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Abstract

We are interested in a specific aspect related to modelling disease onset, i.e. the study of family-
specific risk. Generally, quantifying the family-specific risk of developing a disease is crucial to
improve the patient’s survival, and healthcare data provide an essential tool to estimate such quan-
tity. Specifically for breast cancer, early detection is particularly important to increase the chances
of a successful treatment. In this setting, risk estimation allows for the identification of subjects at
higher risk of developing breast cancer, so that they can be the target of tailored and more inten-
sive screening and prevention strategies. We take families as our statistical units of interest, and
we assume that these units belong to different risk groups of developing the disease. We inves-
tigate models for the age at breast cancer onset, with a structure of familiar dependence among
survival times through the risk.

In Chapter 1, we compare cure rate models with a continuous Gamma frailty to the conven-
tional Cox model in terms of risk prediction accuracy. In Chapter 2, we focus exclusively on cure
rate models using a binary frailty to model the age at onset. In Chapter 3 we move to the study
of the heritability of longevity. Similarly to the previous chapters, we assume that families have
different “risk” in terms of life duration. We carry out our analysis through simulation studies and
apply the continuous frailty model from Chapter 1 to the available data sourced from the Multi-
Generational Breast Cancer Swedish registry. We conclude with an exploration of most powerful
tests for survival data with right censoring in Chapter 4.
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Introduction

We focus on a specific aspect of modelling disease onset, namely the investigation of family-specific
risk. Quantifying the family-specific risk of developing a disease may be crucial to improve early
detection of the disease and consequently patient survival. Healthcare datasets provide an essen-
tial tool to estimate family-specific risk, and we develop and employ specific methods to estimate
this risk from the available data. We focus on breast cancer onset, although the problem can be
generalized to a wide range of diseases. In the context of breast cancer development, risk esti-
mation plays a crucial role in identifying families, and thus individuals, who are at high risk of
developing breast cancer. We assume that individuals who belong to the same family share a com-
mon from-birth risk of being diagnosed with breast cancer, and that such family-specific risk is
unchanged from birth and never observable. Because of the latent nature of the risk we call it
the frailty risk. Once we identify the highest-risk families, that are those with highest values of
the estimated frailty risk, we may target female members of those families for tailored and more
intensive screening and prevention strategies, which can improve their chances of a successful
treatment and prognosis.

One common approach to stratify subjects into different risk groups of developing breast can-
cer is to consider the risk factors associated to breast cancer development. In our motivating data,
one among the strongest risk factors is available: the breast cancer family history, defined as the
indicator of having observed at least one family member who has already experienced breast can-
cer diagnosis. Specifically, the family history indicator 𝐹𝐻 (𝑡) takes value one when, by age 𝑡 of the
subject, at least one family member has been diagnosed with (invasive) breast cancer, otherwise
it takes value 0. This indicator is based on the notion that individuals with a positive (𝐹𝐻 (𝑡)𝑝 = 1)
family history are at higher risk. It is common to insert this simple indicator into a model with
the aim of splitting families into two risk groups: the low-risk group and the high-risk group of
developing breast cancer. This approach motivates the categorization of families into two latent
risk groups, allowing the frailty risk to therefore be binary with two levels 0/1, for low and high-
risk groups respectively, as we illustrate in Chapter 2. On the other side the family history, and
consequently the binary frailty risk, cannot capture the complex nature of such a phenomenon.
This motivates our main contribution of this thesis, that is the use of continuous frailty risk mul-
tivariate cure-rate survival models in this setting, as we illustrate in Chapter 1. Specifically, the
continuous frailty risk is assumed to be distributed according to a Gamma distribution with pa-
rameters (𝑠ℎ𝑎𝑝𝑒 = \, 𝑟𝑎𝑡𝑒 = \), with \ the frailty parameter. We carry out a comparative analysis
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to assess that our proposed model as expected, outperforms the other models under analysis in
terms of inference precision, prediction accuracy, and “explanability” of the phenomenon. The
multivariate part of our proposed model refers to jointly modelling the family female member
times-to-event (where the event of interest is breast cancer onset) in contrast to modelling only
one subject per family, as the Univariate frailty Cure-Rate model or the Univariate Cure-Rate with
the FH covariate models do, as we develop in Chapter 1. The Cure-Rate component refers to the
peculiar structure that the survival function takes, based on the assumption that not all women
will experience breast cancer onset no matter for how long they will be followed. The proportion
of women that won´t experience breast cancer onset is called the “cured” fraction which here will
however consist of “non-cases”. The cured fraction enters survival function formula, making it not
proper anymore. Through the Multivariate frailty Cure-Rate model our novel contribution consists
of involving the Cure-Rate baseline survival function in a Lehmann structure that unites the differ-
ent family-specific frailty risk survival functions. In Chapter 1 we also discuss some related aspects
involving the nature of the model and its identifiability.

The Multivariate frailty Cure-Rate model allows us to estimate the survival distribution of
“cases”, that are defined as women who will eventually experience breast cancer onset, and to
capture a peculiar tail behaviour by estimating the cured fraction. These measures contribute to
accurately describe breast cancer development in the population of interest. In contrast, for ex-
ample, the already known and developed semiparametric Multivariate frailty Cox model would
not allow us to estimate cure rates directly. Moreover, we show that, as expected, if the parametric
assumptions hold, Multivariate frailty Cure-Rate model achieves a level of prediction accuracy on
par to the Multivariate frailty Cox model.

Modelling a continuous frailty risk allows us to capture the complexity of the phenomenon of
the breast cancer development and deal with this problem in a real dataset, beyond simulation
studies. In this chapter we provide some preliminary results obtained from the analysis of the
Swedish Multi-generational dataset. On the other side, modelling a binary frailty risk might seem
simpler and more direct, but with the drawback of not capturing the real differences in risk among
families. Splitting families into two categories and identifying the higher-risk families remains
clinically convenient, and we have included a section in Chapter 1 discussing the transition from
infinitely many values of the risk to only two groups by splitting the families based on a threshold.

We elaborate on this in Chapter 2 as the use of the family history 𝐹𝐻 motivates the use of
a binary frailty risk to stratify families. Indeed here, the comparison between the Multivariate
frailty Cure-Rate model and the Univariate frailty Cure-Rate to the Univariate FH Cure-Rate model
is more meaningful than in the previous chapter thanks to the same binary nature of the latent risk
and the risk factor 𝐹𝐻 used as its replacement. Nevertheless, the Univariate FH Cure-Rate model
may be not accurate in explaining breast cancer development, and so may be the Univariate frailty
Cure-Rate model. Our results confirm and quantify how the Multivariate frailty Cure-Rate model
outperforms the other two models in terms of accuracy in risk prediction.

In Chapter 3 we move away from the cure rate structure, and we explore the study of family-
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specific frailty risk of death or, in more optimistic words, the heritability of longevity within fami-
lies. We thus assume that families belong to different groups of life expectancy according to their
common genetics (internal factors) and environmental and behavioural setting (external factors).
Similarly to the first two chapters, the focus in on posterior risk prediction through estimation of
the posterior risk distribution. The novel contribution here is the use of a classification algorithm
that operates to compute the posterior distribution of the risk of mortality. The algorithm is applied
to simulation scenarios. Beyond contributing to the explanation of heritability of longevity, these
studies address families with the highest risk of death to strategies of clinical prevention through
screening for diseases and behavioural changes.

As a side study, in Chapter 4 we explore the related issue of obtaining the most powerful (MP)
tests for survival data with and without right censoring. Under the proportional hazards assump-
tion, we aim to decide from an i.i.d. sample of survival times whether the population survival
function is governed by a known survival function denoted as 𝑆0(𝑡), rather than by an unknown
survival function denoted by 𝑆1(𝑡) = [𝑆0(𝑡)]𝛽 , with 𝛽 not equal to one. This is linked to the other
chapters through the same wider aim of identifying the risk membership groups of individuals.

To better understand aims, findings and connections between the chapters of the thesis Tables
1, and 2) which briefly summarize the work done.

Table 1: Connections among the chapters.

Lehmann family Survival function Event of interest Frailty risk

Chapter 1 ✓ Cure-Rate Breast Cancer onset Continuous
Chapter 2 ✓ Cure-Rate Breast Cancer onset Binary
Chapter 3 ✓ Traditional Death Binary/Continuous
Chapter 4 ✓ Traditional Death Binary

Table 2: Aims and findings.

Aims and findings

Chapter 1 The Multivariate continuous frailty Cure-Rate model outperforms the others.
Chapter 2 The Multivariate binary frailty Cure-Rate model outperforms the others.
Chapter 3 An algorithm for risk prediction has been developed.
Chapter 4 Study of MP test in PH non-cure rate survival models.
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Chapter 1

An Application of risk prediction
models to the Swedish
Multi-Generational Breast Cancer
Registry data

Joint work with Kamila Czene.1

1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77, Sweden, email:
kamila.czene@ki.se.
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We aim to study a specific aspect of the breast cancer onset: family-specific risk.
We assume that the family-specific risk of developing breast cancer is latent and un-
changed from birth. Our objective is to identify the highest-risk families, i.e. those
with the highest values of family-specific risk, and target them towards more intensive
screening and prevention strategies to enhance the probability of successful treatment.
In contrast with the risk prediction models from the literature which include risk fac-
tors associated to breast cancer, we develop a parametric Multivariate frailty Cure-Rate
survival model that takes into account the subjects as part of a family. This model in-
corporates a cure-rate component, allowing us to identify the fraction of the population
not susceptible to breast cancer (the “cured” fraction), shedding light on the magnitude
of the phenomenon of breast cancer development within the population. As expected,
in simulations, our model shows high accuracy in risk prediction when compared to
the semiparametric counterpart: the Multivariate frailty Cox model.

We conduct a comparative analysis with other models, including Cox models and
models involving a risk factor associated to breast cancer: the indicator defined as a
covariate that indicates the presence of family history. Our comparison is illustrated
using simulation studies and a real case dataset from the Multi-Generational Swedish
Breast Cancer registry. Our assessment criteria include accuracy in risk prediction, as
measured by the area under the ROC curve (AUC), and Harrell’s Concordance index.

Our findings not only highlight the crucial role of incorporating complete family in-
formation in identifying high-risk families, in contrast to the limited utility of a family
history indicator, but also demonstrates that the Multivariate frailty Cure-Rate model
can elucidate the dynamics of breast cancer development within the population, by
directly estimating the fraction of “cured” (i.e. “non-cases”) subjects and the distribu-
tion of breast cancer cases, thus combining explanation and prediction performance.
keywords: breast cancer, family history, frailty models, risk prediction
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1.1 Introduction

Breast cancer risk prediction models have been extensively developed to tailor screening and pre-
vention strategies. Several subject-specific risk factors associated to breast cancer have been in-
volved to explain the variability of the breast cancer development and improve the predictive
power of many predictive models. For example among three of the main references in the lit-
erature, there is Gail [11] that uses the number of first-degree relatives who experienced breast
cancer to predict the long-term probability of developing breast cancer. Rosner and Colditz that
[31] use, among the others, several reproductive covariates as the age at menarche, the age at
menopause, and the age at childbirth to predict the incidence of breast cancer over a specified time
period. And finally, Tyrer and Cuzick [40] have the same aim of predicting the subject-specific risk
to develop breast cancer over a specific time period by accounting for risk factors, like reproduc-
tive covariates, family history, mammographic breast cancer density (MD) [36], body mass index
(BMI), and life-style covariates. What we notice from the the aforementioned models is that they
always model subject-specific time-to-event. The limitation here is that they include the hereditary
component of breast cancer only through subject-specific covariates. For example, the number of
first-degree breast cancer cases is a limited measure of the complete breast cancer history in a
family, as it does not allow us to know the specific history of those cancers.

Different from the others, the BOADICEA model [1, 3, 2, 37] tried to directly incorporate the
hereditary component of breast cancer, by inferring a subject-specific genetic latent quantity, the
polygenic component, that consists in the contribution of several genetics mutations with a singu-
lar small effect, on the disease development. They aim to estimate the familial risk of developing
breast cancer for predicting cancer risk according to the family history of the disease and other
risk factors. The BOADICEA is the most efficient tool for breast cancer risk prediction seen so far.
Nevertheless, it is a complex tool that requires access to detailed subject-specific genetic and fam-
ily history information. We aim to create a tool that is at the same time efficient but also easy to
understand and use with accessible data.

Our novel contribution is found in retrieving the familiar relationship between subjects to
jointly model subject-specific time-to-events within families. This allows us to know both the spe-
cific history of breast cancer cases and the family history.

The available data allows us to jointly model the times-to-breast cancer onset under the con-
ditional independence assumption given the family-specific frailty risk. We aim to ultimately in-
fer the hereditary susceptibility to breast cancer by estimating the posterior distribution of the
family-specific frailty risk and predicting the risk. This allows us to target high-risk families that
are those with a higher value of the frailty risk. This aims to address the highest-risk families to
specific screening and prevention strategies. Also, it is worth noting that we can infer the poste-
rior distribution of the family-specific frailty risk also for women not included in the initial dataset.
Therefore, it is crucial for new patients to provide familial breast cancer information to obtain a
reliable estimate of the probability of belonging to one of the highest-risk families.

We call our model the Multivariate frailty Cure-Rate model where “multivariate” refers to
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jointly modelling the times-to-event within families, in contrast to “univariate” where the subject-
specific time-to-event is modelled; “frailty” refers to the frailty risk given its latent nature; and
“cure-rate” to the peculiar structure that we give to the survival function as we assume that not all
women will experience the breast cancer onset eventually.

A comparative analysis is conducted to evaluate the benefits of using the Multivariate frailty
Cure-Rate model. We start from a model with includes a strong risk factor associated to breast
cancer development: the first-degree family history indicator. This takes value one if at least one
family member has experienced the breast cancer onset, or zero if none have, and it can be mea-
sured either at the end of the follow-up period or as time-varying during the follow-up. This model
motivates the use of univariate models, such as also the Univariate frailty Cure-Rate model, that is
the univariate counterpart of the Multivariate frailty Cure-Rate model. Lastly, also the known and
widespread Cox model, in several of its forms, is included in the comparative analysis to assess that
the predictive power of the Multivariate frailty Cure-Rate model reaches the same accuracy of the
Multivariate frailty Cox model. Furthermore the Multivariate frailty Cure-Rate model, at contrary
of the Multivariate frailty Cox model, reaches higher precision in inference and explanation of the
phenomenon by estimating the cured fraction and the distribution of breast cancer cases.

Section 1.2 provides an overview of the background of the setting, and the deep description
of the specific models employed in the analysis, and in Section 1.3 we focus on the procedure of
predicting the posterior risk. The simulation results are presented in Section 1.4, while the findings
from the real case dataset, the Multi-Generational Swedish Breast Cancer registry, are discussed
in Section 1.5.

1.2 Model specification

We model the age (in years) 𝑇 of breast cancer onset, where the conditional hazard function is
denoted by _𝑟 (𝑡) = _ (𝑡 | 𝑟), where 𝑅 = 𝑟 indicates the frailty risk.

The Univariate frailty model [8] allows the hazard function to depend on the frailty quantity 𝑅
to capture the unobserved heterogeneity among subjects. The conditional hazard function at time
𝑡 is given by

_𝑟 (𝑡) = 𝛼(𝑟)_0(𝑡),

where 𝛼(𝑟) can be any continuous function of the risk, and _0(𝑡) is the baseline hazard function
corresponding to the value of the risk 𝑟 such that 𝛼(𝑟) = 1.

In presence of a vector of subject-specific covariates 𝑥 for a subject, the frailty risk explains the
unobserved heterogeneity that the covariates are not able to capture. The conditional (subject-
specific) hazard function at time 𝑡 for the subject, with frailty risk 𝑟, results

_𝑟 (𝑡) = 𝛼(𝑟)_0(𝑡; 𝑥).

One can choose several form of the function 𝛼(𝑟), as a polynomial form, an exponential form,
or other (non-negative) forms. One may implement a hazard function that is linearly dependent
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on the frailty, i.e.
_𝑟 (𝑡) = 𝑟_0(𝑡; 𝑥)

[8, 29]. Notice that this readily coincides with the model specification, known also as Lehmann
structure, given by

Λ𝑟 (𝑡) = 𝑟Λ0(𝑡; 𝑥), 𝑆𝑟 (𝑡) = [𝑆0(𝑡; 𝑥)]𝑟 ,

where Λ indicates the cumulative hazard function, and 𝑆 indicates the survival function. Notice
that for proving the model identifiability, E(𝑅) = 1 is usually assumed and allows by the frailty
risk distribution.

In the Multivariate frailty model, the subject-specific hazard function has the same equation
as in 1.2, but the frailty risk 𝑟 is considered shared among members of the same family. What
changes is that one need to compute also the the family-specific joint survival function. This last
is obtained under the conditional independence assumption [30]. Consider the case with only two
women belonging to the same family. Let 𝑇1 = 𝑡1 and 𝑇2 = 𝑡2 be the times-to-event of the two
women, with survival function 𝑆1 and 𝑆2 from family 𝑖, with 𝑟𝑖 be their family-specific frailty risk.
By the conditional independence assumption one has that the joint survival function factorizes
conditional to the frailty risk:

𝑆𝑟 (𝑡1, 𝑡2)
𝑇1⊥𝑇2 |𝑅

= 𝑆1(𝑡1 | 𝑟)𝑆2(𝑡2 | 𝑟),

which, in the case of equality between the survivals, reduces to

𝑆𝑟 (𝑡1, 𝑡2)
𝑇1⊥𝑇2 |𝑅

= 𝑆𝑟 (𝑡1)𝑆𝑟 (𝑡2) = [𝑆0(𝑡1)]𝑟 [𝑆0(𝑡2)]𝑟 = [𝑆0(𝑡1)𝑆0(𝑡2)]𝑟 = [𝑆0(𝑡1, 𝑡2)]𝑟 .

Moreover, one case compute the unconditional joint survival function which is equal to

𝑆12(𝑡1, 𝑡2) =
∫ ∞

0
𝑆12(𝑡1, 𝑡2 | 𝑟)𝑔 (𝑟)𝑑𝑟 =

∫ ∞

0
𝑒−𝑟 (Λ01 (𝑡1 )Λ02 (𝑡2 ) )𝑔 (𝑟)𝑑𝑟

= L𝑔 (Λ01(𝑡1)Λ02(𝑡2))

where L𝑔 (𝑟) is the Laplace transform of the density function 𝑔 (𝑟) of 𝑅 evaluated at Λ01(𝑡1)Λ02(𝑡2).
To obtain the explicit form of 𝑆12(𝑡1, 𝑡2) one should specify 𝑔 (𝑟), that is typically a Gamma or Log-
normal distribution. This framework can be easily extended to more than two subjects [16].

Now, we make the notation more complex to explore the formal context where we tackle the
problem in-depth.

Let 𝑖 = 1, . . . , 𝑛 identify the family and the main subject of a family, and {𝑚, 𝑠1} to identify
the two family members “mother” and “first sister”, respectively. The generalization of this to
families with more than three members is straightforward. The observed survival data is 𝑋 =(
𝑋1, . . . , 𝑋𝑛

)𝑇 , where 𝑋 𝑖 = (𝑥𝑖 , 𝑥𝑠1𝑖 , 𝑥𝑚𝑖)𝑇 . For the generic subject 𝑖, 𝑥𝑖 = (𝑥𝑖 = min(𝑡𝑖 , 𝑐𝑖), 𝛿𝑖)𝑇 ,
𝛿𝑖 = I(𝑡𝑖 ≤ 𝑐𝑖) following the usual notation where 𝑡𝑖 indicates the survival time, and 𝑐𝑖 indicates
the administrative (independent) censoring time, both measured from the same origin, that in our
case is the birth 𝑏𝑖 . The notation for the other family members is obtained by having 𝑥, 𝑡, 𝑐, 𝑏,
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and 𝛿 be followed by 𝑚, and 𝑠1. If subject 𝑖 does not have a sister, then the sister birthday is set as
𝑏𝑠1𝑖 = +∞ and consequently the time-to-event is 𝑡𝑠1𝑖 = +∞. The distinction between mother and
sister is not strictly needed here as we assume that their time-to-event distributions are equal but
it will make the extension to more complex models easier.

We extend the Lehmann structure in terms of the survival functions 𝑆𝑟 (𝑡) = [𝑆0(𝑡)]𝑟 to the
Cure-Rate model. We call this model the Lehmann Cure-Rate (LCR) model obtained by applying
the Lehmann power transformation to a Cure-Rate (CR) survival function

𝐶𝑅 : 𝑆0(𝑡) = 𝑝 + (1 − 𝑝)𝑆(𝑡)

𝐿𝐶𝑅 : 𝑆𝑟 (𝑡) =
[
𝑝 + (1 − 𝑝)𝑆(𝑡)

]𝑟
, 𝑟 > 0,

with 𝑝 the cured fraction, and 𝑆(𝑡) a proper survival function which describes the time-to-event
distribution of the cases, which are the subjects who will eventually experience the event, with
some parameters 𝛾. Thus, the time-to-event of cases do not admit the value +∞, and their survival
function is proper, i.e. lim𝑡→+∞ 𝑆(𝑡) = 0. Note that for a fixed value 𝑟, the survival function 𝑆𝑟 (𝑡)
also defines a Cure-Rate model. Indeed, lim𝑡→+∞ 𝑆𝑟 (𝑡) = 𝑝𝑟 , and 𝑆𝑟 (𝑡) can thus be written as

𝑆𝑟 (𝑡) = 𝑝𝑟 +
(
1 − 𝑝𝑟

)
𝑆𝑟 (𝑡), (1.1)

with proper conditional survival function for the cases equal to

𝑆𝑟 (𝑡) =
[
𝑝 + (1 − 𝑝)𝑆(𝑡)

]𝑟 − 𝑝𝑟

1 − 𝑝𝑟
, (1.2)

and proper conditional density function for the cases equal to

�̃�𝑟 (𝑡) = − 𝑑

𝑑𝑡
𝑆𝑟 (𝑡) =

1 − 𝑝

1 − 𝑝𝑟
𝑟
[
𝑝 + (1 − 𝑝)𝑆(𝑡)

] (𝑟−1)
�̃� (𝑡). (1.3)

Recall that the cure-rate models as in 1.1 refers to survival random variable 𝑇 with improper
cumulative distribution function. Indeed, we have that 𝑃(𝑇 = +∞) = 𝑝 > 0, and also a proper
density function does not exist. If 𝑆0(𝑡) = 𝑝 + (1 − 𝑝)𝑆(𝑡) follows a cure-rate structure, we have

lim
𝑡→+∞

𝑆0(𝑡) = lim
𝑡→+∞

(𝑝 + (1 − 𝑝)𝑆(𝑡)) = 𝑝 > 0. (1.4)

Suppose that a proper density function 𝑓 (𝑡) exists, so that 𝑆0(𝑡) =
∫ ∞
𝑡

𝑓 (𝑢)d𝑢 and
∫ ∞
0 𝑓 (𝑢)d𝑢 = 1.

Since I(𝑠 ≥ 𝑡) 𝑓 (𝑠) ≤ 𝑓 (𝑠) ∀𝑠 ≥ 0 and
∫ +∞

0
𝑓 (𝑠)d𝑠 = 1, one has

0 ≤
∫ +∞

0
I(𝑠 ≥ 𝑡) 𝑓 (𝑠) ≤

∫ +∞

0
𝑓 (𝑠)d𝑠 = 1. Then by the DCT [41],

lim
𝑡→+∞

𝑆0(𝑡) = lim
𝑡→+∞

∫ +∞

𝑡
𝑓 (𝑠)d𝑠 = lim

𝑡→+∞

∫ +∞

0
I(𝑠 ≥ 𝑡) 𝑓 (𝑠)d𝑠

𝐷𝐶𝑇
↓
=

∫ +∞

0
lim
𝑡→+∞

[I(𝑠 ≥ 𝑡) 𝑓 (𝑠)]d𝑠 = 0.

Hence lim𝑡→+∞ 𝑆0(𝑡) = 0, which contradicts 1.4. Additional comments on the cure-rate structure
and PH assumption can be found in Appendix A.1.

We now specify the models and their likelihood that we will use later for the comparative
analysis.
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1.2.1 Models

In the literature we can find the use of the family history indicator as a strong risk factor associated
to breast cancer. We use the family history as an indicator of the risk of developing breast cancer
within a family. The family history indicator 𝐹𝐻 has value zero until the first case of breast cancer
is observed in the family, after which it takes the value one. We thus develop a Univariate 𝐹𝐻
Cure-Rate model which includes the covariate 𝐹𝐻 . Notice that the survival function depends on
the baseline covariate 𝐹𝐻 , and it is given by

𝑆𝐹𝐻 (𝑡) = 𝑆0(𝑡) (1− 𝑓 ℎ)𝑆0(𝑡) 𝑓 ℎ𝛽 = 𝑆0(𝑡) 𝑓 ℎ(𝛽−1)+1 = [𝑝 + (1 − 𝑝)𝑆(𝑡)] 𝑓 ℎ(𝛽−1)+1

or, 𝑆𝐹𝐻 (𝑡) = 𝑝 𝑓 ℎ(𝛽−1)+1 + (1 − 𝑝 𝑓 ℎ(𝛽−1)+1)𝑆𝐹𝐻 (𝑡)

with 𝑆𝐹𝐻 (𝑡) =
[𝑝 + (1 − 𝑝)𝑆(𝑡)] 𝑓 ℎ(𝛽−1)+1 − 𝑝 𝑓 ℎ(𝛽−1)+1

(1 − 𝑝 𝑓 ℎ(𝛽−1)+1)
,

and 𝑓𝐹𝐻 (𝑡) = (1 − 𝑝 𝑓 ℎ(𝛽−1)+1) �̃�𝐹𝐻 (𝑡) = ( 𝑓 ℎ(𝛽 − 1) + 1) (1 − 𝑝) �̃� (𝑡) [𝑝 + (1 − 𝑝)𝑆(𝑡)] 𝑓 ℎ(𝛽−1) ,

with �̃�𝐹𝐻 (𝑡) = −𝜕𝑆𝐹𝐻 (𝑡)
𝜕𝑡

=
( 𝑓 ℎ(𝛽 − 1) + 1) [𝑝 + (1 − 𝑝)𝑆(𝑡)] 𝑓 ℎ(𝛽−1) (1 − 𝑝) �̃� (𝑡)

(1 − 𝑝 𝑓 ℎ(𝛽−1)+1)
,

for 𝐹𝐻 = 𝑓 ℎ, and with 𝑆𝐹𝐻 (𝑡) the survival function of cases . The parameter 𝛽 identifies the
average risk difference between the group of families with a negative family history (𝐹𝐻 = 0),
and those families with a positive family history (𝐹𝐻 = 1). Notice that when 𝐹𝐻 = 0 the survival
function reduces to the baseline survival function 𝑆𝐹𝐻 (𝑡; 𝐹𝐻 = 0) = [𝑝 + (1 − 𝑝)𝑆(𝑡)], otherwise
𝑆𝐹𝐻 (𝑡; 𝐹𝐻 = 1) = [𝑝 + (1 − 𝑝)𝑆(𝑡)]𝛽 , which allows for a cure-rate model as the previous case.

The Univariate FH Cure-Rate model has a univariate likelihood on the parameter collection
𝜋𝐹𝐻 = (𝛾, 𝑝, 𝛽)𝑇 , that is given by

𝐿(𝜋𝐹𝐻 ) =
𝑛∏
𝑖=1

𝑓𝐹𝐻 (𝑥𝑖)𝛿𝑖𝑆𝐹𝐻 (𝑥𝑖)1−𝛿𝑖

=

𝑛∏
𝑖=1

[
( 𝑓 ℎ𝑖 (𝛽 − 1) + 1) (1 − 𝑝) �̃� (𝑥𝑖)

]𝛿𝑖 [
𝑝 + (1 − 𝑝)𝑆(𝑥𝑖)

] 𝑓 ℎ𝑖 (𝛽−1)
.

This model motivates the use of a binary risk of developing breast cancer, but we believe that
a binary risk is too simplistic. For this reason we move to the development of models with a con-
tinuous frailty risk. Moreover, the frailty risk must be positive. We assume the frailty to follow a
Gamma(𝑠ℎ𝑎𝑝𝑒 = \, 𝑟𝑎𝑡𝑒 = \) whose density function is given by

𝑔𝑅 (𝑟) =
\\

Γ(\) 𝑟
\−1e−𝑟\,

where we \ the frailty parameter. An extension to other distributions, or with a number of param-
eters greater than one is straightforward.

We develop two models with the continuous frailty risk: the Multivariate frailty Cure-Rate
model and the Univariate frailty Cure-Rate model.
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We can find the closed form of the multivariate likelihood 𝐿(𝛾, 𝑝, \) of the Multivariate frailty
Cure-Rate model for 𝑖 = 1, . . . , 𝑛 families of varying size 𝑛𝑖 by applying the following steps:

𝐿(𝛾, 𝑝, \) =
𝑛∏
𝑖=1

𝑛𝑖∏
𝑗=1

∫
R+
𝑓𝑟 (𝑥𝑖 𝑗)𝛿𝑖 𝑗𝑆𝑟 (𝑥𝑖 𝑗)1−𝛿𝑖 𝑗𝑔𝑅 (𝑟; \)d𝑟

=

𝑛∏
𝑖=1

∫
R+

𝑛𝑖∏
𝑗=1

[
(1 − 𝑝) �̃� (𝑥𝑖 𝑗)

𝑝 + (1 − 𝑝)𝑆(𝑥𝑖 𝑗)
𝑟((((((((((
(𝑝 + (1 − 𝑝)𝑆(𝑥𝑖 𝑗))𝑟

]𝛿𝑖 𝑗
[𝑝 + (1 − 𝑝)𝑆(𝑥𝑖 𝑗)]𝑟 (1−��𝛿𝑖 𝑗 )𝑔𝑅 (𝑟; \)d𝑟

=

𝑛∏
𝑖=1

𝑛𝑖∏
𝑗=1

[
(1 − 𝑝) �̃� (𝑥𝑖 𝑗)

𝑝 + (1 − 𝑝)𝑆(𝑥𝑖 𝑗)

]𝛿𝑖 𝑗 ∫
R+

𝑛𝑖∏
𝑗=1

𝑟𝛿𝑖 𝑗𝑆𝑟 (𝑥𝑖 𝑗)𝑔𝑅 (𝑟; \)d𝑟

=

𝑛∏
𝑖=1

𝑛𝑖∏
𝑗=1

[
(1 − 𝑝) �̃� (𝑥𝑖 𝑗)

𝑝 + (1 − 𝑝)𝑆(𝑥𝑖 𝑗)

]𝛿𝑖 𝑗 ∫
R+
𝑟
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

𝑛𝑖∏
𝑗=1

𝑆𝑟 (𝑥𝑖 𝑗)𝑔𝑅 (𝑟; \)d𝑟

Thus, given the general distribution 𝑅 ∼Gamma(𝑠ℎ𝑎𝑝𝑒 = 𝛼, 𝑟𝑎𝑡𝑒 = 𝛽), the development of the
internal component is given by∫

R+
𝑟
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

𝑛𝑖∏
𝑗=1

𝑆𝑟 (𝑥𝑖 𝑗)𝑔𝑅 (𝑟; \)d𝑟 =
∫
R+

𝑛𝑖∏
𝑗=1

𝑆𝑟 (𝑥𝑖 𝑗)𝑟
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

𝛽𝛼

Γ(𝛼) 𝑟
𝛼−1e−𝛽𝑟d𝑟

=

∫
R+

𝑛𝑖∏
𝑗=1

𝑆𝑟 (𝑥𝑖 𝑗)
𝛽
𝛼+∑𝑛𝑖

𝑗=1 𝛿𝑖 𝑗

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

𝑟
(𝛼+∑𝑛𝑖

𝑗=1 𝛿𝑖 𝑗 )−1e−𝛽𝑟d𝑟

=

∫
R+

𝑛𝑖∏
𝑗=1

𝑆𝑟 (𝑥𝑖 𝑗)
𝛽
𝛼+∑𝑛𝑖

𝑗=1 𝛿𝑖 𝑗

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

𝑟
(𝛼+∑𝑛𝑖

𝑗=1 𝛿𝑖 𝑗 )−1e−𝛽𝑟d𝑟

=

𝑛𝑖∏
𝑗=1

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

∫
R+
𝐻 (𝑥𝑖 𝑗 ; 𝑝, 𝛾)𝑟𝑔𝑅∗ (𝑟;𝛼,

𝑛𝑖∑︁
𝑗=1

𝛿𝑖 𝑗 , 𝛽)d𝑟

=

𝑛𝑖∏
𝑗=1

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

∫
R+

e𝑟log(𝐻 (𝑥𝑖 𝑗 ;𝑝,𝛾) )𝑔𝑅∗ (𝑟;𝛼,
𝑛𝑖∑︁
𝑗=1

𝛿𝑖 𝑗 , 𝛽)d𝑟

=

𝑛𝑖∏
𝑗=1

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

E𝑅∗ [e𝑟log(𝐻 (𝑥𝑖 𝑗 ;𝑝,𝛾) ) ] =
𝑛𝑖∏
𝑗=1

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

MGF(𝑅∗; log(𝐻 (𝑥𝑖 𝑗 ; 𝑝, 𝛾)))

=

𝑛𝑖∏
𝑗=1

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

(
1 −

log(𝐻 (𝑥𝑖 𝑗 ; 𝑝, 𝛾))
𝛽

)−(𝛼+∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗 )

where we define the quantity 𝐻 (𝑥𝑖 𝑗 ; 𝑝, 𝛾) =
∏𝑛𝑖

𝑗=1 𝑆(𝑥𝑖 𝑗) =
∏𝑛𝑖

𝑗=1

(
𝑝 + (1 − 𝑝)𝑆(𝑥𝑖 𝑗)

)
for ease of writ-

ing. Later we update the parameters of the frailty distribution to obtain the updated frailty risk
random variable 𝑅∗ ∼Gamma(𝑠ℎ𝑎𝑝𝑒 = 𝛼 + ∑𝑛𝑖

𝑗=1 𝛿𝑖 𝑗 , 𝑟𝑎𝑡𝑒 = 𝛽), so that we make use of its mo-
ment generating function (MGF) in the point log(𝐻 (𝑥𝑖 𝑗 ; 𝑝, 𝛾)). Recall that the definition of the MGF
implies that

𝑀𝐺𝐹 (𝑅; 𝑦) = E𝑅 [e𝑟 𝑦],
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which is exactly what we have. Specifically, for a Gamma distributed random variable𝑅 ∼ Gamma(𝑠ℎ𝑎𝑝𝑒 =
𝛼, 𝑟𝑎𝑡𝑒 = 𝛽) the MGF is given by

𝑀𝐺𝐹 (𝑅; 𝑦) =
(
1 − 𝑦

𝛽

)−𝛼
.

Thus, the multivariate likelihood with 𝛼 = 𝛽 = \ is given by

𝐿(𝛾, 𝑝, \) =
𝑛∏
𝑖=1

𝑛𝑖∏
𝑗=1

[
(1 − 𝑝) �̃� (𝑥𝑖 𝑗)

𝑝 + (1 − 𝑝)𝑆(𝑥𝑖 𝑗)

]𝛿𝑖 𝑗 Γ(\ + ∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗)

Γ(\)\
∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗

(
1 −

log(𝐻 (𝑥𝑖 𝑗 ; 𝑝, 𝛾))
\

)−(\+∑𝑛𝑖
𝑗=1 𝛿𝑖 𝑗 )

.

The likelihood, always in the case 𝛼 = 𝛽 = \, reduces to the univariate form when there is one
subject per family, so that its form is given by

𝐿(𝛾, 𝑝, \) =
𝑛∏
𝑖=1

[
(1 − 𝑝) �̃� (𝑥𝑖)

𝑝 + (1 − 𝑝)𝑆(𝑥𝑖)

]𝛿𝑖
Γ(\ + 𝛿𝑖)
Γ(\)\𝛿𝑖

(
1 − log(𝑝 + (1 − 𝑝)𝑆(𝑥𝑖))

\

)−(\+𝛿𝑖 )

.

Notice that, at this point, parameter estimation can be achieved through the maximization of the
likelihood from the observed independently right-censored data. Once the estimated collection
of parameters 𝜋 = ( �̂�, �̂�, \̂)𝑇 is obtained, it can be consequently involved in the computation of
quantities of interest.

If one is willing to ignore the Cure-Rate structure, one may think of a model that has a proper
survival distribution, both conditionally on 𝑅 and marginally. In other words, we may assume that
there exists some finite time𝑇max (larger than all observed survival and censoring times) such that
all conditional survival functions 𝑆(𝑡 | 𝑟) = [𝑆0(𝑡)]𝑟 are proper, i.e. they tend to zero as 𝑡 → +∞.

The popular and widely developed Cox model may be suitable for our case. We include in the
comparative analysis a Multivariate frailty Cox model, where the semiparametric estimation of
the model is possible, for example using the emfrail function available in the software R [4, 5],
while maintaining the multiplicative frailty structure. This Multivariate frailty Cox model is the
exact counterpart of the Multivariate frailty Cure-Rate model, which we would like to prove they
have an equal level of prediction accuracy. For sake of completeness of the analysis, we also de-
velop a Univariate 𝐹𝐻 Cox model, and a Univariate 𝐹𝐻 (𝑡) Cox model, with 𝐹𝐻 (𝑡) the time-varying
version of the family history indicator. The difference between these two is that the indicator 𝐹𝐻
is measured at the end of the follow-up, while 𝐹𝐻 (𝑡) is measured over time and the time of the
change-point from zero to one is tracked. Unfortunately it was not possible to include in the anal-
ysis the Univariate frailty Cox model because of its non-identifiability due to the combination of
the absence of families and an unspecified hazard function. We prove the non-identifiability of
the univariate Cox frailty model in the following lines.

