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Abstract

Statistical analysis based on random fields has become a widely used approach in order
to better understand real processes in many fields such as engineering, environmental
sciences, etc. Data analysis based on random fields can be sometimes problematic to
carry out from the inferential prospective. Examples are when dealing with: large dataset,
counts or binary responses and extreme values data. This article explains how to perform,
with the R package CompRandFld, challenging statistical analysis based on Gaussian,
binary and max-stable random fields. The software provides tools for performing the
statistical inference based on the composite likelihood in complex problems where standard
likelihood methods are difficult to apply. The principal features are illustrated by means
of simulation examples and an application of Irish daily wind speeds.

Keywords: binary data, composite likelihood, covariance tapering, environmental data anal-
ysis, extremal coefficient, Gaussian random field, geostatistics, kriging, large dataset, max-
stable random field, wind speed.

1. Introduction

Today, statistical analyses with one or more variables, observed in space and time are useful
in different areas, such as environmental sciences and engineering fields (Cressie and Wikle
2011). Random fields (RFs) are the mathematical foundation for statistical spatial analyses;
basic introductions to this topic can be found in: Wackernagel (1998), Diggle and Ribeiro
(2007), Cressie and Wikle (2011) to name a few. One of the primary aims of spatio-temporal
analyses, together with marginal information, is to assess the dependence structure of the
underlying random field. With spatial or spatio-temporal applications, the fitting of models
with the maximum likelihood (ML) method may be troublesome to apply for several reasons.
We discuss two causes: when the analysis concerns large datasets and when the analysis
concerns datasets that are not normally distributed.

In the first case, suppose that the dataset of interest, with size m, is coming from a Gaussian
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random field. For most of the well-known covariance models, the expression of the ML esti-
mator is unknown and hence the parameter estimation is obtained by numerically maximizing
the likelihood. Each likelihood evaluation requires the computation of the determinant and
the inverse of the variance-covariance matrix and these tasks are generally performed with
algorithms based on the Cholesky factorization, demanding a computational burden of the
order O(m3), see Bevilacqua, Gaetan, Mateu, and Porcu (2012) and the references therein.
This can be very time consuming.

In the second case, two interesting types of data are widely discussed in the literature: cat-
egorical and extreme values. In order to model spatial binary or categorical data, one way
is by dichotomizing or categorizing the outcome of a Gaussian RF into several classes de-
pending on some threshold values, see for instance Heagerty and Lele (1998), de Leon (2005).
By doing this, the joint probability model depends on the underlying latent process. For a
dataset of size m, the expression of the joint distribution involves a sum of qm m-dimensional
normal integrals, where q is the number of categories. The closed form of the ML estimator
is unknown and hence as an alternative the parameter estimation can be done numerically,
but with a high computational cost.

In order to model spatial extremes, one way is to work with max-stable RFs (see e.g., de Haan
and Ferreira 2006, Chapter 9). These were introduced by de Haan (1984) as an extension
of the block maxima approach from finite-dimensional to infinite-dimensional spaces. Also
in this case likelihood-based inference is challenging. For most of the known models, (e.g.,
Davison, Padoan, and Ribatet 2012) although the closed form of the joint distribution is
known, with a dataset of size m the derivation of the likelihood function requires computing
a number of derivatives equal to the mth Bell number (Davison and Gholamrezaee 2012).
Thus, for most spatial applications this calculation is not feasible in practice.

Alternative approaches have been proposed in order to perform parametric statistical inference
with spatial and spatio-temporal dataset. For instance, in the last decade the strategies pro-
posed are based on simplifications of the covariance structure (e.g., Cressie and Johannesson
2008) or likelihood approximations (e.g., Stein, Chi, and Welty 2004; Fuentes 2007; Kaufman,
Schervish, and Nychka 2008). Inference based on the composite likelihood function (Lind-
say 1988) has been shown to be a valid competitor. Motivations are the following. Firstly,
the composite generalizes the ordinary likelihood and contains many interesting alternatives.
Secondly, a number of theoretical results exist about the consistency and the asymptotic
distribution of the related estimator and statistical tests. Thirdly, the computational cost
is substantially lower than that of the likelihood. Finally, the approach is applicable with
different types of data such as Gaussian, binary and extreme values. Examples of statistical
analyses based on the composite likelihood are: Nott and Rydén (1999), Heagerty and Lele
(1998) for binary data, Padoan, Ribatet, and Sisson (2010), Davison and Blanchet (2011) for
extreme values, Bevilacqua et al. (2012) for Gaussian responses.

For Gaussian, binary and max-stable RFs, several routines for performing the statistical
inference based on the composite likelihood have been put together and implemented in an
R (R Core Team 2014) package named CompRandFld (Padoan and Bevilacqua 2015). This
article describes how to use this package to perform statistical analysis of random fields.
The article is organized as follows: Section 2 summarizes basic notions on Gaussian, binary
and max-stable RFs, Section 3 summarizes the principal concepts of the composite likelihood
approach with some simulation examples that explain the main capabilities of CompRandFld.
Section 4 provides a real data example. Section 5 provides the conclusions.
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2. Random fields

2.1. Gaussian random fields

Gaussian RF are useful for describing the random behavior of the mean levels of a real process.
Here, a few basic notions are recalled.

Let {Y (s, t), (s, t) ∈ I} be a real-valued random process defined on I, where I = S ×T , with
S ⊆ IRd and T ⊆ IR. When T = {t0} then I ≡ S and Y (s) ≡ Y (s, t0) is a purely spatial ran-
dom field. When S= {s0} then I ≡ T and Y (t) ≡ Y (s0, t) is a purely temporal random field.
Let I := {1, . . . , l} and J := {1, . . . , k} be sets of indices and I∗ = I×J be the Cartesian prod-
uct with cardinality m = k·l. It is assumed for simplicity that Y (s, t) is a second-order station-
ary spatio-temporal Gaussian RF, that means IE{Y (s, t)} = µ and var{Y (s, t)} = ω2 are finite
constants for all (s, t) ∈ I and the covariance cov{Y (s, t), Y (s′, t′)} = IE{Y (s, t), Y (s′, t)}−µ2,
(s, t), (s′, t′) ∈ I can be expressed by c(h, u), namely c(·, ·) is a positive definite function that
depends only on the separations between the points h = s′ − s and u = t′ − t (Cressie
and Wikle 2011, Chapter 6). The covariance is said to be translation-invariant. Since
c(0, 0) = var{Y (s, t)}, then ρ(h, u) = c(h, u)/c(0, 0) is the correlation function of Y . In
order to take into account the local variation of real phenomena the overall process is defined
by Y (s, t) = Y0(s, t) + ε(s, t), where ε(s, t) ∼ N(0, τ2) is a white noise independent from Y0.
The covariance takes the following functional form

