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We give an alternative duality-based proof to the solution of the expected utility maximization problem analyzed by Kim and
Omberg. In so doing, we also provide an example of incomplete-market optimal investment problem forwhich the duality approach
is conducive to an explicit solution.

1. Introduction

Kim and Omberg [1] study a problem of utility maximization
from terminal wealth in a continuous-time market, allowing
the Sharpe ratio of the risky asset to follow a mean-reverting
process. As in the seminal paper [2], they address the problem
using a stochastic control approach, despite the lack of
a verification theorem supporting the uniqueness of their
results. We provide a rigorous solution to Kim and Omberg’s
problem by using a probabilistic approach based on convex
duality. Since the market is not complete, we refer to the very
general results by Kramkov and Schachermayer [3, 4]. Other
references on convex duality methods both in the complete
and in the incomplete case can be found in [5–9]. Haugh et
al. [6] exploit the dual formulation of the optimal portfolio
problem to determine an upper bound on the unknown
maximum expected utility in order to evaluate the quality
of approximation of the optimal solution. As they observe,
explicit solutions are rare in incomplete markets where the
opportunity set is stochastic. We thus add to the literature by
providing an example where the duality approach succeeds
in characterizing explicitly the value function, the optimal
solutions to both the primal and the dual problem, and the
optimal strategy.

In Section 2, we describe the basic market model of Kim
and Omberg. In Section 3, we apply the duality approach
to the solution of the utility maximization problem from

terminal wealth and find the optimal solutions to both the
primal and the dual problems. Finally, in Section 4, we
recover Kim andOmberg’s results, characterizing the optimal
value function and the optimal strategy.

2. The Market

The investor trades two assets, a risk-free asset and a risky
asset in a frictionless continuous-time market, modeled
through a stochastic basis (Ω,F, (F

𝑡
)0≤𝑡≤𝑇, 𝑃) satisfying the

usual assumptions (in the sense of Definitions I.1.2 and I.1.3
in [10]). The price of the risky asset follows the dynamics

𝑑𝑃 (𝑡)

𝑃 (𝑡)
= 𝜇 (𝑡) 𝑑𝑡 + Σ (𝑡) 𝑑𝑍 (𝑡) , (1)

where 𝑍 is a standard Brownian motion and 𝜇 and Σ(𝑡)

are diffusion processes. The risk premium on the risky asset
𝑋(𝑡) = Σ(𝑡)

−1
(𝜇(𝑡) − 𝑟) follows a mean-reverting Ornstein-

Uhlenbeck process. The coefficients 𝜇(𝑡) = Σ(𝑡)𝑋(𝑡) + 𝑟

and Σ(𝑡) are assumed to be sufficiently regular so that there
exists a unique solution to the stochastic differential equation
defining 𝑃. This is the case, e.g., when Σ is constant (and,
consequently, 𝜇(𝑡) = Σ𝑋(𝑡)+𝑟). A list of sufficient conditions
on the coefficients for the existence and uniqueness of the
solution of the stochastic differential equation can be found
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in Section 1.2 of [11]. Weaker conditions can be found in [12]
(see also the references therein). The dynamics of𝑋 is

𝑑𝑋 (𝑡) = − 𝜆 (𝑋 (𝑡) − 𝑥) 𝑑𝑡 + 𝜎𝑑𝑍
𝑋
(𝑡) , (2)

where 𝑥, 𝜆, and 𝜎 are positive constants and𝑍𝑋 is a Brownian
motion correlated with 𝑍, with 𝑑[𝑍, 𝑍𝑋](𝑡) = 𝜌𝑑𝑡 and 0 ≤

|𝜌| ≤ 1. We can assume, without loss of generality, that
(F

𝑡
)0≤𝑡≤𝑇 is the filtration generated by 𝑍 and 𝑍𝑋.
Let 𝑊 = (𝑊(𝑡))0≤𝑡≤𝑇 be the value process of a self-

financing portfolio, given the initial wealth𝑤.The discounted
value process is given by

