repay di first and then bi as well as the other lia-

bilities. Furthermore, the other liabilities generally contain long-term borrowing, bonds and

sub debts that really exist as a commercial bank’s liabilities as displayed in Fig 1. Although

interbank borrowings and other liabilities mentioned above both belong to the junior liabili-

ties, interbank borrowings are always short-term and other liabilities are often long-term.

Thus, we consider that interbank borrowings should be repaid firstly and immediately com-

pared to other liabilities.

Let ali denote the total available liquidities of bank i, and then regardless of the reasons that

cause the shocks, two cases may exist: (1) if ali < di, bank i is called complete default. In this

case, the total available liquidities of bank i are not enough to pay its senior liabilities; (2) if

di� ali < di + bi, bank i is called part default, which means that, in this case, senior liabilities

can be paid in full and the junior creditors are repaid in part. Furthermore, let xij (j 6¼ i) denote
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the amount of money borrowed by bank j from bank i. When bank j is in part default, the

amount of money repaid by bank j to bank i (denoted as yij) is in proportion to their contract

xij. In mathematics, we have

yij ¼
xij
P

i xij
alj � dj

� �
¼

xij

bj
alj � dj

� �
: ð3Þ

Summarizing the two cases above, yij can be further expressed as

yij ¼
xij

bj
max 0;min alj � dj; bj

n on o
; ð4Þ

where xij implies the network structure imbedded in the interbank payments, and therefore

their interdependence may induce a cascade of defaults when one or more banks default.

Then, Eq (4) will be useful in determining the payment equilibrium because part default actu-

ally exists when financial contagion occurs in interbank payments.

Furthermore, because rapid liquation is costly in most cases, bank i can only recover a frac-

tion ηi < 1 of the securities si and other assets pi, where the defined fraction ηi is defined as the

discount factor of bank i. According to the expression of repaid money shown in Eq (4), the

total available liquidities of bank i can be expressed as

ali ¼ ci þ
X

j
yij þ Ziðsi þ piÞ: ð5Þ

Here, ∑jyij denotes the realised payments made by all the other banks.

To sum up, Eq (4) is a rule that a bank returns the interbank borrowings when facing

default, and Eq (5) measures the total available liquidity of a bank. By considering Eqs (4) and

Fig 1. Balance sheet of a stylized commercial bank.

https://doi.org/10.1371/journal.pone.0200209.g001
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(5) together, it seems that the fix-point method can directly be adopted by using the framework

of [1], but we do not adopt it in our model setting because the fix-point method ignores the

time process of risk contagion to some extent and potentially assumes that all the banks can

make the optimal decisions at the same time when the default risk appears in the system. Paral-

lel to these studies related to DebtRank [23,24], this paper also pays attention to the dynamic

process of risk contagion and provides the dynamic mechanism as displayed in the next sub-

section. Besides, this paper defines and validates several risk distances without needing all the

banks make the optimal decisions at the same time, and therefore the method of this paper is

quite different with fix-point method.

2.2 Mechanism of risk contagion

In order to make clear the mechanism of risk contagion captured by this paper, Fig 2 provides

a visual and simple representation, where the interbank system consists of three banks with

different bank sizes and these banks are linked by their lending-borrowing relationship. Here,

the process of risk contagion can be roughly divided into three successive phases.

As Phase 1 displays, one of the banks suffers a sufficiently large negative shock so as to

completely default, and thus the other banks’ loans to this bank become unrecoverable. As a

result, the unrecoverable loads cause the bank with bigger size distressed and the one with the

smaller size completely default in Phase 2. Subsequently, the complete default of the smaller

bank causes the remaining bank’s loan to it unrecoverable so that the remaining bank can also

default at this time as shown in Phase 3. Although the real interbank system always contain

more banks than our simple example, the mechanism of risk contagion is similar. Note that

when part default appears, Eqs (4) and (5) are useful to determine how much repaid money

can be received within the mechanism of risk contagion displayed in Fig 2.

2.3 Risk distance, risk degree and m-order risk degree

The considered interbank system consists of n banks indexed by N = {1, 2, � � �, n}, and the

lending- borrowing matrix, denoted as X, is expressed as X = [xij]i,j2N, where xij (j 6¼ i) denote

the amount of money borrowed by bank j from bank i (we pose xii = 0). Based on the defined

Fig 2. Sketch map of risk contagion.

https://doi.org/10.1371/journal.pone.0200209.g002
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matrix X, the deduced system matrix G = [gij]i,j2N is defined as below.

gii ¼
ci þ Ziðpi þ siÞ

ci þ Ziðpi þ siÞ þ
P

k6¼i xik

when j ¼ i;

gij ¼
xij

ci þ Ziðpi þ siÞ þ
P

k6¼i xik

when j 6¼ i:

8
>>>><

>>>>:

ð6Þ

Here, gij (i 6¼ j) represents the ratio of the amount of money lent from bank i to bank j to

bank i’s total the total available liquidities. Then, it is not difficult to find that gij� 0 (j 2 N)

and ∑j2Ngij = 1 so that the deduced matrix G can be understood as a Markov transfer matrix.