c(h, u) = τ21I{(0,0)}((h, u)) + σ2ρ0(h, u), (h, u) ∈ IRd × IR, (1)

where 1I(·) is the indicator function, σ2 > 0 and ρ0 are the common variance and correlation
of the RF, whereas τ2 > 0 is the local variance that describes the so-called nugget effect
(e.g., Diggle and Ribeiro 2007; Cressie and Wikle 2011, Chapter 4). The variance of Y (s, t)
is equal to ω2 = τ2 + σ2 and the covariance function σ2ρ0(h, u). Since Y (s, t) is also intrin-
sically stationary (Cressie and Wikle 2011, Chapter 6), then its variability can equivalently
be represented as 2γ(h, u) = var{Y (s + h, t + u) − Y (s, t)}. The function γ(·, ·) is called
the semivariogram while the quantity 2γ(·, ·) is known as the variogram and under second
order stationary γ(h, u) = c(0, 0)− c(h, u). A stationary space time covariance is called spa-
tially isotropic if c(h, u0) depends only on (‖h‖, u0) for any fixed temporal lag u0, see Porcu,
Montero, and Schlather (2012).

There is extensive literature on parametric spatial covariance models, see Cressie and Wikle
(2011, Chapter 4) and the reference therein, and in the past years many parametric models
for space-time covariances have been proposed. A possible covariance model is obtained as
the product of any valid spatial and temporal covariance. This kind of covariance model,
called separable model, has been criticized for its lack of flexibility. For this reason, different
classes of non separable covariance models have been proposed recently in order to capture
possible space-time interactions (e.g., Porcu, Mateu, and Christakos 2009; Cressie and Wikle
2011, Chapter 6). Some examples of covariance models implemented in CompRandFld and
used later in Section 3 and 4 are found in Table 1. Observe that the first model is a separable
space-time stable or power-exponential covariance, the second is a special case of the class
proposed in Gneiting (2002), the third and fourth are special cases of the classes proposed in
De Iaco, Myers, and Posa (2002) and Porcu et al. (2009). Finally, the fifth and sixth models
are spatial correlation models (e.g., Gneiting and Schlather 2004). A list of all the correlation
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Model Functional form Parameters’ range

Double stable ρst(h, u) = exp {−ds(h)− dt(u)}
Gneiting ρst(h, u) = gt(u)−1 exp

{
− ds(h)

gt(u)−ηκs/2

}
0 ≤ η ≤ 1

Iacocesare ρst(h, u) = {gt(u) + ds(h)}−η η > 0

Porcu ρst(h, u) = {0.5gs(h)η + 0.5gt(u)η}−1/η 0 ≤ η ≤ 1

Matern ρs(h) = 21−αds(h)α/κsKα

(
‖h‖
ψs

)
Γ(α)−1 α > 0

Gen. Cauchy ρs(h) = gs(h)−α/κs α > 0

ds(h) =
(
‖h‖
ψs

)κs
, gs(h) = 1 + ds(h), ψs, ψt > 0

dt(u) =
(
|u|
ψt

)κt
, gt(u) = 1 + dt(u) 0 < κs, κt ≤ 2

Table 1: Parametric families of isotropic correlation models. The first four models are spatio-
temporal and the last two are spatial and Kα is the modified Bessel function of order α, Γ is
the gamma function, η is a separability parameter, α, κs, κt are smoothing parameters and
ψs, ψt are scale parameters. The subscripts s and t stand for space and time.

functions implemented in the CompRandFld is available with the online help of the routine
CovMatrix.

2.2. Binary random fields

In some applications the focus is on modeling the presence or absence of a certain phenomenon,
observable across space and time. To describe the stochastic behavior of such a process a
binary RF is needed.

An approach for defining a spatio-temporal binary random field is the following (e.g., Heagerty
and Lele 1998). Let {Y (s, t), (s, t) ∈ I} be a second-order stationary spatio-temporal Gaussian
RF with correlation function ρ(h, u) that we assume known up to a vector of parameters ϑ.
Then, a binary spatio-temporal RF is defined by

Z(s, t) = 1I(b,+∞)(Y (s, t) + ε(s, t)), (2)

where for all (s, t) ∈ I, ε(s, t) ∼ N(0, τ2) is a white noise and b ∈ IR is a threshold. We
assume that ε is independent from Y . With this definition, for all (s, t) ∈ I, the univariate
marginal probability of Z is

p1 ≡ pr(Z(s, t) = 1) = Φ

(
µ− b
ω

)
,

where µ is the mean of Z and Φ is the univariate standard Gaussian distribution. In addition,
for any (s, t), (s′, t′) ∈ I with (s, t) 6= (s′, t′), the bivariate joint probabilities are equal to

p11(h, u) ≡ pr{Z(s, t) = 1, Z(s′, t′) = 1} = Φ2

(
µ− b
ω

,
µ− b
ω

;
σ2ρ(h, u;ϑ)

ω2

)
,

p00(h, u) = 1− 2p1 + p11(h, u), (3)

p10(h, u) ≡ p01(h, u) = p1 − p11(h, u),

where Φ2 is the bivariate standard Gaussian distribution. In our package, Φ2 is computed
using a Fortran routine written by Alan Genz, see Gentz (1992). Note that the marginal
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and the joint probability of success p1 and p11(h, u) completely characterize the bivariate
distribution. Higher order joint probabilities are similarly derived, by using the inclusion-
exclusion principle. Thus given m spatio-temporal points, the computation of the probabilities
for all the related success and failure events requires the evaluation of high-dimensional normal
integrals, up to the order m.

2.3. Max-stable random fields

In some applications the focus is on modeling exceptionally high (low) levels of a real process.
One way for describing the random behavior of spatial or spatio-temporal extremes is provided
by max-stable RFs. For simplicity let us focus on the spatial case. Let {Y (s)}s∈S be a
stationary RF with continuous sample path and Y1, . . . , Yn be n independent copies of it.
Consider the pointwise maximum process Mn(s) := maxi=1,...,n Yi(s), s ∈ S. If there exist
continuous functions an(s) > 0 and bn(s) ∈ IR, for all s ∈ S, such that a−1

n (s){Mn(s)− bn(s)}
converge weakly to a process Z(s) with non-degenerate marginal distributions for all s ∈ S,
then Z is a max-stable RF (e.g., de Haan and Ferreira 2006, Chapter 9). For any s ∈ S,
max-stable random fields have univariate marginal generalized extreme value distributions
and for a finite set of locations the joint distribution

pr{Z(sj) ≤ zj , j ∈ J} = exp{−V (z)}, V (z) = k

∫
∆k−1

max
j∈J

(
wj
yj

)
υ(dw), z ∈ IRk

+ (4)

with unit Fréchet marginal distributions, where υ is a probability distribution defined on the
(k − 1)-dimensional unit simplex ∆k−1 and V is the so-called exponent dependence function
(e.g., de Haan and Ferreira 2006, Chapter 1,6). Examples of max-stable RF are the Brown-
Resnick (Kabluchko, Schlather, and de Haan 2009; Kabluchko 2010), the extremal-Gaussian
(Schlather 2002) and the extremal-t (Davison et al. 2012). In the first case the exponent
dependence function of the bivariate distribution is