𝑊̃ (𝑡) = 𝑒
−𝑟𝑡
𝑊(𝑡) = 𝑤+∫

𝑡

0
𝐻(𝑠) 𝑑𝑃̃ (𝑠) , (3)

where 𝑃̃(𝑡) = 𝑃(𝑡)𝑒−𝑟𝑡 and𝐻 is an adapted process represent-
ing the amount of shares of risky asset in the portfolio. We
call the strategy 𝐻 admissible if there exists some constant
𝐶 > 0 such that ∫𝑡0 𝐻(𝑠)𝑑𝑃̃(𝑠) ≥ −𝐶 almost surely, and,
to rule out strategies generating arbitrage profit, we allow
only for admissible strategies. In accordance with Kim and
Omberg [1], we express the wealth in terms of the monetary
investment in the risky asset 𝑦(𝑠); that is,

𝑊̃ (𝑡) = 𝑤+∫
𝑡

0
𝑦 (𝑠)

𝑑𝑃̃ (𝑠)

𝑃̃ (𝑠)
. (4)

3. Utility Maximization with
the Duality Approach

We consider the problem of an agent whose aim is to
maximize his/her expected utility from terminal wealth. The
investor has a HARA utility function, of the form

𝑈 (𝑤) =
𝛾

𝛾 − 1
𝑤
(𝛾−1)/𝛾 (5)

for 𝑤 > 0, 𝛾 > 0, 𝛾 ̸= 1. We collect in the set W(𝑤) all
the nonnegative self-financing portfolios with initial value 𝑤
and denote by W̃(𝑤) the set of the corresponding discounted
portfolios, namely,

𝑊̃ ∈ W̃ (𝑤)

⇐⇒ 𝑊̃ (𝑡) = 𝑤+∫
𝑡

0
𝐻(𝑠) 𝑑𝑃̃ (𝑠) ≥ 0.

(6)

The problem of utility maximization from terminal wealth
can be written as

𝐽 (𝑤) = sup
𝑊∈W(𝑤)

𝐸 [𝑈 (𝑊 (𝑇))] = (𝑒
𝑟𝑇
)
𝛾/(𝛾−1)

𝑢 (𝑤) , (7)

where we define

𝑢 (𝑤) = sup
𝑊̃∈W̃(𝑤)

𝐸 [𝑈 (𝑊̃ (𝑇))] . (8)

To find the function 𝑢, we apply the duality approach
developed in [3, 4]. For convenience of the reader, we recall

the results due to Kramkov and Schachermayer (in particular,
[4, Theorems 1 and 2]) which will be exploited henceforth.

Let 𝑉 denote the conjugate function of 𝑈 (the functions
𝑈 and 𝑉 are conjugate if and only if 𝑈(𝑤) = inf

𝑦>0(𝑉(𝑦) +
𝑤𝑦) and 𝑉(𝑦) = sup

𝑤>0(𝑈(𝑤) − 𝑤𝑦)); that is, 𝑉(𝑦) =

(1/(𝛾 − 1))𝑦1−𝛾. We define the set Y = {𝑌 ≥ 0 :

𝑌0 = 1 and 𝑊𝑌 is a supermartingale for all 𝑊 ∈ W̃} and
consider the following optimization problem:

V (𝑦) = inf
𝑌∈Y

𝐸 [𝑉 (𝑦𝑌 (𝑇))] . (9)

LetD = {𝜂 ∈ 𝐿1
+
: 𝑄 = 𝜂. 𝑃 is an equivalent local martingale

measure} and define

Ṽ (𝑦) = inf
𝜂∈D

𝐸 [𝑉 (𝑦𝜂)] . (10)

Under the assumption that the set of equivalent local mar-
tingale measures is nonempty and that 𝑈 satisfies Inada
conditions ((2.4) in [3] or (3) in [4]), we have that if Ṽ(𝑦) < ∞

for all 𝑦 > 0 (see Note 3 in [4]), then

(1) 𝑢(𝑤) < ∞ for all𝑤 > 0; there exists some 𝑦0 such that
V(𝑦) < +∞ for 𝑦 > 𝑦0, and 𝑢 and V are conjugate;

(2) the optimal solution 𝑊̃∗ ∈ W(𝑤) to (8) exists and
is unique. If 𝜂∗ is the optimal solution to (10), with
𝑦 = 𝑢󸀠(𝑤) (or equivalently 𝑤 = −V󸀠(𝑦)), we have the
dual relation 𝑊̃∗ = 𝐼(𝑦𝜂∗), where 𝐼 = −𝑉󸀠;

(3) V(𝑦) = Ṽ(𝑦).