Let us start from the multiplicative proportional hazards frailty model that has the observed
data likelihood given by

𝐿∗(𝜋; 𝑥) =
𝑛∏
𝑖=1

𝑓𝑋 (𝑥𝑖 ;𝜋) =
𝑛∏
𝑖=1

∫
R+
𝑓𝑋 (𝑥𝑖 | 𝑅;𝜋)𝑔𝑅 (𝑟)d𝑟 =

𝑛∏
𝑖=1

∫
R+
𝑓𝑟 (𝑥𝑖)𝛿𝑖𝑆𝑟 (𝑥𝑖)1−𝛿𝑖𝑔𝑅 (𝑟)d𝑟,
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where recall 𝜋 = (𝑝, 𝛾, \)𝑇 and 𝑆𝑟 (𝑡) = 𝑆(𝑡 | 𝑟) and 𝑓𝑟 (𝑡) = 𝑓 (𝑡 | 𝑟) are the (proper) survival function
and density function conditional on the cases, respectively.

We note that, however, the Univariate frailty model is not identifiable without some additional
structure. We dig deeper into the issue with the following lemma.

Lemma 1. The Univariate frailty model is not identifiable if one does not specify the form of the
baseline survival function 𝑆0(𝑡).

Proof. Recall the Gamma density function:

𝑔𝑅 (𝑟;𝛼, 𝛽) =
1

Γ(𝛼) 𝛽
𝛼𝑟𝛼−1e−𝑟𝛽 , 𝑟 ≥ 0, 𝛼, 𝛽 ∈ R+

Letting 𝛼 = 𝛽 = \ > 0 yields

𝑔𝑅 (𝑟; \) =
1

Γ(\) \
\𝑟\−1e−𝑟\

Recall the moment generator function of the Gamma random variable:

𝑀𝐺𝐹𝑅 ( 𝑦) = E[e𝑦𝑅] =
(
1 − 𝑦

𝛽

)−𝛼
, 𝑦 < 𝛽 or(

1 − 𝑦

\

)−\
when 𝛼 = 𝛽 = \ > 0, for 𝑦 < \, and in particular, ∀ 𝑦 ≤ 0.

The Univariate frailty model has marginal survival function

𝑆(𝑡) =
∫
R+
𝑆(𝑡 | 𝑟)𝑔𝑅 (𝑟; \)d𝑟 =

∫
R+
𝑆(𝑡)𝑟𝑔𝑅 (𝑟; \)d𝑟 =

∫
R+

elog(𝑆 (𝑡)𝑟 )𝑔𝑅 (𝑟; \)d𝑟

=

∫
R+

e𝑟log(𝑆 (𝑡) )𝑔𝑅 (𝑟; \)d𝑟 =
(
1 − log(𝑆0(𝑡))

\

)−\
. Note that, log(𝑆0(𝑡)) < 0∀𝑡 ≥ 0.

Now, for any observed marginal survival function 𝑆(𝑡) one has

𝑆(𝑡) =
∫
R+
𝑆0(𝑡)𝑟𝑔𝑅 (𝑟; \)d𝑟 =

(
1 − log(𝑆0(𝑡))

\

)−\
⇐⇒ 𝑆(𝑡)−1/\ = 1 − log(𝑆0(𝑡))

\

⇐⇒ 𝑆(𝑡)−1/\ − 1 = − log(𝑆0(𝑡))
\

⇐⇒ \
[
𝑆(𝑡)−1/\ − 1

]
= − log(𝑆0(𝑡))

⇐⇒ log(𝑆0(𝑡)) = \
(
1 − 𝑆(𝑡)−1/\

)
⇐⇒ 𝑆0(𝑡) = exp

(
\
(
1 − 𝑆(𝑡)−1/\

))
,

for any observed 𝑆(𝑡), to each choice of \ there is a corresponding 𝑆0(𝑡). Thus, it exists an infinite
set of couple (\, 𝑆0(𝑡)) with 𝑆0(𝑡) = exp

(
\
(
1 − 𝑆(𝑡)−1/\

) )
that yields to the same 𝑆(𝑡). This proves

that the Univariate frailty model is not identifiable from the marginal survival function 𝑆(𝑡), unless
additional constraints are introduced, such as for example on the distribution of 𝑆0(𝑡). □

Thus, the Univariate frailty Cox model is not developed in the end and no results are reported
from this model.

Wrapping up, we explore six different models: the Multivariate frailty Cure-Rate model, the
Univariate frailty Cure-Rate model, the Univariate 𝐹𝐻 Cure-Rate model, the Multivariate frailty



1.3. POSTERIOR RISK PREDICTION 19

Cox model, the Univariate 𝐹𝐻 Cox model, the Univariate 𝐹𝐻 (𝑡) Cox model. Our purpose is to ob-
serve their difference in inference precision and risk prediction accuracy. We expect the family
history indicator to be a weaker indicator compared to the continuous frailty risk, in terms of ex-
plaining the phenomenon of breast cancer within a population. The Cox models can not infer some
quantities as the cured fraction and the distribution of breast cancer cases, and this is certainly
a disadvantage for these models. Also, the univariate models do not use the complete familiar
information of the subjects and for this reason we expect them to be worst than the multivariate
models in terms of risk prediction accuracy. Summing up all of these thoughts, we expect the Mul-
tivariate frailty Cure-Rate model to be the best performing in inference precision to explain the
phenomenon breast cancer development, and accuracy in risk prediction.

1.3 Posterior risk prediction

The primary focus of this project is risk prediction. It is interesting to notice that the available data
are used for fitting the models, the risk prediction can be applied also to women not included in
the initial dataset. The risk prediction procedure is different according to whether the model is
semiparametric or parametric. For this reason we make distinction in the following paragraphs.

1.3.1 Semiparametric setting

In the parameter estimation step, by maximizing the partial likelihood we obtain the estimated
value of the frailty parameter \̂.

With the value of the frailty parameter we can obtain the estimated family-specific posterior
frailty risk density. This step is important to quickly predict risk values without estimating param-
eters when a new family arises. The posterior distribution, for a family of three component, is
given by

𝑔 (𝑟 | family data; \̂) = 𝑓 (family data | 𝑅 = 𝑟)𝑔 (𝑟; \̂)∫
R+
𝑓 (family data | 𝑅 = 𝑟)𝑔 (𝑟; \̂)d𝑟

,

where

𝑓 (family data | 𝑅 = 𝑟)
⊥|𝑅
↓
= 𝑓 (𝑥 | 𝑟) 𝑓 (𝑥𝑚 | 𝑟) 𝑓 (𝑥𝑠1 | 𝑟),

and

𝑓 (𝑥 | 𝑅 = 𝑟) = 𝑓𝑟 (𝑥)𝛿𝑆𝑟 (𝑥)1−𝛿 =
(
𝑓𝑟 (𝑥)
𝑆𝑟 (𝑥)

)𝛿
𝑆𝑟 (𝑥) = (𝑟_0(𝑥))𝛿𝑆0(𝑥)𝑟 .

A similar procedure is applied for the other family members, and also again, this is easily
extendable to a higher number of female family members. At this point, an estimator for the
baseline survival function 𝑆0(𝑡) and for the baseline hazard function _̂0(𝑡) is needed such that one
can estimate the subject-specific density function

�̂� (𝑥 | 𝑅 = 𝑟) = (𝑟_̂0(𝑥))𝛿𝑆0(𝑥)𝑟 .



20 Risk prediction models for breast cancer

The baseline cumulative hazard function, and consequently the survival function𝑆0(𝑡) = e−Λ̂0 (𝑡) ,
can be estimated by the Breslow estimator Λ̂0(𝑡).

In the following lines, we present the classical estimation of the Breslow estimator with covari-
ates. We consider the expected number of events occurring at time [𝜏 𝑗 , 𝜏 𝑗+1], given the 𝑙th subject
“at risk” at time 𝜏−

𝑗
, who belongs the risk group defined as 𝑅(𝜏 𝑗). Thus, we have

∑︁
𝑙∈𝑅 (𝜏 𝑗 )

(𝜏 𝑗+1 − 𝜏 𝑗)_ (𝜏 𝑗 | 𝑥𝑙) =
∑︁

𝑙∈𝑅 (𝜏 𝑗 )
(𝜏 𝑗+1 − 𝜏 𝑗)𝑒𝛽

′
𝑥𝑙 _0(𝜏 𝑗).

When setting the aforementioned quantity equal to the observed number of events 𝑑 𝑗 until
time 𝜏 𝑗+1, it yields

𝑑 𝑗 = _0(𝜏 𝑗) (𝜏 𝑗+1 − 𝜏 𝑗)
∑︁

𝑙∈𝑅 (𝜏 𝑗 )
𝑒𝛽

′
𝑥𝑙

_0(𝜏 𝑗) (𝜏 𝑗+1 − 𝜏 𝑗) ≈
∫ 𝑡 𝑗+1

𝑡 𝑗

_0(𝑢)d𝑢 =
𝑑 𝑗∑

𝑙∈𝑅 (𝜏 𝑗 )
𝑒𝛽

′
𝑥𝑙

⇐⇒ Λ̂0(𝑡) =
∑︁
𝜏 𝑗<𝑡


𝑑 𝑗∑

𝑙∈𝑅 (𝜏 𝑗 )
𝑒𝛽

′
𝑥𝑙


where 𝑥𝑙 is the covariate vector for subject 𝑙, 𝛽 is the parameter collection, and Λ̂0(𝑡) is the Breslow
estimator.

The estimated value of the survival function, through Breslow estimator, is obtained through
the available function predictCox in the package riskRegression [25] of the software R, which
takes as input a Cox model, while the estimated hazard function can be obtained in the function
coxphHaz of package biostat3 [38] of the software R.

We need also to estimate the other component of formula 1.3.1: the posterior distribution of
the frailty risk 𝑔 (𝑟; \̂). The computation of 𝑔 (𝑟; \̂) is solved by relying on the conjugacy property of
the Gamma prior for this model. Specifically, the posterior frailty risk distribution for a particular
family is easily shown to be distributed as a Gamma distribution with shape parameter equal to
\+𝑑𝑖 , with 𝑑𝑖 the number of observed events in family 𝑖, and rate parameter equal to \+∑𝑛𝑖

𝑗=1 Λ0(𝑥 𝑗),
where Λ0(𝑥𝑖) =

∑𝑛𝑖
𝑗=1 Λ0(𝑥 𝑗), with 𝑥𝑖 = (𝑥1, . . . , 𝑥𝑛𝑖 )𝑇 for family size 𝑛𝑖 , is the cumulative hazard

function at time 0 evaluated at the observed times of the family’s members. For a family of three
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members the posterior frailty risk distribution is given by

𝑔𝑅 (𝑟 | 𝑋) = (𝑟_̂0(𝑥𝑖))𝛿𝑖𝑆0(𝑥𝑖)𝑟 (𝑟_̂0(𝑥𝑚𝑖))𝛿𝑚𝑖𝑆0(𝑥𝑚𝑖)𝑟 (𝑟_̂0(𝑥𝑠1𝑖))𝛿𝑠1𝑖𝑆0(𝑥𝑠1𝑖)𝑟𝑔𝑅 (𝑟; \̂)

𝑔𝑅 (𝑟 | 𝑋) = 𝑟𝛿𝑖+𝛿𝑚𝑖+𝛿𝑠1𝑖
(
𝑆0(𝑥𝑖)𝑆0(𝑥𝑚𝑖)𝑆0(𝑥𝑠1𝑖)

)𝑟
𝑔𝑅 (𝑟; \̂)

𝑔𝑅 (𝑟 | 𝑋) ∝ 𝑟𝛿𝑖+𝛿𝑚𝑖+𝛿𝑠1𝑖e𝑟
(
−Λ̂0 (𝑥𝑖 )−Λ̂0 (𝑥𝑚𝑖 )−Λ̂0 (𝑥𝑠1𝑖 )

)
𝑔𝑅 (𝑟; \̂) ⇐⇒ 𝑔𝑅 (𝑟 | 𝑋) ∝ 𝑟𝑑𝑖+\−1e−𝑟

(
\+∑𝑛𝑖

𝑗=1 Λ̂0 (𝑥 𝑗 )
)

𝑔𝑅 (𝑟 | 𝑋) =
𝑟𝑑𝑖+\−1e−𝑟

(
\+∑𝑛𝑖

𝑗=1 Λ̂0 (𝑥 𝑗 )
)

∫
R+
𝑟𝑑𝑖+\−1e−𝑟

(
\+∑𝑛𝑖

𝑗=1 Λ̂0 (𝑥 𝑗 )
)
d𝑟

𝑔𝑅 (𝑟 | 𝑋) =
𝑟ℎ𝑖 (\)−1e−𝑟𝑙𝑖 (\)(

1
𝑙𝑖 (\)

)ℎ𝑖 (\)
Γ(ℎ𝑖 (\))

∫
R+

1(
1

𝑙𝑖 (\)

)ℎ𝑖 (\)
Γ(ℎ𝑖 (\))

𝑟ℎ𝑖 (\)−1e−𝑟𝑙𝑖 (\)d𝑟

𝑔𝑅 (𝑟 | 𝑋) =
𝑟ℎ𝑖 (\)−1e−𝑟𝑙𝑖 (\) 𝑙𝑖 (\)ℎ𝑖 (\)

Γ(ℎ𝑖 (\))
,

where ℎ𝑖 (\) = 𝑑𝑖 + \, 𝑙𝑖 (\) = \ +
∑𝑛𝑖
𝑗=1 Λ̂0(𝑥 𝑗). The final formula is given by

𝑔𝑅 (𝑟𝑖 | 𝑋) =
𝑟𝑑𝑖+\−1
𝑖

exp(−𝑟𝑖 (\ + Λ̂0(𝑥𝑖))) (\ + Λ̂0(𝑥𝑖))𝑑𝑖+\

Γ(𝑑𝑖 + \)
.

This formula is also computed with a different parametrization of the Gamma distribution [8],
for the maximization step of the EM algorithm in order to achieve parameter estimation.

Notice that to obtain the posterior frailty distribution of each family we need to evaluate the
cumulative hazard function at the observed times within each family. This means that, if the esti-
mated cumulative hazard value is not available for that observed time, we use linear interpolation
on the available data points [22].

Typically, the raw posterior frailty risk distribution has a poor meaning to the end-user. We
need to communicate to each family a meaningful summary of it as, for example, the mode, median
or mean, whose equations are given by

mode= argmax
𝑟

𝑔𝑅 (𝑟 | 𝑋),

median= 𝑟𝑚 :
∫ 𝑟𝑚

0
𝑔𝑅 (𝑟 | 𝑋)d𝑟 = 0.5,

mean=
∫ +∞

0
𝑟𝑔𝑅 (𝑟 | 𝑋)d𝑟.

The mode of a Gamma distribution is null when \̂ has a value lower than one. The mode will
therefore not be a good indicator of the posterior frailty density because one may observe several
zero values across the families. We therefore exclude it as a valid indicator. On the hand, from the
formulas of the Gamma distribution, the mean is immediately obtained as

�̂�𝑖 =
𝑑𝑖 + \̂

\̂ + Λ̂0(𝑥𝑖)
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which, following [4], can be rewritten as

�̂�𝑖 = 𝑤𝑖
𝑑𝑖

Λ̂0(𝑥𝑖)
+ (1 − 𝑤𝑖),

where 𝑤𝑖 =
Λ̂0(𝑥𝑖)

\̂ + Λ̂0(𝑥𝑖)
is the weight of the weighted average between the ratio of the observed

events 𝑑𝑖 on the sum of the cumulative hazard by families Λ̂0(𝑥𝑖) and one, the prior frailty mean.
The median is instead computed numerically quite easily from the estimated family-specific pos-
terior frailty risk distribution.

Because the posterior mean does not really have a scale of reference, we introduce also an-
other meaningful summary of the posterior frailty risk distribution< i.e. the posterior probability
of belonging to the highest-risk group by computing the probability that the family-specific risk
value is greater than a fixed value from the prior distribution. By setting a percentile value 𝛼, the
posterior probability of belonging to the highest-risk group is

𝑃
(
𝑅 ≥ 𝐹−1

𝑅

(
𝛼; \̂

)
| family data; \̂

)
,

where 𝐹−1
𝑅

(
𝛼; \̂

)
is the estimated prior quantile associated to a probability equal to 𝛼 on the left

side. In the real case study in Section 1.5 we choose an 𝛼 = 0.05, and we compute the correspond-
ing quantile. Once we have the binary classification of families into two risk groups (low-risk and
highest-risk group) based on their probability of belonging the the highest-risk group, we can val-
idate it through the receiver operating characteristic (ROC) curve. We can extract the area under
the curve (AUC), the positive predictive value (PPV) and the negative predictive value (NPV) from
the ROC curve. These measures can assess the accuracy in binary splitting applied by the models.
Notice that this validation procedure can be applied only in the case of simulation studies, since
the true family-specific risk needs to be known.

1.3.2 Parametric setting

On the contrary to the semiparametric scenario, in the parametric scenario we need to specify a
distribution for the baseline survival function. The advantage is that the baseline survival func-
tion is directly available by estimating its distribution parameters. This allows one to obtain the
posterior mean, mode, and median from the parametric distribution of the posterior risk frailty.
Also, the extension to predict the posterior risk frailty for a new family in the dataset in straight-
forward. The family-specific posterior frailty risk distribution given the whole family data is given
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by

𝑔𝑅 (𝑟 | 𝑥) =
𝑓 (𝑥 | 𝑟)𝑔𝑅 (𝑟)

𝑓 (𝑥) =
𝑓 (𝑥1 | 𝑟) . . . 𝑓 (𝑥𝑛𝑖 | 𝑟)𝑔𝑅 (𝑟)∫

R+
𝑓 (𝑥1 | 𝑟) . . . 𝑓 (𝑥𝑛𝑖 | 𝑟)𝑔𝑅 (𝑟)d𝑟

=

∏𝑛𝑖
𝑗=1

(
𝑓𝑟 (𝑥 𝑗)𝛿 𝑗𝑆𝑟 (𝑥 𝑗)1−𝛿 𝑗

)
𝑔𝑅 (𝑟)∫

R+
∏𝑛𝑖

𝑗=1
(
𝑓𝑟 (𝑥 𝑗)𝛿 𝑗𝑆𝑟 (𝑥 𝑗)1−𝛿 𝑗

)
𝑔𝑅 (𝑟)d𝑟

=

=

∏𝑛𝑖
𝑗=1��������(

(1 − 𝑝) �̃� (𝑥 𝑗)
)𝛿 𝑗 (

𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗)
) (���𝑟−1)𝛿 𝑗+𝑟 (1−��𝛿 𝑗 )

𝑟
∑𝑛𝑖
𝑗=1 𝛿 𝑗𝑔𝑅 (𝑟)∏𝑛𝑖

𝑗=1����������
(

(1 − 𝑝) �̃� (𝑥 𝑗)
𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗)

)𝛿 𝑗 Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿 𝑗)

Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿 𝑗

(
1 −

log(𝐻 (𝑥 𝑗 ; 𝑝, 𝛾))
𝛽

)𝛼+∑𝑛𝑖
𝑗=1 𝛿 𝑗

= ���Γ(𝛼)𝛽
∑𝑛𝑖
𝑗=1 𝛿 𝑗

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿 𝑗)

(
1 −

log
∏𝑛𝑖

𝑗=1(𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗))
𝛽

)𝛼+∑𝑛𝑖
𝑗=1 𝛿 𝑗

·

·
𝑛𝑖∏
𝑗=1

(
𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗)

)𝑟
𝑟
∑𝑛𝑖
𝑗=1 𝛿 𝑗

𝛽𝛼

���Γ(𝛼)
𝑟𝛼−1e−𝛽𝑟

=

(
1 −

log
∏𝑛𝑖

𝑗=1(𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗))
𝛽

)𝛼+∑𝑛𝑖
𝑗=1 𝛿 𝑗 𝑛𝑖∏

𝑗=1

(
𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗)

)𝑟 𝛽
𝛼+∑𝑛𝑖

𝑗=1 𝛿 𝑗

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿 𝑗)

𝑟
𝛼+∑𝑛𝑖

𝑗=1 𝛿 𝑗−1e−𝛽𝑟

=

(
𝛽 − log

∏𝑛𝑖
𝑗=1(𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗))

��𝛽

)𝛼+∑𝑛𝑖
𝑗=1 𝛿 𝑗

�����
𝛽
𝛼+∑𝑛𝑖

𝑗=1 𝛿 𝑗

Γ(𝛼 + ∑𝑛𝑖
𝑗=1 𝛿 𝑗)

𝑟
𝛼+∑𝑛𝑖

𝑗=1 𝛿 𝑗−1e−(𝛽−∑𝑛𝑖
𝑗=1 log(𝑝+(1−𝑝)𝑆 (𝑥 𝑗 )) )𝑟

which is distributed as a Gamma ©«𝑠ℎ𝑎𝑝𝑒 = 𝛼 +
𝑛𝑖∑︁
𝑗=1

𝛿 𝑗 , 𝑟𝑎𝑡𝑒 = 𝛽 −
𝑛𝑖∑︁
𝑗=1

log
(
𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗)

)ª®¬ .
The density function, in the univariate case, reduces immediately to

𝑔𝑅 (𝑟 | 𝑥) =
(
1 − log(𝑝 + (1 − 𝑝)𝑆(𝑥))

𝛽

)𝛼+𝛿 (
𝑝 + (1 − 𝑝)𝑆(𝑥)

)𝑟 𝛽𝛼+𝛿

Γ(𝛼 + 𝛿) 𝑟
𝛼+𝛿−1e−𝛽𝑟 ,

which is distributed as a Gamma
(
𝑠ℎ𝑎𝑝𝑒 = 𝛼 + 𝛿, 𝑟𝑎𝑡𝑒 = 𝛽 − log(𝑝 + (1 − 𝑝)𝑆(𝑥))

)
.

The posterior mean and mode frailty are extracted from the formula associated to the Gamma
distribution as

mean =
𝛼 + ∑𝑛𝑖

𝑗=1 𝛿 𝑗

𝛽 − ∑𝑛𝑖
𝑗=1 log

(
𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗)

) , mode =
𝛼 + ∑𝑛𝑖

𝑗=1 𝛿 𝑗 − 1

𝛽 − ∑𝑛𝑖
𝑗=1 log

(
𝑝 + (1 − 𝑝)𝑆(𝑥 𝑗)

) .
The univariate case is directly obtained by setting family size 𝑛𝑖 = 1. Note that when the shape

parameter of the distribution is lower than one, the mode is not a reliable summary of the posterior
frailty risk. Moreover, the posterior median of a Gamma distributed frailty risk requires numerical
methods to be computed as there is not a formula in closed form. For these reasons the posterior
mean appears to be the most reliable and easily to compute.

To validate that the mean is the best performing as posterior risk, the mean, median, and mode
are compared in terms of various indices. When the analysis in on simulated data, we can compare
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the true frailty risk from the data generating step 𝑟𝑖 to the predicted frailty risk �̂�𝑖 , for 𝑛 families.
For example, we compute the estimated mean squared prediction error (MSPE), whose equation
is given by

𝑀𝑆𝑃𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(�̂�𝑖 − 𝑟𝑖)2.

Also, from the linear regression of the true frailty risk 𝑟𝑖 on the predicted frailty risk �̂�𝑖 , we report
the estimated coefficient of determination 𝑅2 as a measure of how much the predicted risk can
explain the variability of the true risk. The coefficient of the predicted frailty risk, the linear corre-
lation coefficient of Pearson and the rank correlation coefficient are also extracted and reported.

Once we prove that the mean is the best performing posterior risk summary, also the models
under analysis need to be validated in terms of prediction accuracy, depending on whether the
analysis is on simulated studies or on the real case.

When the analysis is on simulated studies, we compute the AUC for the binary splitting and
the Harrell’s concordance index. We choose this index because it can be computed also in the real
case application, as it is a measure of model performance for unknown outcomes [27, 15, 32, 39],
and it makes the comparison between simulation study and real case much easier. This index
estimates the probability that, among a randomly selected pair of subjects with different right-
censored survival times and predicted risk values, the one with a lower risk score will outlive the
other [15]. This define this pair as “concordant”. Notice that this is similar to what is done in the
modified version of the Wilcoxon test on survival data with right censoring.

The estimate relies on the ratio of concordant pairs to all pairs, which includes discordant and
tied pairs. The formula is given by [33]

𝐶 =

∑
𝑖≠ 𝑗 I(�̂�𝑖 < �̂� 𝑗)I(𝑥𝑖 > 𝑥 𝑗)𝛿 𝑗∑

𝑖≠ 𝑗 I(𝑥𝑖 > 𝑥 𝑗)𝛿 𝑗
,

where �̂�𝑖 and �̂� 𝑗 denote the predicted risk for two subjects 𝑖 and 𝑗 who are not members of the same
family. It is of interest to notice that from theoretical result the Harrell’s concordance index does
not depend on the baseline survival function, but only on a random variable 𝑌 ∗ ∼ Beta(\ + 1, \),
such that

𝐶(\) = 𝑆𝑌 ∗

(
1
2

)
.

An extended version of this result can be found in Appendix A.2.

1.4 Simulation study

We present results from the comparative analysis on the six models we developed or included from
literature. In Table 1.1 we present the six models highlighting their commonalities and differences.
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Name of the model Likelihood Frailty risk FH Survival

Multivariate frailty Cure-Rate multivariate ✓ ✗ cure-rate
Univariate frailty Cure-Rate univariate ✓ ✗ cure-rate
Univariate 𝐹𝐻 Cure-Rate univariate ✗ constant cure-rate
Multivariate frailty Cox multivariate ✓ ✗ traditional
Univariate 𝐹𝐻 Cox univariate ✗ constant traditional
Univariate 𝐹𝐻 (𝑡) Cox univariate ✗ time-varying traditional

Table 1.1: Commonalities and differences among the six models compared.

Notice that the Cure-Rate models we develop, i.e. the Multivariate frailty Cure-Rate, the Uni-
variate frailty Cure-Rate, and the Univariate 𝐹𝐻 Cure-Rate model are parametric and thus in the
analysis we explore several baseline survival distributions to be involved in the parametric mod-
els, including Weibull, Gamma, Lognormal, three-parameter Gamma, also known as the Pearson
type III distribution (see, e.g., [6]), and three-parameter Lognormal. These two last distributions
are included to assess whether an increased flexibility in the distribution could benefit both infer-
ence precision and prediction accuracy.

The section is organized starting with the data generating process, above all for the cure-rate
structure, and then progressing to the fitting of semiparametric models and then parametric mod-
els. We need to make a distinction between them because only in the parametric scenario we
analyse different time-to-event distributions. All over the section we compare the model goodness
of fit, and their predictive accuracy through the AUC, PPV, NPV and Harrell’s Concordance index.

1.4.1 Data generating process from the Lehmann Cure-Rate model

A critical aspect to consider when generating data from a cure-rate survival model [24] is that one
needs to employ distinct methods for generating survival times for cases and cured observations.

Recall that the model takes the Lehmann form

𝑆(𝑡; 𝑟) = [𝑆0(𝑡)]𝑟 , with 𝑆0(𝑡) =
[
𝑝0 + (1 − 𝑝0)𝑆(𝑡)

]
, 𝑖.𝑒. 𝛼(𝑟) = 𝑟 for 𝑟 > 0.

To generate survival times from this model (with a set of parameter values with varying lenght),
one may proceed as follows:

1. generate a family-specific (or subject-specific if the model is univariate) frailty risk term 𝑟

from the Gamma(𝑠ℎ𝑎𝑝𝑒 = \, 𝑟𝑎𝑡𝑒 = \) distribution;

2. generate a subject-specific value 𝑢 from the Unif(0, 1) distribution;

3. if 𝑢 ≤ 𝑝𝑟0

then set 𝑡 = +∞ (a cured observation);
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else solve 𝑢 =
[
𝑝0 + (1 − 𝑝0)𝑆(𝑡)

]𝑟 , which yields immediately

𝑡 = 𝑆−1
(
𝑢1/𝑟 − 𝑝0
1 − 𝑝0

)
= 𝐹−1

(
1 − 𝑢1/𝑟
1 − 𝑝0

)
,

with 𝐹−1(·) the quantile function of the time-to-event distribution. Since we explore
several distributions, we can easily find the two-parameter distributions in the basic R
software, while the package FAdist, still from the R software, contains functions for the
cumulative distribution function (CDF), density function, quantile function, and ran-
dom sample function from the three-parameter Gamma and three-parameter Lognor-
mal.

Independent (typically, administrative) right censoring of all observations can be applied to obtain
the observed data. Censoring is the minimum between the date of death and the end year of the
follow-up, set at 2020. For building the follow-up we need to fix a starting point for all the indi-
viduals, which is date of birth. We start from generating the mother date of birth from a Uniform
between 1905 and 1945. The daughter dates of birth are generated summing up to their mother
birth date a value from a Uniform between 25 and 35, which coincides to the age the mother gave
birth. If one takes into account the fact that family members from different generations have dif-
ferent birth dates (hence in calendar time), follow-up is clearly longer for members born earlier.
Date of death is generated similarly keeping a time coherence between mothers and daughters.

In the multivariate scenario, the data generating follows easily from the conditional indepen-
dence assumption within each family, assuming for all family members the same frailty risk 𝑟.
Also, in this scenario is crucial to random generate the size of families included in the sample. To
this end, we randomly generate family size as one plus the minimum of a fixed number (𝑛𝐹−1) and
a value generated from a Poisson random variable with parameter _𝐹 . To give an insight, one can
see 𝑛𝐹 as the maximum family size all over the sample, and _𝐹 the average number of first-degree
female relatives a subject can have.

The parameters involved in the models are set to 𝑝 = 0.85, 𝑠ℎ𝑎𝑝𝑒 = 8, 𝑠𝑐𝑎𝑙𝑒 = 6, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 15,
\ = 0.2where, recall, 𝑝 is the cured fraction, 𝑠ℎ𝑎𝑝𝑒, 𝑠𝑐𝑎𝑙𝑒, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are the three parameters of the
baseline survival function on cases. The threshold parameter is only used for a three-parameter
distribution. And, \ is the frailty risk parameter. Also, notice that when we employ the Lognormal
distribution the parameters are called differently ` = 6 and 𝜎2 = 8, replacing respectively 𝑠ℎ𝑎𝑝𝑒
and 𝑠𝑐𝑎𝑙𝑒.

On the other hand, if a traditional survival function is involved, the data generation would typ-
ically be simpler. For example, if 𝑆𝑟 (𝑡) = [𝑆0(𝑡)]𝑟 with 𝑆0(𝑡) the traditional survival function of the
Weibull(𝑘, _) random variable, it is immediate to check that 𝑇 | 𝑅 = 𝑟 ∼Weibull

(
𝑘, _ 𝑘

√
𝑟
)
. Usually, a

reparametrization dependent on the frailty risk is sufficient to obtain the updated distribution.
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1.4.2 Semiparametric setting

Among the six models we compare, three of them are semiparametric: the Multivariate frailty Cox
models, the Univariate 𝐹𝐻 Cox model and the Univariate 𝐹𝐻 (𝑡) Cox model.

In Table 1.2 we compare the models in terms of recovering the true parameter values set in
the data generating process. We generate a sample of 100,000 families, with family size varying
between 1 and 𝑛𝐹 = 5, with a mean of _𝐹 = 0.8 relatives. Our experience suggests that a sample size
of 100,000 families is sufficient to ensure accurate results with reasonable computational speed.
The simulation is repeated for 100 times.

Parameter estimation is performed through an EM algorithm, that can be carried out using
functions from the R package frailtyEM [4, 5]. However, the functions of the frailtyEM package
are time and memory-consuming for large datasets. In contrast to the approach commonly found
in the literature, we speed up this process by utilizing the cox function in the survival package.
This allows us to efficiently obtain all the necessary quantities within a reasonable time and with-
out excessive memory usage.

\ \̂ (se) 𝛽𝐹𝐻 (se)

Multivariate frailty Cox
0.2 0.199 (0.004) -
0.5 0.499 (0.012) -
0.8 0.802 (0.029) -

Univariate 𝐹𝐻 Cox
0.2 - 2.835 (0.081)
0.5 - 1.455 (0.040)
0.8 - 1.102 (0.033)

Univariate 𝐹𝐻 (𝑡) Cox
0.2 - 5.846 (0.166)
0.5 - 2.956 (0.083)
0.8 - 2.227 (0.066)

Table 1.2: Mean and standard error of the estimated parameters and Harrell’s Concordance index
(C) in the last column. The first column \ stands for the true value set at the data generating step
and varying among (0.2, 0.5, 0.8).

Results from Table 1.2 show that the Multivariate frailty Cox model can accurately estimate the
value of \ from the given data, while the Univariate models only estimate the parameter 𝛽𝐹𝐻 and
nothing can be said about parameter recovery. Even though the parameter 𝛽𝐹𝐻 has little meaning
because is not part of the data generating process, it is interesting to notice is always estimated
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positive. This means that the family history is a valid and positive indicator for breast cancer
development.

Our focus now shifts towards the core of the study, which is frailty prediction. In this regard,
the algorithm developed in Section 1.3 is employed to estimate the risk of developing breast cancer
with the current dataset and to predict the risk for a new subject. The mean risk and median risk
are predicted for each family. In terms of the Multivariate frailty Cox model, these two summary
measures are compared in terms of MSPE, 𝑅2 from the linear regression of the true risk on the pre-
dicted risk, the coefficient 𝛽 of the predicted risk, and both the Pearson’s and the rank correlation
coefficient. Clearly, this is not possible for the Univariate models since they compare the estimated
family history to the true risk. The comparison is on a sample of 100,000 families and varying
family size among (𝑛𝐹 , _𝐹) = ((2, 0.8), (5, 0.8), (10, 5), (20, 10))𝑇 , since differences emerge when
family size increases. Average and standard error of the estimated measures are reported. Results
in Table 1.3 show that higher is the average family size then higher are the performances of both
mean and median risk, meaning that the family size affects in a positive way the risk prediction
accuracy, as expected.

Results show that the median performs poorly as a risk predictor, especially when family size
is small. However notice that, as the family size decreases, the mean is known to exhibit a shrink-
age problem due to the low number of events occurring within families. Figure 1.1 illustrates this
phenomenon, in which the predicted mean risk do not reach zero when the true risk is close to
zero, and all values are shrunken towards the true (prior) mean of one. Notice that the second
plot of Figure 1.1, resulting from the maximum family size equal to twenty, has a lower shrink-
age compared to the first plot which has a maximum family size equal to five. This well-known
phenomenon is due to the fact that a large family size is required to increase the sum of cumu-
lative hazards on observed time and allow the mean to shrink towards zero [4, 5]. One should
keep in mind this limitation of the posterior frailty risk mean when running risk prediction. For
large dataset, the shrinkage effect becomes smaller and smaller towards zero and thus we do not
encounter this problem on the real case data because of its high dimension.
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(𝑛𝐹 , _𝐹)

(2, 0.8) (5, 0.8) (10, 5) (20, 10)

Multivariate frailty Cox
MSPE(mean) 3.80 (0.0020) 3.50 (0.0019) 2.85 (0.0024) 3.63 (0.0032)
MSPE(median) 5.79 (0.0025) 5.64 (0.0034) 5.01 (0.0031) 3.89 (0.0023)
𝑅2(mean) 0.23 (0.0002) 0.26 (0.0001) 0.52 (0.0001) 0.65 (0.0002)
𝑅2(median) 0.16 (0.0001) 0.16 (0.0001) 0.26 (0.0002) 0.29 (0.0002)
𝛽mean 0.94 (0.0013) 0.96 (0.0008) 0.74 (0.0003) 0.60 (0.0002)
𝛽median 11.67 (0.0120) 8.81 (0.0108) 3.08 (0.0015) 1.46 (0.0005)
𝜌(mean) 0.49 (0.0002) 0.55 (0.0002) 0.74 (0.0001) 0.82 (0.0001)
𝜌(median) 0.42 (0.0002) 0.43 (0.0002) 0.53 (0.0002) 0.55 (0.0002)
Rank 𝜌(mean) 0.24(0.0001) 0.28 (0.0001) 0.48 (0.0001) 0.58 (0.0001)
Rank 𝜌(median) 0.11 (0.0001) 0.15 (0.0001) 0.36 (0.0001) 0.49 (0.0001)

Univariate 𝐹𝐻 Cox
MSPE 5.91 (0.0022) 5.87 (0.0038) 5.67 (0.0031) 5.23 (0.0027)
𝑅2 0.03 (0.0001) 0.04 (0.0001) 0.13 (0.0001) 0.16 (<0.0001)
𝛽𝐹𝐻 3.59 (0.0039) 3.34 (0.0035) 3.03 (0.0014) 2.70 (0.0010)
𝜌 0.17 (0.0002) 0.19 (0.0002) 0.36 (0.0001) 0.40 (0.0001)
Rank 𝜌 0.14 (0.0001) 0.16 (0.0001) 0.35 (0.0001) 0.43 (0.0001)

Univariate 𝐹𝐻 (𝑡) Cox
MSPE 2.32 (0.0067) 2.30 (0.0065) 2.08 (0.006) 2.22 (0.0064)
𝑅2 0.03 (0.0004) 0.04 (0.0003) 0.05 (0.0002) 0.04 (0.0001)
𝛽𝐹𝐻 0.91 (0.0062) 0.87 (0.0049) 0.62 (0.0017) 0.47 (0.0010)
𝜌 0.18 (0.0011) 0.19 (0.0009) 0.23 (0.0004) 0.19 (0.0004)
Rank 𝜌 0.18 (0.0008) 0.20 (0.0006) 0.28 (0.0004) 0.25 (0.0004)

Table 1.3: Prediction accuracy measures for family size defined by the two parameters (𝑛𝐹 , _𝐹)
among the values (2, 0.8), (5, 0.8), (10, 5), (20, 10); 𝑛𝐹 indicates the largest number of family mem-
bers, and _𝐹 represents the parameter of the Poisson distribution used to generate the additional
number of family members apart the main subject.