V1(z1, z2; h) =
1

z1
Φ

(
λ(h)

2
+

log z2/z1

λ(h)

)
+

1

z2
Φ

(
λ(h)

2
+

log z1/z2

λ(h)

)
, (5)

where λ(h) =
√

2γ(h) with γ denoting the semivariogram of the underlying Gaussian RF.
(5) was initially derived by Hüsler and Reiss (1989) and is also the exponent function of
the max-stable RF described by Smith (1990) but with a different form for λ(h). For these
processes, extensions to the spatio-temporal case with dependence function λ(h, u) exist, see
Kabluchko (2009), Davis, Klüppelberg, and Steinkohl (2013). In the second case the bivariate
distribution depends on the exponent function

V2(z1, z2; h) =
1

2

(
1

z1
+

1

z2

)(
1 +

[
1− 2z1z2{ρ(h) + 1}

(z1 + z2)2

]1/2
)
, (6)

where ρ(h) is the correlation function ρ(h) of the underlying Gaussian RF. Finally, in the
third case, the bivariate distribution depends on the exponent function

V3(z1, z2; h) =
1

z1
Tν+1

{
(z2/z1)1/ν − ρ(h)√
{1− ρ(h)2}/(ν + 1)

}
+

1

z2
Tν+1

{
(z1/z2)1/ν − ρ(h)√
{1− ρ(h)2}/(ν + 1)

}
, (7)

where Tν+1 is a Student-t distribution with ν + 1 degrees of freedom, ρ(h) is the scaling
function and ν the degrees of freedom of the underlying Student-t random field.
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A summary for describing the extremal dependence is ξ(h) = V (1, 1; h), named the pairwise
extremal coefficient function (Smith 1990). It holds that 1 ≤ ξ(h) ≤ 2, where the lower bound
represents the complete dependence case and the upper bound the independence case. For
the above mentioned processes the extremal coefficients are equal to

ξ1(h) = 2Φ

(√
γ(h)

2

)
, ξ2(h) = 1+

√
1− ρ(h)

2
, ξ3(h) = 2Tν+1

{√
(ν + 1)(1− ρ(h)

1 + ρ(h)

}
, (8)

respectively.

3. Composite likelihood approach

Composite likelihood (CL) is a general class of estimating functions based on the likelihood of
marginal or conditional events (e.g., Varin, Reid, and Firth 2011). Let Y = (Y1, . . . , Ym)> be
an m-dimensional random vector with joint distribution f(Y;θ), θ ∈ Θ ⊆ IRd. Let A1 . . . ,AR
be marginal or conditional sets of Y, then CL is defined as

`c(θ) =
R∑
r=1

`(θ;Ar)wr, (9)

where `(θ;Ar) is the log-likelihood related to the density f(Y ∈ Ar;θ) obtained by considering
only the random variables in Ar and wr are suitable non negative weights that do not depend
on θ. The maximum composite likelihood (MCL) estimator is given by θ̂ = argmaxθ `c(θ).
The CL estimation method has nice properties (e.g., Varin et al. 2011) among which, if the
sample size n is such that n � m and n goes to infinity, then θ̂ is weakly consistent and
asymptotically normally distributed with variance-covariance matrix G(θ)−1, where

G(θ) = H(θ)J(θ)−1H(θ)> (10)

is the Godambe information matrix and

H(θ) = −IE[∇2`c(θ)], J(θ) = IE[∇`c(θ)∇`c(θ)>],

where ∇ denotes the vector differential operator. On the other hand, if n� m or dependent
data are available such as a single spatial sequence or a univariate time series, then the
above mentioned asymptotic results do not necessary hold, see Cox and Reid (2004). Then,
consistency and asymptotic normality of the estimator, as m goes to infinity, must be shown
case by case. Likelihood-based statistics such as Wald statistic, score statistic and likelihood
ratio statistic and their asymptotic distributions are also available in the CL setting (Chandler
and Bate 2007; Varin et al. 2011; Pace, Salvan, and Sartori 2011). In addition, the Akaike
information criterion used for model selection in the CL context assumes the following form:

CLIC = −2`c(θ) + 2tr{H(θ)G−1(θ)}, (11)

where tr(A) is the trace of the matrix A, see Varin and Vidoni (2005). The CL is a wide
class of functions that also includes the standard likelihood and other alternatives as special
cases. For example, the former is obtained letting Ar = Y, R = 1 and wr = 1. Depending
on the type of likelihood that is specified on the right hand side of (9), different types of
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Figure 1: Hierarchical structure involved with the composite likelihood approach.

CL can be obtained. One of the most explored cases is the pairwise likelihood. Considering
the marginal pairs Ar = (Yi, Yj), then we obtain the pairwise marginal log-likelihood. If we
let Ar = (Yi|Yj), then we obtain the pairwise conditional log-likelihood and finally setting
Ar = (Yi − Yj), then we obtain the pairwise difference log-likelihood. In these special cases,
log-likelihoods, for a single data contribution are respectively:

`pm(θ) =
m∑
i=1

m∑
j>i

log f(yi, yj ;θ)wij , (12)

`pc(θ) =

m∑
i=1

m∑
j 6=i

log f(yi|yj ;θ)wij , (13)

`pd(θ) =
m∑
i=1

m∑
j>i

log f(yi − yj ;θ)wij . (14)

For these likelihoods the computational burden is O(m2). In principle, the role of the weights
is to improve the statistical efficiency and save computational time, see for example Padoan
et al. (2010), Bevilacqua et al. (2012), Bevilacqua and Gaetan (2014) and Sang and Genton
(2014). The diagram in Figure 1 summarizes the types of likelihoods belonging to the CL
class that have been implemented in the package. For comparison purposes we have also
implemented in the package other variants of the ordinary likelihood, such as the restricted
likelihood of Harville (1977) and the tapered likelihood of Kaufman et al. (2008).