Note that the above designed matrix does not contain yij expressed in Eq (4), but is dependent

on xij, which implies that the designed matrix G does not change once the balance sheet is

given. In fact, the unchanged G facilitates the calculations because we do not need to change

G frequently with the change of yij (yij is endogenous variable of our model). Besides, in order

to check the designed G is good or not, we test the designed G whether to satisfy much more

desirable properties. In other words, if the designed G can meet much more good properties

in measuring the system risk of risk contagion, it is a good design; otherwise, we should try

the other forms of G. To be honest, the reported G in Eq (6) is selected from numerous possi-

ble forms and is found to meet much more desirable properties compared to the other tried

forms, which will be presented in details in the latter part of this paper.

Let S denote the set of initial default banks; for example, if the initial default set only con-

tains bank j, then S = {j}, and if the initial default set contains banks i and j, then S = {i, j}. The

risk distance from a non-default bank to the initial default set S is given in Definition 1.

[Definition 1] (risk distance). The risk distance from each non-default bank to the initial

default set S is expressed in the vector R−s:

R� S ¼
½I � bG

� S�
� 1
� 1T

n
; ð7Þ

Where 0< β< 1 guaranteeing that the inverse matrix exists, I is an #(N − S) × #(N − S) iden-

tity matrix, 1 is an #(N − S) vector consisting of 1, and G−s is G deleting the rows and the col-

umns of the banks contained in the set S. In addition, the ith element of R−s is denoted as ri,S

that represents the risk distance from ith bank to the default bank set S.

By recalling the defined Eq (6), the normalization is a useful procedure, whose theoretical

basis is Markov chain, by noting that the normalized matrix can be understood or regarded as

a Markov transfer matrix. If the status of default is regarded as the absorbing state, the defined

risk distance in Eq (7) can be similarly understood as a likelihood that each remaining bank

does not reach the absorbing state, according to the principle of finite-state Markov chain.

Thus, a longer risk distance means a lower likelihood of default, which accords with our com-

mon sense. Interestingly, this form is quite similar to the famous Katz-Bonacich centrality in

the field of network science [11].

Further, taking gij (i 6¼ j) as an example without loss of generality, the mechanism of risk

contagion explained in Section 2.2 means the following statements: when bank i face the risk

of complete default, bank j should first returned the money borrowed from bank i, so gij = 0

at this time; and then even if bank i has received all the money that was lent out to the other

banks, bank i can also completely default so that it appears in the initial default set S, and at

this time, gij = 0 because complete default means that bank i cannot return the money bor-

rowed from bank j (8j 6¼ i). By considering the above mechanism, we should delete the rows

and the columns of the banks in the initial default set S, which interprets why we adopt the G−s

to calculate the risk distance in Eq (7).
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As a result, the normalization is important here for three reasons. First, the normalization

guarantees that the sum of elements in each row equals 1, which accords with the definition of

Markov transfer matrix, and therefore, the principle of Markov transfer matrix can be adopted

directly as we have explained. Second, the normalization makes each element in the normal-

ized matrix reflect the ratio of the corresponding liabilities, so that the bank size is potentially

considered. In fact, the bank size, defined as the total amount of assets (or liabilities) of one

bank, is an important factor influencing the risk contagion. To make it clear, if two banks bor-

row the same amount of money from another bank but the two banks have different sizes, the

normalization will shows different ratios of the borrowed money in the two banks, but without

the normalization, the effect of bank size cannot be reflected. Moreover, the normalization can

also reflect the effect from each bank’s discount factor ηi (8i 2 N), which is also important in

the process of risk contagion.

Subsequently, let rv(S) denote the risk degree of the whole interbank system given the initial

default set S. Based on the defined risk distance (see Definition 1), rv(S) is defined as follows.

[Definition 2] (risk degree). Given the initial default set S, the risk degree rvs is defined as

rvS ¼ 1 � R� Sð Þ
� 1
; ð8Þ

where 1 is an #(N − S) vector whose elements are all 1. In other words,1 � R−s equals the sum of

all of the elements in R−s

Recalling the explanations of Definition 1, the longer risk distance means a lower likelihood

of default. Here, we first sum all the distances from the remaining banks to the given initial

default set, and accordingly the mathematical expression is 1 � R−s. Note that a larger value of

1 � R−s means a lower system risk degree, which does not accord with our common sense.

Thus, we use (1 � R−s)
−1 to measure the system risk degree to avoid this problem.

Furthermore, from the perspective of the system, we can compare the risk degrees relative

to all possible initial default sets and determine the maximal risk degree and the corresponding

default set. Considering the amount of default banks that will affect the risk degree, we keep

this amount identical for fair comparison. As a result, let rvm(G) denote the m-order risk

degree of the given system G, where m is the number of banks contained in the given initial

default set S. For example, when m = 2, rv2(G) means the maximum sum of risk distance from

each non-default bank to any possible default bank sets which contain two banks. Then, the

rvm(G) is defined as below, where m = 1, 2, � � �, n.