Also, another limitation of the posterior frailty risk mean is the variability in the prediction.
The mean squared prediction error (MSPE) is quite high to provide an accurate estimate of the risk
of breast cancer occurrence in a family. We explore the values of the root MSPE conditional on the
value of the true frailty risk in Figure 1.2. The MSPE increases as the true frailty risk increases too,
regardless of the family size. We observe a possible flattening of the curve with a larger family
size in the second plot of Figure 1.2, but the prediction error remained high. This could lead to
accurately identify the lower-risk families but not the higher-risk families. This means that we may
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Figure 1.1: True frailty risk versus predicted frailty risk mean with the bisector of the third quad-
rant (in red), the smoothed regression line (in green with confidence interval) and smoothed quan-
tile regression line on the first, second and third quantile (in orange) for a smaller and higher fam-
ily size, respectively starting from the top, equal to a maximum of 5 and 20.
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encounter a large number of false negative cases. Notice that the family size is not an actionable
but it acts directly on the equation of mean, median and family history. We would expect to be
more accurate with more information from the family, however it is not guaranteed to happen.

To make the posterior risk mean more meaningful to the end-user, we compute the probability
that it exceeds the (1 − 𝛼) percentile (say 95%) of the prior frailty risk Gamma distribution. In
Figure 1.3 the plot of the the true risk percentile versus the predicted probability of belonging to
the highest-risk families is reported. This allows us to assess that the relation between the true risk
percentile and the predicted probability of belonging to the highest-risk family is coherent, i.e. the
(posterior) predicted probability increases when the (prior) true probability increases. Notice that
we can distinguish two clouds of points which can be seen as representing the splitting of families
into two risk groups. Indeed, a binary splitting can be run fixing the threshold to the 95th quantile
in the predicted distribution of the probability of belonging to the highest-risk families, estimated
at 0.15.

Therefore, after all of the analyses, we adopt the mean as the best posterior frailty risk sum-
mary for Multivariate frailty Cox model.

Prediction accuracy for the posterior mean and the family history, respectively for the Multi-
variate frailty Cox model and the two Univariate Cox models, is reported in Table 1.4 through the
Harrell’s Concordance index. Notice that the value of the Harrell’s Concordance index depends on
the discrete nature of the predicted risk: for example, if a model predicts only two levels of risk,
then the numerator of the index will tend to be small, as all tied pairs (𝑖, 𝑗) for which �̂�𝑖 = �̂� 𝑗 are
excluded. This may happen with the two Univariate Cox models which include 𝐹𝐻 and 𝐹𝐻 (𝑡).
Results show that the Multivariate frailty Cox model is, not surprisingly, the best in prediction per-
formances, as it is used to generate the data. Because the Concordance value from the Multivariate
frailty Cox model ranges in between 0.83 and 0.95, it outperforms the Univariate models which are
able to coherently predict the risk only for 50 to 62% of pairs (𝑖, 𝑗).

Also, the accuracy of the binary classification can be analyzed by reporting the AUC, the positive
predicted value PPV, and the negative predictive value NPV. As a result, the AUC increases when
the family size is larger, as expected. This can be appreciated also from the ROC curve in Figure
1.4, where the scenario with maximum family size equal to twenty correctly classifies the 97% of
families in the right group, the 14% in average more than the scenario with maximum five family
members.

In conclusion, the Multivariate Shared Frailty Cox model appears to be an effective approach
to the study of family history effects and risk prediction. Once the posterior frailty distribution
is obtained for each family, we recommend to report the posterior frailty mean as well as the
posterior probability and binary indicator of belonging to the highest-risk families based on a
threshold from the population (prior) distribution (for example the top 5% as above).

A sensitivity analysis is additionally run to assess the robustness of the parameter estimates ac-
cording to the threshold value. The family size is set at maximum 5 with average number of rela-
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Figure 1.2: True frailty risk versus the conditional MSPE in squared root, for a lower and a higher
family size, respectively starting from the top, equal to a maximum of 5 and 20.
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Figure 1.3: True frailty risk percentiles versus the predicted probability of belonging to the highest-
risk families, with a smoothed regression line (in blue).
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Figure 1.4: ROC curve of the predicted indicator of belonging to the highest-risk families versus
the true membership to the highest-risk families (top 5%).
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(𝑛𝐹 , _𝐹)

(2, 0.8) (5, 0.8) (10, 5) (20, 10)

Multivariate frailty Cox
AUC 0.73 (0.0001) 0.83 (0.0001) 0.88 (0.0001) 0.97 (<0.0001)
PPV 0.35 (0.0001) 0.37 (0.0001) 0.52 (0.0001) 0.61 (0.0001)
NPV 0.93 (<0.0001) 0.97 (<0.0001) 0.95 (<0.0001) 0.96 (<0.0001)
Concordance 0.96 (<0.0001) 0.94 (<0.0001) 0.86 (<0.0001) 0.83 (<0.0001)

Univariate 𝐹𝐻 Cox
AUC 0.56 (0.0001) 0.57 (0.0001) 0.70 (0.0001) 0.69 (0.0001)
PPV 0.28 (0.0002) 0.26 (0.0001) 0.21 (<0.0001) 0.17 (<0.0001)
NPV 0.95 (<0.0001) 0.93 (<0.0001) 0.70 (<0.0001) 0.54 (0.0001)
Concordance 0.50 (<0.0001) 0.50 (<0.0001) 0.51 (0.0001) 0.52 (0.0001)

Univariate 𝐹𝐻 (𝑡) Cox
AUC 0.55 (<0.0001) 0.56 (<0.0001) 0.59 (<0.0001) 0.57 (<0.0001)
PPV 0.26 (0.0001) 0.24 (0.0001) 0.16 (<0.0001) 0.14 (<0.0001)
NPV 0.91 (<0.0001) 0.88 (<0.0001) 0.52 (0.0001) 0.36 (0.0001)
Concordance 0.52 (<0.0001) 0.52 (<0.0001) 0.59 (0.0001) 0.62 (0.0001)

Table 1.4: AUC, PPV, and NPV corresponding to the ROC curve on the binary frailty risk with thresh-
old (1 - 𝛼) = 0.95, and Harrell’s Concordance index.

tives to 0.8. The threshold is varying among 0.85, 0.9, 0.95, 0.99. Results show (Table 1.5) that
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(1-𝛼)

0.85 0.9 0.95 0.99

Multivariate frailty Cox
AUC 0.94 (0.000001) 0.83 (0.0001)
PPV 0.37 (0.0001)
NPV 0.93 (<0.0001) 0.97 (<0.0001) 0.95 (<0.0001) 0.96 (<0.0001)
Concordance 0.96 (<0.0001) 0.94 (<0.0001) 0.86 (<0.0001) 0.83 (<0.0001)

Univariate 𝐹𝐻 Cox
AUC 0.56 (0.0001) 0.57 (0.0001) 0.70 (0.0001) 0.69 (0.0001)
PPV 0.28 (0.0002) 0.26 (0.0001) 0.21 (<0.0001) 0.17 (<0.0001)
NPV 0.95 (<0.0001) 0.93 (<0.0001) 0.70 (<0.0001) 0.54 (0.0001)
Concordance 0.50 (<0.0001) 0.50 (<0.0001) 0.51 (0.0001) 0.52 (0.0001)

Univariate 𝐹𝐻 (𝑡) Cox
AUC 0.55 (<0.0001) 0.56 (<0.0001) 0.59 (<0.0001) 0.57 (<0.0001)
PPV 0.26 (0.0001) 0.24 (0.0001) 0.16 (<0.0001) 0.14 (<0.0001)
NPV 0.91 (<0.0001) 0.88 (<0.0001) 0.52 (0.0001) 0.36 (0.0001)
Concordance 0.52 (<0.0001) 0.52 (<0.0001) 0.59 (0.0001) 0.62 (0.0001)

Table 1.5: AUC, PPV, and NPV corresponding to the ROC curve on the binary frailty risk with varying
threshold (1 - 𝛼), and Harrell’s Concordance index.

On the other side, the Multivariate frailty Cox model is poor in estimating some meaningful
measures for explaining the phenomenon of breast cancer. That is why we develop the three
aforementioned models into the parametric scenario. This allows us to employee the cure-rate
survival function which helps us identifying the cured fraction into the population and estimating
the survival curve of breast cancer cases. Let us take a closer look at the development of parametric
models in next section.

1.4.3 Parametric setting

Now we explore the Multivariate frailty Cure-Rate, the Univariate frailty Cure-Rate, and the Uni-
variate 𝐹𝐻 Cure-Rate model in terms of parameter recovery by varying the baseline survival func-
tion and accuracy in risk prediction.

Parameter estimation in the parametric case allows for a more detailed description compared
to the semiparametric scenario, due to the inclusion of a parametric baseline survival function
and the cure-rate structure. We conduct this simulation study on 𝑛 = 100, 000 families for 100 it-
erations to obtain average point estimates and their standard errors across repetitions. As above,
to generate the family size we use a parameter to control the maximum of the family size 𝑛𝐹 and
the rate parameter of a Poisson distribution _𝐹 which, recall, it can be seen as the average number
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of first-degree female relatives that a woman has. For the parameter recovery we set the param-
eters at (𝑛𝐹 , _𝐹) = (5, 0.8). The cured fraction 𝑝 is set at 0.85. The frailty parameter is varying to
assess estimate stability across its values. While, the baseline survival distribution has parameters
𝑠ℎ𝑎𝑝𝑒0 = `0 = 8, 𝑠𝑐𝑎𝑙𝑒0 = 𝜎0 = 6, 𝛾0 = 15, according to the distribution it takes among Weibull,
Gamma, Lognormal, three-parameter Gamma and three-parameter Lognormal. In Tables 1.6, 1.7,
1.8, 1.9, 1.10 we report the true value of the frailty parameters, varying among 0.2, 0.5, 0.8 in the
first column, followed by the recovery of the baseline survival parameters, and the recovery of the
frailty parameter in the last column.

\ �̂�0 (se) �𝑠ℎ𝑎𝑝𝑒0 (se) �𝑠𝑐𝑎𝑙𝑒0 (se) \̂ (se)

Multivariate frailty Cure-Rate
Mean (se) 0.2 0.85 (0.0016) 7.99 (0.0498) 5.99 (0.0063) 0.20 (0.0043)
MSE 0.0316 0.2581 0.103 0.0374
Mean (se) 0.5 0.85 (<0.0001) 8.00 (0.0004) 6.00 (0.0003) 0.50 (0.0001)
MSE 0.0316 0.1265 0.0949 0.0316
Mean (se) 0.8 0.85 (0.0001) 8.00 (0.0004) 6.00 (0.0006) 0.80 (0.0003)
MSE 0.0316 0.1265 0.1897 0.0949

Univariate frailty Cure-Rate
Mean (se) 0.2 0.79 (0.0008) 8.12 (0.0366) 6.37 (0.0374) 0.11 (0.0007)
MSE 0.26 11.5746 11.8327 0.239
Mean (se) 0.5 0.81 (0.0011) 8.59 (0.0241) 6.06 (0.0030) 0.39 (0.0170)
MSE 0.3501 7.6439 0.9506 5.377
Mean (se) 0.8 0.81 (0.0012) 8.36 (0.0247) 6.07 (0.0035) 0.62 (0.0568)
MSE 0.3816 7.8191 1.109 17.9621

Univariate 𝐹𝐻 Cure-Rate 𝛽𝐹𝐻 (se)
Mean (se) 0.2 0.89 (0.0014) 5.06 (0.0653) 6.15 (0.0837) 2.88 (0.0587)
MSE 0.4445 20.8579 26.4687 18.755
Mean (se) 0.5 0.88 (0.0016) 4.97 (0.0574) 5.90 (0.0119) 2.02 (0.0505)
MSE 0.5069 18.4026 3.7644 16.0417
Mean (se) 0.8 0.89 (0.0013) 4.72 (0.0633) 5.85 (0.0146) 1.84 (0.0385)
MSE 0.413 20.2842 4.6194 12.2191

Table 1.6: Parameter recovery with a Weibull(𝑠ℎ𝑎𝑝𝑒 = 8, 𝑠𝑐𝑎𝑙𝑒 = 6) baseline survival function.
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\ �̂�0 (se) �𝑠ℎ𝑎𝑝𝑒0 (se) �𝑠𝑐𝑎𝑙𝑒0 (se) \̂ (se)

Multivariate frailty Cure-Rate
Mean (se) 0.2 0.85 (<0.0001) 8.24 (0.0003) 5.96 (0.0003) 0.22 (<0.0001)
MSE 0.1897 0.2581 0.103 0.0374
Mean (se) 0.5 0.85 (0.0002) 8.01 (0.0009) 5.99 (0.0008) 0.50 (0.0002)
MSE 0.0632 0.2848 0.2532 0.0632
Mean (se) 0.8 0.85 (<0.0001) 7.99 (0.0003) 6.01 (0.0003) 0.79 (0.0002)
MSE 0.0316 0.0954 0.0954 0.2968

Univariate frailty Cure-Rate
Mean (se) 0.2 0.79 (0.0006) 9.04 (0.0580) 5.79 (0.0385) 0.13 (0.0021)
MSE 0.199 18.3707 12.1766 0.6678
Mean (se) 0.5 0.79 (0.0009) 8.47 (0.0384) 6.03 (0.0335) 0.17 (0.0039)
MSE 0.2909 12.1522 10.5937 1.2767
Mean (se) 0.8 0.78 (0.0012) 8.08 (0.0563) 6.88 (0.0765) 0.22 (0.0047)
MSE 0.3859 17.8038 24.2074 1.5954

Univariate 𝐹𝐻 Cure-Rate 𝛽𝐹𝐻 (se)
Mean (se) 0.2 0.69 (0.0103) 4.51 (0.0776) 53.59 (2.2848) 2.51 (0.0662)
MSE 3.2611 24.7862 724.0828 21.0613
Mean (se) 0.5 0.83 (0.0037) 5.98 (0.0713) 15.05 (0.6704) 1.10 (0.0247)
MSE 1.1702 22.6373 212.1922 7.8338
Mean (se) 0.8 0.85 (0.0012) 6.77 (0.0737) 8.95 (0.2033) 0.79 (0.0247)
MSE 0.3795 23.3384 64.3568 7.8108

Table 1.7: Parameter recovery with a Gamma(𝑠ℎ𝑎𝑝𝑒 = 8, 𝑠𝑐𝑎𝑙𝑒 = 6) baseline survival function.

The findings presented in Tables 1.6, 1.7, 1.8, 1.9, and 1.10 align with our initial expectations: the
Multivariate frailty Cure-Rate model is able to accurately identify and estimate the model param-
eters, given that the data are generated from a multivariate scenario. On the contrary, the Uni-
variate frailty Cure-Rate model loses prediction accuracy by excluding family information; while
the Univariate 𝐹𝐻 Cure-Rate model is not able to recover well the parameters because the family
history coefficient is not even part of the data generating process.

However, there are some identification issues regarding the three-parameter distribution. At
least, the three-parameter Gamma Multivariate frailty Cure-Rate model can almost accurately
identify the true value of the parameters used in the data generating process. Indeed, from the
estimated Kaplan-Meier curve in Figure 1.5 we can appreciate how in these scenarios the sur-
vival curves remain constant before the time fixed as threshold, that in this case is set at 15, when
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\ �̂�0 ̂̀0 �̂�20 \̂

Multivariate frailty Cure-Rate
Mean (se) 0.2 0.84 (0.0006) 7.89 (0.0192) 5.93 (0.0060) 0.19 (0.0004)
MSE 0.19 6.0726 1.8987 0.1269
Mean (se) 0.5 0.83 (0.0009) 8.28 (0.0238) 6.01 (0.0068) 0.55 (0.0017)
MSE 0.2853 7.5314 2.1504 0.5399
Mean (se) 0.8 0.84 (0.0008) 8.05 (0.0227) 6.01 (0.0066) 0.95 (0.0039)

MSE 0.2532 7.1785 2.0871 1.2424

Univariate frailty Cure-Rate
Mean (se) 0.2 0.89 (0.0001) 6.05 (0.0015) 5.42 (0.0015) 0.37 (0.0036)
MSE 0.051 2.0069 0.7493 1.151
Mean (se) 0.5 0.89 (0.0001) 6.16 (0.0017) 5.37 (0.0014) 2.42 (0.0589)
MSE 0.051 1.9169 0.77 18.7245
Mean (se) 0.8 0.89 (0.0001) 6.07 (0.0028) 5.34 (0.0021) 0.65 (0.0052)
MSE 0.051 2.1234 0.9363 1.6512

Univariate 𝐹𝐻 Cure-Rate 𝛽𝐹𝐻 (se)
Mean (se) 0.2 0.96 (0.0004) 0.32 (0.0465) 3.75 (0.0472) 0.17 (0.0398)
MSE 0.1676 16.5894 15.0946 12.5859
Mean (se) 0.5 0.95 (0.0007) 0.84 (0.0525) 3.89 (0.0665) -0.31 (0.0439)
MSE 0.2429 18.0801 21.1347 13.906
Mean (se) 0.8 0.95 (0.0006) 1.09 (0.0555) 3.65 (0.0266) -0.53 (0.0467)
MSE 0.2145 18.8619 8.7338 14.8276

Table 1.8: Parameter recovery with Lognormal(`0 = 8, 𝜎0 = 6) baseline survival function.

censoring and breast cancer cases begin to show up. On the contrary, the three-parameter Log-
normal distribution Multivariate frailty Cure-Rate model shows some problems in recovering the
true values of the parameters. We can appreciate a particular behaviour of the estimated Kaplan-
Meier curve in Figure 1.6: the jump crossing the threshold is not smooth as it is in the Gamma
scenario; and also, it shows that censoring and cases happen after long time. We need to investi-
gate more deeply about this particular behaviour. Perhaps, a higher flexibility into the parameter
is not needed to raise the prediction accuracy.

Once the parameters are estimated, we can proceed to run risk prediction by computing the
posterior frailty mean, median, and mode by using the parametric equations reported in Section
1.3.2. Notice that in this case we run the simulation with a Weibull(𝑠ℎ𝑎𝑝𝑒0 = 8, 𝑠𝑐𝑎𝑙𝑒0 = 6), cured
fraction 𝑝 = 0.85, and frailty parameter \ = 0.2.
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Figure 1.5: Kaplan-Meier estimate with a three-parameter Gamma distribution for the survival
function of cases.
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Figure 1.6: Kaplan-Meier estimate with a three-parameter Lognormal distribution for the survival
function of cases.
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\ �̂�0 (se) �̂�ℎ𝑎𝑝𝑒0 (se) �̂�𝑐𝑎𝑙𝑒0 (se) �̂�0 (se) \̂ (se)

MFCR
Mean (se) 0.2 0.84 (0.0008) 9.34 (0.1751) 6.85 (0.0857) 13.46 (0.3991) 0.19 (0.0021)
MSE 0.2532 55.3877 27.1140 126.2159 0.6642
Mean (se) 0.5 0.84 (0.0004) 7.99 (0.1642) 7.64 (0.1154) 17.32 (0.3211) 0.61 (0.0121)
MSE 0.1269 51.9246 36.5295 101.5672 3.8279
Mean (se) 0.8 0.86 (0.0013) 8.06 (0.1817) 6.48 (0.2611) 17.56 (0.3511) 0.88 (0.0192)
MSE 0.4112 57.4586 82.5685 111.0571 6.0721

UFCR
Mean (se) 0.2 0.78 (0.0069) 13.18 (0.1567) 4.56 (0.0368) 6.84 (0.3131) 102.81 (2.7683)
MSE 2.1831 49.8229 11.7259 99.3466 881.4064
Mean (se) 0.5 0.76 (0.0071) 13.14 (0.2535) 6.57 (0.1449) 9.14 (0.3799) 98.90 (2.6522)
MSE 2.2470 80.3284 45.8249 120.2778 844.4519
Mean (se) 0.8 0.71 (0.0079) 12.34 (0.2673) 7.74 (0.1807) 11.59 (0.4246) 68.93 (2.7657)
MSE 2.5021 84.6390 57.1688 134.3136 877.2408

U𝐹𝐻CR 𝛽𝐹𝐻 (se)
Mean (se) 0.2 0.89 (<0.0001) 8.69 (0.0205) 5.49 (0.0084) 14.37 (0.0431) 3.23 (0.0048)
MSE 0.0510 6.5193 2.7048 13.6440 3.3889
Mean (se) 0.5 0.88 (0.0001) 8.23 (0.0189) 5.96 (0.0110) 14.78 (0.0399) 1.64 (0.0022)
MSE 0.0436 5.9811 3.4787 12.6194 1.3355
Mean (se) 0.8 0.87 (0.0001) 6.85 (0.0208) 6.85 (0.0124) 18.34 (0.0413) 1.38 (0.0018)
MSE 0.0374 6.6773 4.0123 13.4805 0.8126

Table 1.9: Parameter recovery with a three-parameter Gamma(𝑠ℎ𝑎𝑝𝑒0 = 8, 𝑠𝑐𝑎𝑙𝑒0 = 6, 𝛾0 = 15)
baseline survival function, for the Multivariate frailty Cure-Rate (MFCR), the Univariate frailty
Cure-Rate (UFCR), and the Univariate 𝐹𝐻 Cure-Rate (U𝐹𝐻CR) model.

In Table 1.11 we compare the posterior frailty risk mean, median, and mode, from the posterior
frailty risk distribution, by reporting their performances in terms of MSPE, 𝑅2, coefficient of the
predicted risk on the true risk, correlation coefficient, and rank correlation coefficient. Family size
is varying across the parameter values (𝑛 𝑓 , _𝐹) = ((2, 0.8), (5, 0.8), (10, 5), (20, 10)𝑇 . Notice that for
the Univariate 𝐹𝐻 Cure-Rate the predicted risk is the family history indicator itself, and not the
mean, median or mode. Let us report the main comments that we can extrapolate from Table
1.11. The MSPE is not getting lower as the family size increases, on the contrary of what we could
expect. This can be due to the random generation of the samples every time. However, for the
posterior frailty risk mode we can notice that with an increasing family size the MSPE is halved.
By comparing the Multivariate frailty Cure-Rate model, the Univariate frailty Cure-Rate model and
the Univariate 𝐹𝐻 Cure-Rate model we can not notice a significative difference in terms of MSPE,
even though the best results belong to the performance of the Multivariate frailty Cure-Rate model
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\ �̂�0 (se) ̂̀0 (se) �̂�20 (se) �̂�0 (se) \̂ (se)

MFCR
Mean (se) 0.2 0.40 (0.0006) 4.31 (0.0015) 9.84 (0.0055) 14.96 (0.0004) 1.18 (0.0019)
MSE 0.4884 3.7204 4.2155 0.1327 1.1495
Mean (se) 0.5 0.46 (<0.0001) 4.16 (<0.0001) 9.29 (<0.0001) 14.99 (<0.0001) 1.18 (<0.0001)
MSE 0.3913 3.8401 3.2902 0.0332 0.6807
Mean (se) 0.8 0.58 (0.0014) 3.38 (0.0037) 6.82 (0.0118) 14.96 (0.0003) 2.09 (0.0055)
MSE 0.5186 4.7659 3.8205 0.1030 2.1654

UFCR
Mean (se) 0.2 0.37 (0.0012) 4.06 (0.0063) 9.37 (0.0147) 14.91 (0.0012) 2.51 (0.0173)
MSE 0.6119 4.4150 5.7416 0.3900 5.9384
Mean (se) 0.5 0.56 (0.0017) 3.41 (0.0046) 7.20 (0.0147) 14.93 (0.0010) 2.75 (0.0116)
MSE 0.6108 4.8150 4.8009 0.3239 4.3033
Mean (se) 0.8 0.59 (0.0013) 3.45 (0.0046) 6.94 (0.0134) 14.96 (0.0004) 2.36 (0.0072)
MSE 0.4864 4.7769 4.3405 0.1327 2.9400

U𝐹𝐻CR 𝛽𝐹𝐻 (se)
Mean (se) 0.2 0.95 (0.0007) 0.89 (0.0083) 3.15 (0.0081) 0.09 (0.0024) 0.17 (0.0045)
MSE 0.2429 7.5790 3.8319 14.9293 1.4233
Mean (se) 0.5 0.94 (0.0012) 0.89 (0.0060) 3.27 (0.0122) 0.17 (0.0051) 0.09 (0.0059)
MSE 0.3900 7.3588 4.7262 14.9174 1.9103
Mean (se) 0.8 0.93 (0.0014) 0.92 (0.0062) 3.30 (0.0131) 0.18 (0.0059) 0.06 (0.0056)
MSE 0.4499 7.3465 4.9448 14.9370 1.9193

Table 1.10: Parameter recovery with a three-parameter Lognormal(`0 = 8, 𝜎0 = 6, 𝛾0 = 15) baseline
survival function, for the Multivariate frailty Cure-Rate (MFCR), the Univariate frailty Cure-Rate
(UFCR), and the Univariate 𝐹𝐻 Cure-Rate (U𝐹𝐻CR) model.

with posterior mean (3.433). The coefficient of determination is instead increasing when the family
size tends to a higher number. This is exactly what we expect from before the analysis: a sample
with larger families has a greater explainability power of the breast cancer development than a
sample with families composed by few subjects. Moreover, here we can appreciate the higher
power of the Multivariate frailty Cure-Rate model in comparison to the other two, because in the
Univariate models the coefficient of determination is always computed on one subject per family.
The best result is when the Multivariate frailty Cure-Rate model with mean or median frailty as
covariate, explains around 61-62% of variability of the true risk with maximum twenty family
members. For what concerns the coefficient from the linear regression of the true risk on the
predicted risk, we would like it to be as closest as possible to one. Here we notice that this value
is increasing with the family size for the Multivariate frailty Cure-Rate model, while it performs
very badly for the Univariate models. In conclusion, this coefficient is not that meaningful. The
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(𝑛𝐹 , _𝐹)

(2, 0.8) (5, 0.8) (10, 5) (20, 10)

Multivariate frailty Cure-Rate
MSPE(mean) 3.873 (0.049) 4.800 (0.074) 3.843 (0.071) 3.433 (0.049)
MSPE(median) 4.420 (0.052) 5.401 (0.078) 4.177 (0.074) 3.643 (0.051)
MSPE(mode) 11.348 (0.061) 12.198 (0.088) 6.009 (0.082) 4.430 (0.052)
𝑅2(mean) 0.202 (0.002) 0.219 (0.002) 0.478 (0.004) 0.614 (0.002)
𝑅2(median) 0.207 (0.002) 0.222 (0.002) 0.485 (0.004) 0.619 (0.002)
𝑅2(mode) 0.127 (0.002) 0.115 (0.002) 0.383 (0.003) 0.583 (0.002)
𝛽mean 1.553 (0.008) 1.705 (0.011) 2.401 (0.018) 2.781 (0.018)
𝛽median 1.792 (0.010) 1.975 (0.013) 2.608 (0.019) 2.932 (0.019)
𝛽mode 0.957 (0.007) 0.927 (0.009) 1.929 (0.015) 2.645 (0.017)
𝜌(mean) 0.447 (0.002) 0.465 (0.002) 0.689 (0.007) 0.783 (0.001)
𝜌(median) 0.452 (0.002) 0.468 (0.002) 0.694 (0.003) 0.786 (0.001)
𝜌(mode) 0.353 (0.002) 0.335 (0.003) 0.616 (0.002) 0.763 (0.001)
Rank 𝜌(mean) 0.181 (0.002) 0.226 (0.002) 0.438 (0.002) 0.539 (0.001)
Rank 𝜌(median) 0.181 (0.002) 0.226 (0.002) 0.438 (0.002) 0.539 (0.001)
Rank 𝜌(mode) 0.151 (0.002) 0.146 (0.002) 0.332 (0.002) 0.490 (0.002)

Univariate frailty Cox
MSPE(mean) 4.241 (0.053) 5.259 (0.081) 4.738 (0.084) 4.507 (0.059)
MSPE(median) 4.536 (0.055) 5.594 (0.084) 5.040 (0.088) 4.798 (0.062)
MSPE(mode) 6.511 (0.060) 7.666 (0.091) 7.019 (0.098) 6.767 (0.068)
𝑅2(mean) 0.136 (0.003) 0.157 (0.003) 0.183 (0.002) 0.126 (0.002)
𝑅2(median) 0.138 (0.003) 0.161 (0.003) 0.191 (0.003) 0.131 (0.002)
𝑅2(mode) 0.128 (0.003) 0.149 (0.002) 0.190 (0.002) 0.128 (0.002)
𝛽mean 2.704 (0.025) 3.158 (0.021) 3.326 (0.037) 2.685 (0.023)
𝛽median 2.893 (0.028) 3.369 (0.023) 3.588 (0.038) 2.887 (0.025)
𝛽mode 2.621 (0.028) 3.032 (0.022) 3.349 (0.035) 2.658 (0.022)
𝜌(mean) 0.356 (0.004) 0.391 (0.003) 0.422 (0.003) 0.351 (0.003)
𝜌(median) 0.359 (0.004) 0.395 (0.003) 0.432 (0.003) 0.357 (0.003)
𝜌(mode) 0.348 (0.004) 0.381 (0.003) 0.431 (0.003) 0.353 (0.002)
Rank 𝜌(mean) 0.201 (0.004) 0.206 (0.002) 0.194 (0.002) 0.183 (0.002)
Rank 𝜌(median) 0.201 (0.004) 0.206 (0.002) 0.194 (0.002) 0.183 (0.002)
Rank 𝜌(mode) 0.167 (0.003) 0.190 (0.002) 0.203 (0.002) 0.192 (0.001)

Univariate 𝐹𝐻 Cure-Rate
MSPE 5.388 (0.057) 6.573 (0.089) 5.625 (0.097) 5.034 (0.062)
𝑅2 0.043 (0.001) 0.043 (0.001) 0.152 (0.003) 0.186 (0.002)
𝛽𝐹𝐻 3.584 (0.077) 3.971 (0.077) 3.222 (0.039) 2.806 (0.019)
𝜌 0.189 (0.004) 0.195 (0.003) 0.379 (0.004) 0.429 (0.002)
Rank 𝜌(mean) 0.147 (0.002) 0.159 (0.002) 0.348 (0.001) 0.435 (0.001)

Table 1.11: Prediction accuracy measures.
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Pearson correlation and the rank correlation increase when the family size increases, as we expect
before the analysis. With maximum twenty family members, the Multivariate frailty Cure-Rate
model achieve a correlation in the range 0.76-0.78, which is around the 0.40 points higher that
the Univariate frailty Cure-Rate model, and 0.30 points more than the Univariate 𝐹𝐻 Cure-Rate
model. Again for the rank correlation, the Multivariate frailty Cure-Rate model achieve a value in
the range 0.49-0.54, which is 0.35 points higher than the Univariate frailty Cure-Rate model. The
Univariate 𝐹𝐻 Cure-Rate model strikes a discrete result with a rank correlation of 0.43. Once again,
we conclude that the Multivariate frailty Cure-Rate model outperforms the others.

We can conclude now that the posterior mean as predicted frailty risk through the maximiza-
tion of the multivariate likelihood yields the most favorable results. Not of less importance is that
fact that the mean is an understandable index to the end user, rather than the median and the
mode. From Figure 1.7 one can observe the improved accuracy in prediction as the family size
increases along with the mean frailty. The observed behavior in the plot with smaller families
is attributed to the aforementioned (from semiparametric scenario) shrinkage issue of the mean
frailty risk, which is effectively mitigated with a larger family size. No distinction can be observed
in the conditional MSPE, plotted against the true risk on the x-axis, in Figure 1.8. This observation
highlights the need to explore alternative estimations for frailty risk in order to overcome the var-
ious challenges encountered also with the mean estimation even though we adopt it as the best
summary of the posterior predicted frailty risk distribution so far.

We thus compare the three parametric models by applying the binary splitting of the predicted
risk mean and reporting the AUC, the PPV, the NPV and the Harrell’s Concordance index (C) in Table
1.12. The Multivariate frailty Cure-Rate model outperforms the other two Univariate models, with
an AUC in the range 70%-95%, increasing according to a higher family size, against an AUC around
the 62% for the Univariate frailty Cure-Rate, and in the range 53%-71% for the Univariate 𝐹𝐻 Cure-
Rate model. These additional twenty percentile points in the Multivariate frailty Cure-Rate model
allow to reach a strong predictive power that is not reached by any other model. Moreover, the
Multivariate frailty Cure-Rate model gives the best result in terms of negative predictive power
for maximum family size, with the 98% of families truly not belonging to the highest-risk group
in contract to the 96% resulted from the Univariate frailty Cure-Rate model. Similarly to the semi-
parametric scenario, also here the positive predictive value is weaker than the negative predictive
power, meaning that the low-risk families are better identified than the highest-risk families. This
allows for a reduction of unnecessary costs, medical treatments and psychological stress for fami-
lies who do not need to be under surveillance. We refer to Figure 1.9 for an example of ROC curve,
one among a hundred repetitions, from the Multivariate frailty Cure-Rate model. One can appre-
ciate how the AUC is significantly increasing from the 88% with a maximum of five members, to
95% with a maximum of twenty members per family.

Lastly, let us say that the Univariate frailty Cure-Rate model can coherently predict the risk
according to the time-to-event (see Concordance around the 95%), as well as the Multivariate frailty
Cure-Rate model, whose concordance varies among the 93% and the 96%. It is worth noting that for
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the Univariate 𝐹𝐻 Cure-Rate model, the Concordance index cannot be calculated without adjusting
for ties. The presence of ties is caused by the family history indicator, which trivially can only take
values 0 or 1.
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Figure 1.7: True risk versus predicted risk mean with the bisector of the third quadrant (in red),
the smoothed regression line, and smoothed quantile regression line on the first, second and third
quantile (in orange).
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Figure 1.8: True risk versus the conditional MSPE.
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(𝑛𝐹 , _𝐹)

(2, 0.8) (5, 0.8) (10, 5) (20, 10)

Multivariate frailty Cure-Rate
AUC 0.697 (0.002) 0.714 (0.002) 0.891 (0.002) 0.948 (0.001)
PPV 0.318 (0.002) 0.352 (0.003) 0.532 (0.003) 0.624 (0.003)
NPV 0.951 (<0.001) 0.959 (<0.001) 0.975 (<0.001) 0.980 (<0.001)
C 0.960 (<0.001) 0.959 (<0.001) 0.943 (0.001) 0.929 (0.001)

Univariate frailty Cure-Rate
AUC 0.627 (0.002) 0.637 (0.002) 0.632 (0.002) 0.621 (0.001)
PPV 0.286 (0.004) 0.332 (0.003) 0.373(0.004) 0.332 (0.003)
NPV 0.959 (<0.001) 0.961 (<0.001) 0.965 (<0.001) 0.963 (<0.001)
C 0.952 (<0.001) 0.947 (<0.001) 0.951 (<0.001) 0.950 (<0.001)

Univariate 𝐹𝐻 Cure-Rate
AUC 0.535 (0.001) 0.533 (0.001) 0.645 (0.002) 0.712 (0.001)
PPV 0.314 (0.009) 0.299 (0.009) 0.288 (0.003) 0.223 (0.001)
NPV 0.991 (<0.001) 0.989 (<0.001) 0.944 (<0.001) 0.897 (<0.001)
C - - - -

Table 1.12: Mean and standard errors of AUC, PPV, and NPV corresponding to the binary split based
on the highest-risk group indicator with threshold 1 − 𝛼 = 0.95, and Harrell’s concordance index
C.
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Figure 1.9: ROC curve of the true membership to the highest-risk families (top 5%) versus the
predicted risk mean.
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1.5 Illustration to the Swedish Multi-Generational Breast Cancer reg-
istry

1.5.1 Motivating framework

Breast cancer is the most prevalent form of cancer among females, comprising approximately 30%
of all cancer diagnoses [34]. The presence of lesions in secondary locations is a significant risk
factor for cancer, as these lesions are known to be highly fatal due to the process of metastasis,
which causes over the 90% of cancer-related deaths [28].

In recent decades, a lot has been discovered in cancer research with the goal of improving the
survival rates of patients. Despite these progresses, a significant amount of information regarding
the development of cancer remains unknown, which presents an opportunity for further improve-
ment. Specifically, areas in which there is potential for improvement include the detection and
treatment of primary tumors and metastases. This section will provide an overview of the most
recent literature on the etiology, diagnosis, and treatment of cancer. Of particular interest is the
advancement of early detection methods, as early detection is crucial for having more treatment
options, increasing the probability of a successful recovery, and preventing mortal metastases.

Primary cancers have three distinct causes, namely genetic factors, individual lifestyle, and
external environmental factors. In the context of breast cancer, several genes have been identi-
fied as crucial for its development. These include breast cancer genes (BRCA1, BRCA2), which are
associated with the highest incidence of breast and ovarian cancers in families, as well as the tu-
mor protein mutation (TP53), the single nucleotide polymorphisms (SNPs), and the polygenic risk
scores (PRS) [13, 21]. BRCA1 and BRCA2 mutations are highly indicative of cancer detection; how-
ever, they only account for 20− 25% of familial cancer aggregation [28]. As a result, the remaining
75% of cancer familial aggregation is unknown.

Other risk factors for breast cancer, not genetic, include mammography density (MD), age, oral
contraceptives, parity and timing of births, breastfeeding, age at menarche and menopause, body
mass index (BMI), physical exercise, alcohol and tobacco consumption, and family history [9].
Among these, family history is considered one of the strongest. The term family history refers
to the incidence of breast cancer onset among family members. A positive family history is char-
acterized by at least one family member that has experienced breast cancer onset at the time of the
analysis. Clearly, the magnitude of the family history effect depends on the number and grade of
relatives who have experienced the disease. For example, a positive family history in first-degree
relatives, i.e. among mother and sisters, has a greater impact compared to breast cancer cases in
second or third-degree relatives, i.e. grandmothers and aunts [7].