3.1. The Gaussian case

Assume that y = {y(s1, t1), . . . , y(sk, tl)}> is a realisation from a spatio-temporal Gaussian
RF (see Section 2.1). y has an m-dimensional normal density with the parameter vector
θ = (µ, τ2, σ2,ϑ)>. ϑ is a vector of correlation parameters (see for example the models in
Table 1). In the Gaussian case, there are three estimation methods available. Standard ML
fitting of the Gaussian model can be performed setting the parameters model = "Gaussian",
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Model Functional form Parameters’ range

Wendland1 ρs(h; cs) = {1− ds(h)}2+ {1 + ds(h)/2}
Wendland2 ρs(h; cs) = {1− ds(h)}4+ {1 + 4ds(h)}
Double Wendland2 ρst(h, u; cs, ct) = {1− ds(h)}4+ {1 + 4ds(h)}

×{1− dt(u)}4+ {1 + 4dt(u)}
ds(h) = ‖h‖

cs
, dt(u) = |u|

ct
cs, ct > 0

Table 2: Parametric families of isotropic taper functions.

likelihood = "Full" and type = "Standard" of the FitComposite routine. This method
is recommended for small dataset. θ is estimated by maximization of the full likelihood

`(θ) = −1

2
log |Σ| − 1

2
(y − µ)>Σ−1(y − µ), (15)

where µ = µ1m and Σ = {τ21I{(r,q)}((j, i)) +σ2ρst(||sj − sr||, |ti− tq|); (i, j), (q, r) ∈ I∗} is the
m ×m covariance matrix defined by (1). The restricted version is also available and it can
be used setting type = "Restricted". Under increasing domain the asymptotic variance-
covariance matrix of the ML estimator is given by the inverse of the Fisher information matrix
I(θ), see Mardia and Marshall (1984).

The second estimation method is based on the tapering likelihood (Kaufman et al. 2008),
recommended for large datasets. This method is performed setting the parameter type =

"Tapering". The tapering likelihood is given by

`tap(θ, c) = −1

2
log |Σ̃| − 1

2
(y − µ)>{Σ̃−1 ◦Ωc}(y − µ), (16)

where Ωc = {ρst(‖sj−sr‖, |ti−tq|; c); (i, j), (q, r) ∈ I∗} is the m×m taper matrix, Σ̃ = Σ◦Ωc

is an m ×m tapered covariance matrix and ◦ is the Schur product. Specifically, ρ(·, ·; c) is
a correlation function (taper function) depending on a parameter’s vector c, which defines
the compact support in space, or in time, or both (Wendland 1995). Hence, tapering in

likelihood (15) both the covariance matrix Σ and the matrix Σ̃
−1

, the tapering likelihood
(16) is obtained. The parameter taper of FitComposite allows us to set different taper
functions. A list of models implemented in the package is reported in Table 2. The first two
are spatial tapers, while the last is a spatio-temporal taper. The compact support parameters
for space and time can be set providing two positive values cs and ct at maxdist and maxtime

(see Table 2). Likelihood (16) is implemented in CompRandFld and in the optimization
procedure it calls for specific routines of the package spam (Furrer and Sain 2010; Furrer
2014) for handling the sparse matrix Σ̃. Under increasing domain, the maximizer of (16) is
a consistent estimator and has asymptotic Gaussian distribution, with variance given by the
inverse of the Godambe matrix which is given as in (10) with

H(θ) = −IE[∇2`tap(θ, c)], J(θ) = IE[∇`tap(θ, c)∇`tap(θ, c)>],

see Shaby and Ruppert (2012). The tapering can have an effect, depending on the choice of the
compact support, when assessing a correlation structure. For example, the top-left panel of
Figure 2 reports a simulation from a zero-mean, unit-variance, spatial Gaussian random field
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Figure 2: A simulation from a zero-mean, unit-variance spatial Gaussian random field with ex-
ponential correlation and scale parameter cs = 0.2 is reported in the top-left panel. The same
simulation is shown from the top-right to the bottom-right panels, tapering the correlation
using a Wendland function with compact supports 0.6, 0.4 and 0.2.

with exponential correlation and scale parameter cs = 0.2 on the unit square. Simulations are
repeated by tapering the covariance matrix with the first Wendland function of Table 2 using
the compact supports: 0.6, 0.4 and 0.2. When the compact support is greater or equal to the
practical range (0.6), the simulation in the top-right panel shows that there is no difference
with the original simulation. While for decreasing values of compact support, the simulations
on the two bottom panels show a decreasing range of the correlation structure.

The third estimation method is based on the pairwise likelihoods (12)–(14), also recommended
for large dataset. Bevilacqua and Gaetan (2014) have shown by means of a simulation study,
that under an increasing-domain asymptotic and for a fixed given compact support, the
pairwise likelihood, compared to the other estimation methods, is the fastest. For instance,
Figure 3 shows that the ratio between the computational time required for a single numerical
evaluation of the full and the pairwise, and the tapering and the pairwise likelihoods is greater
than one, stressing that the pairwise likelihood is the fastest estimation method. The ratios
have been computed for different sample sizes. We can see that for increasing sample size
the pairwise likelihood provide a computational convenience that is increasingly prominent.
CL estimation is performed setting likelihood = "Marginal" and type = "Difference"

in FitComposite. This is based on the difference pairwise likelihood

`pd(θ) =
∑

(i,j,q,r)∈D

{
log γijqr(σ

2, τ2,ϑ)

2
+
{y(sj , ti)− y(sr, tq)}2

4γijqr(σ2, τ2,ϑ)

}
wijqr,
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Figure 3: Points depict the ratio between the times required to numerically evaluate the full
and the pairwise likelihood. The crosses report the comparison between the tapering and the
pairwise likelihood.

where

D =

{
(i, j, q, r) :

q > i, i ∈ I, if r = j, j ∈ J
i, q ∈ I, if r > j, j ∈ J

(17)

and γijqr(σ
2, τ2,ϑ) = τ21I{(r,q)}((j, i))+σ2{1−ρst(‖sj−sr‖, |ti−tq|;ϑ)} is the variogram. Pair-

wise or conditional likelihoods (12) and (13) can be used setting likelihood = "Marginal"

and type = "Pairwise" or likelihood = "Conditional". Binary weights

wijqr =

{
1 ||sj − sr|| ≤ cs, |ti − tq| ≤ ct
0 otherwise

can be set by providing two positive values cs and ct at maxdist and maxtime. Under
increasing domain the maximizer of the CL is consistent and asymptotically normal with
variance-covariance matrix as in (10) (Bevilacqua et al. 2012). Standard errors can be obtained
setting varest=TRUE. These are obtained, for the three likelihood methods, as the square
roots of the diagonal elements of the inverse of the Fisher and Godambe information. In the
Gaussian case the analytical expressions of such matrices are known.

In the composite likelihood case however, since the expression of J is unwieldy, its numerical
evaluation can be computationally demanding. So to quickly obtain standard errors, two
options are implemented. If a single data replication is available, then the matrix is computed
with a sub-sampling technique and this is obtained specifying vartype = "subsamp". If data
replications are available, then the Godambe matrix is computed using its sampling version
(Varin et al. 2011) and this is obtained specifying vartype = "sampling". Here is a practical
example.