When 𝜌 = ±1, the market is complete and the martingale
measure is unique; therefore the setD is a singleton (provided
that it is nonempty). In this case, the above results reduce
to Theorem 2.0 in [3]. The complete case can be outlined
following [13], where a similar analysis is carried on, under
the assumption that the price process follows CEV dynamics.
In the present paper, we limit our analysis to the more
complex case 𝜌 ̸= ±1, where the set of local equivalent
martingale measures has infinitely many elements, among
which we look for the optimal solution of the dual problem.
Observe that the utility function 𝑈 defined as (5) satisfies
Inada conditions. So we only need to prove that the set
of equivalent martingale measures is nonempty, in order to
apply the duality approach. This is done in the next lemma.

Lemma 1. The setD is not empty.

Proof. It is sufficient to prove that there exists at least an
equivalent local martingale measure. Let

𝜂
𝑋
= E(−∫

𝑇

0
𝑋(𝑠) 𝑑𝑍 (𝑠))

= exp(−∫
𝑇

0
𝑋(𝑠) 𝑑𝑍 (𝑠) −

1
2
∫
𝑇

0
𝑋

2
(𝑠) 𝑑𝑠) ,

(11)

where we denote by E the stochastic exponential; see, e.g.,
[10, section II.8a.]. The random variable 𝜂𝑋 is the Radon-
Nikodym density of an equivalent local martingale measure,
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provided that 𝐸[𝜂𝑋] = 1 (see [14]). There are several ways
to show this result. One can, e.g., prove Novikov’s condition
on sufficiently small intervals and exploit Corollary 3.5.14 in
[15] or one can follow an argument similar to that used in
[16], recalling that an Ornstein-Uhlenbeck process satisfies
∫
𝑇

0 𝑋2
𝑠
𝑑𝑠 < +∞ almost surely. We choose to exploit the

relation between the martingale property and the solution of
stochastic differential equations and, in particular, the recent
results in [17] that in turn extend the method of [18] (an
alternative approach has been recently developed in [19]).

We first introduce the process

𝑍
󸀠
=

𝑍
𝑋

√1 − 𝜌2
−

𝜌𝑍

√1 − 𝜌2
(12)

which is a Brownian motion independent of 𝑍. Note that the
filtration (F

𝑡
)0≤𝑡≤𝑇 coincides with the filtration generated by

𝑍 and 𝑍󸀠. Using the same notation as in [17], we set 𝐵 =

[𝑍 𝑍󸀠]
𝑇:

𝑎
𝑠
(𝑥) = − 𝜆 (𝑥 − 𝑥) ,

𝑏
𝑠
(𝑥) = (𝜎𝜌 𝜎√1 − 𝜌2) ,

𝜎
𝑠
(𝑥) = (−𝑥 0) .

(13)

It follows that ‖𝜎
𝑠
(𝑥)‖2 = 𝑥2, 𝐿

𝑠
(𝑥) = −2𝜆(𝑥 − 𝑥)𝑥 + 𝜎2, and

L
𝑠
(𝑥) = −2[(𝜆 + 𝜎𝜌)𝑥2 + 𝑥𝑥] + 𝜎2.
Then, one can find 𝑟 > 𝑋(0) > 0 such that

󵄩󵄩󵄩󵄩𝜎𝑠 (𝑥)
󵄩󵄩󵄩󵄩
2
+𝐿

𝑠
(𝑥) +L

𝑠
(𝑥) ≤ 𝑟 (1+𝑥2) (14)

and the assumptions of Theorem 8.1 in [17] are satisfied. As a
consequence 𝐸[𝜂𝑋] = 1.

To solve explicitly our problem, we proceed as follows.
We first assume that there exists an optimal solution 𝜂∗ ∈ D
for the dual problem (10). From 𝜂∗, we derive the solution
of the primal problem 𝑊̃∗, and, exploiting the fact that it
must be the final value of a self-financing portfolio, we are
able to explicitly characterize the candidate solutions 𝑊̃∗

and 𝜂∗. Finally, we show that the characterized 𝜂∗ is really
the density of an equivalent martingale measure and the
optimal solution of problem (10), namely, that our initial
assumption is satisfied and 𝐽(𝑤) = (𝑒𝑟𝑇)

𝛾/(𝛾−1)
𝐸[𝑈(𝑊̃∗(𝑇))]

is the maximal expected utility given the initial wealth 𝑤.
As announced before, wemake the following assumption,

which will be proved to be true in Lemma 4.

Assumption 1. There exists 𝜂
∗ ∈ D such that Ṽ(𝜂∗) =

𝐸[𝑉(𝑦𝜂∗)].