Now that we have analysed the possible causes, we explore the three-step process of breast
cancer diagnosis. The first step is the clinical analysis, which is the least invasive. If necessary, the
process proceeds to the intermediate step of machine imaging. Digital mammography is the most
commonly used imaging technique. The final and most invasive step involves a biopsy, where a
fine needle is used for cytopathology diagnosis, which studies pathology at the cellular level. After
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the identification of a tumor, it needs to be classified in one of the available categories [9].

Tumors can be categorized using different methods, such as primary origin and metastasis
stage, histological grade, or molecular subtypes, which are determined by the phenotype, namely
the visible expression, of the cells. There are five molecular subtypes of invasive breast cancer:
luminal A, luminal B, luminal B-like, HER2-enriched, and triple negative. These categories are
mainly determined by the expression of three receptors: estrogen receptor (ER), progesterone re-
ceptor (PR), and human epidermal growth factor receptor type 2 (HER2). Luminal cancers are
the least dangerous as they need estrogen to grow, thus blocking the estrogen receptor is often
sufficient to stop tumor growth. Luminal A is ER positive, PR positive, and HER2 negative, while
luminal B cancer is ER positive and HER2 negative, with any result on PR. Luminal B-like cancer is
ER positive, PR negative, and HER2 positive. The HER2-enriched is ER and PR negative, but HER2
positive. The triple negative (TN) tumor, which is often referred to as TN-negative, is the most
harmful and it is ER, PR, and HER2 negative. These categories are also grouped as HR-positive for
luminal tumors, HER2-positive, and TN-negative.

Once that the breast cancer has been categorized, the treatment can be carried out according
to the category. Luminal A cancer, which grows slowly and has a better prognosis, can be treated
with hormonal therapy, which is the most basic and least invasive therapy. Luminal B and lu-
minal B-like cancers grow faster and have a worse prognosis, but they can typically be treated
with appropriate hormonal therapy. HER2-enriched cancer is worse than luminal tumors, and it
may require chemotherapy and targeted immunotherapy as primary treatments, followed by hor-
monal therapy. Triple negative cancer often occurs in individuals with a BRCA1 mutation, young
people, and black people. It can be managed through chemotherapy and adjuvant chemotherapy
(see e.g. [12]), with surgery as a subsequent option if necessary.

When talking about breast cancer one cannot ignore the process of metastasis. According to
recent studies, approximately 30% of breast cancer patients develop metastasis [20]. Therefore,
understanding metastasis is crucial for improving patient survival outcomes. Metastasis is a pro-
cess where cancer cells escape from the primary tumor, which is the original site of cancer, and dis-
seminate to a secondary location. Metastasis can be categorized as regional or distant, depending
on the distance the cancer cells have travelled. Regional metastasis occurs when the cancer cells
invade the regional lymph nodes. Distant metastasis occurs when cancer cells enter the blood-
stream or lymphatic vessels and disseminate to other organs, such as skeleton, lungs, liver, and
brain, with the brain being the least frequent but the most harmful [35].

It is still unclear when the metastasis process begins. Researchers have proposed two mod-
els of metastatic dissemination: the linear model and the parallel model [28]. The linear model
suggests that the metastatic progression occurs right after that the primary tumor grows and be-
comes malignant. On the other hand, the parallel model suggests that the metastatic progression
happens simultaneously with the primary tumor development. This hypothesis is supported by
several phenomena, such as early-stage cancer patients found with secondary tumors and second
cancer lesions discovered in patients with cancer of unknown origin. The parallel dissemination
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is much more dangerous than the linear progression, and both of them do not exclude the other.
Currently, metastatic breast cancer is considered an incurable disease. What it can be done

is only about prolonging patient survival and improving their quality of life by implementing a
treatment among for example, chemotherapy, hormonal therapy, targeted therapy. Surgical inter-
vention and radiation therapy may also be used in specific cases, according to the progression of
the metastatic patient.

As mentioned above, a significant proportion, namely the 75%, of familial aggregation of can-
cer remains unexplained. It is our goal to investigate this phenomenon and contribute to increase
the knowledge about the hereditary aspect of cancer. We believe that the random variable 𝑅,
namely the frailty risk, can capture the hereditary component and explain the familial aggregation
of breast cancer. Performing risk prediction brings to the identification of highest-risk families to
target them towards different prevention paths. It indeed helps to modify the intensity of screening
schedules, and to facilitate the implementation of tailored preventive strategies [10]. On the other
hand, identifying the lowest-risk families may lead to a reduction not only of their psychological
stress, but also of unnecessary medical treatments and costs.

1.5.2 The Data

Sweden’s centralized information storage process enables the creation of comprehensive and eas-
ily accessible registries. Notably, all the information is linked to the patient’s unique identification
number, known as the “löpnummer” in Swedish. This allows the demographic and medical infor-
mation to be traced back to each patient and family. The primary focus of this study is on breast
cancer data, death, and migration flux, which are available in separated dataset. By merging these
dataset, comprehensive information of each female family member can be obtained without los-
ing information about the relationships between members. The process of constructing the clean
dataset is detailed in Appendix A.3.

The dataset concerns a cohort of 𝑛 = 1, 603, 920 Swedish families, consisting of a total of
4, 267, 803 women. Among these families, 1, 603, 920 women (one per family) were born between
the 1947 January 1st, and 1976 December 31st, so that they age between 40 and 70 years old at the
end of the follow-up (which coincides with 2016 December 30th), and they are what we call the
“main subject” in the family. In this age window the risk of developing breast cancer is at its high-
est. The reason why we identify a main subject in each family is for moving from the multivariate
to the univariate scenario where one subject per family enters the likelihood. Notice that, given
a family, a main subject is identified with equal probability among the mother and the group of
daughters. If the realization falls into the group of daughters, one among them is randomly sam-
ple as the main subject. With this two-steps sample we ensure that also mothers are chosen with
probability 1/2.

Once the main subject has been identified, and consequently her mother and sisters, we can
move to obtain the information regarding breast cancer, death, and migration for all of them by
merging the Multi-Generational registry, which provides us with the familiar relationships, the
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Swedish Cancer registry, the Cause of Death registry, and the Migration registry. From the Cancer
registry we select only the invasive cancer as event of interest, by excluding the non-invasive DCIS
(ductual carcinoma in-situ) cases. From the Death and Migration registry we obtain the censoring
events, i.e. death or emigration before observing the occurrence of breast cancer.

All our analyses were conducted following the approval by the Bocconi Ethics Board.

1.5.3 A preliminary Case-Control analysis

We start by implementing a Nested Case-Control (NCC) study design to estimate the relative risk
(RR) of developing breast cancer for women with a positive first-degree family history (mother
or sisters) compared to those without a family history. We aim to obtain a value similar to the
well-known estimated value from literature, which is RR = 1.8 [14]. To conduct the NCC study,
we select subjects based on specific criteria from our initial dataset of 6,633,147 subjects. First,
we select women with a birthday within the end of the follow-up and with their mother in the
dataset, resulting in 3,798,079 subjects. We further narrow the dataset to women aged between 40
and 70 years old in the time window of 2010-2016, resulting in 1,131,499 subjects. This number is
different from the one under analysis because we also admit main subjects without information
on the mother.

To perform the NCC we match subjects based on their year of birth and select 19,550 breast
cancer cases and 90,833 unique controls (five controls for each case) through a process of sampling
with reintroduction. This results in a final dataset of 114,330 subjects, which we call the “Nested
Case-Control dataset” (NCCD), whose consort plot [23] is in Figure 1.10 with all the steps from the
initial dataset to the NCCD.

mother information (n = 3,798,079)

birth in [1947-01-01, 1976-12-31] (n = 1,131,499)

cases (n = 19,055) controls (n = 90,833)

Excluded (n = 2,666,580)

age between 40 and 70

matched subject sample (n = 114,330)

5-1 matching on

year of birth

initial sample (n = 6,633,147)
Excluded (n = 117,876)

birthday after 30/12/2016
birth < 2016-12-30 (n = 6,515,271)

Excluded (n = 2,717,192)

No mother info

Figure 1.10: Consort flow chart for the construction of the Nested Case-Control dataset.

We carry out a survival Cox model with the time-varying family history covariate 𝐹𝐻 (𝑡) on the
NCCD [42]. The estimated relative risk results 𝑅𝑅 = 1.8017, which is aligned with the value from
the literature equal to 1.8 [14, 26]. This result validates the quality of our data.
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1.5.4 Descriptive statistics

Table 1.13 reports some descriptive statistics of the clean dataset composed by 4, 267, 803 women,
and only 𝑛 = 1, 603, 920 when the term “Red.” accompanies the description.

Min. Median Mean Max.

Birthday 1853-11-15 1955-03-15 1954-01-15 2018-12-15
Diagnosis 1958-01-15 1994-02-25 1992-03-07 2016-12-30
Death 1947-05-08 1991-08-21 1991-01-18 2018-12-31
Emigration 1948-01-01 1999-09-30 1996-09-12 2018-12-31
Age at diagnosis Red. 11.00 50.00 50.2 69.00
Diagnosis Red. 1961-09-15 2008-08-13 2006-12-27 2016-12-30
Death Red. 1948-10-25 2006-12-26 2000-08-10 2018-12-31
Emigration Red. 1951-05-01 1992-08-24 1991-02-02 2018-12-31
Follow-up (years) 0 53.2922 52.8118 69.9576

Breast cancer onset Yes No
47,914 (2.99%) 1,556,006 (97.01%)

EFS Alive Dead/emigrated Diagnosed
1,408,072 (87.79%) 147,914 (9.22%) 47,934 (2.99%)

Yes No
FH at end of FU 105,432 (6.57%) 1,498,488 (93.43%)
Parity 989,422 (38.31%) 614,498 (61.69%)

Min. Median Mean Max.
Number of children 1 1 1.5 10
Age at first child 13.08 27.25 27.67 60.33

Table 1.13: Summaries of the main variables obtained from the Multi-Generational Swedish
dataset, where “Red.” refers to only the main subject (whose birthday ranges in [1947-01-01, 1976-
12-31]); “EFS” means status at the end of the follow-up, “FH” means family history, and “FU” means
follow-up.

It is worth noting that the first recorded breast cancer diagnosis occurred in January 1958, with
no specific day (we assume the onset date to be the 15th of that month). The final recorded case
occurred on December 30th, 2016, providing a 58-year follow-up for analysis. We also consider this
date as the end of the follow-up period. The median age at diagnosis is 50 years old, proving that the
risk group that we select with ages in-between 40 and 70 is appropriate. This is reflected also in the
median follow-up of around 53 years. Around the 3% (47,934 subjects) have been diagnosed with
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invasive breast cancer, the 9.22% are censored due to death, emigration or DCIS before the end of
the follow-up, and the 87.79% are alive at the end of the follow-up without experiencing neither
breast cancer onset nor any other censoring events, so that we can consider this percentage as our
cured fractions. Less than the 7% has a positive family history at the end of the follow-up. For
what concerns additional covariates that can be included into the models, the majority of women
(61.69%) is nulliparous, while, among those who have given birth, the average number of children
is 1.5. The mean age at first child (27 years old) is appropriate for Sweden. Notice that all of these
variables refer to the most recent follow-up time of the subject. Genetic factors and other details
related to breast cancer are not available in the data, limiting the scope of our analysis to familial
survival data provided by the women themselves during their visits. No medical tests or blood
samples are available.

A majority of families (45.06%) consist of two members, followed by three members (33.7%)
and four members (11.37%). To provide complete information on family structure, we also report
in Table 1.14 the frequencies of sisters, as they play a critical role in our analysis. The first row
of Table 1.14 shows the percentage of families having a specific number of sisters for the “main
subjects”, where it can be observed that no main subject has precisely eleven sisters. The second
row presents the cumulative percentage of sisters for the main subjects, which is equivalent to
the non-missing information on the sister columns. For instance, the first row shows that 36% of
main subjects have precisely one sister (“Freq.” in the first column), while the 52% have at least
one sister (“Cum. Freq.” in the second column).

Number of sisters

0 1 2 3 4 5 6 7 ≥8

Freq. 0.48 0.36 0.12 0.03 0.01 3.1·10−3 9·10−3 0.0005
Cum. Freq. 1 0.52 0.16 0.04 0.01 0.005 0.001 0.0008 0.0002

Table 1.14: Number of sisters of the main subjects.

Once the dataset has been cleaned and merged across families and all necessary subject-specific
information is collected, the observed time is determined based on whether the subject has expe-
rienced breast cancer onset, death, or emigration out of Sweden before in time. If the individual
has not experienced any of these events, her observed time is the last day of the follow-up. The
indicator of having observed the event follows immediately. In Figure 1.11, we present the Kaplan-
Meier estimator of the survival function for all subjects in the dataset, whose family size ranges
from a minimum of one to a maximum of fourteen subjects.

Parameter estimation must be distinguished between the semiparametric and the paramet-
ric scenario. Notice that the analysis is conducted both on those main subjects that has a recorded
mother in the Multi-Generational dataset and on all main subjects (with or without recorded mother
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Figure 1.11: Kaplan-Meier survival estimate of age at onset (all subjects).

in the dataset). A preliminary analysis on the covariate extension to parity indicator, number of
children, and age at first child from Table 1.16, is also conducted into the semiparametric setting.
We plan to extend this preliminary analysis to a proper study of the inclusion of covariates into
all models (both from semiparametric and parametric scenario), with a proper simulation study
before the real case analysis.

1.5.5 Semiparametric setting

In Section 1.4 the Multivariate frailty Cox, the Univariate 𝐹𝐻 Cox, and the Univariate 𝐹𝐻 (𝑡) Cox
model have been analysed in simulation studies. Not surprisingly, based on the simulation re-
sults, the Multivariate frailty Cox model outperforms the others in terms of predictive accuracy.
Similarly to simulation studies, also with the real case data the Multivariate frailty Cox model has
a Concordance index of 0.965, which is significantly higher than the Univariate 𝐹𝐻 Cox model
(0.5150) and the Univariate 𝐹𝐻 (𝑡) Cox model with 0.5036 of concordance. All the results are re-
ported in Table 1.15. By selecting only the main subjects with a recorded mother into the dataset,
the Concordance index almost reaches the maximum value, up to the 99% of concordant pairs.
This result is outstanding, and the advantage of using the Multivariate model instead of only the
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easier Univariate 𝐹𝐻 model is immediately observed. Indeed, the Univariate 𝐹𝐻 Cox and Univari-
ate 𝐹𝐻 (𝑡) Cox models perform poorly, as their prediction concordance is comparable to that of a
random flipping of a coin.

Survival information mother \̂ 𝛽𝐹𝐻 C

Multivariate frailty Cox yes 1.3624 - 0.9968
Univariate 𝐹𝐻 Cox - 1.5372 0.5021
Univariate 𝐹𝐻 (𝑡) Cox - 1.8017 0.5042

Multivariate frailty Cox no 1.327 - 0.9650
Univariate 𝐹𝐻 Cox - 1.449 0.5150
Univariate 𝐹𝐻 (𝑡) Cox - 1.8405 0.5036

Table 1.15: Estimated parameters and Harrell’s concordance index (C).

In Table 1.16 we report results from including the available reproductive covariates as parity,
number of children, and age at first child. No significant differences in terms of Concordance index
is noticed in comparison to the scenario without covariates.

Survival information mother \̂ 𝛽𝐹𝐻 C

Multivariate yes 2 - 0.9335
Univariate FH - 1.3922 0.6209
Univariate FH(t) - 2.2254 0.5350

Multivariate no 2 - 0.9436
Univariate FH - 1.3922 0.5965
Univariate FH(t) - 1.8049 0.5184

Table 1.16: Estimated parameters and Harrell’s concordance index (C) for the models with parity,
number of children, and age at first child.

Notice that the estimated family history coefficient 𝛽𝐹𝐻 has a positive value (around 1.8) mean-
ing that the family history has a positive effect on the breast cancer development, that is indeed
coherent with the literature.

We then use the estimated parameters to perform posterior prediction of family-specific frailty
risk.

We compute an algorithm which takes as input the familial survival data of the female family
members of a new woman. By providing information on her mother and sisters, the algorithm pro-
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duces three quantities: the posterior mean frailty risk, the probability of belonging to the highest-
risk families (top 5%), and an indicator of whether the woman belongs to the highest-risk families
compared to the population (prior) distribution of the probability of belonging to the highest-risk
families, based on a fixed threshold. For example, from the Multivariate frailty Cox model we ob-
tain that \̂ = 1.327, and �̂�(1−𝛼) is 0.1512 for 𝛼 = 0.05. This means that if a woman has a probability
of belonging to the highest-risk families over 15.12%, then her indicator will take value one. Risk
prediction can be easily done by using the estimated frailty parameter, the (1-𝛼) percentile value,
and also the Breslow estimates of the cumulative hazard function obtained by fitting the Multivari-
ate frailty Cox model. These values can be stored for later use, enabling fast prediction without
having to recompute the entire process for new women. This algorithm has been developed based
on the model chosen in Section 1.4.

In Table 1.17 a summary of the distribution of the cumulative hazard function is provided.
The plot of the cumulative hazard function and its density function on the complete population
are respectively in Figure 1.12 and 1.13. Interestingly, we can notice how the density function can
be split into two regions. It is straightforward to extend this procedure to other percentile levels,
although this necessitates refitting the model from the beginning, which can be time-consuming.
On the other hand, every computation can be done for once and store it for a later use.

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.0000 0.0000 0.0324 0.0752 0.1389 0.2583 360

Table 1.17: Summary of the estimated Breslow cumulative hazard function on a grid of (time)
values.

An example of risk prediction into the semiparametric scenario is reported below for a woman
with complete family survival information. Observed ages = (45, 90, 60) in years, and indicators of
having observed the onset event = (0, 1, 0). Consider the first subject to be the woman who shows
up at the hospital at 45 years of age, with the mother who had breast cancer onset at 90, and a sis-
ter who has not experienced the onset yet at age 60. The output from the algorithm below means
that the woman has a frailty risk with value 1.57 if estimated through the posterior mean; with
value 2.78 if estimated through the posterior median. She also has a probability of belonging to
the highest-risk families of 12.64% that is slower than the top 5% threshold of 15.12% and thus she
does not belong to the highest-risk families. All the quantities can be found in the following output:

Posterior mean frailty = 1.5762

Posterior median frailty = 2.7801

Posterior high-risk probability = 0.1264

Posterior high-risk membership = 0
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Figure 1.12: Estimated Breslow cumulative hazard function.
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Figure 1.13: Density plot of the Breslow cumulative hazard function estimated on the entire pop-
ulation in object.
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It is worth noting that in the parametric scenario, the population parametric distribution pro-
vides more information and therefore there is no requirement for computing the nonparametric
estimates of the cumulative hazard function and the quantile threshold.

1.5.6 Parametric setting

The Swedish real case dataset also provides us with a precious opportunity to explore the debated
issue of whether a cure-rate structure is reasonable in models for breast cancer onset or not.

We first focus on the goodness of fit of Cure-Rate models versus traditional models to the avail-
able dataset, to give a qualitative support to the hypothesis that a cured fraction exists and the Cure-
Rate models are able to capture it. Notice that, in this preliminary analysis, the frailty quantity has
not been involved yet. We employee five parametric distributions: Weibull, Gamma, Lognormal,
three-parameter Gamma, and three-parameter Lognormal for the baseline survival function of
cases.

Results from the analysis are presented in Table 1.18, where the models are compared using
the Akaike Information Criterion (AIC) that is exactly

𝐴𝐼𝐶 = −2𝑛𝜋 − ln 𝐿(𝜋),

where 𝑛𝜋 is the dimension of the parameter collection, and 𝐿(𝜋) is the likelihood on the parameter
collection. It should be noted that the models are not nested. We compare the fit across the several
survival function distributions, and also between the cure-rate and non-cure-rate survival struc-
ture but always within the multivariate and the univariate cases (which also have very different
sample sizes). The Multivariate Cure-Rate three-parameter Lognormal model yields the best result,
with an AIC value of 1687555, while the regular Lognormal distribution provides the best perfor-
mance for the Univariate Cure-Rate model with an AIC of 438368.4. From results, the cure-rate
models are always preferred to the non-cure-rate models (except for the case of the Multivariate
Lognormal model).

All the curves shown in Figures 1.14, 1.15, and 1.16 support the hypothesis of involving a cure-
rate model rather than a (traditional) non-cure model. Indeed, the cure-rate model seems to fit the
data (until the end of the follow-up) better than the non-cure models.

It is interesting to notice that support to the cure-rate structure is mainly given by the graphical
analysis of the survival function of the mothers, due to their older ages: in Figure 1.17, the Kaplan-
Meier curves by subjects (the main subject, the mother, and from the first sister to the last one)
show that the tail of the Kaplan-Meier estimator and of the fitted cure-rate models (Figure 1.14,
1.15, 1.16) is mostly attributable by the mothers (in black). A deepening about the reliability of
the cure-rate structure and the heavy tail due to the presence of the oldest mothers is in Appendix
A.4. We do not find particular graphical differences in curves among the daughters, as it should
be expected since the main subject is randomly sampled among all the sisters. One might extend
the models to allow for a (say, polynomial) effect of birth cohort on the survival distribution and
make distinction between the mother and the sisters.
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Survival function

non-cure cure-rate

Multivariate model
Weibull 1705353 1692822
Gamma 1698245 1688066
Lognormal 1693854 2334626
three-parameter Gamma 1707589 1687749
three-parameter Lognormal 1698257 1687555

Univariate model
Weibull 440685.6 439053.4
Gamma 439516 438391.8
Lognormal 438958.8 438368.4
Gamma 3-parameters 444890.7 438386.2
Lognormal 3-parameters 439460.9 438369

Table 1.18: AIC comparison among different survival distributions.

Once proved that the cure-rate model is the most appropriate for describing this real case
dataset, we proceed to parameter estimation. We report the values of the estimated parameters
in Table 1.19 and 1.20. We run the analysis both on main subjects with a recorded mother in the
registry or on main subjects without restrictions. In Table 1.19 the survival function has a Weibull
distribution. On the contrary, in Table 1.20 we extend to different baseline survival distributions
on all the main subjects. The estimated cured fraction value has a reasonable value for this spe-
cific application in the range around 87%-96% for �̂� in the first column of Table 1.19. The tables
also report the estimates of the baseline survival distribution parameters, that are �̂�ℎ𝑎𝑝𝑒0, and
�̂�𝑐𝑎𝑙𝑒0 for the Weibull and Gamma, with the addition of �̂�0 for the threshold parameter in the
three-parameter Gamma; ̂̀0, and �̂�20 for the Lognormal, with the addition of �̂�0 for the threshold
parameter in the three-parameters Lognormal. The frailty parameter \̂ and the 𝐹𝐻 coefficient 𝛽𝐹𝐻
are reported in the same column because estimating one of the two exclude the estimation of the
other. Notice that only the models with “FH” in the name estimate the family history coefficient
𝛽𝐹𝐻 .

Similarly to the semiparametric scenario, the Multivariate frailty Cure-Rate model outperforms
the other two Univariate models in terms of prediction accuracy through the Harrell’s concordance
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Figure 1.14: Kaplan-Meier for all subjects, in comparison to the estimated survival curves following
the cure-rate (green) and the non-cure (blue) survival structure with Weibull and Gamma baseline
survival function, on top and below, respectively.



1.5. ILLUSTRATION TO THE SWEDISH BREAST CANCER REGISTRY 65

0.75

0.80

0.85

0.90

0.95

1.00

0 30 60 90 120
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Multivariate Lognormal for all subjects

0.75

0.80

0.85

0.90

0.95

1.00

0 30 60 90 120
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Multivariate 3−parameters Lognormal for all subjects

Figure 1.15: Kaplan-Meier for all subjects, in comparison to the estimated survival curves follow-
ing the cure-rate (green) and the non-cure (blue) survival structure, with Lognormal and three-
parameter Lognormal survival function, on top and below, respectively.
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Figure 1.16: Kaplan-Meier for all subjects, in comparison to the estimated survival curves following
the cure-rate (green) and the non-cure (blue) survival structure, with a three-parameter Gamma
baseline survival function.
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Figure 1.17: Kaplan-Meier of daughters and mother (in black).

Survival info mother �̂� �𝑠ℎ𝑎𝑝𝑒0 �𝑠𝑐𝑎𝑙𝑒0 \̂/𝛽𝐹𝐻 C

MFCR yes 0.8710 6.2645 73.2018 4.9053 0.9592
UFCR 0.9594 0.1246 0.1900 1.2150 0.3952
U𝐹𝐻CR 0.9635 0.0926 0.0394 1.2174 -

MFCR no 0.8703 6.1822 72.9776 4.3569 0.9663
UFCR 0.9750 0.1176 0.1193 1.2614 0.3963
U𝐹𝐻CR 0.9658 0.0965 0.0362 1.1982 -

Table 1.19: Estimated parameters and Concordance index for the Multivariate frailty Cure-Rate
(MFCR), the Univariate frailty Cure-Rate (UFCR), and the Univariate 𝐹𝐻 Cure-Rate (U𝐹𝐻CR) models.

index (C) , reported in the last column of Tables 1.19 and 1.20. The Multivariate frailty Cure-Rate
model can indeed coherently predict the risk for the 96% of pairs accordingly to their time-to-
event. The concordance increases of around the 40-53% when moving from the Univariate model
to the Multivariate model.

In comparison to the semiparametric scenario we can say that the estimated frailty parameter
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�̂�0 ̂̀0/�𝑠ℎ𝑎𝑝𝑒0 �̂�20/�𝑠𝑐𝑎𝑙𝑒0 �̂�0 \̂/𝛽𝐹𝐻 C

Multivariate frailty Cure-Rate
Weibull 0.8703 6.1822 72.9776 - 4.3569 0.9663
Gamma 0.8552 18.6981 3.8617 - 5.4790 0.9663
Lognormal 0.8419 4.2911 0.2604 - 5.5265 0.9392
Gamma 3-pars 0.8529 18.6685 3.8172 0.1546 5.8116 0.9679
Lognormal 3-pars 0.8408 4.2746 0.2590 2.7922 5.9126 0.9663
Univariate frailty Cure-Rate
Weibull 0.9750 0.1176 0.1193 - 1.2614 0.3963
Gamma 0.8626 5.9127 11.5267 - -5.8713 0.3963
Lognormal 0.6607 4.5317 0.3784 - 1.4119 0.5105
Gamma 3-pars 0.3250 9.5974 11.0534 3.1358 -1.4014 0.4461
Lognormal 3-pars 0.2527 4.8125 0.4431 11.5269 2.0759 0.4900
Univariate FH
Weibull 0.9635 0.0926 0.0394 - 1.2174 -
Gamma 0.9590 22.0724 2.5169 - -1.1910 -
Lognormal 0.9774 2.6356 0.9717 - -3.0954 -
Gamma 3-pars 0.7076 11.8656 6.9557 0.5153 0.7802 -
Lognormal 3-pars 0.5237 4.6639 0.4117 7.9716 2.0892 -

Table 1.20: Estimated parameters for several baseline survival distribution for cases.

has a higher value in the multivariate parametric scenario bringing to assess that the frailty dis-
tribution has a higher variance and thus this brings to an easier distinction among low-risk and
higher-risk families rather than the semiparametric scenario. Also, the Multivariate frailty Cure-
Rate model achieves the equal amount of prediction accuracy than the Multivariate frailty Cox
model with additional pros: it is able to estimated the cured fraction and the survival function of
breast cancer cases, helping in explaining the phenomenon of breast cancer.

Risk prediction now comes straightforward as shown in Section 1.5. We compute the mean,
median and mode of the posterior frailty distribution for each family by employing the poste-
rior frailty risk distribution, given for example by the updated Gamma(𝑠ℎ𝑎𝑝𝑒 = 4.3569 + ∑𝑛𝑖

𝑗=1 𝛿 𝑗 ,

𝑟𝑎𝑡𝑒 = 4.3569 − ∑𝑛𝑖
𝑗=1 log

(
0.8703 + (1 − 0.8703)𝑆(𝑥 𝑗)

)
), when a Weibull distribution is chosen for

the survival function on cases. Once we have the posterior distribution of the risk frailty given the
whole detailed family data, one can compute the posterior high-risk probability, and the posterior
high-risk membership indicator fixed a frailty mean threshold. All of these measures can be used
to assess whether to address her to prevention strategies targeted for the highest-risk families.



1.6. DISCUSSION 69

1.6 Discussion

This study aims to contribute to the study of risk prediction models for breast cancer. We consider
the cure-rate structure as a realistic approach for the Swedish Multi-Generational Breast Cancer
registry, where around the 85% of subjects have not experienced yet breast cancer onset within
the observed follow-up. We thus extend the traditional proportional hazards assumption in this
Lehmann family formulation to cure-rate models. We develop the Multivariate frailty Cure-Rate,
the Univariate frailty Cure-Rate and the Univariate 𝐹𝐻 Cure-Rate parametric models which admit
the cure-rate structure of the survival function, in contrast to already developed and known in the
literature Cox models which do not admit a cure-rate structure.

Although family information is crucial for risk prediction models for breast cancer, using only
a summary of it, like the family history, may not have enough predictive power. Our simulation-
based comparison shows that a full multivariate framework induces much better performance
in terms of accuracy in risk prediction, when only involving family membership without addi-
tional subject-specific covariates. A full assessment of the added value of the Multivariate frailty
Cure-Rate model will clearly emerge when additional analyses can be conducted on other dataset.
Including family-specific covariates can enhance precision in targeting and improve accuracy in
identifying the frailty parameter, as well as classifying families into risk groups. Therefore, incor-
porating family-specific covariates is an intriguing extension worth exploring.

Our conclusion so far is about the superiority of the Multivariate frailty Cure-Rate model over
all the Univariate models and also over its semiparametric counterpart. The Multivariate frailty
Cure-Rate model, without losing prediction accuracy, perfectly describe both the fraction of women
that won’t develop breast cancer during their lifetime and the survival function of cases, thanks
to the cure-rate structure involved into the models.

Another point that we want to highlight is the comparison between the Multivariate frailty
Cure-Rate model and the BOADICEA model, which is one of the most powerful tool regarding risk
prediction seen in the literature so far. The BOADICEA model is based on a multiplicative hazard
function that depends on a genetic frailty component. This approach consists of inferring a genetic
latent quantity, the polygenic risk score (PRS), for predicting cancer risk based on the family his-
tory of the disease and other risk factors. The PRS is a weighted combination of single nucleotide
polymorphisms (SNPs), which are genetic mutations, commonly spread into the population, that
singularly give a small contribution to increase the risk of breast cancer, but that can be dangerous
when combined all together. The BOADICEA model is then univariate and based on the subject-
specific hazard function _ (𝑡 | 𝑟) = _0(𝑡)𝑒𝑥𝑝(𝛽(𝑟)), as described in detail in several publications
([1], [3], [2], and [37]). It evaluates the likelihood function through a complex segregation analysis
provided by the Mendel software [18].

In contrast, our proposed model differs from the BOADICEA model in several ways. While
BOADICEA uses a subject-specific hazard within a univariate framework and infers a genetic la-
tent quantity, our model works in a fully multivariate framework and we infer a generic risk latent
quantity, i.e. the subject-specific polygenic score. We incorporate survival information in a family-
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specific hazard, while the BOADICEA hazard function is subject-specific and does not account ex-
plicitly for the family structure through the estimated genetic frailty component. Our model wins
in the simplicity that it has involving only familial breast cancer information and no other factors
such as genetic, as BOADICEA does. Nevertheless, it is not difficult to extend our work to the use
of additional covariates. The simplicity is also extended to the use of a full likelihood or partial
likelihood maximization algorithm for parameter estimation, while BOADICEA relies on a com-
plex segregation analysis to predict the PRS (specifically its variance). Also, the cure-rate structure
that we explicitly introduce is not considered into the BOADICEA model. This is a limitation for
the BOADICEA model, as we saw how much is crucial relying on the cure-rate structure especially
when dealing with breast cancer risk prediction models.

Talking about possible extensions of our work, one could be the use of alternative frailty distri-
butions, such as the Lognormal [8]; or, one could address the problem within the Bayesian frame-
work [17]. One could also compare the prediction accuracy between our Multivariate frailty Cure-
Rate model to the BOADICEA model, but it would be necessary the access to the same complete
dataset [19] which is so far unavailable.
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Chapter 2

Two-latent-class Lehmann Cure-Rate
models for age at disease onset - a
simulation study

75



We are interested in a specific aspect of time-to-onset modelling, namely the inves-
tigation of family-specific risk of disease onset with particular emphasis on the risk
component present from birth, as opposed to the environmental component. We as-
sume that the true family (“frailty”) risk is latent and remains constant from birth. We
focus on breast cancer development, even though this work can be extended to a va-
riety of diseases. Our goal is to estimate the true family risk, as assessing the risk is
crucial in suggesting tailored screening and prevention strategies based on and indi-
vidual’s family risk level. In particular, we employ a univariate or multivariate frailty
model on the time to breast cancer onset, using a binary risk classification to stratify
families into a low-risk group and a high-risk group. We compare this model to one
that uses as a strong risk factor the observed family history indicator, as a covariate
to replace the unkown latent binary risk group. Indeed, the family history indicator
should be expected to be a weak indicator of the complete detailed breast cancer fa-
milial history.

keywords: breast cancer, family history, frailty models, survival analysis
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2.1 Introduction

In 2020, female breast cancer overtook lung cancer as the most common cancer in the world. An
estimated 2.3 million new cases of breast cancer were reported, constituting 12% of all new cancer
cases and 25% of female cancer cases. Breast cancer ranked 5th in mortality, with 6.9% among all
cancer deaths, remaining the most common cause of cancer death in women (16%). For example,
in the USA the 12% of women are estimated to experience breast cancer in their lifetime (see [20]),
while in Sweden is the 9.4% before age 75 [17].

To tackle this problem, we want to use risk prediction models for breast cancer to identify
families with the highest risk of developing breast cancer and provide them with targeted and
more intensive screening and prevention strategies. Indeed, classifying subjects into risk groups
allows for the modification of screening schedules (more/less intensive) depending on the risk of
breast cancer for a given woman, for the implementation of additional prevention efforts, and for
the reduction of unnecessary medical treatments, costs and psychological stress [12, 15].

Remarkable contributions to the breast cancer risk modelling field include the Gail model (re-
fer to [7]), which employs logistic regression to integrate risk factors, such as the number of first-
degree relatives with breast cancer, with the aim to compute the long-term probability of devel-
oping breast cancer. The Tyrer and Cuzick (TC) model, which (refer to [19]) integrates personal
risk factors and complete genetic analysis (involving also BRCA1 and BRCA2 gene mutations) to
model the risk of developing breast cancer by combining the genetic and familial components.
The Rosner and Colditz model, which (refer to [14]) is based on a logistic model for incidence that
is affected by reproductive risk factors, including age at menarche, age at menopause, and age at
childbirth. These models have been implemented in various studies, such as those described in [4]
and [6]. Models for disease onset also include the popular two-hit Moolgavkar-Venson-Knudson
(MVK) cell-splitting model, which has all subjects eventually experience the disease, if right cen-
soring does not intervene to end the observation of the time-to-event [10].

As we can observe from literature the inclusion of strong risk factors associated to breast can-
cer are commonly used into risk prediction models. One among the strongest risk factors (such
as BRCA1, BRCA2, TP53, and SNPs, mammography density (MD) and body mass index (BMI) [2],
[9], [16], [18]), the family history, is still involved in risk prediction models although we believe
it is a weak indicator since it only provides a summary of the clinical history experienced by a
family. Specifically, it is defined as the collection of breast cancer experiences within a family and
is represented as a binary variable that takes a value of one when at least one family member
has experienced breast cancer onset, and zero if none has. For comprehensive and complex data,
family history may not fully capture the familial aggregation of breast cancer development.

On the other hand, the family history indicator motivates the binary nature of the breast cancer
risk which leads to the split of families into a low-risk group and a highest-risk group. Thus, our
objective is to develop a risk prediction model for age at breast cancer onset, say the beginning
of the disease, which involves a family-specific risk assumed to be latent and unchanged from
birth. Drawing inspiration from the family history indicator, we allow for this latent risk, namely
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the frailty risk, to be discrete and comprise two risk levels (low and high), which we denote as 0
and 1, respectively. In the following, we explore a Univariate 𝐹𝐻 Cure-Rate model, a Univariate
frailty Cure-Rate model and a Multivariate frailty Cure-Rate model, where frailty is referred to
the latent risk of breast cancer development, “Cure-Rate” refers to the peculiar survival function
which allows for a fraction of the population to not experience breast cancer onset eventually, and
the difference between “Multivariate” and “Univariate” stands in jointly modelling all the time-to-
events of a family, in opposition to model only the time-to-event of one subject per family. We refer
to “main subject” the member that we randomly select when moving from the multivariate to the
univariate scenario, and also the one we compute the family history on, since the family history is
a subject-specific characteristic and the model that comprises it is univariate as well.

We seek to illustrate and quantify how family data can be better used to learn about family-
specific risk of developing diseases by using such a Multivariate frailty Cure-Rate model for disease
onset instead of summary-based methods (see family history), as usually is easier and used in
the literature. Lastly, to provide a comprehensive and complete assessment, we implement the
Univariate frailty Cure-Rate model to determine the significant loss of information incurred when
subjects are viewed as not part of a family sharing the same risk of breast cancer development (as
it is in the Multivariate frailty Cure-Rate model).