R> library("CompRandFld")

R> set.seed(13)
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R> coords <- cbind(runif(25, 0, 1), runif(25, 0, 1))

R> times <- 1:20

R> param <- list(nugget = 0, mean = 1, scale_s = 2, scale_t = 3, sill = 1)

R> data <- RFsim(coordx = coords, coordt = times, corrmodel = "exp_exp",

+ param = param)$data

This code shows how to use the routine RFsim to simulate a spatio-temporal random field in
25 locations and for 20 times. The correlation is specified with corrmodel and the parameters
with param. The model used is the double exponential, the first of Table 1 with κs = κt =
1. Note that simulations from Gaussian random fields are performed using the Cholesky
decomposition method. The next code shows the use of the FitComposite routine to perform
MCL estimations of the parameters.

R> pml <- FitComposite(data, coordx = coords, coordt = times,

+ corrmodel = "exp_exp", likelihood = "Marginal", type = "Pairwise",

+ start = list(scale_s = 2, scale_t = 3, sill = 1),

+ fixed = list(mean = 1, nugget = 0), varest = TRUE, maxdist = 0.5,

+ maxtime = 3)

R> pml$param

scale_s scale_t sill

2.244840 5.739743 1.392082

With start, users can specify a starting value for any parameter that needs to be estimated.
While with fixed, users can specify a value for a parameter that does not need to be estimated.
Starting values are admitted only for parameters that are not fixed. Note that the routine
CorrelationParam returns the list of parameters for any correlation model. Estimates are
obtained by fitting the marginal pairwise likelihood. Binary weights are used so that only
pairs of observations with spatial distances and temporal intervals smaller or equal to 0.5 and
3 are retained. print(pml) provides the summary of the fitting, omitted here for brevity.
The collected results are: the parameters’ estimate with related standard errors and variance-
covariance matrix, the value that maximizes the log pairwise likelihood and the value of
the CLIC (11) and other information. The fitting results can be used for estimating the
correlation or variogram function, computing the practical range (Diggle and Ribeiro 2007)
with the Covariogram routine, or as the following code shows, for predicting the process on
ungauged locations for future times.

R> times_to_pred <- 21:23

R> x <- seq(0,1, 0.02)

R> loc_to_pred <- as.matrix(expand.grid(x, x))

R> param <- as.list(c(pml$param, pml$fixed))

R> pr <- Kri(data, coords, coordt = times, loc = loc_to_pred,

+ time = times_to_pred, corrmodel = "exp_exp", param = param)

The Kri routine performs simple kriging (or ordinary kriging, Diggle and Ribeiro 2007) in
the new set of locations loc to pred and times times to pred. A dataset, spatio-temporal
coordinates and a correlation model with the estimated parameters need to be specified. The
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Figure 4: Simple kriging on a 51×51 grid of points on [0,1] and for 3 times (from left to right).
The top panels report the prediction and the bottom the standard error of the prediction.
The points are the locations where the data has been generated.

routine returns two matrices (together with other information), one with the predicted values
and one with their associated standard errors. With standard R code, the results can be easily
visualized. Figure 4 shows, with the top and bottom panels, the predicted values and their
standard errors, on a 51 × 51 grid of points in [0, 1] and three consecutive times (left-right).
Due to the strong dependence structure, we see that a noticeable dependence remains on time
(although decreasing) and that the lower variabilities are recorded on the points where the
data has been simulated. In CompRandFld simple and tapered kriging are implemented. The
default option is simple kriging. This is performed working with the full covariance matrix,
which is computationally intensive for large spatial or spatio-temporal data. A remedy is to
use the tapered kriging proposed by Furrer, Genton, and Nychka (2006). Tapered kriging is
an approximation of the classical kriging, faster to compute and hence useful when dealing
with large datasets. With tapered kriging, the tapered covariance matrix is used in the simple
kriging systems instead of the full covariance matrix, so that the solution is obtained using
fast algorithms for sparse matrices. The routine Kri calls specific routines of the package
spam (Furrer and Sain 2010) in order to handle sparse matrices. Tapered kriging can be done
setting type = "Tapering" and specifying values for the parameters taper, maxdist and
maxtime. For performing tapered kriging see also Nychka, Furrer, and Sain (2014).

3.2. Binary case

Assume that z(s1, t1), . . . , z(sk, tl) is a sample from a spatio-temporal binary random field
(see Section 2.2), where z(sj , ti) = 1 (z(sj , ti) = 0) represents the success (failure) events.
In this case, the ML estimator is unknown in closed form and the numerical maximization
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of the full likelihood is too computationally demanding, also for moderate sample sizes. For
this reason, Heagerty and Lele (1998) proposed performing the parameter estimation of the
probit model (2), using the pairwise marginal likelihood

`pm(θ) =
∑

(i,j,q,r)∈D

z(sj , ti)z(sr, tq) log(p11(‖sj − sr‖, |ti − tq|))

+ {z(sj , ti) + z(sr, tq)− 2z(sj , ti)z(sr, tq))} log(p01(||sj − sr||, |ti − tq|))
+ {1− z(sj , ti)}{1− z(sr, tq)} log(p00(‖sj − sr‖, |ti − tq|)),

(18)

where D is as in (17) and the probabilities pxy(·, ·), x, y = 0, 1, are described in (3). MCL fit-
ting can be obtained with the routine FitComposite specifying the values model =

"BinaryGauss", likelihood = "Marginal" and type = "Pairwise". The conditional like-
lihood (12) is also available and it can be used by setting likelihood = "Conditional".
Observe that, for simplicity and identifiability we follow the parametrization of Heagerty and
Lele (1998), where a constant mean is assumed, τ2 + σ2 = 1, 0 < σ2 < 1, τ2 = 1 − σ2 and
b = 0. Here is a practical example.

R> set.seed(11)

R> x <- seq(0, 10, 1)

R> y <- seq(0, 10, 1)

R> times <- seq(1, 15, 1)

R> param <- list(nugget = 0, mean = 0, scale_t = 1.5, scale_s = 2,

+ sill = 0.6)

R> data <- RFsim(x, y, times, corrmodel = "exp_exp", model = "BinaryGauss",

+ param = param, grid = TRUE)$data

This code shows how to simulate a binary random field with the routine RFsim. Since the
process is based on a latent Gaussian RF, a correlation function and its parameters need to
be specified. Figure 5 shows the simulation for the first four temporal instants (top-left to
bottom-right), performed on an 11 × 11 grid on [0, 10]2 and for 15 times. The dependence
can be estimated using the lorelogram function (Heagerty and Zeger 1998). The lorelogram
estimator is defined as logarithm of the pairwise odds ratio,

π(||sj − sr||, |ti − tq|) = log

(
{p11(||sj − sr||, |ti − tq|)}{p00(||sj − sr||, |ti − tq|)}
{p10(||sj − sr||, |ti − tq|)}}{p01(||sj − sr||, |ti − tq|)}

)
. (19)

In the binary case, it provides a better measure of dependence than the covariance function,
for instance it allows ease of interpretation and its upper and lower bounds do not depend on
the mean. The following code shows how to compute the empirical estimator of (19) using
the routine EVariogram.