[Definition 3] (m-order risk degree). For all initial default sets containing m banks, the

maximal risk degree among all initial default sets is defined as the m-order risk degree, whose

mathematical expression is

rvmðGÞ ¼ max
i1 ;i2 ;���;im2N

ð1 � R� fi1;i2 ;���;imgÞ
� 1
; ð9Þ

Where i1, i1, � � �, im are the different banks contained in the initial default set and, therefore,

the total number of their combination is n!/(m!(n − m)!).

Keeping the number of banks in initial default set identical, the defined m-order risk degree

identifies not only the maximal risk degree for all possible initial default sets containing m
banks but also the corresponding default set that leads to the highest system risk.

3 Basic properties

This section aims to provide the basic properties of the proposed three measurements. In

detail, these basic properties include the non-negativity, the asymmetry and the monotonicity

of the defined risk distance, the monotonicity of the risk degree, and the heterogeneity of
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different-order risk degrees. Although these basic properties seem natural at first glance, they

can not only deepen our understanding of the proposed measurements but also illustrate the

rationality of these measurements.

[Property B1] (Non-negativity of risk distance). For any given system G and the initial

default set S, the risk distance defined in Eq (7) and the corresponding risk degree defined in

Eq (8) are both non-negative.

Proof. Because each element of G−S � 1
T is no more than 1 and 0<β<1, it holds that

½I � bG� S�
� 1
¼ Iþ bG� S þ b

2G� S
2 þ � � � : ð10Þ

Eq (10) clearly shows that all of the elements in [I − βG−S]−1 are non-negative since all of

the elements in G−s are non-negative. Thus, Property B1 is immediately obtained.

[Property B2] (Asymmetry of risk distance). The risk distance from the bank i to the initial

default set {j} must not be equal to that from bank j to the initial default set {i}.
Proof. Here, we provide an example to show that ri,{j} 6¼ rj,{i}. Given β = 0.9, the correspond-

ing system matrix of the three banks is set as below:

0:5 0:3 0:2

0:1 0:3 0:6

0:4 0:4 0:2

0

B
@

1

C
A:

As a result, r2,{1} = 3.36 and r1,{2} = 2.59, which immediately obtains the result.

[Property B3] (Monotonicity of risk distance). For any given system G, it holds that

ri,{s}� ri,{s,t}, where i 6¼ s and t 6¼ i, s.

Proof. According to Eqs (7) and (10), we have

ri;fsg � ri;fs;tg ¼
bgit þ b

2
P

l 6¼s;t gilglt þ
P

k6¼s gkigit

h i
þ � � �

n
: ð11Þ

If only considering the path starting from t and ending at i, we can further have

ri;fsg � ri;fs;tg �

Pþ1

l¼1
b

ig ½l�it

n
; ð12Þ

where g ½l�it means the product of all of the elements in the path starting from i and ending at t
with the length of l in G−s. Then, because gij (i, j 2 N) are all non-negative, it is not difficult to

determine that ri,{s}� ri,{s,t}.

The above three basic properties of the defined risk distance show that (1) the defined risk

distance is non-negative, which accords with our common sense; (2) banks takes different

effect on the system risk or financial contagion according to the different positions in the net-

works and thus have an asymmetrical risk distance; and (3) adding one more bank to the initial

default set will not increase the risk distance, which is true because much greater bank default-

ing in the first period often implies much greater fragility for the entire system.

[Property B4] (Monotonicity of risk degree). For any given financial system G, it holds that

rvm+1(G)� rvm(G), where m = 1, 2, � � �, n.

Proof. For any {i1, i2, � � �, im} and {i1, i2, � � �, im}\{ik}(k = 1, 2, � � �, m), it holds that

1 � R� fi1 ;i2 ;���;img � 1 � R� fi1;i2 ;���;imgnfikg; ð13aÞ
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because of the proven monotonicity of risk distance in Property B3. Then, we have

1 � R� fi1 ;i2 ;���;img
� �� 1

� 1 � R� fi1 ;i2 ;���;imgnfikg
� �� 1

; ð13bÞ

because their maximum values inherit the inequality relation. Then, Inequality (13b) guaran-

tees that rvm+1(G)� rvm(G).

[Property B5] (Heterogeneity of different-order risk degrees). For two given financial sys-

tems G1 and G2 whose node number is n1 and n2, respectively, if rv1(G1)� rv1(G2), then it

must not hold that rvm(G1)� rvm(G2), where 2�m�min{n1, n2}.

Proof. Similar to the proof of Property B2, we here provide an example to illustrate that

rv1(G1)< rv1(G2) and rv2(G1)> rv2(G2) can exist simultaneously. Additionally, given β = 0.9,

the two system matrices are shown below. According to Definition 3, we have rv1(G1) =

0.0286, rv1(G2) = 0.0342, rv2(G1) = 0.10, and rv2(G2) = 0.0950, meaning that rv1(G1)< rv1(G2)

and rv2(G1)> rv2(G2) can exist simultaneously. Thus, Property B5 holds.

