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Abstract

Background: The 2009 H1N1 pandemic influenza dynamics in Italy was characterized by a notable pattern: as it emerged
from the analysis of influenza-like illness data, after an initial period (September–mid-October 2009) characterized by a slow
exponential increase in the weekly incidence, a sudden and sharp increase of the growth rate was observed by mid-
October. The aim here is to understand whether spontaneous behavioral changes in the population could be responsible
for such a pattern of epidemic spread.

Methodology/Principal Findings: In order to face this issue, a mathematical model of influenza transmission, accounting
for spontaneous behavioral changes driven by cost/benefit considerations on the perceived risk of infection, is proposed
and validated against empirical epidemiological data. The performed investigation revealed that an initial overestimation of
the risk of infection in the general population, possibly induced by the high concern for the emergence of a new influenza
pandemic, results in a pattern of spread compliant with the observed one. This finding is also supported by the analysis of
antiviral drugs purchase over the epidemic period. Moreover, by assuming a generation time of 2.5 days, the initially diffuse
misperception of the risk of infection led to a relatively low value of the reproductive number 1:24, which increased to 1:48
in the subsequent phase of the pandemic.

Conclusions/Significance: This study highlights that spontaneous behavioral changes in the population, not accounted by
the large majority of influenza transmission models, can not be neglected to correctly inform public health decisions. In fact,
individual choices can drastically affect the epidemic spread, by altering timing, dynamics and overall number of cases.
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Introduction

Among the many factors known to influence the spread of

epidemics across human populations, a central role is played by

the characteristics of the pathogen responsible for the infections

[1,2], human mobility patterns [3–8], the sociodemographic

structure of the population [8,9] and intervention measures

[1,10]. Changes in human behaviors are largely suspected to play

a crucial role as well [11–15]. As mathematical modeling becomes

a powerful tool for decision making both in pre-planning [16–25]

and in real-time situations [26–30], knowing in advance how to

account for spontaneous behavioral changes would greatly

improve the predictive power of epidemic transmission models

and the evaluation of the effectiveness of control strategies.

In March 2009 a new influenza virus emerged in Mexico [31].

Early in the course of the pandemic the population was very

concerned about the event [32,33]. Did this affect the behavior of

the population and, consequently, alter the dynamics of the

epidemic? By analyzing the 2009–2010 Influenza-Like Illness (ILI)

incidence in Italy, as reported to the national surveillance system,

the hypothesis appears plausible that spontaneous behavioral

changes have played a role in the pandemic, contributing to

change the timing of spread and the transmissibility potential. In

fact, after an initial period (September–mid-October 2009)

characterized by a slow exponential increase in the weekly ILI

incidence, a sudden and sharp increase of the growth rate was

observed by mid-October. Over the whole period schools

remained open [34] and only moderate mitigation measures were

enacted (e.g., antiviral treatment of severe cases) [35]. However,

during the initial phases of the epidemic the Italian population has

been exposed to a massive information campaign on the risks of an

emerging influenza pandemic, which can have contributed to alter

the perceived risk. The aim of this study is to investigate the effects

of the perceived risk of infection during the course of the 2009

H1N1 pandemic in Italy.

Here, we propose a new modeling framework accounting

explicitly for the dynamics of behavioral patterns adopted across

the population. The idea is that human behavior is mainly driven

by the evaluation of prospective outcomes deriving from

alternative decisions and cost-benefit considerations. In such a

context, evolutionary game theory represents a rich and natural

framework for modeling human behavioral changes [36–38].

Specifically, different behaviors adopted by individuals are

modeled as different strategies whose convenience is defined by

the balance between their payoff functions. In evolutionary game

theory, due to the dynamic nature of the mechanisms of evolution,
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repeated strategic interactions and changes in the payoff functions

provide insights into adaptive behaviors [37–40]. In epidemic

modeling, this results in explicitly considering the infection

dynamics as the interplay between the disease transmission process

and the spontaneous response of the population, where changes in

human behavior (and in particular in the payoff functions) are

triggered by the epidemic dynamics and vice versa.

Materials and Methods

Data description
In Italy, influenza surveillance system INFLUNET (accessible

at: http://www.iss.it/iflu/) is based on a nationwide voluntary

sentinel network of general practitioners and pediatricians. The

aim is to monitor ILI incidence and to collect information on

circulating strains. Incidence rates are based on the population

served by each reporting physician each week.