Our first results characterize both solutions of the primal
and the dual problem, given that they exist.

Lemma2. UnderAssumption 1, the optimal solution 𝑊̃∗(𝑇) ∈

W̃(𝑤) to (8) exists and is given by

𝑊̃
∗
(𝑇) = 𝑤

(𝜂∗)
−𝛾

𝐸 [(𝜂∗)
1−𝛾

]
. (15)

Proof. From the condition 𝑤 = −V󸀠(𝑦), we get 𝑦 = (𝑤/

𝐸[(𝜂∗)
1−𝛾

])−1/𝛾. Hence

𝑊̃
∗
(𝑇) (𝑤) = 𝐼 (𝑦𝜂) = ((

𝑤

𝐸 [(𝜂∗)
1−𝛾

]
)

−1/𝛾

𝜂
∗
)

−𝛾

= 𝑤
(𝜂∗)

−𝛾

𝐸 [(𝜂∗)
1−𝛾

]
.

(16)

The claim is then proved.

The discounted optimal wealth (15) is the final value of a
self-financing discounted portfolio, which, under the optimal
martingale measure 𝑄∗ = 𝜂∗. 𝑃, admits the representation

𝑊̃
∗
(𝑡) = 𝑤+∫

𝑡

0
𝑦
∗
(𝑠)

𝑑𝑃̃ (𝑠)

𝑃̃ (𝑠)

= 𝑤+∫
𝑡

0
Σ (𝑠) 𝑦

∗
(𝑠) 𝑑𝑍

∗
(𝑠) ,

(17)

where 𝑍∗(𝑡) = 𝑍(𝑡) + ∫
𝑡

0 𝑋(𝑠)𝑑𝑠 is a 𝑄
∗-Brownian motion.

We denote 𝜂∗(𝑡) = 𝐸[𝜂∗ | F
𝑡
] and𝑀(𝑡) = 𝐸[(𝜂∗)

1−𝛾
| F

𝑡
].

Recalling that 𝑊̃∗(𝑡) = 𝐸𝑄
∗

[𝑊̃∗(𝑇) | F
𝑡
] and the expression

for 𝑊̃∗(𝑇) in (15) we obtain that

𝜉 (𝑡) = 𝑊̃
∗
(𝑡)

𝐸 [(𝜂∗)
1−𝛾

]

𝑤
= 𝐸

𝑄
∗

[(𝜂
∗
)
−𝛾

| F
𝑡
]

=
𝐸 [(𝜂

∗
)
1−𝛾

| F
𝑡
]

𝐸 [𝜂∗ | F
𝑡
]

=
𝑀 (𝑡)

𝜂∗ (𝑡)
.

(18)

Denote

𝜂
𝜃
= E(−∫

𝑇

0
𝜃 (𝑡) 𝑑𝑍

󸀠
(𝑡)) , (19)

where 𝑍󸀠 is defined in (12), and let Θ be the set of processes
𝜃 such that 𝜂𝜃 is a Radon-Nikodym density. The set Θ is
nonempty since it contains 𝜃 ≡ 0. Every equivalent local
martingale measure has a Radon-Nikodym density of the
form 𝜂𝑋𝜂𝜃, with 𝜃 ∈ Θ. Assumption 1 guarantees that there
exists 𝜃∗ ∈ Θ such that 𝜂∗ = 𝜂𝑋𝜂𝜃

∗

. Then

𝑑𝜂
∗
(𝑡) = − 𝜂

∗
(𝑡) (𝑋 (𝑡) 𝑑𝑍 (𝑡) + 𝜃

∗
(𝑡) 𝑑𝑍

󸀠
(𝑡)) . (20)

To find the stochastic differential of𝑀(𝑡), we denote

𝐹 (𝑇, 𝑥) = 𝐸 [(𝜂
∗
)
1−𝛾

]

= 𝐸 [𝑒
(𝛾−1) ∫𝑇0 𝑋(𝑠)𝑑𝑍(𝑠)+(𝛾−1) ∫

𝑇

0 𝜃
∗

(𝑠)𝑑𝑍
󸀠

(𝑠)+((𝛾−1)/2) ∫𝑇0 (𝑋
2
(𝑠)+(𝜃

∗

(𝑠))
2
)𝑑𝑠
] ,

(21)
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where 𝑥 = 𝑋(0) and 𝑋 satisfies the stochastic differential
equation (2). Then