G1 ¼

0:5 0:5

0:5 0:5

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

; and G2 ¼

1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

:

Properties B4 and B5 focus on the defined risk degree and m-order risk degree, respectively.

Here, Property B4 implies that adding one more bank to the initial default set S will not

decrease the risk degree of the financial system, and Property B5 indicates that if one system’s

1-order risk degree is larger than another system’s 1-order risk degree, we can’t take for that

the system’s higher order risk degree is still larger. In fact, two conflicting perspectives exist

in the existing literature: one perspective supports that a more connected network structure

enhances the system’s resilience [25], whereas the other suggests that dense interconnections

will cause a destabilizing force to decrease the system’s risk [26]. The illustrated Property B5

can explain the conflicting findings from the defined different order risk degree.

4 Extended properties

Almost every central bank needs deposit reserves and limits the reserve requirement, i.e. ci / di,

according to the specific law of its nation. Although the deposit reserve ratio of each bank is

slightly different, we can assume a constant ratio of di to Hi since empirical analysis finds that

such a ratio is almost the same for different banks within one nation [27]. Thus, we make the

following assumption.

[Assumption 1] For any given system G, we assume that di = γHi for all i 2N, where

0 < γ< 1.

Based on Assumption 1, for any given initial default set S, if the default set S leads to the

complete default of bank i (i =2 S) with the risk contagion, then the following inequality will

hold:

ci þ Ziðpi þ siÞ þ
P

j yij

ci þ pi þ si þ
P

j xij
< g; ð14Þ

Where ali has been defined in Eq (5), meaning that the numerator is the available asset after

the risk contagion caused by the initial default set S and the denominator is the initial available
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asset. Furthermore, we next provide several extended properties to demonstrate the rationality

of the proposed measurements; in other words, to check whether the proposed measurements

can correctly reflect the system risk as the function of liability size, liability distribution, bank

size and the discount factor. Additionally, the relationship between financial contagion and

risk distance is also explored, which is significant and meaningful for validating the rationality

of the proposed measurements.

4.1 Relationship between financial contagion and risk distance

First, we explore whether the defined risk distance can reflect the risk level of banks by control-

ling the effect of the discount factor. To this end, this subsection sets ηi = 1 (i 2 N) to focus on

the relationship between financial contagion and risk distance. Specifically, given an initial

default set S, if bank i defaults with the financial contagion, then do all the banks that are

shorter to the set S than bank i? The following Property E1 gives the answer.

[Property E1] For any given initial default set S and two banks i and j (i, j =2 S) in a given

system G with ηi = 1 for any i 2 N, if bank j completely defaults with the financial contagion

and ri,S < rj,S for any β 2 (0, 1), then bank i must completely default. In addition, there exists

Δr, such that bank w defaults if rw,S < Δr.

Proof. For any given initial default set S and ηi = 1 for any i 2 N, Eq (5) and Assumption 1

guarantee that the necessary and sufficient condition of bank j completely defaulting is

alj

X

k=2S
gjk < galj or

X

k=2S
gjk < g; ð15Þ

Recalling Eqs (3) and (5), Inequality (15) equals

1jðI � G
� SÞ1

T > 1 � g: ð16Þ

On the other hand, ri,S < rj,S can be further expressed as

ð1i � 1jÞ � ½I � bG
� S�
� 1
� 1T < 0; ð17Þ

and the Taylor expansion guarantees that

ð1i � 1jÞ � ðG� S þ bG2

� S½I � bG
� S�
� 1
Þ � 1T < 0; ð18Þ

which holds for any β 2 (0, 1). Then, let β! 0, and we immediately obtain that

ð1i � 1jÞ � G� S � 1
T < 0; ð19Þ

which equals 1i(I − G−S)1T > 1j(I − G−S)1T > 1 − γ. Thus, the first part of Property E2 holds.

As a deduction, let Δr = max(rk,S | bank k defaults), and then the second part of Property E2

is obtained based on the result of the first part.

Property E1 provides the answer of the question is YES. Again, given an initial default set S,

if bank i defaults with the financial contagion, all the banks shorter to the set S than bank i will

default. Thus, the defined risk distance is demonstrated to be reasonable because it can fully

reflect the insolvency contagion of banks when banks can liquate their assets freely. Note that

the effect of the discount factor will be discussed in Subsection 4.5 to enrich our illustrations.

4.2 Risk measurements as a function of liability size

In this subsection, we first check whether the increase in all pairwise liabilities raises the system

risk, and the following Lemma 1 gives the answer.
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[Lemma 1] For any given financial system G and an initial default set S, let ~xij ¼ axij for all

i 6¼ j and α> 1 in the new financial system denoted as ~G. If bank i (i =2 S) completely defaults

with the risk contagion in G, then it must completely default in ~G.