R> lor <- EVariogram(data, x, y, times, type = "lorelogram", grid = TRUE,

+ maxdist = 10, maxtime = 10)

R> pml <- FitComposite(data, x, y, times, corrmodel = "exp_exp",

+ grid = TRUE, maxdist = 2, maxtime = 4, model = "BinaryGauss",

+ fixed = list(nugget = 0), start = list(mean = 0, scale_s = 2,

+ scale_t = 1.5, sill = 0.5))

R> pml$param
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Figure 5: Simulations of spatio-temporal binary random fields on an 11×11 grid. From left to
right panels, the simulations of 4 consecutive times are reported. The green and gray colors
represent the cases Y (s, t) = 1 and Y (s, t) = 0.

mean scale_s scale_t sill

0.0162018 2.1896897 1.8202424 0.9560474

R> library("scatterplot3d")

R> Covariogram(pml, vario = lor, show.vario = TRUE)

The above code shows how to compute a parametric estimate of the lorelogram. Firstly, the
FitComposite routine computes the parameter estimates of the underlying latent Gaussian
random field. With print(pml), the summary of the fitting results are returned (omitted
here for brevity) and with pml$param, only the parameter estimates are displayed. Sec-
ondly, to compute a smooth estimate of the lorelogram, based on the output obtained from
FitComposite, the routine Covariogram is used. This also diplays the estimated function
(using scatterplot3d, Ligges and Mächler 2003). Figure 6 shows the results. The left and right
panels display the non-parametric and parametric estimates of the spatio-temporal lorelogram
versus spatial distances and temporal intervals.

3.3. Max-stable case

Assume that independent copies, z1, . . . , zm, of the vector of spatial componentwise maxima
z = {z(s1), . . . , z(sk)}>, are available. Examples of real data analyses using this type of
extremes are Padoan et al. (2010), Davison and Blanchet (2011) and Davison et al. (2012).
Suppose for simplicity that the random behavior of the spatial maxima is well described by one
of the classes of spatial max-stable RFs described in Section 2.3. For those families, although
the k-dimensional distribution is known (Hüsler and Reiss 1989; Opitz 2013), the derivation of
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Figure 6: Spatio-temporal lorelogram versus spatial distances and time intervals. The left
and right panels report the empirical and parametric estimates of the lorelogram

their relative density functions is unfeasible in practice. Indeed, given the particular form of
a max-stable distribution, see (4), for deriving the density, a kth Bell number of derivatives is
required to compute it (Davison and Gholamrezaee 2012). Nevertheless, the bivariate density
is still feasible to compute in practice and it has the form

exp{−V (z1, z2)}[{∂V (z1, z2)/∂z1}{∂V (z1, z2)/∂z2} − ∂2V (z1, z2)/∂z1∂z2].

Taking the first and second order derivatives of (5)–(7) allows us to obtain the Brown–
Resnick, the extremal-Gaussian and extremal-t bivariate densities. Therefore, for inference
the full likelihood can be replaced by the pairwise marginal likelihood (12). Details on CL
inference for max-stable random fields are provided by Padoan et al. (2010) and Davison et al.
(2012). Here, practical examples are illustrated.

R> library("RandomFields")

R> set.seed(3132)

R> coords <- cbind(runif(100, 0, 10), runif(100, 0, 10))

R> param <- list(mean = 0, sill = 1, nugget = 0, scale = 1.5, power = 1.2)

R> extg <- RFsim(coords, corrmodel = "stable", model = "ExtGauss",

+ replicates = 30, param = param)$data

This code shows how to simulate an extremal-Gaussian RF with unit Fréchet margins with
the routine RFsim. The simulation is performed using the routine MaxStableRF developed in
the R package RandomFields (Schlather, Malinowski, Menck, Oesting, and Strokorb 2015).
The correlation model and the parameters for the extremal-Gaussian (Schlather 2002) can
be specified with corrmodel and param. The next code shows how to perform the composite
likelihood-fitting of the extremal-Gaussian, using the routine FitComposite.

R> fextg <- FitComposite(extg, coords, corrmodel = "stable",

+ model = "ExtGauss", replicates = 30, varest = TRUE,

+ vartype = "Sampling", margins = "Frechet", fixed = list(sill = 1),

+ start = list(scale = 1.5, power = 1.2))

R> fextg$param
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power scale

0.9156696 1.7135199

With print(fextg) the summary of the fitting results is returned (omitted here for brevity)
and with fextg$param only the parameter estimates are displayed. The standard errors of
the estimates are computed and specifying vartype = "Sampling" the matrices H and J in
(10) are computed using their sampling version. Note that other correlation models, such as
the Whittle-Matérn or the generalized Cauchy (see Table 1) can also be fitted. The next code
shows how to simulate and fit also the Brown–Resnick and Extremal-t models.

R> bres <- RFsim(coords, corrmodel = "stable", model = "BrowResn",

+ param = param, numblock = 1000, replicates = 30)$data

R> extt <- RFsim(coords, corrmodel = "stable", model = "ExtT",

+ param = c(param, df = 3), numblock = 1000, replicates = 30)$data

R> fbres <- FitComposite(bres, coords, corrmodel = "stable",

+ model = "BrowResn", replicates = 30, varest = TRUE,

+ vartype = "Sampling", margins = "Frechet",

+ start = list(scale = 1.5, power = 1.2))

R> fextt <- FitComposite(extt, coords, corrmodel = "stable",

+ model = "ExtT", replicates = 30, varest = TRUE,

+ vartype = "Sampling", margins = "Frechet",

+ fixed = list(sill = 1), start = list(df = 3, scale = 1.5, power = 1.2))

The first two commands perform simulations from the two respective random fields. Simula-
tions are obtained computing the pointwise maximum (appropriately rescaled) over a number
of replications of the Gaussian or Student-t field. The number of replications is specified with
numblock.

Max-stable RF can also be fitted using the least squares method proposed by Smith (1990).
The following code shows an example with the Brown-Resnick case.

R> wlbr <- WLeastSquare(bres, coords, corrmodel = "stable",

+ model = "BrowResn", replicates = 30, fixed = list(sill = 1))

The extremal coefficient functions in (8) can be computed on the basis of the fitting results.
These are useful for summarizing the extremal dependence. The next code shows how to use
the routine Covariogram for computing the extremal coefficients for the case of the Brown–
Resnick RF.