The chapter is outlined as follows: we introduce the univariate and multivariate background
of the frailty Cure-Rate model in Section 2.2, the methods about the Multivariate frailty Cure-Rate
model in Section 2.2.5. A comparison among the Univariate 𝐹𝐻 Cure-Rate model, the Univariate
frailty Cure-Rate model, and the Multivariate frailty Cure-Rate model is run in Section 2.3, and we
close with some discussion in Section 2.4.

2.2 Models for age at disease onset

2.2.1 Introduction to the Cure-Rate frailty models

We explain how step by step we can develop a univariate or multivariate Cure-Rate frailty models.
We start from introducing frailty models and then we incorporate the Cure-Rate structure to them.

Univariate frailty models

The Univariate Frailty model [5] on the time-to-event 𝑇 = 𝑡 allows the hazard function _𝑟 (𝑡) =

_ (𝑡 | 𝑟) to have a particular form including the frailty risk 𝑅 which captures the unobserved het-
erogeneity among subjects. The hazard is given by

_𝑟 (𝑡) = 𝛼(𝑟)_0(𝑡),

where _0(𝑡) is the baseline hazard function that can assume a parametric distribution with pa-
rameter collection \ or a semiparametric form. The quantity 𝛼(𝑟) is a general function of the risk,
that we may use in the linear form _𝑟 (𝑡) = 𝑟_0(𝑡).
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The model can be extended to the inclusion of subject-specific covariates. In this case the frailty
quantity explains the unobserved heterogeneity that the covariates are not able to capture. The
hazard function is given by:

_𝑟 (𝑡) = 𝑟_0(𝑡; 𝑥), (2.1)

where 𝑥 are the subject-specific covariates. Notice that in the multivariate setting, the shared
frailty hazard function allows to define the frailty as a family-specific quantity. Thus, this spec-
ification is used with clustered data, as it is our case where we see families as clusters. The hazard
function has the same equation as in 2.1, but the frailty risk 𝑟 is seen this time as a familial char-
acteristic.

In the binary case, the latent quantity can be represented as 𝑅 = (0, 1), where typically the
relation between the hazard functions is _1(𝑡) = 𝛼_0(𝑡). This assumption allows the hazard and
survival functions of group “0” to coincide with the baseline functions, while 𝛼 < 1 ensures co-
herence with the assumption of a highest-risk group in the population and thus we can rely on the
assumption of proportional hazard. Therefore, we obtain:

_0(𝑡) = _ (𝑡 | 𝑅 = 0) = _0(𝑡; 𝑥), 𝑆0(𝑡) = 𝑆(𝑡 | 𝑅 = 0) = 𝑆0(𝑡; 𝑥),
_1(𝑡) = _ (𝑡 | 𝑅 = 1) = 𝛼_0(𝑡; 𝑥), 𝑆1(𝑡) = 𝑆(𝑡 | 𝑅 = 1) = [𝑆0(𝑡; 𝑥)]𝛼.

Multivariate frailty models

Now, recall the Multivariate frailty survival model [8] to describe modelling jointly the time-to-
events in a family [13]. We handle multiple time-to-event data by leveraging the assumption of
conditional independence. For instance, consider the case where two women belong to the same
family, resulting in dependent time-to-events. However, assuming conditional independence given
the family (i.e. given the shared frailty risk), and letting 𝑇1 = 𝑡1 and 𝑇2 = 𝑡2 be the time-to-events of
the two women in the family, and let 𝑟 denote the risk value, the joint survival function factorizes
given the risk, so that

𝑆12(𝑡1, 𝑡2 | 𝑅) 𝑇1⊥𝑇2 |𝑅= 𝑆1(𝑡1 | 𝑅)𝑆2(𝑡2 | 𝑅),

where one therefore assumes conditional independence given the frailty risk term 𝑅. Recall that,
if 𝑅 = 0, we have

𝑆12(𝑡1, 𝑡2) = 𝑆0(𝑡1)𝑆0(𝑡2),

while, if 𝑅 = 1, we have
𝑆12(𝑡1, 𝑡2) = 𝑆1(𝑡1)𝑆1(𝑡2) = [𝑆0(𝑡1)𝑆0(𝑡2)]𝛼.

It is important to notice that this case can be immediately extended to more than two survival
times per cluster sharing the same risk 𝑅. More generally, the marginal survival function for 𝑛𝑖
subjects per family is given by

𝑆1...𝑛𝑖 (𝑡1, . . . , 𝑡𝑛𝑖 ) = ℎ
𝑛𝑖∏
𝑗=1

𝑆0(𝑡 𝑗) + (1 − ℎ)
𝑛𝑖∏
𝑗=1

[
𝑆0(𝑡 𝑗)

]𝛼
,
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with ℎ the probability of belonging to the low-risk group of families.

Incorporating the Cure-Rate structure

Now, given the nature of the phenomenon, not all women will experience breast cancer onset,
regardless of how long they will live. Therefore, we rely on the cure-rate survival function [11],
which can be considered as a mixture of a proper survival function, which models the fraction
of individuals who will experience the event: the “cases”, and a degenerate distribution, which
models the fraction of individuals who will not experience the event: the “non-cases”. We define
a “proper” survival function in the case it tends to 0 when the time-to-events tends to +∞, such as
lim𝑡→+∞ 𝑆(𝑡) = 0, and has probability equal to one that the time-to-event can not assumes value
+∞, such as 𝑃(𝑇 < +∞) = 1.

Let𝑇 indicate a non-negative time-to-event random variable, the survival function that defines
a cure-rate model takes the form:

𝑆0(𝑡) = 𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

(see, e.g., [1]) with 𝑆0(𝑡) the proper survival function. Indeed, let the survival random variable 𝑇
be such that, conditionally on being a case, it is absolutely continuous, and let �̃�0(𝑡) indicate the
conditional density function of the cases corresponding to the proper survival function 𝑆0(𝑡). In
contrast, the fraction 𝑝0 is defined the “cured fraction”, i.e. the fraction of the subjects who will
never experience the event of interest, so that 𝑇 = +∞ with probability 𝑝0. Figure 2.1 shows the
difference between a traditional (in blue) and a cure-rate (in red) survival model on randomly
generated data.

The question of whether a cure-rate model is appropriate for a given phenomenon can be ad-
dressed by noting that a traditional proper survival function can be seen as a special case of a
cure-rate model with 𝑝0 = 0. In other words, allowing for a cure-rate simply enlarges the set of
available models, within which traditional survival functions are nested through such constraint.
We believe that implementing a cure-rate model is the right way to address the problem of mod-
elling breast cancer development.

Thus, we assume that there exist two latent risk classes: low (or “general”) risk (R=0) and high-
risk (R=1). Let ℎ = 𝑃(𝑅 = 1). For the two risk classes one has 𝑆𝑟 (𝑡) = 𝑝𝑟+(1−𝑝𝑟)𝑆𝑟 (𝑡), with 𝑟 ∈ {0, 1}
(see Figure 2.2 from a trivial simulation study in R), such that

𝑆0(𝑡) = 𝑝0 + (1 − 𝑝0)𝑆0(𝑡) (2.2)

𝑆1(𝑡) = [𝑝0 + (1 − 𝑝0)𝑆0(𝑡)]𝛼 = 𝑝1 + (1 − 𝑝1)𝑆1(𝑡) (2.3)

After this introduction on frailty cure-rate models, let us give an insight on the reason why we
develop models with a two-latent-class approach. The family history model may be a valid indica-
tor which splits families into two risk groups of developing breast cancer. A section regarding the
family history model follows.
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Figure 2.1: traditional survival function (in blue) vs. a cure-rate survival function (in red).

2.2.2 The Univariate 𝐹𝐻 Lehmann Cure-Rate model

The family history (𝐹𝐻) model can be a valid approach for modelling the familial risk of breast
cancer. We develop a Univariate model involving the family history indicator as commonly done
in the literature.

We consider one main subject 𝑖 per family, and define 𝐹𝐻 (𝑢) as the indicator function that
takes value 1 if one or more relatives of the subject have experienced the disease by the subject
age 𝑢. For a family with four members (subject, sister, mother, and grandmother), we have for
example 𝐹𝐻 (𝑢) = 1 − I(𝑏𝑔 + 𝑡𝑔 ≥ 𝑏 + 𝑡)I(𝑏𝑚 + 𝑡𝑚 ≥ 𝑏 + 𝑡)I(𝑏𝑠1 + 𝑡𝑠1 ≥ 𝑏 + 𝑡) = 1 − I(𝑡𝑔 ≥
𝑡 + 60)I(𝑡𝑚 ≥ 𝑡 + 30)I(𝑡𝑠1 ≥ 𝑡), assuming each generation is 30 years apart one from the other (so
that the grandmother is 60 years old, and the mother 30 years old when the subject and sister are
born). Let us apply the same Lehmann family and cure-rate structure as in the frailty setting, to
obtain the general form of the Lehmann survival function depending on 𝐹𝐻 (𝑢) given by:

𝑆𝐹 (𝑥𝑖) = [𝑆0(𝑥𝑖)]𝛽𝐹𝐹𝐻 (𝑥𝑖 ) .

Notice that, the same cure-rate baseline survival function and conditional density function for
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Figure 2.2: cure-rate model with two latent risk groups.

the cases are involved for the low-risk group. Consequently, for the high-risk group we have

𝑆1(𝑥𝑖) = [𝑆0(𝑥𝑖)]𝛽𝐹 = [𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑖)]𝛽𝐹 = 𝑝1 + (1 − 𝑝1)𝑆1(𝑥𝑖)

𝑓1(𝑥𝑖) = (1 − 𝑝1)
(
1 − 𝑝0
1 − 𝑝1

)
𝛽𝐹 �̃�1(𝑥𝑖)

(
𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑖)

) 𝛽𝐹−1
with, 𝑝1 = 𝑝𝛽𝐹 and, 𝑆1(𝑥𝑖) =

(𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑖))𝛽𝐹 − 𝑝1
1 − 𝑝1

The parameter 𝛽𝐹 is the observed family history risk modifier, and it is typically used to account
for the increased family risk for subjects that have a positive family history of breast cancer. In
other words, 𝐹𝐻 (𝑡) is meant to estimate the risk of breast cancer development from the observed
onset histories at time of the analysis 𝑡.

We build the closed form of the family history likelihood, without frailty quantity involved.
The parameter collection is \𝐹𝐻 = {𝑝0, _𝑇 , 𝛽𝐹}𝑇 , where recall 𝑝0 is the cured fraction, and _𝑇 is the
(vector) parameter collection of the baseline survival function, whose dimension depends on the
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chosen distribution. The univariate likelihood involving the family history indicator is given by

𝐿𝐹𝐻 (\𝐹𝐻 ; subject data) =
𝑛∏
𝑖=1

𝑓𝑋 (𝐹𝐻 𝑖 , 𝑥𝑖 ; \𝐹𝐻 ) (2.4)

=

𝑛∏
𝑖=1

𝑓𝑋 (𝑥𝑖 | 𝐹𝐻𝑖 = 0; \𝐹𝐻 )
(1−𝐹𝐻𝑖 ) 𝑓𝑋 (𝑥𝑖 | 𝐹𝐻𝑖 = 1; \𝐹𝐻 )

𝐹𝐻𝑖

=

𝑛∏
𝑖=1

[
𝑓0(𝑥𝑖)𝛿𝑖𝑆0(𝑥𝑖)1−𝛿𝑖

] (1−𝐹𝐻𝑖 ) [
𝑓1(𝑥𝑖)𝛿𝑖𝑆1(𝑥𝑖)1−𝛿𝑖

]𝐹𝐻𝑖
,

where 𝑥𝑖 = (𝑥𝑖 , 𝛿𝑖)𝑇 , with observed time 𝑥𝑖 = min(𝑡𝑖 , 𝑐𝑖), 𝑡𝑖 the time-to-event, and 𝑐𝑖 the right-
censoring time, both measured from the same origin, and 𝛿𝑖 = I(𝑡𝑖 ≤ 𝑐𝑖) the indicator of having
observed the event, for subject 𝑖.

This model motivates the development of two-latent-class models because it splits families into
those who has at least one breast cancer case into the family and those who has not. Thus we move
to the development of two-latent-class models in the univariate and multivariate setting to prove
that they can outperforms this too simplistic family history model.

Let us highlight few differences between the family history indicator and the binary frailty risk.
The risk 𝑅 takes value zero or one from birth and does not change over time, 𝐹𝐻 (𝑡) is a counting
process that takes value one as soon as the first onset occurs among any of the other family mem-
bers. Replacing the true unknown risk group 𝑅 with the proxy 𝐹𝐻 (𝑡) leads to measurement error
in the unknown value of 𝑅 for the family. A detailed comparison of 𝐹𝐻 vs. 𝑅 in terms of probabil-
ity of agreement is illustrated in Appendix B.3, and an alternative building of the 𝐹𝐻 indicator is
developed in B.4.

2.2.3 A note of non-identifiability

Before developing the final univariate model that we will use into the simulation studies, we deeply
run an analysis of the non-identifiability of frailty models. This is very interesting and not easy to
manage in the case of two risk groups.

Let us take again the two conditional distributions 𝑆0(𝑡) and 𝑆1(𝑡) from 2.2: they can be chosen
freely, and to them correspond two given density functions �̃�0(𝑡) and �̃�1(𝑡) with (possibly vector)
parameters \0 and \1, respectively. Thus the complete (vector) parameter for the model is \ =

(𝑝0, 𝑝1, \𝑇0 , \𝑇1 , ℎ)𝑇 .
Recall that the complete observed data (𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 , 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑛)𝑇 ) is an i.i.d.

sample of independently right-censored observed survival times from the population, where for
the generic subject 𝑖, 𝑥𝑖 = min(𝑡𝑖 , 𝑐𝑖), and 𝛿𝑖 = I(𝑡𝑖 ≤ 𝑐𝑖). Without additional constraints, from the
observed data (𝑥, 𝛿) one may not identify the parameter vector \.

We explore different scenarios in the following lines as: (I) identifiability of the classical sur-
vival function 𝑆0(𝑡) = 𝑆0(𝑡); (II) identifiability of the cure-rate survival function 𝑆0(𝑡) = 𝑝0 + (1 −
𝑝0)𝑆0(𝑡), with 𝑆0(𝑡) a proper survival function; (III) identifiability of the Lehmann structure 𝑆1(𝑡) =
[𝑆0(𝑡)]𝛼(𝑧) ; (IV) identifiability of the cure-rate Lehmann structure 𝑆1(𝑡) = [𝑝0 + (1 − 𝑝0)𝑆0(𝑡)]𝛼(𝑧) ;
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(V) identifiability of the marginal cure-rate survival function 𝑆(𝑡) = (1 − ℎ)𝑆0(𝑡) + ℎ𝑆1(𝑡). Notice
that we generalize the form of 𝛼(𝑧) to be in function of covariates 𝑧, but it may be also a constant.

Trivially cases (I), (II), and (III) can be proved. The proof of the tricky case (IV) follows.

Proof.

𝑆1(𝑡) = [𝑝0 + (1 − 𝑝0)𝑆0(𝑡)]𝛼(𝑧) = 𝑝
𝛼(𝑧)
0 +

(
1 − 𝑝

𝛼(𝑧)
0

)
𝑆1(𝑡;𝛼(𝑧))

[𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \)]𝛼(𝑧) = [𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \′)]𝛼
′ (𝑧) ∀𝑧

𝛼(𝑧) log[𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \)] = 𝛼′(𝑧) log[𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \′)]
𝛼(𝑧)
𝛼′(𝑧)︸︷︷︸

not in function of t

=
log[𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \)]
log[𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \′)]︸                              ︷︷                              ︸

not in function of z

= 𝑐.

Since,

lim
𝑡→∞

𝑆0(𝑡; \) = 0, lim
𝑡→∞

log(𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \)) = log(𝑝0) ⇒ 𝑐 = 1

⇒ 𝛼(𝑧) = 𝛼′(𝑧).

Then also,

log[𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \)] = log[𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \′)]
⇒ 𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \) = 𝑝0 + (1 − 𝑝0)𝑆0(𝑡; \′)
⇒ 𝑆0(𝑡; \) = 𝑆0(𝑡; \′)
⇒ \ = \′

□

This proves the identifiability of the cure-rate Lehmann survival function, in the case where
the baseline survival function 𝑆0(𝑡; \) has a parametric distribution.

The case (V) seems trickier than the other cases. The marginal survival function 𝑆(𝑡) can be
expressed in terms of both the baseline 𝑆0(𝑡) and the distribution of the frailty risk 𝑅. This relation-
ship is determined through the moment generating function (MGF) of 𝑅 evaluated at the argument
log (𝑆0(𝑡)). Thus, the marginal survival function is given by

𝑆(𝑡) = E𝑅
[
𝑆0(𝑡)𝑅

]
= E𝑅

[
e𝑅 log(𝑆0 (𝑡) )

]
= 𝑀𝐺𝐹𝑅 (log (𝑆0(𝑡))) .

As long as the integral converges, this form applies to many multiplicative frailty models. Recall
that if 𝑃(𝑅 ≥ 0) = 1, the MGF coincides with the Laplace transform of the random variable 𝑅,
evaluated at minus the argument.

Again, we structure the binary frailty model that has𝑅 ∈ {0, 1} as a binary multiplicative frailty
model, since under proportional hazards assumption the two hazard functions _0(𝑡) = _ (𝑡 | 𝑅 = 0)
and _1(𝑡) = _ (𝑡 | 𝑅 = 1) are such that _1(𝑡) = 𝛼 _0(𝑡) for the constant 𝛼 = _1(𝑡)/_0(𝑡) for any
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𝑡. As a consequence, the survival time 𝑇 has the two conditional survival distributions 𝑆0(𝑡) =

𝑃(𝑇 ≤ 𝑡 | 𝑅 = 0) and 𝑆1(𝑡) = 𝑃(𝑇 ≤ 𝑡 | 𝑅 = 1), and its distribution can be described as a
multiplicative frailty model with frailty random variable 𝑅 such that 𝑅 = 0 w.p. 𝑃(𝑅 = 0) = 1 − ℎ
and 𝑅 = 1 ⇐⇒ 𝛼 = _1(𝑡)/_0(𝑡) w.p. 𝑃(𝑅 = 1) = ℎ. For such a random variable the MGF is

𝑀𝐺𝐹𝑅 (𝑢) = E𝑅 (𝑒𝑢𝑟) = e𝑢(1 − ℎ) + e𝑢𝛼ℎ = e𝑢 +
(
e𝑢𝛼 − e𝑢

)
ℎ = 𝑒𝑢(1 − ℎ) + 𝑒𝑢𝛼

and as a consequence the marginal survival distribution of 𝑇 is equal to

𝑆(𝑡) = 𝑀𝐺𝐹𝑅 (log(𝑆0(𝑡))) = elog(𝑆0 (𝑡) ) (1 − ℎ) + elog(𝑆0 (𝑡) )𝛼 = 𝑆0(𝑡) (1 − ℎ) + 𝑆1(𝑡)ℎ.

where, recall, the two survival functions follow a cure-rate structure, such that 𝑆0(𝑡) = 𝑝0 + (1 −
𝑝0)𝑆0(𝑡) and 𝑆1(𝑡) = 𝑝1 + (1 − 𝑝1)𝑆1(𝑡). At this point we obtain the complete form of the marginal
survival distribution of 𝑇 , without specifying the baseline survival function that can be fixed later.
The model, which may be seen as a double mixture of survival functions, is not identifiable unless
some constraint is set.

Let us ignore the presence of administrative right censoring, and therefore assume that all cen-
sored observations are all (and the only) “non-cases.” This is a case in which more information is
available on the model parameters, since additional right censoring would reduce the informa-
tion available on the “cases.” The generic contribution 𝑙𝑖 to the likelihood function by subject 𝑖
with observed data (𝑥𝑖 , 𝛿𝑖) is

𝐿𝑖 (\; (𝑥𝑖 , 𝛿𝑖)) =
[
(1 − ℎ) (1 − 𝑝0) �̃�0(𝑥𝑖) + ℎ(1 − 𝑝1) �̃�1(𝑥𝑖)

]𝛿𝑖
[(1 − ℎ) 𝑝0 + ℎ 𝑝1]1−𝛿𝑖 ,

so that the likelihood function is equal to

𝐿(\; (𝑥, 𝛿)) =
𝑛∏
𝑖=1

𝐿𝑖 (\; (𝑥𝑖 , 𝛿𝑖))

=
∏

𝑖∈𝑐𝑎𝑠𝑒𝑠

[
(1 − ℎ) (1 − 𝑝0) �̃�0(𝑥𝑖) + ℎ(1 − 𝑝1) �̃�1(𝑥𝑖)

] ∏
𝑖∈𝑛𝑜𝑛−𝑐𝑎𝑠𝑒𝑠

[(1 − ℎ) 𝑝0 + ℎ 𝑝1]

=

{ ∏
𝑖∈𝑐𝑎𝑠𝑒𝑠

[
(1 − ℎ) (1 − 𝑝0) �̃�0(𝑥𝑖) + ℎ(1 − 𝑝1) �̃�1(𝑥𝑖)

]}
[(1 − ℎ) 𝑝0 + ℎ 𝑝1]𝑛∞ ,

with 𝑛∞ the number of non-cases in the data (and 𝑛 − 𝑛∞ the number of cases).
Now, let 𝛽1 = (1− ℎ) (1− 𝑝0); 𝛽2 = ℎ(1− 𝑝1), and 𝛽3 = (1− ℎ) 𝑝0 + ℎ 𝑝1. The likelihood function

can be re-written as

𝐿(\; (𝑥, 𝛿)) =
{ ∏
𝑖∈𝐶𝑎𝑠𝑒𝑠

[
𝛽1 �̃�0(𝑥𝑖) + 𝛽2 �̃�1(𝑥𝑖)

]}
𝛽𝑛∞3 ,

where one can easily check that 𝛽1 + 𝛽2 + 𝛽3 = 1, with all three terms positive.
The proportion 𝑛∞/𝑛 of non-cases can estimate non parametrically the parameter 𝛽3, and from

it the quantity 1−𝛽3 = 𝛽1+𝛽2. As a consequence, the term 𝛽1+𝛽2 is identified. If one then multiplies
and divides the likelihood by the term (𝛽1 + 𝛽2)𝑛−𝑛∞ , it seems clear that the quantity 𝛽1/(𝛽1 + 𝛽2)
(and thus also the quantity 𝛽2/(𝛽1 + 𝛽2)) is also identified from the mixture terms in the curly
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bracket, which is based on the cases, together with the parameters \0 and \1 of the two density
functions �̃�0 and �̃�1.

Therefore, the two parameters \0 and \1, as well as the two quantities 𝛽1 and 𝛽2, are identi-
fied. On the other hand, in general the individual parameters ℎ, 𝑝0, 𝑝1 are not identified from the
observed data.

Given the constraints 𝑝0 ∈ (0, 1) and 𝑝1 ∈ (0, 1), and the assumption that 𝑝0 > 𝑝1 (which is
without loss of generality given the freedom of deciding which group is “0” and which is “1”), from
knowledge of the values of 𝛽1 and 𝛽2 one may rule out some regions of (0, 1) as possible values for
ℎ. Indeed, since (1 − 𝑝0) = 𝛽1/(1 − ℎ) and (1 − 𝑝1) = 𝛽2/ℎ, and noting that 𝑝0 > 𝑝1 ⇐⇒ 1 − 𝑝0 <

1− 𝑝1, simple algebra shows that ℎmust fall in the interval [𝛽2, 𝛽2/(𝛽1 + 𝛽2)]. This in turn restricts
the possible values that the pair (𝑝0, 𝑝1) can take, since 𝑝0 = 1 − 𝛽1/(1 − ℎ) and 𝑝1 = 1 − 𝛽2/ℎ. □

As a consequence of this fact, one may try to place some constraints on the parameters to create
identifiability. One example is the following restriction, associated with the hazard functions _̃0(𝑡)
and _̃1(𝑡) for the two time-to-event distributions for the cases in the two groups:

_̃1(𝑡)
_̃0(𝑡)

=
𝑝0
𝑝1

=
1
𝛼
, (2.5)

thus imposing the PH structure on the distributions of the cases in the two groups, plus the assump-
tion that the factor 𝛼 ∈ (0, 1) that relates _̃0(𝑡) = 𝛼 _̃1(𝑡) is the same that relates 𝑝0 to 𝑝1 = 𝛼 𝑝0.

We call such model the Proportional Hazards Constrained Cure-Rate (PHCCR) model. Notably,
in the PHCRR model the higher-risk group is associated with both a larger fraction of cases and
earlier age at onset for their disease.

Note that to achieve identifiability one may also try to impose prior distributions on the param-
eters. Or, one may perform a sensitivity analysis that replaces this restriction with a fixed value
for 𝑝1/𝑝0 = 𝜌.

Example 1.

Let the two conditional distributions of the survival times of the cases be distributed as Exp(_0)
and Exp(_1) respectively for the two risk groups, with _1 > _0, i.e. such that _0 = 𝛼 _1 with
𝛼 ∈ (0, 1). Note that we also have 𝑝1 = 𝛼 𝑝0.

The following output illustrates the PHCCR model with two exponential CR survival sub-models.
The simulations are based on 1,000 simulated dataset of size n=100,000 individuals each.

In Table 2.2 is reported the parameter recovery in mean and standard error of the estimated
parameter values across the 1,000 repetitions. The square root of the mean square error

√
𝑀𝑆𝐸

represents a measure of the absolute distance between the true value from the data generating
process and the estimated value from observed data. The 𝑀𝑆𝐸 is given by

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(�̂�𝑖 − 𝑟𝑖)2.
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𝑝0 𝑙0 𝛼 h

True value 0.8 0.1 0.3333 0.8
Mean 0.7995 0.1001 0.3335 0.7994
Standard error 0.0005 0.0002 0.0004 0.0002√
𝑀𝑆𝐸 0.0220 0.0051 0.0152 0.0059

95% C.I. Lower 0.7981 0.0998 0.3326 0.7991
95% C.I. Upper 0.8008 0.1004 0.3345 0.7998

Table 2.1: Results on the identifiability of a two risk groups Cure-Rate model with Exponential
survival function.

Also, the lower-bound and the upper-bound of the 95% confidence interval (C.I.) are reported.

Example 2.

Let the two conditional distributions of the survival times of the cases be Weibull(𝑠ℎ𝑎𝑝𝑒0, 𝑠𝑐𝑎𝑙𝑒0)
and Weibull(𝑠ℎ𝑎𝑝𝑒1, 𝑠𝑐𝑎𝑙𝑒1) respectively for the two risk groups, with 𝑠ℎ𝑎𝑝𝑒0 = 𝑠ℎ𝑎𝑝𝑒1. To im-
plement the conditional proportional hazards model _̃0(𝑡) = 𝛼 _̃1(𝑡) one simply sets 𝑠𝑐𝑎𝑙𝑒1 =

𝑠𝑐𝑎𝑙𝑒0 (𝛼1/𝑠ℎ𝑎𝑝𝑒0). Again, 𝑝1 = 𝛼 𝑝0 (easy to check).
These two small examples confirm that the parameter values that are used to generate the data

are recovered correctly by the maximum likelihood estimators, with only small residual biases for
the estimators.

𝑠ℎ𝑎𝑝𝑒0 𝑠𝑐𝑎𝑙𝑒0 𝑠ℎ𝑎𝑝𝑒1 𝛼 h

True value 20 65 20 0.70 0.80
Mean 20.2413 64.9588 20.1350 0.7006 0.8000
Se 0.0360 0.0088 0.0185 0.0001 0.0004√
𝑀𝑆𝐸 1.1626 0.2814 0.6014 0.0032 0.0131

95% C.I. Lower 20.0184 64.9042 20.0201 0.7000 0.7974
95% C.I. Upper 20.4642 65.0133 20.2498 0.7013 0.8025

Table 2.2: Results on the identifiability of a two risk groups Cure-Rate model with Weibull survival
functions.
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2.2.4 The Univariate frailty Lehmann Cure-Rate model

As an alternative to the PHCCR model, we now extend the definition of the Lehmann family of
distributions to the case of cure-rate models, still within the latent class framework.

Recall the Lehmann family of distributions is equivalent to the definition of the proportional
hazards (PH) structure for proper survival distributions:{

𝑆𝛼(𝑡) = [𝑆0(𝑡)]𝛼 , 𝛼 > 0
}
,

where 𝑆0(𝑡) is the (proper) baseline survival function and the parameter 𝛼 modifies it to become
the (also proper) survival function 𝑆𝛼(𝑡). Let all random variables in the family be absolutely
continuous random variables. It is then easy to check that _𝛼(𝑡) = 𝛼 _0(𝑡) for any choice of (positive
and finite) 𝛼. Indeed, when 𝛼 is modelled through a regression structure one has the celebrated
semiparametric Cox proportional hazards (PH) survival model [3].

Here, we suggest extending the PH model to the model defined by the more general Lehmann
cure-rate family obtained by applying the Lehmann power transformation to a baseline cure-rate
model: {

𝑆𝛼(𝑡) =
[
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

]𝛼
, 𝛼 > 0

}
.

For a fixed value𝛼, the survival function𝑆𝛼(𝑡) also defines a cure-rate model. Indeed, lim𝑡→∞ 𝑆𝛼(𝑡) =
𝑝𝛼0 , and 𝑆𝛼(𝑡) can be written as

𝑆𝛼(𝑡) = 𝑝𝛼0 +
(
1 − 𝑝𝛼0

)
𝑆𝛼(𝑡),

with conditional (proper) survival function for the cases equal to

𝑆𝛼(𝑡) =
[
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

]𝛼 − 𝑝𝛼0
1 − 𝑝𝛼0

,

whose conditional density function is

�̃�𝛼(𝑡) = − 𝑑

𝑑𝑡
𝑆𝛼(𝑡) =

1 − 𝑝0
1 − 𝑝𝛼0

𝛼
[
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

] (𝛼−1)
�̃�0(𝑡).

We note that here, too, a regression model with 𝛼 = 𝛼(𝑧) can also be constructed for a vector
𝑧 of observed covariates if they are available.

A two (or indeed more) latent class parametric Lehmann Cure-Rate model can now be eas-
ily defined. Recall the Lehmann structure on the survival function characterizing the risk group
𝑆𝑟 (𝑡) = [𝑆0(𝑡)]𝛼(𝑟) , such that we have:

𝑆0(𝑡) = 𝑝0 + (1 − 𝑝0)𝑆0(𝑡), 𝑆1(𝑡) = [𝑝0 + (1 − 𝑝0)𝑆0(𝑡)]𝛼.

For a fixed 𝛼, also the high-risk survival function 𝑆1(𝑡) defines a cure-rate model. It is easy to check
that lim𝑡→∞ 𝑆1(𝑡) = 𝑝𝛼0 = 𝑝1, and that 𝑆1(𝑡) can be written as

𝑆1(𝑡) = 𝑝1 + (1 − 𝑝1) 𝑆1(𝑡),
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with conditional (proper) survival function for the cases equal to:

𝑆1(𝑡) =
[
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

]𝛼 − 𝑝𝛼0
1 − 𝑝𝛼0

,

and conditional density function

�̃�1(𝑡) = − 𝑑

𝑑𝑡
𝑆1(𝑡) =

1 − 𝑝0
1 − 𝑝𝛼0

𝛼
[
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

] (𝛼−1)
�̃�0(𝑡).

Since the cure-rate survival function is not proper, the density function associated with the
cure-rate model is also not proper. Note that, without loss of generality, for 𝛼 > 1 one has 𝑆1(𝑡) <
𝑆0(𝑡) ∀𝑡 > 0 and 𝑝1 < 𝑝0. Indeed, we may reparametrize 𝛼1 = 1/𝛼 ∈ (0, 1) to impose 𝛼 > 1.

For example, if one assumes a survival function distributed according to the Exponential dis-
tribution 𝑆0(𝑡) = e−_0𝑡 for the distribution of (𝑇 | 𝑅 = 0, 𝑐𝑎𝑠𝑒), then

𝑆1(𝑡) =
[
𝑝0 + (1 − 𝑝0)e−_0𝑡

]𝛼 − 𝑝𝛼0
1 − 𝑝𝛼0

,

and

�̃�1(𝑡) =
𝛼(1 − 𝑝0)_0

1 − 𝑝𝛼0

[
𝑝0 + (1 − 𝑝0)e−_0𝑡

]𝛼−1 e−_0𝑡 .
Interesting comments about the two-latent-class Lehmann cure-rate model are in Appendix

B.1.

The Univariate likelihood

Recall that in the univariate setting only one subject per family contributes to the likelihood.
Hence, the observed data univariate likelihood on the parameter collection \ = {𝑝0, _𝑇 , 𝛼, ℎ}𝑇 is
given by

𝐿𝑢(\; subject data) =
𝑛∏
𝑖=1

[
𝑓𝑋 (𝑥𝑖 |𝑅𝑖 = 0) (1 − ℎ) + 𝑓𝑋 (𝑥𝑖 |𝑅𝑖 = 1) ℎ

]
,

where subscript “u” stays for univariate likelihood. One has just 𝑥𝑖 = (𝑥𝑖 , 𝛿𝑖)𝑇 for 𝑖 = 1, . . . , 𝑛, with

𝑓 (𝑥 |𝑅 = 1) = 𝑓1(𝑥)𝛿𝑆1(𝑥) (1−𝛿) =
[
(1 − 𝑝1) �̃�1(𝑥)

]𝛿 [
𝑝1 + (1 − 𝑝1)𝑆1(𝑥)

]1−𝛿
The goal of parameter estimation is to determine the risk difference 𝛼 between the low-risk

and high-risk groups, along with the other parameters. The extended likelihood function can be
derived. Notice that the survival function and density function for the low and high-risk groups
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are given by

𝑆0(𝑡) = 𝑝0 + (1 − 𝑝0)𝑆0(𝑡)
𝑓0(𝑡) = (1 − 𝑝0) �̃�0(𝑡)
𝑆1(𝑡) = [𝑆0(𝑡)]𝛼 = [𝑝0 + (1 − 𝑝0)𝑆0(𝑡)]𝛼 = 𝑝1 + (1 − 𝑝1)𝑆1(𝑡)

𝑆1(𝑡) =
(𝑝0 + (1 − 𝑝0)𝑆0(𝑡))𝛼 − 𝑝1

1 − 𝑝1

𝑓1(𝑡) = (1 − 𝑝1) �̃�1(𝑡)

�̃�1(𝑡) =
(
1 − 𝑝0
1 − 𝑝1

)
𝛼 �̃�0(𝑡)

(
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

)𝛼−1
with, 𝑝1 = 𝑝𝛼.

Thus, the likelihood is given by

𝐿𝑢(\; subject data) =
𝑛∏
𝑖=1

𝑓𝑋 (𝑥𝑖 ; \) =
𝑛∏
𝑖=1

[ 𝑓𝑋 (𝑥𝑖 | 𝑅𝑖 = 0; \)𝑃(𝑅𝑖 = 0) (2.6)

+ 𝑓𝑋 (𝑥𝑖 | 𝑅𝑖 = 1; \)𝑃(𝑅𝑖 = 1)]

=

𝑛∏
𝑖=1

[
𝑓0(𝑥𝑖)𝛿𝑖𝑆0(𝑥𝑖)1−𝛿𝑖

]
(1 − ℎ) +

[
𝑓1(𝑥𝑖)𝛿𝑖𝑆1(𝑥𝑖)1−𝛿𝑖

]
ℎ.

We move now from the univariate to the multivariate setting by computing the multivariate
likelihood after a description of the data which contributes to the likelihood of the model.

2.2.5 The Multivariate frailty Lehmann Cure-Rate model

Family data

Consider the family cluster formed by main subject, sister, mother, and grandmother.
Figure 2.3 shows a depiction of the calendar times of birth (b) and of the times to onset (t)

for a group of four family members. Notice that in the figure all family members experience the
breast cancer onset, so that the cure-rate structure is not considered here. However, recall that the
Cure-Rate model also allows for one or more of the times 𝑡, 𝑡𝑠, 𝑡𝑚, or 𝑡𝑔 to be equal to +∞.

The data generating process produces the family time-to-event data

(𝐵, 𝐵𝑔, 𝐵𝑚, 𝐵𝑠, 𝑇 , 𝑇𝑔, 𝑇𝑚,𝑇𝑠)𝑇 ,

for families indexed by 𝑖 = 1, . . . , 𝑛. We observe a realization of the multivariate random vari-
able (𝐵, 𝐵𝑔, 𝐵𝑚, 𝐵𝑠, 𝑋, 𝑋𝑔, 𝑋𝑚, 𝑋𝑠)𝑇 , where 𝑋 = (𝑚𝑖𝑛(𝑇, 𝐶), Δ)𝑇 , i.e. we observe the value 𝑋 = 𝑥 =

(𝑥, 𝛿)𝑇 . The notation for the other family members is obtained by having 𝑥, 𝑡, 𝑐, 𝑏 be followed
by 𝑔 , 𝑚, and 𝑠 (meaning respectively, “granmother”, “mother”, and “sister”). The distinction be-
tween grandmother, mother and sister is not strictly needed here, it will make the extension to a
more complex model easier. One may, for example, specify a relative-specific survival function to
capture the generational differences among family members.
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Figure 2.3: birth calendar times and times to disease onset for a family.

The Multivariate likelihood

The assumptions we rely on to deal with the multivariate aspect of this model are the conditional
independence among survival times within the same family and the assumption of shared frailty
risk within a family which allows the time-to-events to be i.i.d..