Proof. Here, we first investigate the relationship of the available assets of bank i (i =2 S)

between G and ~G, and its results are as follows:

ci þ Ziðpi þ siÞ þ
P

j ~yij

ci þ pi þ si þ
P

j ~xij
�

ci þ Ziðpi þ siÞ þ a
P

j yij

ci þ pi þ si þ a
P

j xij
; ð20Þ

because of Eq (5) and the fact that ~ali < a � ali. Then, because α> 1 and ∑jxij > ∑jyij, it is not

difficult to obtain that

ci þ Ziðpi þ siÞ þ a
P

j yij

ci þ pi þ si þ a
P

j xij
<

ci þ Ziðpi þ siÞ þ
P

j yij

ci þ pi þ si þ
P

j xij
: ð21Þ

Then, according to Inequality (14), for the given default set S and bank i (i =2 S), it holds that

ci þ Ziðpi þ siÞ þ
P

j yij

ci þ pi þ si þ
P

j xij
< g; ð22Þ

and Inequalities (20) and (21) guarantee that

ci þ Ziðpi þ siÞ þ
P

j ~yij

ci þ pi þ si þ
P

j ~xij
< g: ð23Þ

Overall, Lemma 1 holds.

The proven Lemma 1 gives us a hint that increasing all pairwise liabilities in the network

will raise the systemic risk, because the banks that completely default in G also completely

default in ~G. Note that, here, we use the number of banks that completely default to depict the

level of system risk. Then, we further check whether the defined risk measurements can cor-

rectly reflect the change in the system risk when all pairwise liabilities rise, as discussed above.

As a result, by keeping all liquidities ci, securities si and other assets pi unchanged, the following

Property E2 gives the answer.

[Property E2] For any given financial system G, if ~xij ¼ axij for all i 6¼ j and α> 1 in the

new financial system denoted as ~G, for any given initial default set S, the defined risk distance

is shorter, and the defined risk degree and the m-order risk degree are larger in the new finan-

cial system.

Proof. Based on the definition of G = [gij]i,j2N in Eq (5), the relationship between ~G and G

is

I � ~G� S ¼ TðaÞ I � G� S½ �; ð24Þ

and

TðaÞ ¼ diag
a

ð1 � aÞg11 þ a
;

a

ð1 � aÞg22 þ a
; � � � ;

a

ð1 � aÞgnn þ a

� �

: ð25Þ

whose elements are all more than 1. Then,

I � b ~G� S ¼ TðaÞ I � bG� S½ � þ ð1 � bÞ I � TðaÞ½ �: ð26Þ
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Now, I � b ~G� S is considered the function of α, and we further have

@ I � b ~G� S
� �� 1

@a
� 1 ¼ � I � b ~G� S

� �� 1 @ I � b ~G� S
� �

@a
I � b ~G� S
� �� 1

� 1: ð27Þ

On one hand, all of the elements in I � b ~G� S
� �� 1

are non-negative, which has been proven

in Property B1. On the other hand,

@ I � bG~
� S

� �

@a
¼
@TðaÞ
@a

I � bG� S½ � � ð1 � bÞ
@TðaÞ
@a

¼
@TðaÞ
@a

TðaÞ½ �
� 1 I � bG~

� S

� �
� ð1 � bÞ I � TðaÞð Þ

� �
� ð1 � bÞ

@TðaÞ
@a

;

ð28Þ

and therefore, Eq (27) is equivalent to

@ I � bG~
� S

� �� 1

@a
� 1 ¼ � I � bG~

� S

� �� 1 @TðaÞ
@a

TðaÞ½ �
� 1
� 1þ ð1 � bÞ I � bG~

� S

� �� 1 @TðaÞ
@a

TðaÞ½ �
� 1 I � bG~

� S

� �� 1

¼ I � bG~
� S

� �� 1 @TðaÞ
@a

ð1 � bÞ I � bG~
� S

� �� 1
� I

� �
� 1:

ð29Þ

Note that ð1 � bÞ I � b ~G� S
� �� 1

� I ¼ b I � b ~G� S
� �� 1 ~G� S � I

� �
and because all of the ele-

ments in ~G� S � I
� �

� 1 are less than 0. Thus, all of the elements in I � b ~G� S
� �� 1

� 1 are decreas-

ing functions of α, meaning that the defined risk distance obtains its maximal value when

α! 1 and obtains its minimum value when α! +1. Furthermore, because the inequality

of risk degrees holds for any initial default set S, the inequality is naturally inherited by the

defined m-order risk degree. Thus, Property E2 holds, and we also obtain the boundary of the

defined measurements when the liability size changes.

Overall, Property E2 reflects that the rise in pairwise liabilities will increase the systemic

risk, regardless of the type of network structure. Hence, controlling the level of total credits in

the system is a method of managing systemic risk. From another perspective, the proposed

measurements can properly reflect the increase in systemic risk, which indicates that the defi-

nition of the proposed measurement is rational.