As most European countries, Italy has experienced one single

pandemic wave during fall-winter 2009 and no substantial activity

has been detected during the summer [30]. The pandemic has

mainly spread starting since the reopening of schools in mid-

September until mid-December. Over this period, only mild

mitigation strategies, including treatment of the most severe cases

with antiviral drugs [35] and a moderate vaccination program,

were performed. More in detail, the vaccination program started

on mid-October and involved a small fraction of at-risk patients

and essential workers (over the whole course of the pandemic less

than 1.5% of the Italian population was vaccinated [35]). Finally,

in the considered period, schools remained open as regular

holidays were not scheduled [34].

We consider total ILI incidence from week 38 (corresponding to

the reopening of schools after the summer break, when influenza

activity started to be detected by the surveillance system) to 50, 2009.

This allows us to investigate an ‘‘uncontrolled’’ epidemic, not affected

by heavy public health interventions or by school closure. The

number of practitioners involved in the surveillance system over the

considered period varies from 561 to 1,165; consequently, the served

population varies from 767,154 and 1,509,971. These values

guarantee the reliability of the number of weekly reported cases.

The model
The transmission process is based on a Susceptible-Infective-

Recovered (SIR) model where susceptible individuals may adopt

two mutually exclusive behaviors, ‘‘normal’’ and ‘‘altered’’, on the

basis of the perceived risk of infection. Individuals adopting altered

behavior are supposed to be able to reduce the risk of infection by

reducing the force of infection to which they are exposed. This

reduction can be achieved by reducing the number (or the type) of

physical contacts or by adopting self-prophylactic measures aimed

to reduce the transmission probability during contacts. For

instance, a self reduction in the number of contacts can occur

through the avoidance of crowded environments or by limiting

travels. On the other hand, a reduction in transmission probability

can be achieved by washing hands frequently or following cough/

respiratory etiquette, as recommended by the WHO [41].

In the model, individuals can change their behavior spontane-

ously, on the basis of cost/benefit considerations. This phenom-

enon perfectly fits to the language of evolutionary game theory, in

which behaviors adopted by individuals correspond to strategies

played in a suitable game, with certain expected payoffs: the altered

behavior takes the advantage of reducing the risk of infection, but

it is more costly (e.g., because individuals have to limit their

activities). Which behavior is more convenient to adopt clearly

depends on the state of the epidemic. The balance of the payoff

between the two possible behaviors is determined by the perceived

risk of infection, which depends on the cost associated to the risk of

infection and on the perceived prevalence of infections in the

population. The latter is modeled by assuming a fading memory

mechanism (e.g., as in [42,43]) altering the perception of the risk of

infection on the basis of the number of cases occurred over a

certain (past) period of time. The diffusion of strategies in the

population is modeled as an imitation process [38,44] based on the

idea that individuals change strategy as they become aware that

their payoff can increase by adopting another behavior. Denoting

by S, I , R the fraction of susceptible, infective and recovered

individuals respectively and by introducing the variables x,

describing the fraction of individuals adopting the normal behavior,

and M, describing the perceived prevalence of infection in the

population, the system of ordinary differential equations regulating

this process can be written as follows:

_SS ~ {bIS xzq(1{x)½ �
_II ~ bIS xzq(1{x)½ �{cI

_RR ~ cI

_MM ~ bIS xzq(1{x)½ �{hM

_xx ~ x(1{x)(q{1)bIzrx(1{x)(1{mM)S

8>>>>>><
>>>>>>:

where b is the transmission rate; 1=c is the average duration of

infectivity period (corresponding to the generation time); q

represents the reduction of the risk of infection to which

individuals adopting altered behavior are exposed; h weighs the

decay of the perceived prevalence; r essentially represents the

speed of the imitation process with respect to the pathogen

transmission dynamics; m defines the risk threshold for determin-

ing which behavior would represent the most convenient choice.

Briefly, the last equation of the system models the diffusion of the

two different behaviors in the population driven by an imitation/

natural selection process. The first term of the equation accounts for

a natural selection embedded into the transmission process that

favors individuals reducing the risk of infection, while the second

one accounts for an imitation process modeling spontaneous

changes in individual behaviors. These changes occur on the basis

of the difference between the payoffs of the two possible behaviors,

the perceived prevalence, the level of the risk threshold and the

speed of the imitation process which, in general, is different from the

speed of the disease transmission process (as imitation is based on

the diffusion of information rather than on physical contacts

between individuals). Model details are presented in Text S1.