In this model, the observed data likelihood function incorporates common family member-
ships by grouping their contributions to the likelihood within each risk group. A deepening about
the observed data likelihood is in Appendix B.2. Indeed, let \ = {𝑝0, _𝑇 , 𝛼, ℎ0}𝑇 be the whole pa-
rameter vector of the model. The observed data likelihood is given by

𝐿(\; all data) =
𝑛∏
𝑖=1

[
𝑓X(x𝑖 |𝑅𝑖 = 0; \) (1 − ℎ) + 𝑓X(x𝑖 |𝑅𝑖 = 1; \) ℎ

]
,

where “all data” is composed by the observed time and the indicator of having observed the event,
respectively x = (𝑥 = (𝑥, 𝛿)𝑇 , 𝑥𝑠 = (𝑥𝑠, 𝛿𝑠)𝑇 , 𝑥𝑚 = (𝑥𝑚, 𝛿𝑚)𝑇 , 𝑥𝑔 = (𝑥𝑔, 𝛿𝑔)𝑇 )𝑇 . Here, 𝛼 is
the target parameter for inference because of its crucial meaning. Indeed, it is the risk difference
between the low-risk and the high-risk group of developing breast cancer in the two-latent-class
setting involved in the PH structure which leads to _1(𝑡) = 𝛼_0(𝑡).

Let us compute the closed form of the likelihood. For ease of notation we drop writing the
baseline survival parameter collection _. The first component is obtained, under the assumption
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of conditional independence of the survival times within each family, as

𝑓𝑋 (𝑥𝑖 | 𝑅𝑖 = 0) = [ 𝑓𝑇 (𝑥𝑖 | 𝑅𝑖 = 0)𝑆𝐶 (𝑥𝑖)]𝛿𝑖 [𝑆𝑇 (𝑥𝑖 | 𝑅𝑖 = 0) 𝑓𝐶 (𝑥𝑖)]1−𝛿𝑖

∝ 𝑓𝑇 (𝑥𝑖 | 𝑅𝑖 = 0)𝛿𝑖𝑆𝑇 (𝑥𝑖 | 𝑅𝑖 = 0)1−𝛿𝑖 =
[
((1 − 𝑝0) �̃�0(𝑥𝑖))𝛿𝑖 (𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑖)) (1−𝛿𝑖 )

]
𝑓𝑋 (𝑥𝑠𝑖 | 𝑅𝑖 = 0) = 𝑓𝑇 (𝑥𝑠𝑖 | 𝑅𝑖 = 0)𝛿𝑠𝑖𝑆𝑇 (𝑥𝑠𝑖 | 𝑅𝑖 = 0)1−𝛿𝑠𝑖 =

=

[
((1 − 𝑝0) �̃�0(𝑥𝑠𝑖))𝛿𝑠𝑖 (𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑠𝑖)) (1−𝛿𝑠𝑖 )

]
𝑓𝑋 (𝑥𝑚𝑖 | 𝑅𝑖 = 0) = 𝑓𝑇 (𝑥𝑚𝑖 | 𝑅𝑖 = 0)𝛿𝑚𝑖𝑆𝑇 (𝑥𝑚𝑖 | 𝑅𝑖 = 0)1−𝛿𝑚𝑖 =

=

[
((1 − 𝑝0) �̃�0(𝑥𝑚𝑖))𝛿𝑚𝑖 (𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑚𝑖)) (1−𝛿𝑚𝑖 )

]
𝑓𝑋 (𝑥𝑔

𝑖
| 𝑅𝑖 = 0) = 𝑓𝑇 (𝑥𝑔𝑖 | 𝑅𝑖 = 0)𝛿𝑔𝑖𝑆𝑇 (𝑥𝑔𝑖 | 𝑅𝑖 = 0)1−𝛿𝑔𝑖 =

=

[
((1 − 𝑝0) �̃�0(𝑥𝑔𝑖))𝛿𝑔𝑖 (𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑔𝑖)) (1−𝛿𝑔𝑖 )

]
𝑓X(x𝑖 | 𝑅𝑖 = 0; \) ⊥|𝑅

= 𝑓𝑋 (𝑥𝑖 | 𝑅𝑖 = 0) 𝑓𝑋 (𝑥𝑠𝑖 | 𝑅𝑖 = 0) 𝑓𝑋 (𝑥𝑚𝑖 | 𝑅𝑖 = 0) 𝑓𝑋 (𝑥𝑔
𝑖
| 𝑅𝑖 = 0)

=

[
((1 − 𝑝0) �̃�0(𝑥𝑖))𝛿𝑖 (𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑖)) (1−𝛿𝑖 )

]
·

·
[
((1 − 𝑝0) �̃�0(𝑥𝑠𝑖))𝛿𝑠𝑖 (𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑠𝑖)) (1−𝛿𝑠𝑖 )

]
·

·
[
((1 − 𝑝0) �̃�0(𝑥𝑚𝑖))𝛿𝑚𝑖 (𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑚𝑖)) (1−𝛿𝑚𝑖 )

]
·

·
[
((1 − 𝑝0) �̃�0(𝑥𝑔𝑖))𝛿𝑔𝑖 (𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑔𝑖)) (1−𝛿𝑔𝑖 )

]
.

Similarly for the second component, given the Lehmann survival function and density function
for the high-risk group

𝑆1(𝑡) =
[
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

]𝛼
= 𝑝𝛼0 + (1 − 𝑝𝛼0 )𝑆1(𝑡),

𝑆1(𝑡) =
[
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

]𝛼 − 𝑝𝛼0
1 − 𝑝𝛼0

,

𝑓1(𝑡) = (1 − 𝑝𝛼0 ) �̃�1(𝑡),

�̃�1(𝑡) =
𝛼(1 − 𝑝0)
1 − 𝑝𝛼0

[
𝑝0 + (1 − 𝑝0)𝑆0(𝑡)

]𝛼−1
�̃�0(𝑡),
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we have

𝑓𝑋 (𝑥𝑖 | 𝑅𝑖 = 1) = [ 𝑓𝑇 (𝑥𝑖 | 𝑅𝑖 = 1)𝑆𝐶 (𝑥𝑖)]𝛿𝑖 [𝑆𝑇 (𝑥𝑖 | 𝑅𝑖 = 1) 𝑓𝐶 (𝑥𝑖)]1−𝛿𝑖

∝ 𝑓𝑇 (𝑥𝑖 | 𝑅𝑖 = 1)𝛿𝑖𝑆𝑇 (𝑥𝑖 | 𝑅𝑖 = 1)1−𝛿𝑖 = 𝑓1(𝑥𝑖)𝛿𝑖𝑆1(𝑥𝑖)1−𝛿𝑖

=

[
𝑟 �̃�0(𝑥𝑖)

(1 − 𝑝0)−1
(
𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑖)

)𝑟−1]𝛿𝑖
·
[
𝑝1 + (1 − 𝑝1)𝑆1(𝑥𝑖)

]1−𝛿𝑖
𝑓𝑋 (𝑥𝑠𝑖 | 𝑅𝑖 = 1) = 𝑓1(𝑥𝑠𝑖)𝛿𝑠𝑖𝑆1(𝑥𝑠𝑖)1−𝛿𝑠𝑖 =

=

[
𝑟 �̃�0(𝑥𝑠𝑖)
(1 − 𝑝0)−1

(
𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑠𝑖)

)𝑟−1]𝛿𝑠𝑖 [
𝑝1 + (1 − 𝑝1)𝑆1(𝑥𝑠𝑖)

]1−𝛿𝑠𝑖
𝑓𝑋 (𝑥𝑚𝑖 | 𝑅𝑖 = 1) = 𝑓1(𝑥𝑚𝑖)𝛿𝑚𝑖𝑆1(𝑥𝑚𝑖)1−𝛿𝑚𝑖 =

=

[
𝑟 �̃�0(𝑥𝑚𝑖)
(1 − 𝑝0)−1

(
𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑚𝑖)

)𝑟−1]𝛿𝑚𝑖 [
𝑝1 + (1 − 𝑝1)𝑆1(𝑥𝑚𝑖)

]1−𝛿𝑚𝑖

𝑓𝑋 (𝑥𝑔
𝑖
| 𝑅𝑖 = 1) = 𝑓1(𝑥𝑔𝑖)𝛿𝑔𝑖𝑆1(𝑥𝑔𝑖)1−𝛿𝑔𝑖 =

=

[
𝑟 �̃�0(𝑥𝑔𝑖)
(1 − 𝑝0)−1

(
𝑝0 + (1 − 𝑝0)𝑆0(𝑥𝑔𝑖)

)𝑟−1]𝛿𝑔𝑖 [
𝑝1 + (1 − 𝑝1)𝑆1(𝑥𝑔𝑖)

]1−𝛿𝑔𝑖
𝑓X(x𝑖 | 𝑅𝑖 = 1; \) ⊥|𝑅

= 𝑓𝑋 (𝑥𝑖 | 𝑅𝑖 = 1) 𝑓𝑋 (𝑥𝑠𝑖 | 𝑅𝑖 = 1) 𝑓𝑋 (𝑥𝑚𝑖 | 𝑅𝑖 = 1) 𝑓𝑋 (𝑥𝑔
𝑖
| 𝑅𝑖 = 1)

For simplicity we can see the expression as composed by the quantity

𝑓X(x|𝑅 = 1)
⊥|𝑅
↓
= 𝑓 (𝑥 |𝑅 = 1) 𝑓 (𝑥𝑠|𝑅 = 1) 𝑓 (𝑥𝑚|𝑅 = 1) 𝑓 (𝑥𝑔 |𝑅 = 1)

=

[
𝑓1(𝑥)𝛿𝑆1(𝑥) (1−𝛿)

] [
𝑓1(𝑥𝑠)𝛿𝑠𝑆1(𝑥𝑠) (1−𝛿𝑠)

] [
𝑓1(𝑥𝑚)𝛿𝑚𝑆1(𝑥𝑚) (1−𝛿𝑚)

] [
𝑓1(𝑥𝑔)𝛿𝑔𝑆1(𝑥𝑔) (1−𝛿𝑔 )

]
,

and similarly for the other family members, and for the 𝑅 = 0 terms.
The specific mathematical calculations for the most common baseline survival distributions,

i.e., the Exponential and the Weibull distributions, are presented in the following lines.

Exponential case

The high-risk group survival function with a Lehman structure follows a cure-rate model as well
as the low-risk survival function, that is: 𝑆0(𝑡) = 𝑝+(1−𝑝)𝑆(𝑡), with 𝑆(𝑡) a proper survival function
that converges to zero over time. We can easily prove that 𝑆1(𝑡) follows a cure-rate structure with
a different fraction of the population that will never experience the event:

𝑆1(𝑡) = 𝑆𝑇 (𝑡 | 𝑅 = 1) = [𝑆𝑇 (𝑡 | 𝑅𝑖 = 0)]𝛼 = [𝑆0(𝑡)]𝛼 = [𝑝 + (1 − 𝑝)𝑆(𝑡)]𝛼 = �̃� + (1 − �̃�)𝑆1(𝑡),

𝑆1(𝑡) =
(𝑝 + (1 − 𝑝)𝑆(𝑡))𝛼 − �̃�

1 − �̃�
=

(𝑝 + (1 − 𝑝)e−_𝑡)𝛼 − �̃�

1 − �̃�

�̃� = 𝑝𝛼,

for the baseline survival function distributed according to an Exponential(_) distribution.
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In the data generating process, we will derive the formulas for generating the time-to-event
based on the group membership of individuals. We begin by considering the most straightforward
example, that is the Exponential distribution of time-to-event. Generating data for the low-risk
group is as follows:

1. we sample a Bernoulli random variable with probability 𝑝 of not experiencing the event.
Those who will have a positive value, will be assigned the time-to-event value 𝑡 = +∞;

2. the other individuals will be assigned a time-to-event value obtained from the inverse sur-
vival function:

𝑆(𝑡) = e−_𝑡 = 𝑦 ∼ U[0, 1] ⇐⇒ 𝑡 = −1
_
log( 𝑦).

Similarly, for the high-risk group, the data generation process is as follows:

1. we sample a Bernoulli random variable with probability �̃� of not experiencing the event.
Those who will have a positive value, will be assigned the time-to-event value 𝑡 = +∞;

2. the other individuals will be assigned a time-to-event value obtained from the inverse sur-
vival function:

𝑆1(𝑡) =
(𝑝 + (1 − 𝑝)e−_𝑡)𝛼 − �̃�

1 − �̃�
= 𝑦 ∼ U[0, 1] ⇐⇒ 𝑡 = −1

_
log

(
( 𝑦(1 − �̃�) + �̃�)1/𝛼 − 𝑝)

1 − 𝑝

)
Weibull case

Equivalently for the case the Exponential distribution in Appendix ??, the low and high-risk group
survival functions follow a cure-rate structure. This structure is defined as 𝑆(𝑡) = 𝑝 + (1 − 𝑝)𝑆(𝑡),
where 𝑆(𝑡) represents a proper survival function and 𝑝 denotes the cured fraction.

Additionally, there is a Lehman structure between the survival functions, given by 𝑆1(𝑡) =

[𝑆0(𝑡)]𝛼. We assume that 𝑆0(𝑡) follows a Weibull distribution with shape parameter 𝑘 and scale
parameter _.

Now, let us outline the crucial formulas for this scenario:

𝑆0(𝑡) = 𝑝 + (1 − 𝑝)𝑆(𝑡), with 𝑆(𝑡) = 𝑒
−
(
𝑡

_

)𝑘
, and �̃� (𝑡) = 𝑘

_

(
𝑡

_

)𝑘−1
𝑒
−
(
𝑡

_

)𝑘
, ∀𝑡 ≥ 0

𝑆1(𝑡) = �̃� + (1 − �̃�)𝑆1(𝑡), with 𝑆1(𝑡) =
(𝑝 + (1 − 𝑝)𝑆(𝑡))𝛼 − �̃�

1 − �̃�
and �̃� = 𝑝𝛼

�̃�1(𝑡) =
(
1 − 𝑝

1 − �̃�

)
𝛼

©«𝑝 + (1 − 𝑝)𝑒
−
(
𝑡

_

)𝑘ª®®¬
𝛼−1

𝑒
−
(
𝑡

_

)𝑘
𝑘

_

(
𝑡

_

)𝑘−1
In the low-risk group, the data generation process follows these steps:
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• we sample a Bernoulli random variable with probability 𝑝 of not experiencing the event.
Those who will have a positive value, will be assigned the time-to-event value 𝑡 = +∞;

• the other individuals will be assigned a time-to-event value obtained from the inverse sur-
vival function:

𝑆(𝑡) = e−(𝑡/_ )𝑘 = 𝑦 ∼ U[0, 1] ⇐⇒ 𝑡 = _log
(
1
𝑦

)1/𝑘
Similarly, the generation for the high-risk group is given by the following steps:

• we sample a Bernoulli random variable with probability �̃� of not experiencing the event.
Those who will have a positive value, will be assigned the time-to-event value 𝑡 = +∞;

• the other individuals will be assigned a time-to-event value obtained from the inverse sur-
vival function:

𝑆1(𝑡) =
(𝑝 + (1 − 𝑝)e−( 𝑡_ )

𝑘

)𝛼 − �̃�

1 − �̃�
= 𝑦 ∼ U[0, 1] ⇐⇒ 𝑡 = −_

[
log

(
( 𝑦(1 − �̃�) + �̃�)1/𝛼 − 𝑝

1 − 𝑝

)]1/𝑘
.

However, when the distribution of 𝑆0(𝑡) is not as trivial as the, typically not useful, Exponential or
Weibull distribution, the generation of observations from the high-risk group requires the inver-
sion of the survival function 𝑆1(𝑡). This may not be easy to do analytically, and typically requires
numerical integration from the conditional density function of the cases in the high-risk group
𝑓1(𝑡). The numerical inversion would then be needed to produce samples from the distribution.
However, a much faster (and more precise) algorithm can be obtained by recalling the form of the
marginal survival function for the high-risk group. Indeed, one may generate values u from the
𝑈 (0, 1) distribution and invert 𝑆1(𝑡) directly to produce the value 𝑡 = 𝑆−11 (𝑢). Given the nature of
the random variable 𝑇 , however, one should produce the value 𝑇 = 1 whenever 𝑢 < 𝑝1 = 𝑝𝛼 , and
solve 𝑢 = 𝑆1(𝑡) = [𝑆0(𝑡)]𝛼 for t. It is easy to check that

𝑡 = 𝑆−10

(
𝑢1/𝛼 − 𝑝

1 − 𝑝

)
,

which can be easily computed from the quantile function, available in most software packages for
a large number of distributions (one just needs to make sure that the quantile function is never
invoked for 𝑢 < 𝑝𝛼). As an example, the data generation from the high-risk group of a Lehmann
Cure-Rate model based on the Weibull distribution for the times to onset for the cases in the high-
risk group may be implemented as

• 𝑇 = +∞ if 𝑢 < 𝑝 + 𝛼,

• 𝑇 = 𝑆−11

(
min

(
0.9,

1 − 𝑢1/𝛼
1 − 𝑝

))
if 𝑢 > 𝑝𝛼.

We have temporarily implemented this latest version of the data generation process to address
the computational challenges we are currently facing.
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Example 3.

An example of implementation of the Multivariate frailty Lehmann Cure-Rate model based on a
Weibull baseline distribution for the cases in the low-risk group produces the output in Table 2.3
(recall that we reparametrize 𝛼1 = 1/𝛼 ∈ (0, 1) to force 𝛼 > 1). Parameters value are perfectly
recovered by the multivariate likelihood estimation process.

𝑝0 𝑠ℎ𝑎𝑝𝑒0 𝑠𝑐𝑎𝑙𝑒0 𝛼1 ℎ

True value 0.8 10 70 0.4 0.2
Mean 0.7902 10.1515 69.8595 0.3678 0.1373
Se 0.0002 0.0004 0.0004 0.0004 0.0006√
𝑀𝑆𝐸 0.0111 0.1521 0.1415 0.0370 0.0700

95% C.I. Lower 0.7899 10.1507 69.8584 0.3667 0.1354
95% C.I. Upper 0.7905 10.1523 69.8605 0.3689 0.1393

Table 2.3: Parameter recovery for the Multivariate frailty Lehmann Cure-Rate model.

Now that we outlined all of the components and the likelihood of the Univariate 𝐹𝐻 Lehmann
Cure-Rate model, the Univariate Lehmann frailty Cure-Rate, and the Multivariate Lehmann frailty
Cure-Rate model we can move to a comparative analysis through a simulation study.

2.3 Comparison of univariate vs. multivariate estimation

This section is outlined as follows: a description of a fast algorithm for sampling data is reported.
Right after that, parameters are estimated through the maximization of the univariate and multi-
variate likelihoods. The numerical method of Nelder-Mead is chosen to achieve likelihood maxi-
mization. With the parameter estimation we want to internally validate the models. Once one has
the estimated parameters, the models can be compared in terms of risk classification. The risk can
be predicted both for for each woman that constitutes the available dataset and for a new woman
whose family is not part of the available data.

We expect that fitting the multivariate likelihood allows for: (i) more accurate estimation of
the model parameters; (ii) exploring of the dependence structure within families (goodness of fit);
and (iii) more accurate risk prediction.

2.3.1 Data generation from the two-latent-class Lehmann Cure-Rate model

A fast algorithm for data generation

In simpler models (ex. the Exponential and Weibull seen above), the generation of observations
from the high-risk group can be easily achieved by applying the analytical inversion of 𝑆1(𝑡) (for
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cases), after having generated the case/non-case status.
Splitting subjects into two risk groups, we have the closed form of the survival function on

the observed time for cases into the low-risk and high-risk group. For the Exponential baseline
survival function 𝑆0(𝑡) = e−_𝑡 , and the Weibull survival function 𝑆0(𝑡) = e−(𝑡/_ )𝑘 , with scale _ and
shape 𝑘, inverting the survival function brings to generating the time-to-events from, respectively,

𝑡 = −1
_
log(𝑢), 𝑡 = _ log

(
1
𝑢

)1/𝑘
.

where 𝑢 ∼ Unif[0, 1]. Similarly, we obtain for an observation from 𝑆1(𝑡), where the time-to-event
generation formula for Exponential and Weibull distribution is given by, respectively,

𝑡 = −1
_
log

( [
(1 − 𝑝𝛼0 )𝑢 + 𝑝

𝛼
0
]1/𝛼 − 𝑝0

1 − 𝑝0

)
, 𝑡 = −_

[
log

(
[(1 − 𝑝𝛼0 )𝑢 + 𝑝

𝛼
0 ]

1/𝛼 − 𝑝0

1 − 𝑝0

)]1/𝑘
.

While this model is clearly appealing in its interpretation, it is difficult to identify its parame-
ters. Thus, fitting of such frailty model requires that one has additional external information on
the value of some of the parameters.

When the distribution 𝑆0(𝑡) is not as trivial as the – typically not very useful – Exponential dis-
tribution, generation of observations from the high-risk group requires inversion of the survival
function 𝑆1(𝑡) through numerical integration from �̃�1(𝑡), the conditional density function of the
cases in the high-risk group. This allows to produce samples from the distribution.

However, a much faster and precise algorithm exists from the form of the marginal survival
function for the high-risk group. One may generate values 𝑢 from the 𝑈 (0, 1) distribution and
invert 𝑆1(𝑡) = [𝑆0(𝑡)]𝛼 directly to produce the value 𝑡 = 𝑆−11 (𝑢). One should produce the value
𝑇 = +∞ whenever 𝑢 < 𝑝1 = 𝑝𝛼0 , and solve 𝑢 = 𝑆1(𝑡) for 𝑡 when 𝑢 ≥ 𝑝1. It is easy to check that this
yields

𝑡 = 𝑆−10

(
𝑢 − 𝑝0
1 − 𝑝0

)
= 𝐹−1

0

(
1 − 𝑢
1 − 𝑝0

)
, and 𝑡 = 𝑆−10

(
𝑢1/𝛼 − 𝑝0
1 − 𝑝0

)
= 𝐹−1

0

(
1 − 𝑢1/𝛼
1 − 𝑝0

)
,

respectively for the low-risk and high-risk groups. These can be easily computed from the quantile
function available in most software packages for a large number of distributions (one just needs
to make sure that the quantile function is never invoked for 𝑢 < 𝑝𝛼0 ).

Data generation

According to the specific structure of the model, it is necessary to generate data separately for
cases and non-cases belonging to the two risk groups. Recall that cases refer to subjects who have
a non-zero probability of developing disease onset, while non-cases are individuals who will never
develop disease onset, regardless of their lifespan. Notice that non-cases represent the cured frac-
tion of the population.

Families, composed by a (main) subject, her sister, her mother, and her grandmother, are gener-
ated with uniformly distributed birth calendar times, with uniformly distributed distance between
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grandmothers, mother, and daughter (the sister of the main subject) between 25 and 35 years:

𝐵𝑔 ∼ 𝑈𝑛𝑖 𝑓 (𝑚𝑖𝑛 = 1880, 𝑚𝑎𝑥 = 1910),
𝐵𝑚 = 𝐵𝑔 +𝑈𝑛𝑖 𝑓 (𝑚𝑖𝑛 = 25, 𝑚𝑎𝑥 = 35),
𝐵𝑠 = 𝐵𝑚 +𝑈𝑛𝑖 𝑓 (𝑚𝑖𝑛 = 25, 𝑚𝑎𝑥 = 35),
𝐵𝑣𝑎𝑙 = 𝐵𝑚 +𝑈𝑛𝑖 𝑓 (𝑚𝑖𝑛 = 25, 𝑚𝑎𝑥 = 35),

so that births are as late as 2000.
Data are right-censored by the end of follow up or a the event of death, whose generation is

given by

𝐷𝑒𝑎𝑡ℎ𝑔 = 𝐵𝑔 +𝑈𝑛𝑖 𝑓 (𝑚𝑖𝑛 = 60, 𝑚𝑎𝑥 = 105),
𝐷𝑒𝑎𝑡ℎ𝑚 = 𝐵𝑚 +𝑈𝑛𝑖 𝑓 (𝑚𝑖𝑛 = 60, 𝑚𝑎𝑥 = 105),
𝐷𝑒𝑎𝑡ℎ𝑠 = 𝐵𝑠 +𝑈𝑛𝑖 𝑓 (𝑚𝑖𝑛 = 60, 𝑚𝑎𝑥 = 105),
𝐷𝑒𝑎𝑡ℎ = 𝐵𝑣𝑎𝑙 +𝑈𝑛𝑖 𝑓 (𝑚𝑖𝑛 = 60, 𝑚𝑎𝑥 = 105).

We set the end of the study at the year 2020, so that the censored observation for each subject
is

𝐶𝑒𝑛𝑠𝑔 = 𝑝𝑚𝑖𝑛(𝐷𝑒𝑎𝑡ℎ𝑔, 2020),
𝐶𝑒𝑛𝑠𝑚 = 𝑝𝑚𝑖𝑛(𝐷𝑒𝑎𝑡ℎ𝑚, 2020),
𝐶𝑒𝑛𝑠𝑠 = 𝑝𝑚𝑖𝑛(𝐷𝑒𝑎𝑡ℎ𝑠, 2020),
𝐶𝑒𝑛𝑠 = 𝑝𝑚𝑖𝑛(𝐷𝑒𝑎𝑡ℎ, 2020).

Most importantly, the times-to-event is the crucial point of the data generation process. The
faster algorithm steps (which in part has been described above in Paragraph 2.3.1) are given by

1. Fixing a parametric distribution of the proper survival function 𝑆0(𝑡), so that 𝑆0(𝑡) = 𝑝0 +
(1 − 𝑝0)𝑆0(𝑡) and 𝑓0(𝑡) = (1 − 𝑝0) �̃�0(𝑡);

2. generating the time-to-event 𝑡 ∼ �̃�0(𝑡) for low-risk cases;

3. generating the time-to-event 𝑡 = 𝑆−10

(
𝑢𝛼 − 𝑝0
1 − 𝑝0

)
, 𝑢 ∼ U[0, 1] for high-risk cases with the ap-

proximate method.

In the following scenario, we simulated 𝑛 = 100, 000 families, each consisting of 4 members,
and repeated this simulation 100 times. Within the algorithm, a reparametrization process was
implemented for the parameters to guarantee adherence to the non-negative constraint.

We aim to obtain the parameter value used in data generation by maximizing the likelihood.
At each iteration, given 𝑛𝑝 number of parameters, we fix the (𝑛𝑝 − 1) parameters and vary the
risk parameter 𝛼 over a few values. The cured fraction and the proportion of high-risk fami-
lies into the population are set at 𝑝 = 0.8, and ℎ = 0.3. Results are presented in Table 2.4 for



2.3. COMPARISON OF UNIVARIATE VS. MULTIVARIATE ESTIMATION 99

a baseline survival function distributed according to an Exponential(_ = 0.3), Table 2.5 for the
Weibull(𝑠ℎ𝑎𝑝𝑒 = 10, 𝑠𝑐𝑎𝑙𝑒 = 70) case, Tables 2.6 for the Gamma(𝑠ℎ𝑎𝑝𝑒 = 10, 𝑠𝑐𝑎𝑙𝑒 = 2) case, us-
ing the univariate vs. the multivariate likelihood of the frailty Lehmann Cure-Rate model, and the
univariate likelihood of the 𝐹𝐻 Lehmann Cure-Rate model. Specifically, in the first column in re-
ported the true value of the risk difference 𝛼 = (1/2, 1/4, 1/5), fixed at the data generation step.
All the other columns report the mean, standard error and mean square error (

√
MSE) associated

to the estimated parameter values across the repeated simulations.

The slight discrepancies observed between the estimated and true values can be attributed
to the approximation algorithm used for generating data. One way to overcome this issue is by
increasing the sample size, particularly the average family size into the sample, as it would result in
a more accurate estimate of the true value. Additionally, this would help in reducing the variance
around the mean for sure. Nevertheless, on the contrary to the univariate models, the multivariate
model is capable of accurately recovering the parameter values.

We notice also that the estimates of the model parameters for the univariate likelihood have
standard errors that are much larger than those of the estimates based on the multivariate like-
lihood. We take as example the first scenario with the Weibull baseline survival function from
Table 2.5. Specifically, their standard errors are between 1.75 and 12.18 times larger than their
multivariate counterparts, as we can assess from Table 2.7

Such increase is noteworthy in particular because one may expect the effective sample size of
the multivariate estimator to represent a four-fold increase from the univariate estimator, given
the use of information from not one but four relatives for each family. Indeed, we illustrate such
aspect for the univariate model in the following lines.
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True value of 𝛼 �̂�0 𝛼 _̂0 ℎ̂

Multivariate
Mean 0.5 0.8174 0.4918 0.0316 0.3651
Se 0.0168 0.0223 3e-04 0.13√

MSE 0.7842 0.309 0.4684 0.2101
Mean 0.25 0.8 0.2441 0.0315 0.212
Se 0.0016 0.0025 2e-04 0.0055√

MSE 0.7667 0.5559 0.2185 0.0132
Mean 0.2 0.7995 0.1947 0.0316 0.2078
Se 0.0014 0.0016 2e-04 0.0039√

MSE 0.0018 0.0186 6e-04 7e-04

Univariate
Mean 0.5 0.8432 0.3516 0.0336 0.2225
Se 0.0875 2.1274 0.0021 0.2227√

MSE 0.0976 2.2886 0.0022 0.2542
Mean 0.25 0.8004 0.2501 0.0335 0.0997
Se 0.002 0.0214 7e-04 0.0016√

MSE 0.002 0.0214 7e-04 0.0017
Mean 0.2 0.8004 0.1999 0.0335 0.0999
Se 0.0017 0.0186 6e-04 7e-04√

MSE 0.0186 0.0018 6e-04 7e-04

Univariate 𝐹𝐻 𝛽𝐹

Mean 0.5 0.7860 2.1491 0.0388
Se 0.0021 0.0129 5e-04√

MSE 0.0142 1.5347 0.0055
Mean 0.25 0.828 0.9928 0.0655
Se 0.002 0.0136 7e-04√

MSE 0.0281 2.9928 0.0321
Mean 0.2 0.8342 0.9314 0.0731
Se 0.0018 0.0149 9e-04√

MSE 0.0342 3.9264 0.0397

Table 2.4: Parameter identifiability for 𝛼 varying, with Exponential baseline survival function.
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True value of 𝛼 �̂�0 𝛼 �𝑠ℎ𝑎𝑝𝑒0 �𝑠𝑐𝑎𝑙𝑒0 ℎ̂

Multivariate
Mean 0.5 0.8134 0.5369 10.1756 69.8799 0.3452
Se 0.0003 0.0008 0.0012 0.0011 0.0017√

MSE 0.0256 0.1068 0.1907 0.1876 0.1745
Mean 0.25 0.8014 0.2479 10.0886 69.8911 0.2008
Se 0.0001 0.0001 0.0009 0.0011 0.0003√

MSE 0.0071 0.0150 0.1275 0.1575 0.0261
Mean 0.2 0.8015 0.1974 10.1489 69.9141 0.2031
Se 0.0001 0.0001 0.0007 0.0008 0.0002√

MSE 0.0074 0.0064 0.1662 0.1177 0.0156

Univariate
Mean 0.5 0.8690 0.2230 10.2890 70.9132 0.3201
Se 0.0007 0.0019 0.0021 0.0134 0.0031√

MSE 0.1011 0.3334 0.3553 1.6226 0.3304
Mean 0.25 0.7494 0.5183 9.7783 69.8134 0.1557
Se 0.0002 0.0025 0.0025 0.0051 0.0008√

MSE 0.0541 0.3641 0.3337 0.5463 0.0884
Mean 0.2 0.7662 0.3012 9.9325 69.9320 0.1903
Se 0.0003 0.0015 0.0030 0.0036 0.0007√

MSE 0.0476 0.1812 0.3090 0.3655 0.0723
Univariate FH 𝛽𝐹

Mean 0.5 0.7895 0.4855 9.995 69.9747
Se 0.0006 0.0028 0.0010 0.0023√

MSE 0.0658 0.2855 0.1045 0.235
Mean 0.25 0.7827 0.4218 9.8695 69.5787
Se 0.0009 0.0026 0.0010 0.0033√

MSE 0.0963 0.3083 0.1664 0.5342
Mean 0.2 0.7895 0.3374 9.7897 69.3433
Se 0.0012 0.0019 0.0010 0.0036√

MSE 0.1169 0.2419 0.2347 0.7512

Table 2.5: Parameter identifiability for 𝛼 varying, with Weibull baseline survival function.
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True value of 𝛼 �̂�0 𝛼 �𝑠ℎ𝑎𝑝𝑒0 �𝑠𝑐𝑎𝑙𝑒0 ℎ̂

Multivariate
Mean 0.5 0.7875 0.5281 10.7928 1.8435 0.1333
Se 0.0166 0.2010 0.3618 0.0560 0.0900√

MSE 0.0208 0.2029 0.8715 0.1662 0.1121
Mean 0.25 0.8030 0.2400 10.5283 1.8873 0.1992
Se 0.0131 0.0189 0.4718 0.0952 0.0464√

MSE 0.0134 0.0214 0.7083 0.1475 0.0464
Mean 0.2 0.7977 0.1958 10.2873 1.9442 0.1967
Se 0.0087 0.0189 0.4019 0.0913 0.0185√

MSE 0.0090 0.0194 0.4940 0.1070 0.0188

Univariate
Mean 0.5 0.7445 0.7568 10.3722 1.9144 0.0483
Se 0.0130 0.2419 0.6032 0.1254 0.1205√

MSE 0.0570 0.4877 0.7088 0.1518 0.1938
Mean 0.25 0.6973 0.5938 10.1955 1.8798 0.0739
Se 0.0396 0.2878 0.6771 0.1198 0.1000√

MSE 0.1101 0.5349 0.7048 0.1697 0.1610
Mean 0.2 0.7459 0.1870 10.6457 1.8082 0.1833
Se 0.1006 1.3575 0.1561 0.1845 0.2938√

MSE 0.1142 0.1787 1.5033 0.2662 0.2942
Univariate 𝐹𝐻 𝛽𝐹𝐻

Mean 0.5 0.9908 0.1124 52.5408 20.6369
Se <0.0001 0.0031 0.1846 0.0725√

MSE 0.1908 0.4975 46.3738 19.9978
Mean 0.25 0.9949 0.5069 29.1894 11.4650
Se 0.0001 0.0052 0.3077 0.1209√

MSE 0.1950 0.5798 36.2618 15.3504
Mean 0.2 0.9939 0.4083 35.0272 13.7579
Se 0.0001 0.0051 0.3015 0.1184√

MSE 0.1939 0.5502 39.1814 16.6870

Table 2.6: Parameter identifiability for 𝛼 varying, with Gamma baseline survival function.
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�̂�0 𝛼 �𝑠ℎ𝑎𝑝𝑒0 �𝑠𝑐𝑎𝑙𝑒0 ℎ̂

Multivariate Se 0.0003 0.0008 0.0012 0.0011 0.0017
Univariate Se 0.0007 0.0019 0.0021 0.0134 0.0031
Univariate Se / Multivariate Se 2.3333 2.3750 1.7500 12.1818 1.8235

Table 2.7: comparison between the SE from the Multivariate model vs. Univariate model.
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A quick check of the effect of using a larger sample size in the univariate model

We compare the estimated standard deviation of the parameter estimators from the univariate
likelihood for a sample of size 𝑛 = 1, 000, 000 in Table 2.8 to that of the parameter estimators from
the univariate likelihood for a sample of size 𝑛 = 500, 000 in Table 2.9. The study is repeated for
100 simulations.

Results from the Univariate estimation, with n=1, 000, 000 families, and thus subjects are col-
lected in Table 2.8.

𝑝0 𝑠ℎ𝑎𝑝𝑒0 𝑠𝑐𝑎𝑙𝑒0 𝛼 h AUC
True value 0.8 10 70 0.4 0.2
Mean 0.8110 10.0309 70.1812 0.3813 0.2157 0.5725
Sd 0.0342 0.0530 0.2126 0.1685 0.1101 0.0007√
𝑀𝑆𝐸 0.0360 0.0614 0.2794 0.1696 0.1113

95% C.I. Lower 0.0360 0.0614 0.2794 0.1696 0.1113
95% C.I. Upper 0.8131 10.0342 70.1944 0.3918 0.2225

Table 2.8: parameter estimation for the univariate likelihood for a sample size of 𝑛 = 1, 000, 000.

While, the univariate estimation with 𝑛 = 500, 000 families, and thus subjects is collected in
Table 2.9.

𝑝0 𝑠ℎ𝑎𝑝𝑒0 𝑠𝑐𝑎𝑙𝑒0 𝛼 h AUC
True value 0.8 10 70 0.4 0.2
Mean 0.8122 10.0245 70.1663 0.4073 0.2245 0.5726
Sd 0.0494 0.0656 0.2788 0.2047 0.1616 0.0010√
𝑀𝑆𝐸 0.0508 0.0700 0.3247 0.2049 0.1635

95% C.I. Lower 0.80914 10.02039 70.14906 0.39465 0.21452
95% C.I. Upper 0.81526 10.02853 70.18363 0.42003 0.23456

Table 2.9: parameter estimation for the univariate likelihood for a sample size of 𝑛 = 500, 000.

The comparison between the standard errors is in Table 2.10.
As anticipated, the ratio of the estimated standard deviations of the estimators closely approx-

imates the expected value of
√
2 = 1.1442. This implies that when the sample size doubled, the

standard deviation increased by approximately the square root of two. Hence, we can conclude
that there is a proportional relationship between the sample size and the standard deviation, with
the standard deviation increasing by a factor close to the square root of two when the sample size
is doubled.

The comparison of the root MSE (RMSE) for the estimated parameters from the univariate vs.
the multivariate likelihood yields, as we can assess from Table 2.11 showing that the RMSEs of the
univariate estimators are larger than those of the multivariate estimators.
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𝑝0 𝑠ℎ𝑎𝑝𝑒0 𝑠𝑐𝑎𝑙𝑒0 𝛼 h
Sd 1M 0.0342 0.0530 0.2126 0.1685 0.1101
Sd 500k 0.0494 0.0656 0.2788 0.2047 0.1616
Sd 1M / Sd 500k 0.6923077 0.8079268 0.7625538 0.8231558 0.6813119
Sd 500k / Sd 1M 1.444444 1.237736 1.311383 1.214837 1.467757

Table 2.10: comparison between standard errors for double sample size, where “1M” and “500k”
mean n = 1,000,000 and n = 500,000 from Tables 2.8, and 2.9.