𝑀(𝑡) = exp[(𝛾 − 1) ∫
𝑡

0
𝑋 (𝑠) 𝑑𝑍 (𝑠)

+ (𝛾 − 1) ∫
𝑡

0
𝜃
∗
(𝑠) 𝑑𝑍

󸀠
(𝑠)

+(
(𝛾 − 1)

2
)∫

𝑡

0
(𝑋

2
(𝑠) + (𝜃

∗
(𝑠))

2
) 𝑑𝑠] 𝐹 (𝑇− 𝑡,

𝑋 (𝑡)) ,

(22)

provided that the process on the right-hand side is a martin-
gale. Letting 𝐺(𝑇, 𝑥) = ln𝐹(𝑇, 𝑥) (so that 𝐹(𝑇, 𝑥) = 𝑒

𝐺(𝑇,𝑥))
and denoting by𝐺

𝑡
,𝐺

𝑥
, and𝐺

𝑥𝑥
, respectively, the first partial

derivatives of 𝐺 with respect to 𝑡, 𝑥, and the second partial
derivative of𝐺with respect to 𝑥, Ito’s formula yields (for sake
of notation, we omit the dependence of 𝐺

𝑡
, 𝐺

𝑥
, and 𝐺

𝑥𝑥
on

(𝑇 − 𝑡, 𝑋(𝑡)))

𝑑𝑀 (𝑡)

𝑀 (𝑡)
= [

𝛾 (𝛾 − 1)
2

(𝑋 (𝑡)
2
+ (𝜃 (𝑡)

∗
)
2
) −𝐺

𝑡

−𝜆𝐺
𝑥
(𝑋 (𝑡) − 𝑥) +

𝜎2

2
(𝐺

2
𝑥
+𝐺

𝑥𝑥
)

+ (𝛾 − 1) 𝜎𝐺
𝑥
(𝜌𝑋 (𝑡) +√1 − 𝜌2𝜃∗ (𝑡))] 𝑑𝑡

+ [(𝛾 − 1)𝑋 (𝑡) + 𝜎𝜌𝐺
𝑥
] 𝑑𝑍 (𝑡) + [(𝛾 − 1) 𝜃∗ (𝑡)

+ 𝜎√1 − 𝜌2𝐺
𝑥
] 𝑑𝑍

󸀠
(𝑡) .

(23)

Applying again Ito’s formula to 𝜉(𝑡) = 𝑀(𝑡)/𝜂∗(𝑡) and
recalling that 𝜉 is a 𝑄∗-martingale (hence the drift part in its
Ito decomposition is null), we find

𝑑𝑊̃∗
(𝑡)

𝑊̃∗ (𝑡)
=
𝑑𝜉 (𝑡)

𝜉 (𝑡)

= [𝛾𝑋 (𝑡) + 𝜎𝜌𝐺
𝑥
] 𝑑𝑍

∗
(𝑡)

+ [𝛾𝜃
∗
(𝑡) + 𝜎√1 − 𝜌2𝐺

𝑥
] 𝑑𝑍

󸀠∗
(𝑡) ,

(24)

where 𝑍∗ and 𝑍
󸀠∗ are 𝑄∗ independent Brownian motions.

The process 𝑊̃∗(𝑡) coincides with the value of a self-financing
discounted portfolio (note that, in this case, the process
𝑊̃∗(𝑡) is an exponential martingale under 𝑄∗, and hence it
is strictly positive, namely, 𝑊̃∗ ∈ W̃(𝑤)) if and only if it has
form (17), namely,

𝛾𝜃
∗
(𝑡) + 𝜎√1 − 𝜌2𝐺

𝑥
(𝑇 − 𝑡, 𝑋

𝑡
) = 0 (25)

or, equivalently,

𝜃
∗
(𝑡) = −

𝜎√1 − 𝜌2

𝛾
𝐺
𝑥
(𝑇 − 𝑡, 𝑋

𝑡
) . (26)

Lemma 3. The function 𝐹(𝑇, 𝑥) = 𝐸[(𝜂
∗)