The basic reproductive number R0, which is essentially the

average number of secondary infections that results from a single

infectious individual in a fully susceptible population [1], can be

computed by using next generation technique [45]. The resulting

basic reproductive number is R0~
b

c
xzq(1{x)½ �, which can be

interpreted as a weighted sum of two basic reproductive numbers:

Rn
0~

b

c
, the reproductive number for individuals adopting the

normal behavior (namely the fraction x) and Ra
0~q

b

c
, the

reproductive number for individuals adopting the altered behavior

(namely the fraction 1{x). Therefore, R0 depends on the fraction

of individuals in the population who are currently adopting either

normal or altered behavior.

Model calibration
In order to capture the factors underlying the spread of the 2009

H1N1 pandemic, we fit the proposed model to ILI incidence data

Risk Perception and 2009 H1N1 Pandemic
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by a least-squares procedure. Specifically, the weekly incidence JT

predicted by model simulations can be computed as

JT~
Ð T

T{1
bI(t)S(t) x(t)zq(1{x(t))½ �dt. Thus, for a given

choice of model parameters and of the reporting factor a, the

square error e between predicted and observed incidence can be

estimated as e~
P14

T~1 ZT{aJTð Þ2, where ZT represents the

weekly ILI incidence as reported to the Italian surveillance system

on week T (week T~0 corresponds to week 37, 2009). The

optimization procedure is a random walk stochastic local search

algorithm [46].

According to a serological survey on the Italian population, the

fraction of naturally immune individuals before the beginning of

the pandemic was about 10% [47]. Therefore, the initial fraction

of susceptible individuals in the model was set to S(0)~0:9. The

generation time is assumed 1=c~2:5 days [48–50]. Moreover, the

initial fraction of individuals adopting the altered behavior is

assumed to be x(0)~10{8 (i.e., almost the whole population is

initially adopting the normal behavior). Finally, given the

interdependence between M(0) and m (see the discussion in Text

S1), the value of m is kept fixed to 0.1. All other parameters

(namely, M(0),I(0),r,q,n, b and a) are estimated through the

least-squares fit. A detailed sensitivity analysis of the model is

presented in Text S1.

Two additional models are included in the performed analysis:

the ‘‘classical’’ SIR model and a SIR model assuming time-

dependent transmission rate, which is considered to be a step

function switching between two values at a given time. The initial

fraction of susceptible individuals and the generation time are kept

fixed (as in the model accounting for behavioral changes), while all

other parameters are estimated via model fit. Specifically, for the

SIR model the fitted parameters are the reporting factor, the initial

fraction of infective individuals and the transmission rate; for the

SIR model with time-dependent transmission rate the fitted

parameters are the reporting factor, the initial fraction of infective

individuals, two transmission rates and the time at which the

switch between these two values occurs.

Results

The ILI incidence as reported to the surveillance system during

the 2009 H1N1 pandemic shows two different phases character-

ized by two distinct exponential growth rates, especially apprecia-

ble when data are plotted in a logarithmic scale (see Fig. 1a and its

sub-panel). The ‘‘classical’’ SIR model is not able to catch this

phenomenon (see Fig. 1a) unless considering a time-dependent

transmission rate, switching from a low transmission level during

the first four weeks to a higher level for the rest of the epidemic (see

Fig. 1b). However, this model is not able to explain the motivation

underlying this sudden change in the transmissibility potential.

On the contrary, the model introduced here perfectly fits the

observed ILI incidence (see Fig. 1c) providing a plausible

explanation of the mechanisms responsible for the observed

pattern. Specifically, the estimated parameter configuration

obtained by fitting ILI incidence entails an initial overestimation

of the perceived risk that decreases over time, along with an initial

diffusion of the altered behavior in the population which becomes

replaced by the normal behavior during the course of the epidemic.