R> extcbr <- Covariogram(fbres, answer.extc = TRUE)

R> extcbrw <- Covariogram(wlbr, answer.extc = TRUE)

Non-parametric estimators of the extremal coefficient are also available. A useful estimator
is obtained by means of the madogram and F -madogram introduced by Cooley, Neveau, and
Poncet (2006). For instance, the empirical version of F -madogram is

ν̂(h) =
1

2m |Ph|
∑

{z(sj),z(sr)}∈Ph

m∑
i=1

|F{z(i)(sj)} − F{z(i)(sr)}|, j, r ∈ J, h > 0,
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Figure 7: Spatial extremal coefficients versus distances. Gray circles are the estimates of
the pairwise extremal coefficients obtained with the F-madogram. Black points are estimates
obtained with the binned F-madogram. The black line is the true extremal coefficient function.
The red and green lines are estimates of the extremal coefficient obtained with the composite-
likelihood and least-square methods.

where F denotes the unit Fréchet distribution, z(i)(sj) is the ith sample at location sj (simi-
larly for z(i)(sr)), Ph is the set of all the sample pairs {z(sj), z(sr)} whose distances ‖h‖ fall in
the interval (h− ε, h+ ε) with ε > 0 and |Ph| is the cardinality of this set. The binned version
of the estimator is computed for a sequence of distances, h, that are the centers of a series
of equally spaced intervals that divide the range of the pairwise distances. The unbinned or
cloud version is computed with the sequence of observed distances, in this case |P‖sj−sr‖| = 1
for every observed distance ‖sj − sr‖. An estimate of the extremal coefficient is obtained

by ξ̂(h) = {1 + 2ν̂(h)}/{1 − 2ν̂(h)}. The next code shows how to obtain a non-parametric
estimate of the extremal coefficient with the routine EVariogram.

R> fmcbr <- EVariogram(bres, coords, type = "Fmadogram",

+ replicates = 30, cloud = TRUE)

R> fmbbr <- EVariogram(bres, coords, type = "Fmadogram",

+ replicates = 30, numbins = 10)

The pairwise extremal coefficients (first line) and the binned version (second line) with 10
equally spaced bins are computed. With standard R commands, the parametric and non-
parametric estimates of the extremal coefficient can be graphically represented. Figure 7
presents the results. The panels report, for the three max-stable RFs, the evolution of the
estimated extremal coefficients versus the spatial distances. We see that estimates provided by
the binned F -madogram, the CL and the least squares methods are quite similar, as expected.

4. Real data example: Irish wind speed data

We consider daily wind speeds collected over 18 years, from 1961 to 1978, at 12 sites in Ireland
(Figure 8). These have originally been analyzed in Haslett and Raftery (1989). Following
Gneiting, Genton, and Guttorp (2007) we omit the Rosslane station, we consider the square
root transformation of the data and we remove the seasonal component. The latter is esti-
mated by calculating the average of the square roots of the daily means over all years and
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Figure 8: Irish map. The points are the locations where the wind speed data are recorded.

stations and regressing this on a set of annual harmonics. The resulting transformed data,
{z(sj , ti), j = 1, . . . , 11, i = 1 . . . 6574}, is assumed to be a realization from a zero-mean Gaus-
sian spatio-temporal RF. For comparison purposes we also perform ML estimation, then, in
order to reduce the computational time, we focus our analysis on considering the first half of
the year 1962. So, we have 11× 183 = 2013 observations and ML estimation is still feasible,
although very slow. We start the analysis, first estimating non-parametrically the dependence
structure. The next code shows how to estimate the empirical spatio-temporal variogram with
the routine EVariogram.

R> data("irishwinds")

R> coords <- as.matrix(winds.coords[-3, 5:4], ncol = 2)

R> times <- (365 + 1):(365 + 183)

R> data <- winds[times, ]

R> evar <- EVariogram(data, coords, coordt = times, maxtime = 7,

+ distance = "Chor")

If the coordinates of the location sites are given in latitude and longitude, as in this case,
it is possible to compute the chordal or the geodesic distance in km (Banerjee 2005; Nychka
et al. 2014) setting distance = "Chor" or distance = "Geod". Note that only some of the
correlations models described in Table 1 are still valid using the geodesic distance instead of
the euclidean distance. For instance the Matern and the Cauchy models are still valid using
the geodesic distance under some restrictions on the parameters (Gneiting 2013).

For simplicity, setting maxtime we restrict the computation of the spatio-temporal variogram
focusing only on times whose pairwise intervals are smaller or equal to 7 days. Figure 9
reports an illustration of the estimated variogram. The code to reproduce the plots will be
discussed in the next paragraph for comparison purposes with the parametric estimate of the
variogram. The top-left panel shows, with points, the estimated empirical spatio-temporal
variogram (vertical axis) versus spatial distances (horizontal axis) and time intervals (oblique
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Figure 9: Spatio-temporal variogram versus distances and times. The top left and right
panels report the empirical and parametric estimates. The bottom panels show their marginal
temporal and spatial sections for a fixed distance and time. Points represent the emprical
variogram and the lines, the parametric estimate.

axis). Estimates are in matrix format, where each row (column) is a temporal (spatial)
variogram for a given spatial distance (temporal instant). Bottom-left and right panels show,
with dots, respectively a spatial and temporal variogram for the fixed temporal interval equal
to 0 days and the spatial distance equal to 0 km. Both are simply a section of the spatio-
temporal variogram.

We consider now a parametric estimate of the variogram. We focus on the Gneiting (Gneiting
2002) and the double exponential model, see Table 1. The first is a non-separable model for
0 < η ≤ 1, while it is separable for η = 0 and the second is separable. The aim is to investigate
if, for these data, the dependence structure is separable. Observe that, when jointly estimating
all the parameters, the likelihood surface is multimodal, so in order to avoid this we consider
fixed η. However, we estimate the correlation parameters for different values of the separability
parameter η in [0, 1]. Using the FitComposite routine, the covariance models are fitted with
maximum composite, tapering and standard likelihood estimators. The next code illustrates
the case η = 0.5. The code for the other values of η and the double exponential covariance is
similar.
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R> cormod <- "gneiting"

R> fixed <- list(mean = 0, nugget = 0, power_s = 1, power_t = 1, sep = 0.5)

R> start <- list(scale_s = 600, scale_t = 1, sill = var(c(data)))

R> wls <- WLeastSquare(data, coords, coordt = times, corrmodel = cormod,

+ maxdist = 400, maxtime = 7, fixed = fixed, start = start,

+ distance = "Chor", weighted = TRUE)