1−𝛾
] is given by

𝐹 (𝑇, 𝑥) = 𝑒
𝐴(𝑇)+𝑥𝐵(𝑇)+𝑥

2
𝐶̂(𝑇)/2

, (27)

where𝐴, 𝐵, and𝐶 are the solutions of the differential equations

𝐴
󸀠
=
𝑐𝐵2

2
+𝜆𝑥𝐵+

𝜎2𝐶

2
,

𝐵
󸀠
= 𝑐𝐵𝐶+ 𝑏̂𝐵 + 𝜆𝑥𝐶,

𝐶
󸀠
= 𝑐𝐶

2
+ 2𝑏̂𝐶 + 𝑎

(28)

with the initial conditions 𝐴(0) = 𝐵(0) = 𝐶(0) = 0, and

𝑎 = 𝛾 (𝛾 − 1) ,

𝑏̂ = (𝛾 − 1) 𝜌𝜎 − 𝜆,

𝑐 =
𝜎
2

𝛾
(1+ (𝛾 − 1) 𝜌2)

(29)

provided that 𝑇 belongs to (0, 𝑇̂), which is the largest interval
on which (28) admits bounded solutions.

Proof. We exploit the fact that the process 𝑀(𝑡) defined
in (22) is a martingale, and hence the drift part in its Ito
decomposition must be 0; that is,

𝛾 (𝛾 − 1)
2

(𝑋 (𝑡)
2
+
𝜎2

𝛾2
(1−𝜌2)𝐺2

𝑥
)−𝐺

𝑡

−𝜆𝐺
𝑥
(𝑋 (𝑡) − 𝑥) +

𝜎2

2
(𝐺

2
𝑥
+𝐺

𝑥𝑥
)

+ (𝛾 − 1) 𝜎𝐺
𝑥
(𝜌𝑋 (𝑡) −

𝜎

𝛾
(1−𝜌2)𝐺

𝑥
) = 0.

(30)

Since the above equation must hold when applied at any pair
(𝜏, 𝑋(𝑡)) with 𝜏 = 𝑇 − 𝑡, the martingale condition amounts
to require that 𝐺 satisfies the following partial differential
equation:

𝐺
𝑡
=
𝜎2

2
𝐺
𝑥𝑥
+(

𝜎2

2
−
𝜎
2
(𝛾 − 1) (1 − 𝜌

2
)

2𝛾
)𝐺

2
𝑥

+ (((𝛾 − 1) 𝜌𝜎 − 𝜆) 𝑥 + 𝜆𝑥)𝐺
𝑥

+
𝛾 (𝛾 − 1)

2
𝑥
2
,

𝐺 (0, 𝑥) = 0,

(31)

for all 𝜏 ∈ [0, 𝑇], and for all 𝑥. If we guess a solution of the
form

𝐺 (𝜏, 𝑥) = 𝐴 (𝜏) + 𝑥𝐵 (𝜏) +
𝑥
2𝐶 (𝜏)

2
, (32)

we obtain the partial differential equations (28) for 𝐴, 𝐵, and
𝐶 with the initial conditions 𝐴(0) = 0, 𝐵(0) = 0, and 𝐶(0) =
0.
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We show now that 𝜂∗ is the density of an equivalent
local martingalemeasure and the optimal solution of the dual
problem (10).

Lemma 4. (1) 𝐸[𝜂∗] = 1 and hence 𝜂∗ ∈ D.
(2) The density 𝜂∗ is the optimal solution to problem (10),

and, as a consequence,

V (𝑦) = Ṽ (𝑦) = 𝐸 [𝑉 (𝑦𝜂
∗
)]

=
1

𝛾 − 1
𝑦
1−𝛾

𝐸 [(𝜂
∗
)
1−𝛾

] .
(33)

Proof. (1) We can follow the same argument as in the proof
of Lemma 1 and apply the results in [17], recalling that 𝐵 and
𝐶 defined in (28) are bounded on [0, 𝑇] when 𝑇 < 𝑇̂ (see
Appendix in [1]).

(2) We already know that the density of every equivalent
martingale measure has the form 𝜂𝑋𝜂𝜃 with 𝜃 ∈ Θ. Let 𝜃󸀠 =
𝜃 − 𝜃∗, and observe that 𝜃󸀠 ∈ Θ. Denote 𝜃󸀠∗ = 𝜃󸀠𝜃∗.Then

𝜂
𝑋
𝜂
𝜃
= exp(−∫

𝑇

0
𝑋(𝑠) 𝑑𝑍 (𝑠) −∫

𝑇

0
𝜃 (𝑠) 𝑑𝑍

󸀠
(𝑠)

