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Riassunto: Uno dei problemi principali che si affronta nell’analisi bayesiana di un mo-
dello di regressione non parametrica è rappresentato dalla difficoltà di assegnare una di-
stribuzione iniziale alla funzione di regressione. In questo lavoro si prende in conside-
razione solo il caso della regressione non parametrica univariata e si propone di rappre-
sentare la funzione di regressione come una combinazione lineare di polinomi definiti su
intervalli di valori della variabile esplicativa. Si suppone altresı̀ di non conoscere né il
numero, né l’ordine dei polinomi, nè la posizione dei punti che delimitano gli intervalli in
cui i polinomi sono definiti. Assegnando una distribuzione iniziale a tali quantità si riesce
ad assegnare una distribuzione inziale all’intera funzione di regressione. Si propone come
stimatore della funzione di regressione non nota il valore atteso della sua distribuzione fi-
nale, che viene approssimato facendo ricorso ad un algoritmo Reversible jump MCMC.
Keywords: Piecewise Polynomials; Splines; Bayesian Model Averaging, Reversible jump
Markov chain Monte Carlo method.

1. The model

The basic nonparametric univariate regression model has the form

yi = f (xi) + εi i = 1, ..., n, (1)

where the y′is are the observations on the response variable Y , the x′is are the observations
on the covariate X and f (xi) is the unknown regression function.

We suggest to model the unknown regression function as a piecewise polynomial,
made up of pieces of unknown number, unknown location, unknown order and unknown
orientation.

Then, the regression model in (??) can be written in the following way:

yi = β0 +
k∑

j=1

βj (xi − τj)qjRj
+ εii = 1, ..., n (2)

that is the regression function is modeled as a linear combination of polynomial splines,
where for j = 1, ..., k:

• Rj are binary variables, taking values 0, if the spline basis is left orientated and 1,
if the spline basis is right orientated:

Rj = 0 =⇒ (xi − τj)− = min (0, (xi − τj)) ,
Rj = 1 =⇒ (xi − τj)+ = max (0, (xi − τj)) .



• the knot points τj can be located everywhere in the interval defined by the observa-
tions on the covariate xi.

Let us denote by Mk the model with k given splines. Given k, the structure of the
model Mk is specified by the vector τ (k) of the locations of the splines, by the vector q(k)

of their orders and the vector R(k) of their orientations. Let us denote by ϑk the vector
formed by τ (k), q(k) and R(k), (ϑk =

(
τ (k), q(k), R(k)

)
). Given k and ϑk, the model (??)

can be viewed as a multivariate linear model with design matrix X(k), whose columns
contain the values of the splines basis for each of the observations on the covariate.

2. Priors specification

We suppose that the vector ε of the error terms εi is multivariate normal with mean 0
and covariance matrix σ2I (I is the identity nxn matrix).

We assign a prior distribution to the unknown model parameters k, τ (k), q(k), R(k),
β(k), σ2 in the following conditional way:

p
(
k, τ (k), q(k), R(k), β(k), σ2

)
= p (k) p

(
τ (k)|k

)
p
(
q(k)|k

)
p
(
R(k)|k

)
·

·p
(
β(k)|k, τ (k), q(k), R(k), σ2

)
p
(
σ2
)

where the priors on τ (k), q(k), R(k) are independent conditionally on k .

• We assume that the number of splines k has a discrete uniform distribution on
{1, 2, ..., n} .

• We suppose that, conditionally on k, the locations of the knots τ1, ..., τk are i.i.d
from a uniform distribution on the interval defined by the observations on the co-
variate X.

• We assume that conditionally on k the orders of the splines q1, ..., qk are i.i.d and
we shall consider two kinds of distributions for the single components qj, a Poisson
prior and a Uniform prior on (0, qmax) for a suitable choice of qmax.

• The components of the vector R(k) are assumed, conditionally on k, i.i.d from a
Bernoulli of parameter 1/2:

We choose to perform a complete Bayesian analysis of the model and to assign to the
vector of coefficients β(k) and to the error variance σ2 the conjugate priors.