�̂�0 𝛼 �𝑠ℎ𝑎𝑝𝑒0 �𝑠𝑐𝑎𝑙𝑒0 ℎ̂

Multivariate RMSE 0.1011 0.3334 0.3553 1.6226 0.3304
Univariate RMSE 0.0256 0.1068 0.1907 0.1876 0.1745
Univariate RMSE / Multivariate RMSE 3.9492 3.1217 1.8631 8.6492 1.8934

Table 2.11: Comparison between the RMSE from the Multivariate model vs. Univariate model.

On the other hand, given the presence of bias in the estimators, such bias becomes more vis-
ible in the multivariate case, so that if one compares the standardized RMSE (SRMSE) obtained
by dividing it by each estimator’s estimated standard deviation, obtains the results in Table 2.12
which shows that, but the scale baseline parameter, the relative RMSE is larger for the univariate
estimators.

�̂�0 𝛼 �𝑠ℎ𝑎𝑝𝑒0 �𝑠𝑐𝑎𝑙𝑒0 ℎ̂

Multivariate SRMSE 85.3333 133.5000 158.9167 170.5454 102.6471
Univariate SRMSE 144.4286 175.4737 169.1905 121.0896 106.5806
Univariate / Multivariate SRMSE 1.6925 1.3144 1.0646 0.7100 1.0383

Table 2.12: Comparison between the standardized RMSE from the Multivariate model vs. Univari-
ate model.

The increase in precision achieved by the estimators obtained from the multivariate likelihood
is possibly due in part to the fact that the added relatives (grandmother and mother in particular),
having been born earlier than the main subjects that appear in the univariate likelihood, are less
likely to have their survival times be (administratively) censored.

However, the effect of the shared frailty risk component of the model is also possibly contribut-
ing to the increase in precision. Such effect is however not easy to quantify, as estimating the pa-
rameters of a model that does not include the shared frailty component would be such that either
a different data generating model should be used, or a misspecified model is being used.
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2.3.2 Risk group prediction for univariate vs. multivariate models

Our primary goal is to predict the risk for an woman whose family is not part of the data used
to fit the model. Subsequently, risk prediction and related metrics are calculated and presented,
followed by a final evaluation to determine the most informative and effective approach among
the three studied. Notice that we can run risk prediction only for the frailty Lehmann Cure-Rate
model because in the case of the 𝐹𝐻 Lehmann Cure-Rate model, the family history is used as the
predicted risk.

The complete shape of the low-risk and high-risk survival functions are

𝑆0(𝑡) = �̂�0 + (1 − �̂�0)𝑆(𝑡)
𝑆1(𝑡) = �̂�𝛼0 + (1 − �̂�𝛼0 )𝑆1(𝑡)

𝑆1(𝑡) =
( �̂�0 + (1 − �̂�0)𝑆0(𝑡))𝛼 − �̂�𝛼0

1 − �̂�𝛼0

where 𝑆0(𝑡) has a defined distribution, previously fixed.
Risk prediction is achieved through calculation of the conditional probability for each family:

𝑃(𝑅 = 1 | 𝑥; \̂) =
𝑓 (𝑥 | 𝑅 = 1; \̂)𝑃(𝑅 = 1)

𝑓 (𝑥) =
𝑓 (𝑥 | 𝑅 = 1; \̂)𝑃(𝑅 = 1)

𝑓 (𝑥 | 𝑅 = 1; \̂)𝑃(𝑅 = 1) + 𝑓 (𝑥 | 𝑅 = 0; \̂)𝑃(𝑅 = 0)
.

Recall from above that 𝑥 = (𝑥, 𝛿) indicate the univariate survival data couple. The vector collec-
tion x = ((𝑥, 𝛿)𝑇 , (𝑥𝑠, 𝛿𝑠1)𝑇 , (𝑥𝑚, 𝛿𝑚)𝑇 , (𝑥𝑔, 𝛿𝑔)𝑇 )𝑇 represents the whole family data, always for
a four members family. The purpose to define the family with at least three members, i.e. the
grandmother, the mother, and the first sister is to cover at least the second-degree-generational
heritability of breast cancer. Notice again that this is easily extendable to a higher number of sis-
ters, or other degree members of the family (see e.g. father’s mother, aunts, female cousins). Hence,
the multivariate model is a generalization of the formula above, involving here all survival infor-
mation from all family members and accounting for the conditional independence assumption.
The multivariate posterior probability of belonging to the high-risk group is given by:

𝑃(𝑅 = 1 | x; \̂) =
𝑓 (x | 𝑅 = 1; \̂)𝑃(𝑅 = 1)

𝑓 (x | 𝑅 = 1; \̂)𝑃(𝑅 = 1) + 𝑓 (x | 𝑅 = 0; \̂)𝑃(𝑅 = 0)
. (2.7)

Where, recall that for the two risk groups the familial density function is given by:

𝑓 (x | 𝑅 = 1)
⊥|𝑅
↓
= 𝑓 (𝑥 | 𝑅 = 1) 𝑓 (𝑥𝑔 | 𝑅 = 1) 𝑓 (𝑥𝑚 | 𝑅 = 1) 𝑓 (𝑥𝑠 | 𝑅 = 1),

𝑓 (x | 𝑅 = 0)
⊥|𝑅
↓
= 𝑓 (𝑥 | 𝑅 = 0) 𝑓 (𝑥𝑔 | 𝑅 = 0) 𝑓 (𝑥𝑚 | 𝑅 = 0) 𝑓 (𝑥𝑠 | 𝑅 = 0),

where the univariate density function, split for the two risk groups, for the subject is

𝑓 (𝑥 | 𝑅 = 1) = 𝑓1(𝑥)𝛿𝑆1(𝑥) (1−𝛿) ,
𝑓 (𝑥 | 𝑅 = 0) = 𝑓0(𝑥)𝛿𝑆0(𝑥) (1−𝛿) ,
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with the following quantities of interest:

𝑆0(𝑥) = �̂�0 + (1 − �̂�0)𝑆0(𝑥),
𝑓0(𝑥) = (1 − �̂�0) �̃�0(𝑥),
𝑆1(𝑥) = [𝑆0(𝑥)]𝛼 = [ �̂�0 + (1 − �̂�0)𝑆0(𝑥)]𝛼 = �̂�𝛼0 + (1 − �̂�𝛼0 )𝑆1(𝑥),

𝑓1(𝑥) = (1 − �̂�𝛼0 )
(
1 − �̂�0

1 − �̂�𝛼0

)
𝛼 �̃�0(𝑥)

(
�̂�0 + (1 − �̂�0)𝑆0(𝑥)

)𝛼−1
,

with 𝑆1(𝑥) =
( �̂�0 + (1 − �̂�0)𝑆0(𝑥))𝛼 − �̂�𝛼0

1 − �̂�𝛼0
.

Very useful is the probability of surviving within the next 𝑘 years, for those women who have
not already experienced the onset. The probability is estimated as:

𝑆(𝑥 + 𝑘 | x; \̂) = 𝑆(𝑥 + 𝑘 | 𝑅 = 1; \̂)𝑃(𝑅 = 1 | x; \̂) + 𝑆(𝑥 + 𝑘 | 𝑅 = 0; \̂)𝑃(𝑅 = 0 | x; \̂),

with

𝑆(𝑥 + 𝑘 | 𝑅 = 1; \̂) = 𝑆1(𝑥 + 𝑘; \̂),
𝑆(𝑥 + 𝑘 | 𝑅 = 0; \̂) = 𝑆0(𝑥 + 𝑘; \̂),

where 𝑃(𝑅 = 1 | x; \̂) is obtained in the previous step in Formula 2.7. Notice that for such women,
who have not experienced the disease onset yet, the observed time 𝑥 always corresponds to the
censoring time 𝑥 = 𝑐. Specifically, this is achieved for the univariate estimators through calcula-
tion, for each family, of the conditional probability

𝑃(𝑅𝑖 = 1 | (𝑥𝑖 , 𝛿𝑖); \̂) =
ℎ �̃�1(𝑥𝑖)𝛿𝑖 𝑆1(𝑥𝑖)1−𝛿𝑖

ℎ �̃�1(𝑥𝑖)𝛿𝑖 𝑆1(𝑥𝑖)1−𝛿𝑖 + (1 − ℎ) �̃�0(𝑥𝑖)𝛿𝑖 𝑆0(𝑥𝑖)1−𝛿𝑖
, (2.8)

where \̂ is the vector of the estimated model parameters, such that in the aforementioned Formula
2.8 each survival and density function are of the type 𝑓 (𝑥) = 𝑓 (𝑥; \̂).

The formula for the multivariate model is similar, but it involves the survival information from
all family members, taking into account the conditional independence assumption within each
family:

𝑃(𝑅𝑖 = 1 | (x𝑖 , 𝜹𝑖); \̂) =
ℎ �̃�1(x𝑖)𝜹𝑖 𝑆1(x𝑖)1−𝜹𝑖

ℎ �̃�1(x𝑖)𝜹𝑖 𝑆1(x𝑖)1−𝜹𝑖 + (1 − ℎ) �̃�0(x𝑖)𝜹𝑖 𝑆0(x𝑖)1−𝜹𝑖
.

To simplify the expressions, above we have used the notation

�̃�𝑟 (x𝑖)𝜹𝑖 = �̃�𝑟 (𝑥𝑔𝑖)𝛿𝑔𝑖 �̃�𝑟 (𝑥𝑚𝑖)𝛿𝑚𝑖 �̃�𝑟 (𝑥𝑠𝑖)𝛿𝑠𝑖 �̃�𝑟 (𝑥𝑖)𝛿𝑖

for 𝑟 = 0, 1. The notation for 𝑆𝑟 (x𝑖)1−𝜹𝑖 is analogous.



108 Two-latent-class Lehmann Cure-Rate models for age at disease onset - a simulation study

2.3.3 ROC and AUC: univariate vs. multivariate model

The overall performance of the risk group classifier as a function of the cutoff for assignment to
the groups can be assessed through the ROC curve [12]. The ROC shows the plot of the points (1-
specificity, sensitivity) for all values of 𝑝 in (0, 1). Figure 2.4 is an example of the output of a shiny-
app that we developed to illustrate the functioning of the ROC curve and the AUC measure for
the general setting of diagnostic tests. The link https://marcobonetti.shinyapps.io/shinyapp gives
access to the shiny-app.

Effect of changing the threshold in a diagnostic test
Threshold

Show Non-
cases

Show Cases

Add ROC
Curve

1 9939

1 11213141516171819199

Figure 2.4: Sample output from shiny-app illustrating ROC curves.

From the ROC curve an overall measure of the performance of the classifier, the Area Under
the Curve (AUC), can be computed [12]. The AUC estimates are constructed from 100 simulated
multivariate samples by comparing the known true value 𝑅, which we generate at the data gener-
ation step, to its posterior family-specific expected value obtained through likelihood estimation,
with either one subject in the univariate case or all family members in the multivariate case. We
consider the baseline survival distribution and the family sample size, which is one in the univari-
ate case and four in the multivariate case. The posterior expected value of the latent risk is given
by

E(𝑅 | family data; \̂) =
𝑃(𝑅𝑖 = 1) 𝑓X(x𝑖 | 𝑅𝑖 = 1; \̂)

𝑃(𝑅𝑖 = 0) 𝑓X(x𝑖 | 𝑅𝑖 = 0; \̂) + 𝑃(𝑅𝑖 = 1) 𝑓X(x𝑖 | 𝑅𝑖 = 1; \̂)
.

This quantity is thus compared to the real risk group. Straightforwardly, one can obtain the
univariate counterpart of the posterior expected value of the latent risk.

The results showing the average AUC over 100 simulated samples are in Table 2.13. In this
analysis, the sample size is allowed to vary over three values: 𝑛 = 102, 103, 104 to appreciate
possible changes in increasing the sample size.

https://marcobonetti.shinyapps.io/shinyapp
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Number of families

102 103 104

Multivariate
Exponential 0.6917 (0.0062) 0.6902 (0.0019) 0.6907 (0.0006)
Weibull 0.6564 (0.0070) 0.6559 (0.0023) 0.6558 (0.0007)
Gamma 0.6923 (0.0046) 0.6988 (0.0008) 0.6957 (<0.0001)

Univariate
Exponential 0.5393 (0.0139) 0.5379 (0.0101) 0.5409 (0.0008)
Weibull 0.5492 (0.0068) 0.5498 (0.0030) 0.5503 (0.0007)
Gamma 0.5927 (0.0079) 0.5798 (0.0010) 0.5816 (0.0001)

Univariate 𝐹𝐻
Exponential 0.4492 (0.0905) 0.4137 (0.0231) 0.4137 (0.0079)
Weibull 0.5183 (0.0143) 0.5213 (0.0026) 0.5211 (0.0007)
Gamma 0.5140 (0.0892) 0.4969 (0.0892) 0.4698 (0.0008)

Table 2.13: AUC results from the Multivariate frailty Lehmann Cure-Rate model, the Univariate
frailty Lehmann Cure-Rate model, and the Univariate 𝐹𝐻 Lehmann Cure-Rate model.

It is noteworthy that, for each model, the variance of the AUC values decreases as the sample
size increases, as expected. The models that perform the best are highlighted in bold. Notably, the
multivariate model outperforms the other models for each sample size and distribution. Moving
from the univariate to the multivariate likelihood shows an increase of 10% and more in the AUC,
and considering that 0.5 coincides with a classification procedure by following the flipping of a
coin, such improvement in classification performance is indeed significant. Computing the AUC
with 𝑅 vs. its expected value E(𝑅) has no meaning with the observed family history model because
the information of the frailty is not involved in this model. Due to this fact, a comparison between
𝐹𝐻 and 𝑅 both obtained in the data simulation process is applied to replace E(𝑅) (results always
in Table 2.13). Results are quite poor for the univariate 𝐹𝐻 model because the AUC, in some cases
(≈ 0.4), has a lower value than having accuracy in classification with the flipping of a coin.

Notice that by increasing the sample size there is no significant change in the value of the
AUC. ROC curves from one of the 100 dataset are reported in Figures 2.5, 2.6, 2.7, 2.8, and 2.9 as a
graphical example. We report the number of the families into the sample, but no the number of
subjects involved. Consider that this last is greater or equal to the number of families.
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Figure 2.5: Exponential (left) and Weibull (right) ROC curves with n = 102 (top), 103 (middle), and
104 (bottom) for the Univariate model.
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Figure 2.6: Exponential (left) and Weibull (right) ROC curves n = 102 (top), 103 (middle), and 104

(bottom) for the Multivariate model.
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Figure 2.7: Exponential (left) and Weibull (right) ROC curves with n = 102 (top), 103 (middle), and
104 (bottom), for the Univariate 𝐹𝐻 model.
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Figure 2.8: Gamma Univariate 𝐹𝐻 (left) and Univariate model (right) ROC curves with n = 102 (top),
103 (middle), and 104 (bottom).
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Figure 2.9: Gamma Multivariate model ROC curves with n = 102 (top), 103 (middle), and 104 (bot-
tom).
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We report some illustrative results based on one sample of varying number of families into
the sample: n = 100, 1,000, 10,000, exploring the three baseline survival distributions, Exponential,
Weibull and Gamma. Figures 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18 show the histograms of
the family-specific posterior frailty risk probability 𝑃(𝑅𝑖 | 𝑥𝑖 , 𝛿𝑖 ; \̂) as estimated from the simulated
dataset using the univariate likelihood and the multivariate likelihood with overlapping densities,
for the two risk groups and distinguished by distributions. Consider that the lighter area with
dashed borders represents the results of the distribution from the Multivariate frailty Lehmann
Cure-Rate model, while the darker area without borders is from the Univariate frailty Lehmann
Cure-Rate model. We can generally notice from these figures that the multivariate distribution
of the probability of belonging to the high-risk group is more distributed over all the range [0,1],
contrarily to the univariate distribution. This allows to better identify the highest-risk families in
order to accurately address them to more intensive prevention strategies.
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Figure 2.10: Family-specific estimated probability of belonging to the high-risk group, through
maximization of the Exponential univariate likelihood (in grey) vs. the Exponential multivariate
likelihood (lighter with dashed borders) grouped by true risk 𝑅 = 0/1 for 𝑛 = 100.
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Figure 2.11: Same as Figure 2.10 with 𝑛 = 1, 000.
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Figure 2.12: Same as Figure 2.10 with 𝑛 = 10, 000.
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Figure 2.13: Family-specific estimated probability of belonging to the high-risk group through max-
imization of the Weibull univariate likelihood (in grey) vs. the Weibull multivariate likelihood
(lighter with dashed borders) grouped by true risk 𝑅 = 0/1 for 𝑛 = 100.
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Figure 2.14: Same as Figure 2.13 with 𝑛 = 1, 000.



118 Two-latent-class Lehmann Cure-Rate models for age at disease onset - a simulation study

0 1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

2.5

5.0

7.5

P(R=1|survival data)

D
en

si
ty

Figure 2.15: Same as Figure 2.13 with 𝑛 = 10, 000.
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Figure 2.16: Family-specific estimated probability of belonging to the high-risk group through max-
imization of the Gamma univariate likelihood (in grey) vs. the Gamma multivariate likelihood (in
grey with dashed borders) grouped by true risk 𝑅 = 0/1 for 𝑛 = 100.
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Figure 2.17: Same as Figure 2.16 with 𝑛 = 1, 000.
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Figure 2.18: Same as Figure 2.16 with 𝑛 = 10, 000.
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2.4 Discussion

Breast cancer is a significant global health concern, and despite some progress in recent years,
there is still wide room for improvement. Prior studies have explored conventional survival mod-
els and the use of family history indicator. We believe that solely involving the family history into
a risk prediction model can be inadequate to capture the dynamic of breast cancer development.
By relying on frailty models, in this work we showed that a two-latent-class approach can outper-
forms a traditional family history model in terms of precision and prediction. We focused on frailty
models and cure-rate survival functions as we believe that a portion of subjects may never experi-
ence disease onset, no matter how long their lifespan will be. In the hypothetical scenario where
every person develops breast cancer, the cure-rate model relies on the usual survival model. In
particular, we developed a Univariate 𝐹𝐻 which allows for the extension of the Lehmann family
model to a Cure-Rate model. Drawing inspiration from the family history models which motivates
the two-latent-class approach, we then developed a Univariate frailty Lehmann Cure-Rate model
and a Multivariate frailty Lehmann Cure-Rate model.

We discussed the identifiability of univariate models, and performed our comparative analy-
sis, which shows that, as expected, the Multivariate frailty Lehmann Cure-Rate model should be
preferred over the univariate models. This shows that detailed family-level data plays a critical
role in elucidating the clustering of breast cancer cases, and that merely relying on a raw summary
of familial information, such as a family history indicator, may prove inadequate in capturing the
full complexity of the phenomenon.

Although the family history model justifies the two-latent-class approach, an extension to more
than two risk groups may bring further improvement in risk prediction.

Additional improvements may come from including relatives over the first-degree relation-
ship. This could involve the grandmother from both the maternal and paternal sides. Clearly, and
very importantly, while here we have focused only on the latent family risk, covariates may be
incorporated to tailor the risk as done in traditional risk models. Some ideas in that direction are
described in Appendix B.5. Moreover, moving to the analysis on available data would be a crucial
point to validate our work in a real case setting.
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We study the family-level risk associated with longevity, as we assume that families
can be categorized in different groups of mortality risk and that family members share
a common risk that is latent and unchanged from birth. We develop a classification al-
gorithm that operates by computing a chosen family-specific risk posterior quantile.
This algorithm is applied to scenarios involving both discrete k-level risk and contin-
uous risk. By conducting this analysis we aim to contribute to the fundamental task
of quantifying the mortality risk of subjects from information on the survival of their
family members, thus allowing the development of prevention strategies that may pro-
tect individuals belonging to frail families, which is crucial in enhancing the survival
chances of individuals.

keywords: heritability of longevity, risk prediction, shared frailty, survival analysis
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3.1 Introduction

We are interested in studying the effect of (family-specific) risk on longevity conditionally to the
genetic make-up of the family. Longevity is known to be in part hereditary, so the risk of dying has
a familial component. The survival family history is crucial to involve in the analysis, to assess
the subject’s (being part of a family) risk of survival. The definition of a positive family history
refers to the collection of the survival experiences of the other family members. The significance
of a family history increases with the number of deaths, their ages of death, and the closeness of
the genetic relationship with the subject [5]. The significance of family history varies according to
other aspects also (see e.g. [5, 10]). We may divide families into different clusters, within which
they share the same risk of mortality. The interest is in classifying a subject’s family to one of a set
of risk groups or, more generally, to estimate the family-specific risk from the available data.

First consider the effect of family risk on longevity. A recent model in this direction is called
heritability of longevity [6]. The key components of this model are outlined as follows. For the
𝑗th individual, we let 𝑡 𝑗 be the longevity, and 𝑠 𝑗 ∈ {male, female} the sex. Longevity is defined
as the difference between the age at death of the subject and the expected age of death based on
temporal and environmental factors. Below we use the subscripts 𝑚 (mother), 𝑓 (father) and 𝑝

(generic parent) to identify the corresponding family members of subject 𝑗. The simplest model is
linearly based on the mid-parent heritability:

𝑡 𝑗 = 𝛾0
(𝑡𝑚 𝑗

+ 𝑡 𝑓 𝑗 )
2

+ 𝛿.

A second model comes from considering the heritability to be different based on whether the
parent has concordant sex with the individual 𝑗 or not. Accordingly, the models become two, one
for concordant-sex and one for discordant-sex, i.e.:

𝑡 𝑗 = 𝛿0 + 𝛾0𝑡𝑝 𝑗 + 𝛾1I(𝑠 𝑗 , 𝑠𝑝 𝑗 ) + 𝛾2(𝑡𝑝 𝑗 × I(𝑠 𝑗 , 𝑠𝑝 𝑗 )),

where the indicator of concordant sex is I(𝑠 𝑗 , 𝑠𝑝 𝑗 ) = 1 ⇐⇒ 𝑠 𝑗 = 𝑠𝑝 𝑗 , 𝑝 ∈ {𝑚, 𝑓 }. Estimation of
such models can be performed by the least square method [6] from data consisting of individual
medical and biological information in population-scale family trees.

We investigate an alternative model that can be used to address the effect of family history
on survival from a fully multivariate perspective. Different from what we have seen so far, the
quantity of interest 𝑡𝑖 is the time-to-event, where the event is death. We therefore develop survival
analysis models and methods (see, e.g. [7]). We assume that families are split into groups with
different hazard functions and characterized by different survival curves.

This structure recalls a mixture for survival models, where the family risk is the mixing quan-
tity. Family risk is therefore treated as a latent family feature on survival, at the family level (where
the family is seen as the cluster). So this means that all the family members have the same risk of
mortality from birth and that is not directly observable.

Frailty models offer a viable approach for constructing a mixture in the context of survival
models. The frailty quantity is a random effect that captures the unobserved heterogeneity among



126 Familial mortality risk - a simulation study

groups, given different distributions to subjects who belong to different groups. We refer our pro-
posal to the general conditional model (see [4]) called the univariate frailty model. To fix the idea,
conditionally to the frailty quantity of interest, i.e. the unobserved family risk, the hazard function
has a multiplicative form involving the baseline hazard and the risk. Notice that the distribution
of the risk can be seen as the mixture distribution. The very first set to develop the univariate
frailty model is based on splitting families into two groups: a low-risk and a high-risk group. The
latent family risk, which is called “𝑅”, assumes the value “𝑅 = 𝑙𝑜𝑤/ℎ𝑖𝑔ℎ”. The model for the risk of
death is represented as follows. The hazard function for the survival times of all family members
in the two groups can be defined as _0(𝑡) and _1(t) = 𝛼_0(t) for 𝑅 = 0 and 1, respectively. Notice
that the hazard function in the low-risk group _0(𝑡) is taken as the baseline hazard. While the
hazard of the high-risk group _1(𝑡) is proportional to the baseline hazard up to some constant 𝛼.
The corresponding survival functions are the baseline survival function and the high-risk group
survival:

𝑆0(𝑡) = 𝑒−
∫ 𝑡

0 _0 (𝑢)d𝑢

𝑆1(𝑡) = 𝑒−
∫ 𝑡

0 _1 (𝑢)d𝑢 = 𝑒−
∫ 𝑡

0 𝛼_0 (𝑢)d𝑢 =
[
𝑒−

∫ 𝑡

0 _0 (𝑢)d𝑢
]𝛼

= [𝑆0(𝑡)]𝛼 ,

following the typical Lehmann survival structure [8]. We assume 𝛼 > 0 because, by definition, the
high-risk survival function should always be lower than the low-risk survival. This assures that in
the high-risk group subjects die earlier and in a higher number.

Notice that, according to the value assumed by the baseline hazard, we can observe different
scenarios. When the baseline hazard is not “too small” then the two hazards are different and the
high-risk group produces events earlier. Then, inferring the latent group for the 𝑗th subject should
be relatively easy at the beginning of the calendar time axis because one will already observe
some deaths mainly in high-risk families. On the other hand, when the baseline hazard is small,
inferring the latent group for the 𝑗th subject should be easy later when more events occur in the
high-risk families compared to a few events in the low-risk families. However, learning about 𝑅
will be difficult at the beginning when the risk of death is low and none or very few events occur
in both groups.

We begin by extending the univariate frailty model to accommodate multiple time-to-event
observations. In this framework, we incorporate the birth cohort effect for each family (cluster),
as described in [12] and other relevant studies. An interesting fact about this model is that the
conditional independence assumption holds. For example, consider families made of two subjects,
say, mother and daughter. We thus have a bivariate frailty model, where 𝑅 is again the family risk
parameter, so that 𝑇1⊥𝑇2 |𝑅. Also, the pairs (𝑇1, 𝑇2) within each risk group are independent. The
frailty (random) effect 𝑅 has a multiplicative effect on the hazard function as described above.

In Section 3.2 we explore the methods, in Section 3.3 we implement the risk classification al-
gorithm, and in Section 3.4 we show some results from simulation studies, as long as estimation
is possible only if all the family survival data are available. We conclude the analysis with some
comments in Section 3.5.
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3.2 Methods

Recall that 𝑅 is the continuous frailty variable that follows a parametric distribution characterized
by \. Within such a framework, we use 𝑖 to identify the family (out of 𝑛) and 𝑗 to identify its
𝑛𝑖 members. Following [4] we develop the complete likelihood 𝐿(𝑅; 𝑋) for the problem, where
𝑋 =

{
𝑥𝑖 , 𝑖 = 1, . . . , 𝑛

}
, and 𝑥𝑖 = (𝑥𝑖 𝑗 , 𝛿𝑖 𝑗)𝑇 , 𝑥𝑖 𝑗 = min(𝑡𝑖 𝑗 , 𝑐𝑖 𝑗), 𝛿𝑖 𝑗 = I(𝑡𝑖 𝑗 ≤ 𝑐𝑖 𝑗) follow the usual

notation, that has 𝑡 indicate the survival time and 𝑐 indicate the (independent) censoring time. 𝑋𝑖 𝑗
indicates the baseline covariate vector for subject 𝑗 in family 𝑖. The complete likelihood 𝐿(𝑅; 𝑋)
can be written in terms of the frailty parameter \ and the survival parameters, i.e. the vector
coefficient 𝛽 for the covariate effects and the baseline hazard function _0. So, following the shared
frailty hazards structure, we have _𝑖 𝑗 (𝑡 |𝑧𝑖 𝑗 , 𝑅𝑖) = 𝑅𝑖 · _0𝑖 𝑗 (𝑡 |𝑧𝑖 𝑗), and _0𝑖 𝑗 (𝑡 |𝑧𝑖 𝑗) = _0(𝑡)exp(𝑧′

𝑖 𝑗
𝛽)

for family 𝑖. The full likelihood is composed by two quantities: L(𝛽, _0, \) = L1(\)L2(𝛽, _0). The
estimation procedure follows the approach from [4] with the notation from [13]. The frailty 𝑅 can
be taken to be distributed as a Gamma with shape \ and rate 1/\:

L1(\) =
∏
𝑖

1
Γ(1/\)\\

𝑅\−1𝑖 𝑒−𝑅𝑖/\,

𝐿1 = logL1(\) =
∑︁
𝑖

[
−log(Γ(\)) − \log(\) + (\ − 1)log(𝑅𝑖) −

𝑅𝑖
\

]
.

We compute also the survival component of the likelihood:

L2(𝛽, _0) =
𝑛∏
𝑖=1

𝑛𝑖∏
𝑗=1

_𝑖 𝑗 (𝑥𝑖 𝑗)𝛿𝑖 𝑗𝑆𝑖 𝑗 (𝑥𝑖 𝑗) =
𝑛∏
𝑖=1

𝑛𝑖∏
𝑗=1

(
𝑅𝑖 · _0𝑖 𝑗 (𝑥𝑖 𝑗 |𝑧𝑖 𝑗)

)𝛿𝑖 𝑗 exp(−𝑅𝑖 · Λ0𝑖 𝑗 (𝑥𝑖 𝑗 |𝑧𝑖 𝑗)),

𝐿2 = logL2(𝛽, _0) =
𝑛∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝛿𝑖 𝑗log(𝑅𝑖 · _0𝑖 𝑗 (𝑥𝑖 𝑗 |𝑧𝑖 𝑗)) − 𝑅𝑖 · Λ0𝑖 𝑗 (𝑥𝑖 𝑗 |𝑧𝑖 𝑗),

where Λ(𝑡) indicates the cumulative hazard function. The full log-likelihood is then 𝐿(\, 𝛽, _0) =
𝐿1(\) + 𝐿2(𝛽, _0).

To estimate the model parameters, we may specify the form of the baseline hazard function.
Indeed, the baseline hazard can assume a parametric form or it can be left unspecified (this cor-
responds to the semiparametric case) [3].

For example, for the parametric specification a common model for the time-to-event variable is
the Weibull distribution 𝑇 ∼ Weibull(shape=𝛾, scale=`) with the corresponding hazard functions.
Given the multiplicative frailty structure, one can reparametrize the conditional (on 𝑅) survival
distribution as 𝑇 ∼ Weibull(shape = 𝛿, scale = `/𝑅1/𝛿). Parameter estimation is then achieved by
maximizing the log-likelihood function [9] through the Expectation Maximization (EM) algorithm
[3], [1]. In both parametric and semiparametric cases, all parameters can be estimated and used
to perform classification. We may compute some summary measures for the estimated parameter.
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The variance of \̂ is computed following the procedure:

\̂ ± 1.96�̂�
\̂

𝑈 − 𝐿 = 4�̂�
\̂

�̂�
\̂
=
𝑈 − 𝐿
4

.

We can assess the identifiability of the parameter estimation through a comparison between the
empirical variance and the one computed here above.

Notice that this survival method can be extended to the framework of disease development.
This extension coincides with the previous Chapter 2.

3.3 Risk classification

We implement a risk classification algorithm for k-latent discrete risk classes, that can be also used
in the continuous frailty risk setting. To fix ideas, we discretize the continuous frailty assuming
infinitely many classes of risk. In this way, the risk can be considered discrete. Further, we will
extend to a proper classification algorithm for the continuous framework. The detailed algorithm
is described in the following lines.

We start from the distribution 𝑓𝑅 |𝑍 (𝑟 | 𝑧, \), where 𝑅 is the frailty quantity and 𝑧 are the co-
variates. We assume the frailty distribution 𝑅 ∼ Gamma(𝑠ℎ𝑎𝑝𝑒 = \, 𝑠𝑐𝑎𝑙𝑒 = \). We integrate out
the covariate from the posterior distribution between frailty and covariates in order to obtain the
Gamma distribution again. We wish to prove that∫

𝑍
𝑓𝑅 |𝑍 (𝑟, 𝑧; \̂) 𝑓𝑍 (𝑧)d𝑧

?
= 𝑓𝑅 (𝑟; \) = E𝑍 [ 𝑓𝑅 |𝑍 (𝑟 | 𝑧; \̂)]

We use the grid method {𝑟1, . . . , 𝑟𝑘}, as described in the text in Chapter 3, to obtain the prediction
of the frailty quantity 𝑅. We may choose a Weibull distribution for 𝑍 | 𝑅 ∼ Weibull. We want to
assess whether 𝑓 (𝑟 | 𝑧) has the equivalent behaviour of 𝑟𝑖 . From the distribution of 𝑍 | 𝑟 = 𝑟𝑖 we
may compute analytically and compare the density function 𝑓 (𝑟 | 𝑧𝑖) to 𝑟𝑖 . Additionally, we want
to assess whether the median of 𝑓𝑅 (𝑢 | 𝑧) = 𝑅.

𝑟𝑖 vs
{
𝑓𝑅 |𝑍 (𝑟 | 𝑧); 𝑧 ∼ 𝑓 (𝑧 | 𝑟𝑖)

}
We can see 𝑟 as a parameter: for all the 𝑖th family, 𝑟𝑖 is the “parameter” that governs 𝑓(𝑍 |𝑅) (𝑧 |

𝑟𝑖). We need to estimate optimally, through the maximum likelihood estimators (MLE) or the vari-
ances of the estimators, the unknown parameter 𝑟𝑖 from the n=1 sample 𝑧 = 𝑧𝑖 . In the frequentist
context the procedure may be based on L(𝑟; 𝑧𝑖) = 𝑓 (𝑧𝑖 ; 𝑟) and

�̂�𝑖 = argmax
𝑟∈R+

𝑓 (𝑧𝑖 | 𝑟).
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The MLE of the frailty risk is computed through the following procedure:

log
𝑛∏
𝑖=1

𝑛𝑖∏
𝑗=1

[
(_0(𝑥𝑖 𝑗)𝑟)𝛿𝑖 𝑗𝑆0(𝑥𝑖 𝑗)𝑟

]
=

𝑛∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

[
𝛿𝑖 𝑗 (log_0(𝑥𝑖 𝑗 + log𝑟) + 𝑟𝑆0(𝑥𝑖 𝑗)

]
𝜕
(∑𝑛

𝑖=1
∑𝑛𝑖
𝑗=1

[
𝛿𝑖 𝑗 (log_0(𝑥𝑖 𝑗 + log𝑟) + 𝑟𝑆0(𝑥𝑖 𝑗)

] )
𝜕𝑟

=
∑︁
𝑗

[
𝛿𝑖 𝑗

𝑟
+ log𝑆0(𝑥𝑖 𝑗)

]
= 0

⇐⇒ �̂� = −
[(∑

𝑗 log𝑆0(𝑥𝑖 𝑗)∑
𝑗 𝛿𝑖 𝑗

)]−1
= −

∑
𝑗 𝛿𝑖 𝑗∑

𝑗 log𝑆0(𝑥𝑖 𝑗)
.

where
∑
𝑖 𝑗 (·) =

∑𝑛
𝑖=1

∑𝑛𝑖
𝑗=1(·).

The parameter 𝑟 depends only on the observed events or censored observations through the
numerator, indeed no indicator of event is involved in 𝑆0. This means that all the observed survival
times are included in the computation of 𝑟. This causes an issue that we are required to explore.
We check the second derivative to assess the direction of the first derivative:

𝜕2
(∑

𝑖 𝑗

[
𝛿𝑖 𝑗

𝑟
+ log𝑆0(𝑥𝑖 𝑗)

] )
𝜕𝑟

= − 1
𝑟2

∑︁
𝑖 𝑗

𝛿𝑖 𝑗 < 0.

The fact that the second derivative is always negative indicates a computational stability issue
when there are no events (i.e., no occurrence of the event of interest) in a particular family. This
scenario poses challenges because it results in a lack of variability and can lead to numerical insta-
bility in calculations. However, there are no such problems when the sum of 𝛿𝑖 𝑗 (indicating event
occurrences) for a given individual 𝑖 is non-zero. In this case, the presence of at least one event
provides the necessary variability to avoid computational stability issues.

Indeed, the estimated risk can be comouted as �̂� = −∑
𝑖 𝑗 𝛿𝑖 𝑗/

∑
𝑖 𝑗 log𝑆0(𝑥𝑖 𝑗) where 𝑆0(·) can be

replaced with a consistent estimator, for example Breslow. We can rewrite 𝑟 as

�̂� =

∑
𝑖 𝑗 𝛿𝑖 𝑗

−log
∏𝑛𝑖

𝑗=1 𝑆0(𝑥𝑖 𝑗)
.

Notice again that this new computation is possible only when we have at least one event in each
family. The problem remains when there exists a family with only censored observations. Lastly,
notice that if we know the original distribution of 𝑓 (𝑟 | 𝑧) than we can compare that distribution
with �̂�.