4.3 Risk measurements as a function of liability distribution

Intuitively, a bank with positive net interbank lending is more likely to be harmed by the risk

contagion because it will get loss from its counterparties’ default. Accordingly, this subsection

focuses on the effect of liability distributions and explores how to arrange the liability distribu-

tion among banks to obtain a smaller system risk degree. To this end, consider any given sys-

tem G, and suppose that each bank’s liability, on one hand, is kept unchanged, (that is, keeping

∑i 6¼ jxij unchanged for any i 2 N to avoid the effect from the amount of liability that has been

proven influential), and, on the other hand, each bank’s total lending amount is kept equal to

its borrowing amount (that is, ∑ixij = ∑jxij to ignore the effect of the difference between the

loan and borrowing amounts). This subsection focuses on the effect of liability distributions

and explores how to arrange the liability distribution among banks to obtain a smaller system

risk degree. The following Property E3 gives the answer.

[Property E3] Given any system G with the precondition that ∑ixij = ∑jxij for any i, j 2N, let

~xij ¼ 0:5ðxij þ xjiÞ for any i, j 2N in the newly generated system ~G so the operation does not

change each bank’s liability. Then, if the same default set S is given for the two systems, we

have rvSð~GÞ � rvSðGÞ and the equation holds if and only if xij = xji holds in the given system G.
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Proof. Here, system ~G changes the liability distribution of the given system G and does not

change each bank’s liability, noting that the precondition guarantees the following equation:

X

j6¼i
~xij ¼ 0:5

X

j6¼i
ðxij þ xjiÞ ¼

X

j6¼i
xij: ð30Þ

Thus, the above operation, which changes the liability distribution, does not change each

bank’s liability. In addition, the above operation does not change ci + ηi � (pi + si) for any i 2N,

meaning that ~g ii ¼ gii. Moreover, we have

~g ij ¼
~xij

P
j6¼i ~xij

¼
0:5ðxij þ xjiÞ
P

j6¼i xij
¼ 0:5ðgij þ gjiÞ: ð31Þ

Accordingly, it holds that ~G ¼ 0:5ðGþ GTÞ.

Knowing rvS(G) = (1 � R−S(G))−1, we next focus on the item 1 � R−S(G) whose detailed

form is 1 � (I − βG−S)−1 � 1T / n. Accordingly, the problem of proving rvSð~GÞ � rvSðGÞ is

changed into the problem of proving 1 � ½I � b ~G
� S�
� 1
� 1T � 1 � ½I � bG

� S�
� 1
� 1T, where

~G
� S ¼ 0:5ðG

� S þ GT
� SÞ. The following part is to prove the above inequality. First, we have

1� S � ½I � bG� S�
� 1
� 1T
� S

1� S � ½I � b ~G
� S
�
� 1
� 1T
� S

¼
1� S � 0:5ð½I � bG� S�

� 1
þ ½I � bG� S�

� T
Þ � 1T

� S

1� S � ½I � b ~G
� S
�
� 1
� 1T
� S

� max
kyk¼1

y � 0:5ð½I � bG� S�
� 1
þ ½I � bG� S�

� T
Þ � yT

y � ½I � b ~G
� S
�
� 1
� yT

:

ð32Þ

Then, because 0.5([I − βG−S]−1 + [I − βG−S]−T) and ½I � b ~G
� S�
� 1

are both symmetric matri-

ces, the theorem of Rayleigh-Ritz guarantees that

max
kyk¼1

y � 0:5ð½I � bG
� S�
� 1
þ ½I � bG

� S�
� T
Þ � yT

y � ½I � b ~G
� S�
� 1
� yT

¼ lmax 0:5ð½I � bG
� S�
� 1
þ ½I � bG

� S�
� T
Þ � ½I � b ~G

� S�
� �

¼ lmax 0:5ð½I � bG
� S�
� 1
þ ½I � bG

� S�
� T
Þ � 0:5ð½I � bG

� S� þ ½I � bG
� S�

T
Þ

� �

¼ lmax 0:5þ 0:25ð½I � bG� S�
� 1
½I � bG� S�

T
þ ½I � bG� S�

� T
½I � bG� S�Þ

� �

� 0:5þ 0:25 � lmax I � bG� S½ �
� 1 I � bG� S½ �

T
þ I � bG� S½ �

� T I � bG� S½ �
� �

:

ð33Þ

Since |λ ([I − βG−S]−1[I − βG−S]T)| = |λ([I − βG−S]−T[I − βG−S])| = 1 and ([I − βG−S]−1[I −
βG−S]T)−1 = ([I − βG−S]−T[I − βG−S], let exp(iw) and exp(−iw) be the eigenvalue of [I −
βG−S]−1[I − βG−S]T and [I − βG−S]−T[I − βG−S], respectively, where w 2 [0, 2π). As a result, it

holds that

lmaxð½I � bG
� S�
� 1
½I � bG

� S�
T
þ ½I � bG

� S�
� T
½I � bG

� S�Þ ¼ expðiwÞ þ expð� iwÞ ¼ 2 cos w � 2; ð34Þ

and if and only if w = 0, the equality holds.