In fact, a high level of perceived risk of infection at the beginning

of the pandemic leads the simulated population to adopt the altered

behavior (as in the presence of a well sustained circulation of the

virus) resulting in a growth rate of the epidemic lower than what

would have been observed in a population adopting the normal

behavior. Along with a slow increase in the number of cases, a

decrease in the perceived risk of infection is observed. In fact, the

latter depends on the combination of these two opposite

phenomena: the increase of new infections and the decline of

the perceived prevalence (slowed by the memory mechanism),

which was overestimated in the early phases of the epidemic. As

Figure 1. Comparing observed ILI incidence and model simulations. a Weekly ILI incidence as reported to the surveillance system (green)
and weekly incidence simulated by a ‘‘simple’’ SIR model (blue). Sub-panel shows the same curves in a logarithmic scale. Parameter values assumed in
the simulation are: the generation time 1=c~2:5 days [48–50] and S(0)~0:9, according to a serological survey on the Italian population [47].
Parameter values estimated via model fit are: I(0)~0:000176, a~0:174 and b~0:58. b Weekly ILI incidence as reported to the surveillance system
(green) and weekly incidence simulated by a SIR model assuming a time-dependent transmission rate (blue). Sub-panel shows the same curves in a
logarithmic scale. Assumed parameters are: 1=c~2:5 days and S(0)~0:9. Values of the fitted parameters are: I(0)~0:00126, a~0:167, b(t)~0:496 for
weeks 38–41.58 and b(t)~0:596 for weeks 41.58–51. c Weekly ILI incidence as reported to the surveillance system (green) and weekly incidence
simulated by the proposed model (red). Sub-panel shows the same curves in a logarithmic scale. Assumed parameters are: 1=c~2:5 days, S(0)~0:9,
x(0)~10{8 and m~0:1. The values of the fitted parameters are: M(0)~10:5, I(0)~0:001243, r~66, q~0:84, n~0:005, a~0:169 and b~0:59. In
addition, the estimates of the reporting factor a as obtained by fitting the three models and reported in a, b and c (namely, 17.4%, 16.7% and 16.9%,
respectively) are in good agreement with the range 18%–20.2% estimated in [30].
doi:10.1371/journal.pone.0016460.g001
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the perceived prevalence goes below the risk threshold 1=m, the

normal behavior starts to spread quickly in the population as the

most convenient strategy to be adopted through the subsequent

course of the epidemic. This induces an increase of R0 which leads

to a sudden change in the growth rate of the epidemic. Thus, these

two distinct exponential growth phases in the observed ILI

incidence correspond to two phases in the model: the first one

characterized by the diffusion of the altered behavior in the

population and thus driven by Ra
0, and the second one

characterized by the diffusion of the normal behavior and thus

driven by Rn
0. The best estimate for Ra

0 is 1.24 and for Rn
0 is 1.48

(which correspond to two effective reproductive numbers of 1.12

and 1.33 respectively, given a 10% initial natural immunity to the

2009 H1N1pdm strain in the Italian population [47]). The basic

reproductive number estimated in the phase of the epidemic

characterized by the normal behavior, namely Rn
0, is in good

agreement with the estimates previously obtained for the

2009 pandemic in Italy [30] and in several regions of the world

[28,48–51].

The analysis of the sensibility of the model to changes in

parameter values highlights that the model complies with observed

ILI incidence only if an initial (persistent) diffusion of the altered

behavior in the population is considered (see Text S1). Specifically,

an initial perceived risk of infection above the risk threshold, a

long-lasting memory mechanism (able to maintain the altered

behavior as more convenient over a relevant period of time) and a

fast imitation process (enough to produce a sudden change in the

force of infection) are required. Moreover, model predictions are

robust in terms of final epidemic size (with absolute differences of

the order of 3%), while they are more sensible in terms of timing of

the epidemic. Specifically, small variations in the reduction of the

risk of infection in individuals adopting the altered behavior result in

changing Ra
0 and thus the timing of the epidemic. The same holds

if the initial perceived prevalence and the risk threshold

determining which behavior is more convenient to adopt are

perturbed. On the other hand, no relevant differences appear by

increasing either the average duration of the perceived risk of

infection (i.e., the length of the long-lasting memory mechanism)

or the speed of the imitation process. A further analysis (shown in

Text S1) has revealed that, if the risk of infection is overestimated

during the early phases of the epidemic, the diffusion of the virus

would be slowed down (thus gaining time for vaccine production).

On the other hand, if such overestimation occurs during the

outbreak, a lower peak incidence (and thus a lower burden for

health care centers) and a relevant decline of the final epidemic

size would be observed.