• Hence, we assign to β(k) conditionally on
(
k, τ (k), q(k), R(k), σ2

)
a multivariate

normal distribution with 0 mean and covariance matrix vσ2I (I being the identity
(k + 1)x(k + 1) matrix) and to σ2 an Inverse-gamma distribution with parameters
a and d.

• Finally, we complete the analysis by assigning a prior distribution to the hyperpa-
rameter v.



3. The estimation of the regression function

All inferences about the unknown parameters k, τ (k), q(k), R(k), β(k) and σ2 are based
on their joint posterior distribution, p

(
k, τ (k), q(k), R(k), β(k), σ2|y

)
.

The Bayes estimate of the regression function, assuming a quadratic loss function, is
given by its posterior expectation E (f |y) which can be written as follows:

E (f (X) |y) =
∑
k

E (f (x|Mk)) p (Mk|y)

where Mk is the model with k splines and parameters ϑk =
(
τ (k), q(k), R(k)

)
, β(k) and σ2

so that p (Mk|y) is the posterior distribution p
(
k, τ (k), q(k), R(k), β(k), σ2|y

)
. That is the

estimate of the regression function is given by a weighted average of the Bayes estimates
of the regression function obtained under each model Mk with weights given by their
posterior distributions, in accordance with the principle of the Bayesian Model Averaging.

The expression of the posterior expectation is analytically intractable. For this reason
we suggest to approximate it by resorting to Markov Chain Monte Carlo simulation. In
the following section, we describe in detail the algorithm used for this approximation.

3.1 A reversible jump algorithm
In the approximation of E (f (X) |y) we face an additional problem due to the fact that
we know neither the parameters of the model, nor the dimension of the model itself.
Therefore, following ? we construct a reversible jump algorithm to approximate the joint
posterior distribution of the parameters.

We should design a strategy allowing to move from a model to another in order to
explore the whole support of the posterior distribution. The strategy lays on two main
elements:

• the identification of the possible movements;

• the computation of the acceptance probability for each move

The movements
The exploration of the class of models M = {M0, ...,Mk, ..} can be achieved by

performing the following three move types:

• Addition of a spline. This movement implies a change in the dimension of the
model, since a new explanatory variable (the new spline) is introduced.

• Deletion of a spline.

• Change of the position of a spline or change in the order of a spline. Both this
move types cause no change in the dimension of the model. Each one is chosen
with probability 1/2.

We assign to each of the above move types the same probability to be chosen, that
is 1/3.



The acceptance probability
Following Green, the probability α to accept each proposed move is given by

α = min(1, likelihood ratio x prior ratio x proposal ratio)

Due to our choice of the proposal probabilities some of the elements of above expres-
sion cancel, so that we obtain α = min(1,Bayes factor)

The models proposed at each iteration of the simulation process are evaluated on the
basis of the Bayes factor against the current ones. No computational problems arise for
the evaluation of their Bayes factor, since the models compared are multivariate normal
linear models, with known design matrix. Moreover, the Bayes factor contains a natural
penalty against over complicated models, that in our case preserve from overfitting.

4. Discussion of the model and a comparison with the previous models

Our work can be considered a generalization of the one due to ?. In fact, like ?
we choose to model the regression function as a piecewise polynomial, made up of an
unknown number of splines located at unknown positions. Again like ? the problem of
the computation of the posterior distributions of the unknown parameters is addressed by
using Green’s the reversible jumps algorithm.

Unlike as in ? we do not suppose that the order of the splines is known and fixed and
that the splines are all right orientated. We consider the orders of the splines and their
orientations unknown as well as their number and locations, giving in this way higher
flexibility to our model. The risk inherent in such an high flexibility is to over fit the data.

The model is tested with two simulated data sets, that are two of the test curves used in
?, the so-called ’Blocks’ and ’Heavisine’ data sets. As in ?, we resort to these data sets to
test the performance of our metho-
dology in the fit of unsmooth curves. The model works well: in both cases the shape
of the true underlying function is entirely caught.

We compare the results found with the ones that can be obtained when we consider
splines right orientated and with a fixed order equal to 1 (linear splines) or 2 (quadratic
splines) as in ?. Our model seems to have a better performance, leading to smaller mean
squared errors.