R> start <- as.list(wls$param)

R> CL <- FitComposite(data, coords, coordt = times, corrmodel = cormod,

+ likelihood = "Marginal", type = "Pairwise", maxdist = 400, maxtime = 4,

+ fixed = fixed, start = start, distance = "Chor", varest = TRUE)

R> start <- as.list(CL$param)

R> TP <- FitComposite(data, coords, coordt = times, corrmodel = cormod,

+ likelihood = "Full", type = "Tapering", taper = "Wendland2_Wendland2",

+ maxtime = 4, maxdist = 400, fixed = fixed, start = start,

+ distance = "Chor", varest = TRUE)

R> start <- as.list(TP$param)

R> ML <- FitComposite(data, coords, coordt = times, corrmodel = cormod,

+ likelihood = "Full", type = "Standard", fixed = fixed, start = start,

+ distance = "Chor", varest = TRUE)

On the fourth line a preliminary estimate with the weighted least square method (Diggle
and Ribeiro 2007) is obtained. This is used as a starting value for the optimization of the
likelihood-based methods. On the sixth line the marginal pairwise likelihood estimation is
performed. With maxdist and maxtime pairs of observations that are more than 400 km far
apart and separated by more than four days, are excluded. On the eight line the tapering
likelihood estimation, using a Wendland space-time separable taper function (Table 2), is
performed. The setting is the same as the CL. This leads to a tapered covariance matrix with
4.4% of no-zero values. On the tenth line ordinary likelihood estimation is performed.

Table 3 presents the estimation results. The three estimation methods provide similar results
and the standard ML method exhibits the lower standard errors as expected. However, the
CL method is computationally the fastest. Indeed, with these data the numerical evaluation
of the standard, tapering and composite likelihood requires respectively an elapsed time of 3.4,
1.1 and 0.05 (the time is computed with the system.time routine of R installed in a machine
with a 2.27 GHz processor and 6 GB of memory). Therefore, it is 68 (22) times faster to
evaluate the composite than the standard (tapering) likelihood. In the sixth column of Table
3, the AIC/CLIC values suggest that with a sample of data, the separable model performs
the best fitting. This stresses that the underlying RF can be considered as the product of
a purely spatial and temporal RF. The next code shows how to compute and graphically
represent the spatio-temporal variogram with the Covariogram routine.

R> Covariogram(CL, vario = evar, fix.lagt = 1, fix.lags = 1,

+ show.vario = TRUE, pch = 19)

Both parametric or nonparametric estimates of the variogram are represented. The top-
right panel of Figure 9 displayes the variogram estimated with the CL. The bottom-left and
right panels show, with the solid lines, an estimate of the spatial and temporal variogram
conditionally to the fixed temporal interval equal to 0 days and the spatial distance equal to
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Method σ2 ψs ψt AIC/CLIC

η = 0
Likelihood 0.35 (0.03) 674 (20) 0.71 (0.02) 223
Composite 0.38 (0.02) 787 (37) 1.22 (0.18) 332979
Tapering 0.38 (0.04) 685 (28) 1.18 (0.08)

η = 0.5
Likelihood 0.37 (0.03) 716 (27) 0.96 (0.05) 231
Composite 0.38 (0.02) 782 (48) 1.15 (0.16) 332991
Tapering 0.39 (0.05) 711 (39) 1.25 (0.10)

η = 1
Likelihood 0.39 (0.04) 774 (52) 1.22 (0.08) 241
Composite 0.38 (0.02) 780 (68) 1.09 (0.15) 333004
Tapering 0.39 (0.05) 736 (58) 1.31 (0.11)

Table 3: Fits of the spatio-temporal Gaussian process with Gneiting models to Irish winds
data. Results are reported for the separability parameter η = 0, 0.5, 1. The first two columns
give the estimation method and the correlation function used. From the third to the sixth
columns the parameter estimates (standard errors) are reported; σ2, ψs, ψt are the sill, the
spatial scale and temporal scale parameters. AIC/CLIC is the information criterion or com-
posite information criterion.

0 km. From the top and bottom panels, we can see by comparing the dots with the lines that
empirical and model-based variogram estimators provide similar results.

Finally the spatio-temporal simple kriging is performed using the estimated Gneiting correla-
tion model (with η = 0). The prediction sets are the ungauged sites within the coastlines of
Ireland for two consecutive times, in particular the days 549 and 550. The next code shows
how to obtain the prediction with the Kri routine.

R> lon <- seq(min(coords[, 1]) - 0.3, max(coords[, 1]) + 0.85, 0.06)

R> lat <- seq(min(coords[, 2]) - 0.3, max(coords[, 2]) + 0.13, 0.06)

R> pr.s <- as.matrix(expand.grid(lon, lat))

R> pr.t <- (times[length(times)] + 1):(times[length(times)] + 2)

R> par <- as.list(c(CL$param, fixed))

R> pr <- Kri(data, coords, coordt = times, corrmodel = cormod,

+ distance = "Chor", loc = pr.s, param = par, time = pr.t)

Figure 10 displays the prediction maps for the two selected days. The plots have been done
with standard R code and using the map routine of the package mapproj (McIlroy, Brownrigg,
Minka, and Bivand 2014). Specifically, the top panels show the prediction maps for the two
consecutive days. We can see that high wind speeds are concentrated between the north-est to
the center of the island, decreasing when approaching the south and west-coast. The bottom
panels show the standard error prediction maps. As expected, we can firstly see that the
standard errors decrease in the parts of the island where the gauging weather stations are
located, second, the standard errors increase from the first to the second predicted day.
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Figure 10: Ireland wind speed prediction (top-panels) and standard error prediction (bottom-
panels) maps for two consecutive temporal instants 549, 550 (left-right). Points denote the
gauging stations where the wind speed is recorded.

5. Conclusion

The composite likelihood is a wide class of estimating functions that generalizes the usual
standard likelihood and includes different alternatives of the latter. The wide range likelihood
versions that it provides makes it a very flexible estimation method that in recent years has
attracted growing interest. There are many statistical fields and applications where it has
been successfully used, see Varin et al. (2011). Spatial and spatio-temporal applications are
among these.

In this paper we have discussed the R package CompRandFld for applying composite likelihood
inferential methods for the analysis of spatial and spatio-temporal data. At the moment,
the code available in this package can serve the community that is interested in statistical
analysis of spatio-temporal Gaussian and binary data, and spatial extremes. We aim to
expand the package in different directions. For example, including other types of composite
likelihoods such as the triwise marginal likelihood, mixture of pairwise marginal and univariate
likelihoods and marginal likelihoods of blocks. In addition, we intend to implement composite
likelihoods for categorical and counting dependent data and extend the code in order to
estimate multivariate Gaussian RFs.
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