Results reported above support the hypothesis that the mass

media campaign on the risks of an emerging influenza pandemic

performed in the early phases of the epidemic might have induced

a high perceived risk of infection at the beginning of the pandemic,

as it has been highlighted by specific survey studies [32,33]. In

order to investigate if such phenomenon could have been a

peculiarity of the 2009 pandemic, we also analyzed the last three

influenza seasons in Italy. Our analysis, reported in Text S1,

reveals that during the 2006–2007, 2007–2008 and 2008–2009

influenza seasons behavioral changes would not have played a

relevant role in the early phases of the epidemics.

Beyond the previous analysis, the hypothesis of an overestima-

tion of the risk is supported by the temporal pattern of drug

purchases and by sporadic self-imposed school closures. Specifi-

cally, during the 2008–2009 influenza season the maximum

weekly number of antiviral drugs sold was under 2 doses per

100,000 individuals per week, while when the 2009 pandemic

arrived in Europe (end of April) antiviral drug purchases

immediately jumped to more than 12 doses per 100,000
individuals per week [52]. Despite no substantial ILI activity has

been detected in Italy during the summer, the purchase of antiviral

drugs reached a peak of about 35 doses per 100,000 individuals

per week at the end of July. As shown in Fig. 2a and 2b, during fall

the purchase of antiviral drugs complies with the observed ILI

temporal dynamics, while until mid-October an excess of antiviral

drug purchase can be observed, supporting the hypothesis of an

initial overestimation of the risk of infection. On the contrary, the

sales of pain killers (which are commonly used to relieve pain due

to mild symptoms) have followed a completely different pattern:

during the summer the sales have been (nearly) constant, then they

started to increase from the middle of September [52]. The

purchase of antiviral drugs might have been amplified by the

Figure 2. Risk perception, antivirals purchase and reporting factor. a Weekly purchase of antiviral drugs (light blue, scale on the left axis)
and weekly ILI incidence as reported to the surveillance system (green, scale on the right axis) during the 2009–2010 pandemic in Italy. b Light blue
points (scale on the left axis) represent the weekly excess of the purchase of antiviral drugs. The latter is defined as the difference between the actual
and the expected amount of antiviral drugs purchased (which is assumed to be proportional to ILI incidence, and the proportionality constant is
computed as the number of antivirals purchased divided by the ILI incidence averaged over weeks 43–51, i.e. in the period of sustained transmission).
Light blue line represents the best linear model fit to the excess of purchased antivirals. Horizontal black line represents the threshold over which the
number of antivirals purchased is larger than the expected one. Grey area represents the maximum and the minimum excess of antiviral drugs
purchased over the weeks 43–51. Red points (scale on the right axis) represent the perceived prevalence of infection simulated by the model
parameterized as in Fig. 1c. c Weekly reporting factor estimates that enable the simple SIR model (parameters as in Fig. 1a) to exactly fit the reported
ILI incidence. The horizontal gray line represents the average reporting factor as computed over the weeks 42–50.
doi:10.1371/journal.pone.0016460.g002
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concern about the pandemic possibly thanks to the information

campaign about the use of antivirals for treating H1N1 infections.

Moreover, from the end of September to the beginning of

October, a few examples of reactive school closure have been

documented [53–56]. Such school closures were ‘‘self-imposed’’ by

the scholastic board or suggested by local authorities (at

municipality level). However, these sporadic closures can hardly

be thought as the only responsible for the low transmission

observed during the early phases of the epidemic. These two

examples, however, provide empirical evidence that a high risk for

the ongoing pandemic influenza has been perceived by the Italian

population and that individuals have actively performed sponta-

neous defensive response measures aimed to reduce the risk of

infection.

Behavioral changes, though not directly affecting the transmis-

sion process, can also be relevant from an epidemiological

perspective. For example, as well known by epidemiologists, a

high perceived risk during an epidemic can increase the

notification rate, especially if the surveillance system is based on

consultations. However, such phenomenon does not seem to be

able to explain (alone) the observed pattern. In fact, a simple SIR

model, with a time-dependent reporting factor, can capture ILI

incidence during the initial phase of H1N1 pandemic only by

considering extremely large values of the reporting factor (even

above 100%, see Fig. 2c). Similar results have been obtained by

investigating a dataset combining results from the virological and

epidemiological surveillance systems which allowed the estimation

of a theoretic lower bound of the number of H1N1pdm infections

in Italy (see Text S1).