−
1
2
∫
𝑇

0
(𝑋

2
(𝑠) + 𝜃

2
(𝑠)) 𝑑𝑠)

= exp(−∫
𝑇

0
𝑋 (𝑠) 𝑑𝑍 (𝑠)

−∫
𝑇

0
(𝜃
∗
(𝑠) + 𝜃

󸀠
(𝑠)) 𝑑𝑍

󸀠
(𝑠)

−
1
2
∫
𝑇

0
(𝑋 (𝑠)

2
+ (𝜃

∗
(𝑠) + 𝜃

󸀠
(𝑠))

2
) 𝑑𝑠) = 𝜂

∗

⋅ exp(−∫
𝑇

0
𝜃
󸀠
(𝑠) 𝑑𝑍

󸀠
(𝑠)

−
1
2
∫
𝑇

0
(2𝜃󸀠∗ (𝑠) + 𝜃󸀠

2

(𝑠)) 𝑑𝑠)

(34)

with 𝜃󸀠 ∈ Θ. Then

Ṽ (𝑦) = 𝑦
1−𝛾 inf

𝜃∈Θ

𝐸[
1

𝛾 − 1
(𝜂
𝑋
𝜂
𝜃
)
1−𝛾

] = 𝑦
1−𝛾

⋅ inf
𝜃
󸀠
∈Θ

𝐸[
1

𝛾 − 1
(𝜂
∗
)
1−𝛾

⋅ 𝑒
(𝛾−1)(∫𝑇0 𝜃

󸀠

(𝑠)𝑑𝑍
󸀠

(𝑠)+(1/2) ∫𝑇0 (2𝜃
󸀠∗

(𝑠)+𝜃
󸀠
2

(𝑠))𝑑𝑠)
] = 𝑦

1−𝛾

⋅ inf
𝜃
󸀠
∈Θ

𝐸 [(𝜂
∗
)
1−𝛾

] 𝐸[

[

(𝜂∗)
1−𝛾

𝐸 [(𝜂∗)
1−𝛾

]

1
𝛾 − 1

⋅ 𝑒
(𝛾−1)(∫𝑇0 𝜃

󸀠

(𝑠)𝑑𝑍
󸀠

(𝑠)+(1/2) ∫𝑇0 (2𝜃
󸀠∗

(𝑠)+𝜃
󸀠
2

(𝑠))𝑑𝑠)]

]

= 𝑦
1−𝛾

𝐸 [(𝜂
∗
)
1−𝛾

] inf
𝜃
󸀠
∈Θ

𝐸[
1

𝛾 − 1

⋅ 𝑒
(𝛾−1)(∫𝑇0 𝜃

󸀠

(𝑠)𝑑𝑍
󸀠

(𝑠)+(1/2) ∫𝑇0 (2𝜃
󸀠∗

(𝑠)+𝜃
󸀠
2
(𝑠))𝑑𝑠)

] ,

(35)

where 𝐸 is the expectation with respect to the probability
measure 𝑄 = (𝜂∗)

1−𝛾
/𝐸[(𝜂∗)

1−𝛾
]. 𝑃. Note that the process

𝑍
󸀠
(𝑡) = 𝑍

󸀠
(𝑡)

−∫
𝑡

0
((𝛾 − 1) 𝜃∗ (𝑠) + 𝜎√1 − 𝜌2𝐺

𝑥
)𝑑𝑠

= 𝑍
󸀠
(𝑡) −∫

𝑡

0
((𝛾 − 1) 𝜃∗ (𝑠) − 𝛾𝜃∗ (𝑠)) 𝑑𝑠

= 𝑍
󸀠
(𝑡) +∫

𝑡

0
𝜃
∗
(𝑠) 𝑑𝑠

(36)

is a 𝑄-Brownian motion and

∫
𝑇

0
𝜃
󸀠
(𝑠) 𝑑𝑍

󸀠
(𝑠) +

1
2
∫
𝑇

0
(2𝜃󸀠∗ (𝑠) + 𝜃󸀠

2

(𝑠)) 𝑑𝑠

= ∫
𝑇

0
𝜃
󸀠
(𝑠) 𝑑𝑍

󸀠
(𝑠) +

1
2
∫
𝑇

0
𝜃
󸀠2

(𝑠) 𝑑𝑠.