To summarize, if X� S 6¼ XT
� S (or G� S 6¼ GT

� S), 1 � R� SðGÞ < 1 � R� Sð~GÞ, and if and only if

X� S ¼ XT
� S (or G� S ¼ GT

� S), 1 � R� SðGÞ ¼ 1 � R� Sð~GÞ. Property E3 holds.

As Property E2 has proven that liability size is an influencing factor of systemic risk, we

here fix the liability size and keep each bank’s total loan and borrowing amounts unchanged in

order to precisely study the influence of liability distribution on system risk. Although various

liability distributions could exist in real interbank system, Property E3 uncovers that pairwise
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liabilities symmetrically distributed among the banks, without changing the liability size, can

lead to a smaller system risk degree irrespective of the variety of liability distributions.

4.4 Risk measurements as a function of bank size

Here we define the bank size as the amount of total liquidity a bank holds. Considering the

bank size as the main factor and keeping the lending-borrowing matrix X unchanged, when

bank i does not belong to the initial default set S and its size becomes larger, this subsection

further checks whether the defined risk degree can reflect the change of bank size. The follow-

ing Property E4 provides the result.

[Property E4] For any given system G, a new system ~G is generated by keeping the lending-

borrowing matrix X unchanged and the size of bank i becomes larger, that is, XðGÞ ¼ Xð~GÞ
and aliðGÞ < alið

~GÞ. Then, for any given default set S that does not contain bank i, it holds that

ri;SðGÞ < ri;Sð
~GÞ and rvSðGÞ > rvSð~GÞ.

Proof. Based on the operation described here, the relationship between ~G� S and G−S is

g~ ii ¼
aliðGÞ
aliðG~Þ

gii þ 1 �
aliðGÞ
aliðG~Þ

; when j ¼ i;

g~ ij ¼
aliðGÞ
aliðG~Þ

gij; when j 6¼ i;

g~kj ¼ gkj; when k 6¼ i:

8
>>>>>><

>>>>>>:

ð35Þ

Then, we have I � ~G� S ¼ Ti � I � G� Sð Þ and, further, I � b ~G� S ¼ I � bG� Sð Þ þ bðTi � IÞ�
I � G� Sð Þ, where Ti is a #(N − S) × #(N − S) diagonal matrix whose ith element is aliðGÞ=alið

~GÞ
and the remaining elements are all 1. Then, ri;Sð

~GÞ can be expressed as a function of Ti as fol-

lows, where 1i is an #(N − S) vector whose ith element is 1 and the remaining elements are 0.

Then, we further have

ri;Sð
~GÞ ¼

1i � ½I � b ~G
� S�
� 1
� 1T

n
¼

1i � ½ I � bG� Sð Þ þ bðTi � IÞ � I � G� Sð Þ�
� 1
� 1T

n
: ð36Þ

Here, (I − βG−S) + β(Ti − I) � (I − G−S) = (I − βG−S)[I + β(I − βG−S)−1(Ti − I) � (I − G−S)],

and note that

d 1i � I � bG� Sð Þ þ b Ti � Ið Þ � I � G� Sð Þ½ �
� 1
� 1T

� �

dðTi � IÞi

¼ � b1i � I � b ~G� S
� �� 1

diagð1iÞ I � G� Sð Þ I � b ~G� S
� �� 1

� 1T

< � b1i � I � b ~G� S
� �� 1

diagð1iÞ I � bG� Sð Þ I � b ~G� S
� �� 1

� 1T

¼ � b1i � I � b ~G� S
� �� 1

� 1T < 0:

ð37Þ

Thus, 1i � [(I − βG−S) + β(Ti − I) � (I − G−S)]−1 � 1T > 1i � (I − βG−S)−1 � 1T. That is,

ri;Sð
~GÞ > ri;SðGÞ. In addition, by replacing 1T

i with 1T in Eqs (36) and (37), we can immediately

obtain that

1 � ½ I � bG� Sð Þ þ bðTi � IÞ � I � G� Sð Þ�
� 1
� 1T

n
>

1 � I � bG� Sð Þ
� 1
� 1T

n
; ð38Þ

which equals rvSðGÞ > rvSð~GÞ.
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Property E4 demonstrates the intuition that a larger bank size decreases the systemic risk,

which means larger size is a good buffer for insolvency contagion, and indicates that the pro-

posed measurements can well reflect the effect of bank size on system risk.

4.5 Risk measurements as a function of the discount factor

This subsection focuses on how each bank’s discount factor ηi affects the defined risk distance

and risk degree. Intuitively, an increase in ηi means a stronger ability to liquidate assets; thus,

systemic risk should decrease. Here, for any given default set S, we check whether the risk dis-

tance from bank i to S increases and the corresponding risk degree rvS decreases. The follow-

ing Property E5 provides the answer.

[Property E5] For any given default set S, if there exists a bank set X such that X \ S = F

and ~Z i > Zi for any i 2 X in the new system ~G, then the risk distance ri,S is longer in ~G and the

risk degree rvSð~GÞ is smaller compared to the original G, where i 2 X.