Finally, in order to increase model realism, a latent class of

individuals can be added to the proposed model. However, as

shown in Text S1, qualitative results do not substantially change:

model fit is still in excellent agreement with ILI incidence data.

This result confirms that the essential dynamics can be captured

by considering the SIR-version of the proposed model since the

latent period of influenza is quite short. Nonetheless, in other

contexts, the inclusion of a latent class may remarkably affect the

transmission dynamics.

As a matter of fact, if changes in human behavioral patterns

(such as self-protection) are not taken into account, two opposite

outcomes can be observed. Firstly, estimates of the growth rate

based on the observations during the early phases of the epidemic

may lead to an underestimation of the transmissibility potential of

the disease and thus to underrate the impact of the epidemic.

Secondly, predictions based on robust available estimates of the

reproductive number (e.g., taken from the analysis in countries

where the epidemic is already well sustained) would lead to

overestimate the growth rate of the epidemic during its early

phases, resulting in turn in predicting a faster spread than the

actual one. For instance, by using a SIR model, accounting for the

best parameter estimates as obtained by fitting the entire epidemic

but initializing the system with the actual number of cases at the

beginning of autumn 2009 (namely on week 38), the simulations

reach the epidemic peak four weeks in advance with respect to the

actual pandemic (see Fig. 3). A similar result has been observed

also in [30], where - using a model not accounting for behavioral

changes in the population - the epidemic peak has been predicted

two weeks in advance with respect to the actual value.

Discussion

A high level of the perceived risk at the beginning of the 2009–

10 pandemic is largely suspected, as well as its effect in slowing the

epidemic spread. Our aim here is to validate this hypothesis by

showing that spontaneous behavioral changes in the population

might have played a central role in the early phases of the

pandemic in Italy. Specifically, ILI incidence shows a low (though

exponential) growth, followed by a sudden change in its growth

rate starting from week 42. Such pattern can hardly be captured

by classical models. On the contrary, the proposed approach is

able to reproduce it by explicitly modeling spontaneous behavioral

changes in the population. Our analysis is supported by some

empirical evidence (e.g., the purchase of antiviral drugs) and

reveals that a high perceived initial risk of infection could be a

plausible explanation for such phenomenon.

This study represents a first step for the estimation of the

quantitative and qualitative effects of spontaneous behavioral

changes in the population on the spread of epidemics. We believe

it provides a promising approach, based on evolutionary game

theory, for including the behavior dynamics into epidemic

transmission models. The proposed approach is general enough

to be used for describing any kind of disease where spontaneous

behavioral changes could play a relevant role. Similar approaches

have been previously used to investigate individual choices in non-

compulsory vaccination programs [42,44,57–59].

As shown in this study, behavioral changes (e.g. induced by

mass media information campaigns) can significantly affect the

epidemic spread both qualitatively (e.g., by altering the epidemic

dynamics) and quantitatively (e.g., by substantially slowing the

epidemic spread or by determining different final epidemic sizes).

Therefore, considering an approach accounting for spontaneous

behavioral changes would be helpful for giving insight to public

health policy makers, for planning public health control strategies

(e.g., vaccination) and better estimating the burden for health care

centers over time. Moreover, this study highlights that the

estimation of fundamental epidemiological parameters (and in

particular the reproductive number) could be largely affected by

human behaviors.

At the current stage, the proposed model could hardly be used

for real time predictions since our knowledge on plausible values of

model parameters related to human behavior is only preliminary.

Figure 3. The impact of risk perception. Weekly ILI incidence as
reported to the surveillance system (green) and incidence simulated by
the model (red; parameter values as in Fig. 1c). Weekly incidence
simulated by the ‘‘classical’’ SIR model (blue; parameter values as in
Fig. 1a but for I(0)~0:001243).
doi:10.1371/journal.pone.0016460.g003
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Further investigations on the 2009–2010 pandemic dynamics in

other countries or on other epidemics where behavioral changes

have been suspected (e.g., the 2002–03 SARS outbreak) have to be

performed in order to gain a major consciousness on how such

mechanisms work.

Supporting Information

Text S1 In this appendix model derivation and its SEIR
variant are presented along with an in-depth sensitivity
analysis. Moreover, an investigation of past influenza seasons

and of virological surveillance data is carried out.’’

(PDF)
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