(37)

Since the function 𝑉(𝑦) = (1/(𝛾 − 1))𝑦1−𝛾 is convex, Jensen’s
inequality yields

𝐸[
1

𝛾 − 1
𝑒
(𝛾−1)(∫𝑇0 𝜃(𝑠)𝑑𝑍

󸀠

(𝑠)+(1/2) ∫𝑇0 𝜃
2
(𝑠)𝑑𝑠)

]

≥
1

𝛾 − 1
𝐸 [𝑒

−∫
𝑇

0 𝜃(𝑠)𝑑𝑍
󸀠

(𝑠)−(1/2) ∫𝑇0 𝜃
2
(𝑠)𝑑𝑠

]
1−𝛾

=
1

𝛾 − 1
,

(38)

where the last equality comes from 𝑍
󸀠 being a 𝑄-Brownian

motion and 𝜃󸀠 ∈ Θ. The equality holds, and the infimum is
attained, when 𝜃󸀠 ≡ 0, that is, 𝜃 = 𝜃∗. This shows that the
density 𝜂∗ is the optimal solution to the dual problem (10).

4. Value Function and Optimal Strategy

We exploit the results of the previous section to obtain the
explicit expressions of the value function and of the optimal
strategy, depending on the current wealth level𝑤, the current
Sharpe ratio 𝑥, and the time to maturity 𝑇. Of course, our
results coincide with Kim and Omberg’s results ([1, formulas
(16)–(21)]).

Theorem 5. (1) The maximum expected utility is

𝐽 (𝑤) = 𝑈 (𝑤𝑒
𝑟𝑇
) 𝑒

𝐴(𝑇)+𝑥𝐵(𝑇)+𝑥
2
𝐶(𝑇)/2

, (39)

where 𝐴 = 𝐴/𝛾, 𝐵 = 𝐵/𝛾, and 𝐶 = 𝐶/𝛾.
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(2) The optimal monetary investment in the risky asset is

𝑦
∗
(𝑡) =

𝑒−𝑟𝑡𝑊(𝑡) 𝛾

Σ (𝑡)
[𝑋 (𝑡) + 𝜎𝜌𝐵 (𝑇− 𝑡)

+ 𝜎𝜌𝐶 (𝑇− 𝑡)𝑋 (𝑡)] .

(40)

Proof. (1)We replace the optimal wealth (15) in (8).The value
function is then

𝐽 (𝑤) = (𝑒
𝑟𝑇
)
𝛾/(𝛾−1)

𝑢 (𝑤)

= (𝑒
𝑟𝑇
)
𝛾/(𝛾−1)

𝐸 [𝑈 (𝑊̃
∗
(𝑇) (𝑤))]

= 𝑈 (𝑤𝑒
𝑟𝑇
) 𝐸[

[

(
(𝜂∗)

−𝛾

𝐸 [(𝜂∗)
1−𝛾

]
)

(𝛾−1)/𝛾

]

]

= 𝑈(𝑤𝑒
𝑟𝑇
) 𝐸 [(𝜂

∗
)
1−𝛾

]
1/𝛾

= 𝑈 (𝑤𝑒
𝑟𝑇
) 𝐹 (𝑇, 𝑥)

1/𝛾
.

(41)

(2) Comparing (17) and (24), 𝑑𝑊̃∗(𝑡)/𝑊̃∗(𝑡) = 𝑑𝜉(𝑡)/

𝜉(𝑡) = [𝛾𝑋(𝑡) + 𝜎𝜌𝐺
𝑥
]𝑑𝑍∗(𝑡), we obtain

𝑦
∗
(𝑡) Σ (𝑡) = 𝑊̃ (𝑡) (𝛾𝑋 (𝑡) + 𝜎𝜌𝐺

𝑥
) . (42)

Replacing𝐺
𝑥
= 𝐵+𝐶𝑋 = 𝛾(𝐵+𝐶𝑋), the claim is proved.

Remark 6. In our results we worked out the solution of
the problem of utility maximization from terminal wealth
starting at the initial date 𝑡 = 0. The analysis extends to
any date 𝑡 ∈ [0, 𝑇] by replacing unconditional expectations
with time 𝑡-conditional expectations, the initial investment
horizon 𝑇 with the current investment horizon 𝑇− 𝑡, and the
initial values of𝑊 and𝑋 with the current ones.

5. Conclusions

We work out a duality-based proof to the solution of the
optimal incomplete-market portfolio problem studied by
Kim and Omberg [1]. Our analysis offers an example where
the duality approach succeeds in finding explicit results.
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