Proof. The relationship between ~G and G is I � ~G� S ¼ Qi � I � G� Sð Þ, and further,

I � b ~G� S ¼ I � bG� Sð Þ þ bðQi � IÞ � I � G� Sð Þ, where Qi is a #(N − S) × #(N − S)diagonal

matrix whose ith element is aliðGÞ=ðaliðGÞ þ ð~Z i � ZiÞðpi þ siÞÞ for i 2 X and the remaining

elements are all 1. Then, this problem has the same structure with Property E4, and therefore,

according to the conclusion provided in Property E4, Property E5 holds.

Property E5 validates the intuition that a rise in the discount factor of some banks will

increase the risk distance and decrease the level of system risk. More importantly, the proposed

measurements make it possible to reflect the effect of the discount factor, which implies that

the effective liquidity management of every bank will benefit the safety of a financial system.

5 Conclusions, discussions and future work

This paper belongs to the growing literature that focuses on designing appropriate measure-

ments to evaluate systemic risk in financial networks [28–30]. Specifically, we aim to measure

two kinds of risks: one is the susceptibility of each bank to the distress of an initial default set

from the microscopic angle, and the other is the the degree of the systemic failures due to con-

tagion of counterparty risk from the macroscopic angle. To this end, this paper proposed a

series of computationally tractable measurements that are risk distance, risk degree and m-

order risk degree, among which the first one captures the first kind of risk and the latter two

capture the second kind. Furthermore, this paper also uncovers their basic and extended prop-

erties. Regarding the basic properties, we show that the risk distance satisfies non-negativity,

asymmetry and monotonicity, and that the risk degree and the m-order risk degree follows

monotonicity and heterogeneity. In particular, heterogeneity implies that our measurements

support neither “too central to fail” [31] nor “too diverse to fail” [32], owing that different

orders reflect different dimensions. On the other hand, the proven extended properties show

that our measurements are able to reflect the effect of bank size, liability size, liability distribu-

tion and the discount factor on the default risk of one bank and also on the failures of the

entire system. Moreover, the rationality of our measurements is embodied not only in the

proven basic and extended properties but also in the relationship between the risk distance

and financial contagion. From the perspective of methodology, the proposed risk distance is a

node-level microscopic indicator that reflects the default likelihood of each remaining bank

when an initial default set is given., while the proposed risk degree and m-order risk degree is a

system-level macroscopic indicator that reflects the collapsing force of the given default sets.

Both of them inherit the basic framework of the classical Katz-Bonacich centrality and estab-

lish a Markov transfer matrix with absorbing states.
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Based on the proposed measurements, this paper also provides some implications for guid-

ing how to decrease or prevent the systemic risk of interbank systems: (1) since liability size

influences systemic risk, it is an effective method for controlling the level of total credits within

normal levels, such as deleveraging; (2) a symmetric liability distribution between pairwise

banks will create a safer system under the precondition that the borrowing amount of each

bank is equal to its loan amount; (3) the targeted liquidity injection is useful because banks

with large bank size or liquidities are good buffers in the way of insolvency contagion; (4)

enhancing the ability of banks to liquidate their assets or raise their capital adequacy ratios will

decrease systemic risk.

Two issues are further discussed here: one is related to the problem of missing information

and the other is related to varieties of measures of controlling the system risk. With regards to

the first issue, one precondition of this paper is to know all the information about each bank’s

balance sheet. However, granular data on financial networks is often lacking and the limited-

ness of the information available always exists in real practice. Thus, how to achieve the miss-

ing information and how to make decisions based on partial information also become two

potential problem, although they are not deeply discussed in our work. Fortunately, [33] and

[34] provided some feasible approaches to cope with the problem. Based on their work, once

the missing information is estimated, our approach and the main results can also be adopted

to analyze the risk contagion of interbank system. With regards to the second issue, apart from

the above suggested measures of controlling the system risk, many others are also potentially

useful in the context of network-based interbank system. For example, [35] uncovered how

the topological features of network structures influence the risk contagion and suggested

avoiding the measures such as market integration and diversification to decrease system stabil-

ity, and [36] studied how types of debt contracts affected the system risk and suggested a more

suitable type of contract that guaranteed for a unique Pareto efficient clearing payment vector.

Accordingly, the mentioned two papers enrich the measures to reduce the system risk, which

guides our future work to extend our proven properties.

In our opinion, it is meaningful to explore the relationship between the network structure

and the proposed m-order system value because doing so may provide specific guidance on

how to design a robust network structure under certain conditions. To this end, we suggest

plotting all the different-order risk degrees on one line graph for finding out a sudden change

on risk degrees in the process of adding banks into the given initial default set, which is a visual

way to identify the influence of financial contagion. Moreover, note that the fix-point method

captures the system risk under another mechanism of risk contagion different with ours [1],

and therefore it will be interesting to check whether the fix-point method also shares the simi-

lar properties with ours. In addition, since this paper focuses on only interbank interactions

with a balance-sheet mechanism, it would be interesting to study a more general framework

that extends the interbank system to a generalized financial system that includes more types of

financial institutions and interaction.
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