An alternative estimation procedure is explored. We wish to find a estimator of 𝑅𝑖 that we call
𝛿𝑖 such that the expected value of the absolute measurement error between the true frailty and
the estimator is the minimum, as

𝛿(𝑧) : min
∫
R+

∫
(𝛿(𝑧) − 𝑟)2 𝑓𝑍 |𝑅 (𝑧 | 𝑟)d𝑧 𝑓𝑅 (𝑟)d𝑟 =

∫ [∫
R+
(𝛿(𝑧) − 𝑟)2 𝑓𝑅 |𝑍 (𝑟 | 𝑧)d𝑟

]
𝑓𝑍 (𝑧)d𝑧,

with 𝑅 unknown. We can then minimize
∫
R+
(𝛿(𝑧)−𝑟)2 𝑓𝑅 |𝑍 (𝑟 | 𝑧)d𝑟. This justifies using 𝛿(𝑧) = E(𝑅 |

𝑧) as an estimator for 𝑅. There is a problem of underestimation and there is a scaling problem for
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the frailty quantity. We are wondering which function would be appropriate, since the squared
function is not. We may apply a logarithmic transformation in order to solve the problem. This
approach leads to

𝑟 → �̃� = log(𝑟) ⇐⇒ 𝑟 = 𝑒�̃� , and
𝜕𝑟

𝜕�̃�
= 𝑒�̃�

𝑓𝑅 (�̃�) = 𝑓𝑅 (𝑒�̃�)𝑒�̃�

𝑓𝑍 |𝑅 (𝑧 | �̃�) =
𝑓𝑍,𝑅 (𝑧, �̃�)
𝑓𝑅 (�̃�)

= 𝑓𝑍 |𝑅 (𝑧 | 𝑒�̃�)

𝑧, �̃� : min
∫
𝑍

∫
R+
(𝛿(𝑧) − �̃�)2 𝑓𝑅 |𝑍 (�̃� | 𝑧)d�̃� 𝑓𝑅 (𝑧)d𝑧

⇐⇒
∫
R+
(𝛿(𝑧) − �̃�)2 𝑓𝑅 |𝑍 (�̃� | 𝑧)𝑒

�̃�d�̃� =
∫
R+
(𝛿(𝑧) − �̃�)2 𝑓𝑅 |𝑍 (𝑒�̃� | 𝑧)𝑒�̃�d�̃� =∫

R+

[
𝑒�̃� (𝛿(𝑧) − �̃�)2

]
𝑓𝑅 |𝑍 (𝑒�̃� | 𝑧)d�̃� =

∫
R+

[
𝑟(𝛿(𝑧) − log(𝑟))2

]
𝑓𝑅 |𝑍 (𝑟 | 𝑧)

1
𝑟

d𝑟 = E
[
(𝛿(𝑧) − log(𝑟))2

]
⇒ 𝛿 = E(log 𝑟 | 𝑧),

as estimator of log(𝑟𝑖), so then we have e𝛿 as estimator for 𝑟𝑖 .
Beyond the few past ideas to carry out risk classification, we now explain the procedure used

here. The first step consists of predicting the membership distribution of the subjects to risk
groups, involving the estimated parameters at the step before:

𝑓 (𝑅𝑖 | 𝑥𝑖 ; \̂) =
𝑓 (𝑅𝑖 , 𝑥𝑖 ; \̂)
𝑓 (𝑥𝑖 ; \̂)

=
𝑓 (𝑥𝑖 | 𝑅𝑖) 𝑓 (𝑅𝑖 ; \̂)

𝑓 (𝑥𝑖 ; \̂)
=
𝑓 (𝑥𝑖1 | 𝑅𝑖) 𝑓 (𝑥𝑖2 | 𝑅𝑖) . . . 𝑓 (𝑥𝑖𝑛𝑖 | 𝑅𝑖) 𝑓 (𝑅𝑖 ; \̂)∫

R+
𝑓 (𝑥𝑖 | 𝑅𝑖) 𝑓 (𝑅𝑖 ; \̂)d𝑅𝑖

∝
𝑛𝑖∏
𝑗=1

[
𝑓𝑇 |𝑅 (𝑥𝑖 𝑗 | 𝑅𝑖)𝛿𝑖 𝑗𝑆𝑇 |𝑅 (𝑥𝑖 𝑗 | 𝑅𝑖)1−𝛿𝑖 𝑗

]
𝑓 (𝑅𝑖 | \̂) =

𝑛𝑖∏
𝑗=1

[
_𝑇 |𝑅 (𝑥𝑖 𝑗 | 𝑅𝑖)𝛿𝑖 𝑗𝑆𝑇 |𝑅 (𝑥𝑖 𝑗 | 𝑅𝑖)

]
𝑓 (𝑅𝑖 | \̂),

up to the denominator. The notation above indicates the data 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑛𝑖 )
𝑇 . The density

function is written as 𝑓 (𝑥𝑖 | 𝑅𝑖 , \̂) = 𝑓 (𝑥𝑖 | 𝑅𝑖) because \̂ is irrelevant once 𝑅𝑖 is estimated through
𝑓 (𝑅𝑖 ; \̂) ∼ Gamma(𝑠ℎ𝑎𝑝𝑒 = \̂, 𝑠𝑐𝑎𝑙𝑒 = 𝑠1/\̂). We can obtain 𝑓 (𝑥𝑖 | 𝑅𝑖) from the Breslow estimator
usually available in software packages, such as

�̂� (𝑥𝑖 | 𝑅𝑖) = _̂0(𝑥𝑖)e
𝛽′𝑧𝑖 𝑗𝑅𝑖 [𝑆0(𝑥𝑖)]

𝑅𝑖e
𝛽′𝑧𝑖 𝑗

where the baseline survival function 𝑆0(𝑡) = e−Λ̂0 (𝑡) , with Λ0(𝑡) the baseline cumulative hazard
function estimated through Breslow. The distribution of the frailty conditionally to the family is

𝑓 (𝑅𝑖 | 𝑥𝑖 ; \̂) ∝
𝑛𝑖∏
𝑗=1

[
_̂𝑇 |𝑅 (𝑥𝑖 𝑗 | 𝑅𝑖)𝛿𝑖 𝑗𝑆𝑇 |𝑅 (𝑥𝑖 𝑗 | 𝑅𝑖)

]
𝑓 (𝑅𝑖 | \̂) =

𝑛𝑖∏
𝑗=1

[
( _̂0(𝑥𝑖 𝑗)𝑅𝑖)𝛿𝑖 𝑗 [𝑆0(𝑥𝑖 𝑗)]𝑅𝑖

]
𝑓 (𝑅𝑖 | \̂).

This density function can be seen as the posterior predictive distribution of the risk. Hence, we
can predict the risk which assumes one of the values in a grid that we set, according to the density
distribution.
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3.3.1 Classification procedure

In the parametric approach, the prediction follows a method based on the expectation step of
the expectation-maximization (EM) algorithm [9]. Our contribution refers to the semiparametric
approach instead. We suggest performing risk prediction by fixing a grid of values {𝑟1, . . . , 𝑟𝐾 } for
the frailty quantity and implementing the following steps:

(i) obtain 𝑆0(𝑥𝑖 𝑗) and _̂0(𝑥𝑖 𝑗) from the Breslow estimator. Details are collected in Appendix C.1;

(ii) compute �̂� (𝑥𝑖 |𝑟𝑘) =
∏𝑛𝑖

𝑗=1

[
( _̂0(𝑥𝑖 𝑗)𝑟𝑘)𝛿𝑖 𝑗 [𝑆0(𝑥𝑖 𝑗)]𝑟𝑘

]
;

(iii) compute �̂� (𝑥𝑖 , 𝑟𝑘; \̂) =
∏𝑛𝑖

𝑗=1

[
( _̂0(𝑥𝑖 𝑗)𝑟𝑘)𝛿𝑖 𝑗 [𝑆0(𝑥𝑖 𝑗)]𝑟𝑘

]
𝑓 (𝑟𝑘 |\̂), ∀𝑟𝑘 in the grid;

(iv) compute the integral �̂� (𝑥𝑖 ; \̂) =
∫
R+
𝑓 (𝑥𝑖 |𝑟𝑖) 𝑓 (𝑟𝑖 ; \̂)d𝑟𝑖 =

∑
𝑘
Δ(𝑟𝑘) �̂� (𝑥𝑖 , 𝑟𝑘; \̂), where Δ(𝑟𝑘) = 𝑟𝑘+1−

𝑟𝑘;

(v) compute �̂� (𝑟𝑘 |𝑥𝑖 ; \̂) = �̂� (𝑥𝑖 , 𝑟𝑘; \̂)/
∑
𝑘
Δ(𝑟𝑘) �̂� (𝑥𝑖 , 𝑟𝑘; \̂).

The predicted continuous shared frailty value 𝑅𝑖 for each family 𝑖 is computed with the rule below,
i.e. it takes the value corresponding to summing up the estimated (as above) density function on
the grid values until the desired threshold quantile 𝑞 ∈ [0, 1]:

𝑅𝑖 = 𝑟𝑘 :
∑︁
𝑗:𝑟 𝑗≤𝑟𝑘

�̂� (𝑟 𝑗 |𝑥𝑖 ; \̂)Δ(𝑟 𝑗) ≤ 𝑞. (3.1)

Indeed we choose the posterior percentile so that it minimizes the misclassification rate.
To explore the discrete splitting of families into, say, two risk groups, we may transform the

continuous frailty into a binary two-group variable. We can then carry out the (actionable) classi-
fication according to the rule:

𝑅𝐵𝑖 =


low 𝑃(𝑟𝑖 < [̂𝑟 |𝑥𝑖 ; \̂) ≥ 𝑞

high 𝑃(𝑟𝑖 < [̂𝑟 |𝑥𝑖 ; \̂) < 𝑞
⇔


low Quantile(𝑟𝑖 |𝑥𝑖 ; \̂) ≤ [̂𝑟

high Quantile(𝑟𝑖 |𝑥𝑖 ; \̂) > [̂𝑟
(3.2)

where [̂𝑟 = Quantile
(
Gamma(\̂, 1/\̂)

)
∈ [0, 1], Quantile(𝑟𝑘 |𝑥𝑖 ; \̂) = 𝑟𝑘 : 𝑃(𝑟𝑘 |𝑥𝑖 ; \̂) ≤ 𝑞 with

𝑞 ∈ [0, 1] as above. And, 𝑃(𝑟𝑘 |𝑥𝑖 ; \̂) =
∑

𝑗:𝑟 𝑗≤𝑟𝑘
�̂� (𝑟 𝑗 |𝑥𝑖 ; \̂)Δ(𝑟 𝑗).

The idea is represented in Figure 3.1. For simplicity of interpretation and convenience, we first
fix 𝑞 = 0.5 to obtain the median as the threshold. So [̂𝑧 is the estimated frailty median as well. If
we rely on binary splitting we can then predict the risk groups for each woman in the sample.
Especially, we may compute 𝑃(𝑅𝑖 = 1|𝑥𝑖 , \̂); hence the (actionable) classification into a risk group
can be carried out with a threshold, say 𝑞:

𝑅𝑖 =


1 𝑃(𝑅𝑖 = 1|𝑥𝑖 , \̂) > 𝑞

0 𝑃(𝑅𝑖 = 1|𝑥𝑖 , \̂) < 𝑞
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[𝑧

𝑓 (𝑥𝑖 , \̂)

Figure 3.1: Classification method for two risk groups.
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where \̂ = \̂(𝑧𝑖). The true conditional probability of 𝑅𝑖 = 0 or 𝑅𝑖 = 1 is

𝑃(𝑅𝑖 = 1|𝑥𝑖 , \̂) =
𝑃(𝑅𝑖 = 1 ∩ 𝑥𝑖 ; \̂)

𝑃(𝑥𝑖 ; \̂)
=
𝑃(𝑅𝑖 = 1)𝑃(𝑥𝑖 |𝑅𝑖 = 1; \̂)

𝑃(𝑥𝑖 ; \̂)

where 𝑃(𝑅𝑖 = 1) = ℎ is an element of Ẑ . Then

𝑃(𝑅𝑖 = 1|𝑥𝑖 , \̂) =
𝑃(𝑅𝑖 = 1) 𝑓𝑋𝑖 (𝑥𝑖 |𝑅𝑖 = 1; \̂)

𝑃(𝑅𝑖 = 0) 𝑓𝑋𝑖 (𝑥𝑖 |𝑅𝑖 = 0; \̂) + 𝑃(𝑅𝑖 = 1) 𝑓𝑋𝑖 (𝑥𝑖 |𝑅𝑖 = 1; \̂)

where the density function 𝑓𝑋𝑖 (𝑥𝑖 |𝑅𝑖 = 1; \̂) is computed as described above.1 Alternative proce-
dures can be implemented but are not treated here.

One can then apply some diagnostic tools to analyse the goodness in classification, such as the
scatter-plot of 𝑅 versus 𝑅 (see 3.1) to obtain a visual analysis of the classification accuracy, and the
confusion matrix (see Table 3.1) between the median-based risk group 𝑅𝐵 = I(𝑅 ≤ Median(𝑅))
and the estimated risk group 𝑅𝐵 obtained as in 3.2 for a fixed 𝑞.

𝑅

0 1
R 0 TN FP

1 FN TP

Table 3.1: Confusion matrix between 𝑅 vs. 𝑅.

We can use the agreement index Cohen’s kappa [2] to have a summary of the binary classifica-
tion results, whose equation follows as

𝑘 =
2(𝑇𝑃 · 𝑇𝑁 − 𝐹𝑁 · 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑃) + (𝑇𝑃 + 𝐹𝑁) · (𝑇𝑁 + 𝐹𝑁) ,

with𝑇𝑃,𝑇𝑁, 𝐹𝑃, 𝐹𝑁 indicate the true positive, true negative, false positive, and false negative pro-
portions, where positive (negative) stands for 𝑅𝐵=high-risk (low-risk). We can compute also the
classic agreement index which is given by

agreement index =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 .

Both indices vary in the range [0, 1] where 0 means no agreement and 1 means perfect agree-
ment. Also, sensitivity and specificity can be computed as additional classification accuracy mea-
sures.

1If 𝑓𝑅 (𝑟) is a continuous frailty instead of the two-group discrete mixing variable discussed so far, then we could use
𝑓𝑅 (𝑟 | 𝑥𝑖 ; \̂) ⇒ E(𝑅 | 𝑥𝑖 ; \̂) for classification. Some possibilities would be: (i) �̃�𝑖 = I(E(𝑅 | 𝑥𝑖 ; \̂) ≥ 1) assuming a log
Weibull-Gamma frailty model [12, 4]; (ii) �̃�𝑖 = I(𝑃(𝑅 > 1 | 𝑥𝑖 ; \̂) ≥ 0.5).
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3.4 A preliminary simulation scenario

One can generate some family structures and survival times, and implement the two-group risk
classification. The number of families in the dataset is fixed. Each woman has a mother and
a grandmother. Instead, the number of sisters and aunts varies. They can be distributed as a
Poisson(_ = _𝑠) and a Poisson(_ = _𝑎) respectively. We fix _𝑠 = 1, _𝑎 = 0.5, so that the resulting
family size is

family size = 3 + Poisson(1) + Poisson(0.5).

The expected value of the sample size 𝑁 is therefore E(𝑁) = 3 + 1 + 0.5 = 4.5. We have the
family structure for each family, and for each family member, we build the day of birth (DOB), the
observed time (X), and the observed event indicator (𝛿). The data is visualized as:

DOB X 𝛿

subject

mother
grandmother
sister 1?
sister 2?
...
sister 𝑘1?
aunt 1?
...
aunt 𝑘2?

where X=min(today-DOB, diagnosis-DOB, death-DOB), and 𝛿 takes value 0/1 according to the value
of X.

𝛿 =


0 X=today-DOB or X=death-DOB;

1 X=diagnosis-DOB.

We directly generate the time-to-event𝑇 from the Weibull distribution𝑇 ∼ Weibull(shape = 𝛾,
scale = `/𝑅1/𝛾) conditional to the frailty, with 𝑅 ∼ Gamma(1, 1), ` = 1, 𝛾 = 5. The censoring
time are generated from a Uniform distribution 𝐶 ∼ U(0, 12), and for each subject we generate
𝑋 = min(𝑇, 𝐶) and 𝛿 = I(𝑋 = 𝑇 ).

Thus, we sample three thousands families and explore the classification accuracy in three dif-
ferent scenarios: (1) parametric hazard and binary classification with median as threshold; (2)
semiparametric case with 𝑞 = 0.5; (3) semiparametric case with 𝑞 = 0.25. We extend to 𝑞 = 0.25 so
that we keep low and realistic the posterior high-risk families proportion (see text below). We carry
out this analysis stratified by family size and overall. The results for family size are not reported
because irrelevant, while the summary of the overall results is in Table 3.2. The posterior high-
risk families proportion in the semiparametric case, varying 𝑞, is: 0.19 (𝑞 = 0.25); 0.24 (𝑞 = 0.5)
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reported in Table 3.2 in the last column “HR”. Notice that we expect that involving the true value
of parameter \, the true survival function 𝑆0(𝑥𝑖 𝑗) and hazard function _0(𝑥𝑖 𝑗) we are able to reach
the best performance in classification. This is the best scenario, and we intend to compare this to
the already seen scenarios above.

Cohen’s kappa [2] Accuracy [11] Sensitivity Specificity HR
1 0.32(0.16) 0.66(0.08) 67.19(9.35) 64.92(6.89)
2 0.86(0.02) 0.93(0.01) 98.03(0.53) 90.64(1.07) 0.24(0.01)
3 0.90(0.01) 0.95(0.01) 95.41(1.01) 95.53(0.92) 0.19(0.01)

Table 3.2: Mean and standard deviation of some diagnostics measures for the three models under
study.

In Table 3.2 in bold, there are the best results in each category. Notice that the scenario with
the first quantile as the threshold has the best performance overall, with the 90% of concordance
between the true group and the predicted group of risk of the families; a 95% of accuracy in pre-
diction, with 95% of sensitivity and specificity. These results outperform all the others, but the
higher sensitivity at the 98% reached by using the median threshold.

3.5 Discussion

Preliminary results suggest the absence of important differences in classification accuracy across
different family sizes. Important is to notice a substantial difference in classification accuracy be-
tween the parametric and the semiparametric setting, particularly when employing the median as
the classification threshold. Moreover, the use of the first quantile appears to be favorable in terms
of both classification accuracy and posterior proportion of high-risk families. These conclusions
can be further supported by additional examinations by plotting some figures and being validated
also through a real case dataset.

The results are thus so far promising and may help clinicians in identifying high-risk families
to target them to intensive prevention paths according to different health problems. Thus, iden-
tifying the families with the lowest longevity is directly connected to improve their survival by
carrying out disease screening for early detection. We also believe that knowing to be at high-risk
of mortality can increase a family’s awareness and lead the family’s members to live a life with
better habits and attention on their health.

As a next step, we wish to complete the simulation studies by, for example, exploring sev-
eral distributions of the survival baseline function. This further exploration is driven by the fact
that the time-to-event variable in observational studies is unlikely to be distributed according to
a simple distribution, as the Exponential or the Weibull can be. We may try to analyse a three-
parameters distribution to gain higher flexibility to explain the phenomenon of heritability of
longevity.
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We explore some ideas on the most powerful tests for survival data with right cen-
soring. This goal is to carry out a test based on the proportional hazards assumption,
aiming to evaluate whether a population exhibits survival times that are governed by a
known survival function denoted as 𝑆0(𝑡), rather than by 𝑆1(𝑡) = [𝑆0(𝑡)]𝛽

∗ . In terms of
hazard functions, the test compares _0(𝑡) to _1(𝑡) = 𝛽∗_0(𝑡) and we test the hypothesis
that 𝛽∗ is equal to one, with a two-tailed alternative hypothesis.

We begin by discussing the test without censoring, initially exploring the scenario
of a sample with size equal to one and subsequently extending our analysis to a sam-
ple size greater than one. Subsequently, we derive an explicit formulation for the most
powerful test in the case of a single sample element subject to independent right cen-
soring. The determination of the most powerful test in situations involving indepen-
dent right censoring for sample sizes greater than one remains an open problem.

keywords: most powerful test, proportional hazards, survival analysis
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4.1 Introduction

This chapter presents a comprehensive examination of the application of Most Powerful (MP) tests
for survival data, specifically focusing on scenarios that adhere to the proportional hazards (PH)
assumption, both in the presence and absence of independent right censoring. An event of interest
is defined, where each subject is associated with a time-to-event random variable, denoted as 𝑇 ,
and an indicator random variable, denoted as Δ, which signifies whether the event onset has been
observed or not. Typically, events such as death or disease onset are studied in this context. In
cases where the event is not observed (Δ = 0) because another event happened before, the subject
is classified as a censored case, with a censoring time denoted with the random variable 𝐶. Con-
sequently, the observed time for each subject is determined as the minimum value between the
time-to-event and the censoring time, i.e., 𝑋 = min(𝑇, 𝐶), and the indicator variable is represented
by Δ = I(𝑇 ≤ 𝐶).

We aim to build a hypothesis test to determine whether an independently and identically dis-
tributed (i.i.d.) sample is composed by survival times that are generated by a known survival
function denoted as 𝑆0(𝑡), or by an alternative survival function 𝑆1(𝑡) = [𝑆0(𝑡)]𝛽

∗ , where 𝛽∗ is an
unknown parameter of interest. To provide insight into this test, one can think of a situation where
clinicians need to determine whether one or more individuals, perhaps from the same cluster (e.g.
a family), come from a higher or lower survival, in order to apply how and when different clinical
interventions regarding mere mortality or a disease diagnosis. One may think, for example, at the
identification of low-survival (high-risk) subjects for a specific disease, say hepatitis C patients for
liver cancer [2], in order to target them towards intensive screening and personalised prevention
strategies to enhance their chances of survival.

In Section 4.2, we delve into the examination of MP tests for survival data without censoring
events. Subsequently, in Section 4.3, we extend our analysis to admit right-censoring. These tests
have been developed for both sample size equal to one and sample size greater than one, with the
exception of the latter case, which is currently an ongoing work. Finally, in Section 4.4, we provide
a comprehensive discussion on the findings and implications of this analysis.

4.2 MP test with no censoring

4.2.1 Sample size equal to one

Within the context of survival analysis without censoring, the observed time coincides with the
value 𝑡 of the time-to-event random variable 𝑇 .

Under the assumption of proportional hazards (PH), we define _1(𝑡) = 𝛽∗_0(𝑡), which is equiv-
alent to 𝑆1(𝑡) = [𝑆0(𝑡)]𝛽

∗ . In light of this, the hypothesis system can be expressed as follows:


𝐻0 : The survival times of the i.i.d. sample are generated by 𝑆0(𝑡).

𝐻1 : The survival times of the i.i.d. sample are generated by 𝑆1(𝑡) = [𝑆0(𝑡)]𝛽
∗
.
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We wish to assess the statistical evidence supporting one hypothesis over the other, particu-
larly investigating whether the survival times of the i.i.d. sample conform to 𝑆0(𝑡) or deviate by
following 𝑆1(𝑡). This evaluation entails the comparison of the hazard functions _0(𝑡) and _1(𝑡),
or equivalently, examining the relationship between the survival functions 𝑆0(𝑡) and 𝑆1(𝑡), where
the latter is in function of the survival function 𝑆0(𝑡) and 𝛽∗. In essence, the research question at
hand revolves around determining whether the true value of 𝛽∗ significantly differs from one, so
that the hypothesis system can be given by both:

𝐻0 : 𝑆(𝑡) = 𝑆0(𝑡)

𝐻1 : 𝑆(𝑡) = 𝑆0(𝑡)𝛽
∗ ⇐⇒


𝐻0 : 𝛽 = 1

𝐻1 : 𝛽 = 𝛽∗,

with 𝛽∗ ≠ 1, assuming 𝑆0(𝑡) known. The Neyman-Pearson level 𝛼 Most Powerful (MP) test, as
described in the work of Lehmann on hypothesis testing ([1]), is employed in the context of survival
analysis to make inference based on a single observation, denoted as 𝑡. This MP test is designed to
achieve the highest statistical power among all tests at a given significance level 𝛼.

The rejection rule for this MP test is defined as follows: the test rejects the null hypothesis if
and only if

Λ(𝑡) = 𝑓1(𝑡)
𝑓0(𝑡)

≥ 𝑘𝛼, with 𝑘𝛼 : 𝑃
(
𝑓1(𝑇 )
𝑓0(𝑇 )

≥ 𝑘𝛼;𝐻0

)
= 𝛼.

Considering the proportional hazards (PH) assumption, we explore the implications of this as-
sumption within the context of survival analysis.

Under the PH assumption, we consider the hazard rate at any given time 𝑡 as the product of a
baseline hazard function _0(𝑡) and a time-independent function 𝛽∗, denoted as _1(𝑡) = 𝛽∗_0(𝑡).
This formulation suggests that the hazard rates for different individuals are proportional to each
other over time, with the parameter 𝛽∗ representing the proportional change in hazard rates. In-
deed, we consider

_0(𝑡) =
𝑓0(𝑡)
𝑆0(𝑡)

, _1(𝑡) = 𝛽∗_0 = 𝛽∗
𝑓0(𝑡)
𝑆0(𝑡)

.

Also, _1(𝑡) = 𝑓1(𝑡)/𝑆1(𝑡) = 𝑓1(𝑡)/[𝑆0(𝑡)]𝛽
∗ . As a result, it is crucial for the two forms to coincide:

𝛽∗
𝑓0(𝑡)
𝑆0(𝑡)

=
𝑓1(𝑡)

[𝑆0(𝑡)]𝛽∗
⇐⇒ 𝑓1(𝑡)

𝑓0(𝑡)
= 𝛽∗

[𝑆0(𝑡)]𝛽
∗

𝑆0(𝑡)
= 𝛽∗ [𝑆0(𝑡)]𝛽

∗−1.

Indeed,

𝑓1(𝑡) = −d𝑆1(𝑡)
d𝑡

= −d[𝑆0(𝑡)]𝛽
∗

d𝑡
= −𝛽∗ [𝑆0(𝑡)]𝛽

∗−1(− 𝑓0(𝑡)) = 𝛽∗ [𝑆0(𝑡)]𝛽
∗−1 𝑓0(𝑡),

that trivially gives 𝑓1(𝑡)/ 𝑓0(𝑡) = 𝛽∗ [𝑆0(𝑡)]𝛽
∗−1.

In the context of the Neyman-Pearson testing problem with sample size equal to one, the test
statistics can be expressed as the ratio of the densities of the alternative hypothesis and the null
hypothesis, denoted as 𝑓1(𝑡)/ 𝑓0(𝑡). Remarkably, this ratio can be further simplified as 𝛽∗𝑆0(𝑡)𝛽

∗−1.
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Consequently, the rejection rule for the test can be reformulated as 𝛽∗𝑆0(𝑡)𝛽
∗−1 ≥ 𝑘𝛼, where 𝑘𝛼

represents the critical value or threshold corresponding to the chosen significance level 𝛼.
Depending on the value of the parameter 𝛽∗, we can distinguish between two distinct scenarios,

indeed by considering the specific value of 𝛽∗ and evaluating the test statistic against the critical
value, we can determine the appropriate rejection rule and draw conclusions about the relation-
ship between the survival times and the hypothesized survival functions. Hence, depending on
whether 𝛽∗ > 1 or 𝛽∗ < 1, we have:

• if 𝛽∗ < 1, then 𝛽∗𝑆0(𝑡)𝛽
∗−1 ≥ 𝑘𝛼 ⇐⇒ 𝑆0(𝑡) ≤

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
= �̃�𝛼, such that

𝑃(Reject 𝐻0;𝐻0) = 𝑃(𝑆0(𝑇 ) ≤ 𝑘𝛼;𝐻0) = 𝛼. Since 𝑆0(𝑇 ) ∼Unif[0, 1], �̃�𝛼 = 𝛼. Then the rejection
region in terms of the time-to-event is 𝑇 ≥ 𝑆−10 (𝛼).

• if 𝛽∗ > 1, then 𝛽∗𝑆0(𝑡)𝛽
∗−1 ≥ 𝑘𝛼 ⇐⇒ 𝑆0(𝑡) ≥

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
= �̃�𝛼, such that

𝑃(Reject 𝐻0;𝐻0) = 𝑃(𝑆0(𝑇 ) ≥ �̃�𝛼;𝐻0) = 𝛼. Again, by 𝑆0(𝑇 ) ∼Unif[0, 1], �̃�𝛼 = 1 − 𝛼 follows
immediately. Again, the rejection region in terms of the time-to-event is 𝑇 ≤ 𝑆−10 (1 − 𝛼).

Since �̃�𝛼 does not depend on 𝛽∗ except for the sign, it implies that the two tests, based on the
rejection rule 𝛽∗𝑆0(𝑡)𝛽

∗−1 ≥ �̃�𝛼, are uniformly most powerful (UMP) at level 𝛼 for the two broader
hypothesis testing scenarios, and this is explained deeper in the following lines.

The first scenario involves testing the null hypothesis 𝐻0 : 𝛽 = 1 against the alternative hy-
pothesis 𝐻1 : 𝛽 < 1. In this case, the alternative hypothesis suggests a proportional decrease in
hazard rates relative to the null hypothesis. By employing the rejection rule 𝛽∗𝑆0(𝑡)𝛽

∗−1 ≥ �̃�𝛼, the
test is UMP at level 𝛼 for this problem. This means that among all possible tests at significance
level 𝛼, this test has the highest statistical power to detect a true alternative hypothesis of 𝛽 < 1.

Similarly, the second scenario involves testing the null hypothesis 𝐻0 : 𝛽 = 1 against the alter-
native hypothesis 𝐻1 : 𝛽 > 1. Here, the alternative hypothesis implies a proportional increase in
hazard rates compared to the null hypothesis. The rejection rule 𝛽∗𝑆0(𝑡)𝛽

∗−1 ≥ �̃�𝛼 provides a UMP
test at level 𝛼 for this problem. This indicates that among all possible tests at significance level 𝛼,
this particular test has the highest statistical power to detect a true alternative hypothesis of 𝛽 > 1.

By establishing the UMP property for these two wider hypothesis testing scenarios, we ensure
that the respective tests are optimal in terms of statistical power, consistently achieving the highest
level of sensitivity in detecting the specified alternative hypotheses.

4.2.2 Sample size greater than one

Recall the previously mentioned hypothesis system within the context of survival data without
censoring: 

𝐻0 : 𝑆(𝑡) = 𝑆0(𝑡)

𝐻1 : 𝑆(𝑡) = 𝑆0(𝑡)𝛽
∗ ⇐⇒


𝐻0 : _ (𝑡) = _0(𝑡)

𝐻1 : _ (𝑡) = 𝛽∗_0(𝑡)
⇐⇒


𝐻0 : 𝛽 = 1

𝐻1 : 𝛽 = 𝛽∗,
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with 𝛽∗ ≠ 1, assuming 𝑆0(𝑡), and equivalently _0(𝑡), known. Previously, we obtain that

𝛽∗𝑆0(𝑡)𝛽
∗−1 =

𝑓1(𝑡)
𝑓0(𝑡)

, recalling that 𝑆0(𝑡) = 𝑒−Λ0 (𝑡) = 𝑒−
∫ 𝑡

0 _0 (𝑢)d𝑢.

In the absence of censoring, we revisit the formulation of the two tests based on this hypothe-
sis system. Notably, these tests focus on assessing the relationship between the survival times
and the hypothesized survival functions. This result holds significant importance for the subse-
quent analysis. In the case of an independent and identically distributed (i.i.d.) sample denoted
as (𝑡1, 𝑡2, . . . , 𝑡𝑛), where the sample size 𝑛 is greater than 1, the Neyman-Pearson MP test can be
expressed as follows:

Λ(𝑡1, . . . , 𝑡𝑛) =
𝑛∏
𝑖=1

[
𝑓1(𝑡𝑖)
𝑓0(𝑡𝑖)

]
≥ 𝑘𝛼, with 𝑘𝛼 : 𝑃

(
𝑛∏
𝑖=1

[
𝑓1(𝑇𝑖)
𝑓0(𝑇𝑖)

]
≥ 𝑘𝛼;𝐻0

)
= 𝛼.

Once again, after performing a few calculations, we can rewrite the rejection rule way simpler.
The test statistic can be expressed as (𝛽∗)𝑛 ∏𝑛

𝑖=1 [𝑆0(𝑡𝑖)]
𝛽∗−1 ≥ 𝑘𝛼, which quantifies the combined

effect of the individual survival times on the test outcome. The computations are given by:
𝑛∏
𝑖=1

𝑓0(𝑡𝑖) =
𝑛∏
𝑖=1

[
𝑓1(𝑡𝑖)
𝑓0(𝑡𝑖)

]
=

𝑛∏
𝑖=1

[
𝛽∗𝑆0(𝑡𝑖)𝛽

∗−1
]
= (𝛽∗)𝑛

𝑛∏
𝑖=1

[𝑆0(𝑡𝑖)]𝛽
∗−1 ≥ 𝑘𝛼

⇐⇒
𝑛∏
𝑖=1

[𝑆0(𝑡𝑖)]𝛽
∗−1 ≥ 𝑘𝛼

(𝛽∗)𝑛 ⇐⇒
𝑛∏
𝑖=1

𝑆0(𝑡𝑖) ≥
[
𝑘𝛼

(𝛽∗)𝑛

]1/(𝛽∗−1)
⇐⇒

𝑛∑︁
𝑖=1

[log (𝑆0(𝑡𝑖))] ≥ log
(
𝑘𝛼

(𝛽∗)𝑛

)1/(𝛽∗−1)
⇐⇒ −

𝑛∑︁
𝑖=1

[log (𝑆0(𝑡𝑖))] ≤ − log
(
𝑘𝛼

(𝛽∗)𝑛

)1/(𝛽∗−1)
= − 1

1 − 𝛽∗
log

(
𝑘𝛼

(𝛽∗)𝑛

)
Depending on the value of 𝛽∗, specifically whether 𝛽∗ > 1 or 𝛽∗ < 1, we can distinguish between
two distinct scenarios:

• if 𝛽∗ < 1, then −∑𝑛
𝑖=1 [log (𝑆0(𝑡𝑖))] ≥ − log

(
𝑘𝛼

(𝛽∗)𝑛

)1/(𝛽∗−1)
= �̃�𝛼,

• if 𝛽∗ > 1, then −∑𝑛
𝑖=1 [log (𝑆0(𝑡𝑖))] ≤ − log

(
𝑘𝛼

(𝛽∗)𝑛

)1/(𝛽∗−1)
= �̃�𝛼,

with the appropriate (different) values �̃�𝛼. We define the statistic𝑊 =𝑊 (𝑇1, 𝑇2, . . . , 𝑇𝑛) = −∑𝑛
𝑖=1 [log (𝑆0(𝑇𝑖))],

where 𝑇𝑖 represents the 𝑖-th survival time from the i.i.d. sample. It is worth noting that under the
null hypothesis, − log (𝑆0(𝑇𝑖)) follows an Exponential distribution with parameter 1, denoted as
Exp(1). Consequently, we can establish that the statistic𝑊 , since it is the sum of exponential ran-
dom variables, follows a Gamma distribution with shape parameter 𝑛 and rate parameter 1, i.e.,
𝑊 ∼ Gamma(𝑛, 1).

By leveraging the known distribution of 𝑊 under the null hypothesis, we can determine the
threshold for rejection, denoted as �̃�𝛼. Remarkably, this threshold can be easily obtained. Further-
more, since �̃�𝛼 does not depend on 𝛽∗ except for its sign, the rejection regions for the uniformly
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most powerful (UMP) tests can be defined as, for the hypothesis testing problem 𝐻0 : 𝛽 = 1 ver-
sus 𝐻1 : 𝛽 < 1, the rejection region is given by 𝑊 ≥ Ga(𝑛, 1)1−𝛼, where Ga(𝑛, 1)1−𝛼 represents
the (1 − 𝛼)th percentile of the Gamma distribution with shape parameter 𝑛 and rate parameter
1. In this case, rejecting the null hypothesis indicates that the observed sample provides strong
evidence supporting the alternative hypothesis of 𝛽 < 1.

Conversely, for the hypothesis testing problem 𝐻0 : 𝛽 = 1 versus 𝐻1 : 𝛽 > 1, the rejection
region is defined as 𝑊 ≥ Ga(𝑛, 1)𝛼. Here, Ga(𝑛, 1)𝛼 represents the 𝛼-th percentile of the gamma
distribution with shape parameter 𝑛 and rate parameter 1. Rejecting the null hypothesis in this
case implies compelling evidence in favor of the alternative hypothesis of 𝛽 > 1.

By employing the respective rejection regions based on the computed percentiles of the Gamma
distribution, we can effectively determine the rejection or acceptance of the null hypothesis. These
rejection regions play a crucial role in the uniformly most powerful tests, enabling us to draw
robust conclusions regarding the relationship between the survival times and the hypothesized
survival functions under different alternative hypotheses.

4.3 MP test for independently right-censored data

4.3.1 Sample size equal to one

In the context of right-censored survival analysis, we consider the generic subject 𝑖 and observe
the pair 𝑥𝑖 = (𝑥𝑖 , 𝛿𝑖)𝑇 , where 𝑥𝑖 = min(𝑡𝑖 , 𝑐𝑖) and 𝛿𝑖 = I(𝑡𝑖 ≤ 𝑐𝑖). Here, 𝑥𝑖 represents the observed
time, which is the minimum of the actual survival time 𝑡𝑖 and the censoring time 𝑐𝑖 . Additionally,
𝛿𝑖 serves as an indicator variable, taking the value of 1 if the event is observed (𝑡𝑖 ≤ 𝑐𝑖) and 0
otherwise.

It is customary to use the notation 𝑡𝑖 to denote the survival time and 𝑐𝑖 to denote the indepen-
dent censoring time, both measured from the same origin. This notation aids in distinguishing
between the actual survival time and the censoring time for each subject.

Under the proportional hazards (PH) assumption, we can establish the same hypothesis system
as before. Recall that

𝐻0 : 𝑆(𝑡) = 𝑆0(𝑡)

𝐻1 : 𝑆(𝑡) = 𝑆0(𝑡)𝛽
∗ ⇐⇒


𝐻0 : _ (𝑡) = _0(𝑡)

𝐻1 : _ (𝑡) = 𝛽∗_0(𝑡)
⇐⇒


𝐻0 : 𝛽 = 𝛽0 = 1

𝐻1 : 𝛽 = 𝛽∗,

with 𝛽∗ ≠ 1, where we assume the known survival function 𝑆0(𝑡), or equivalently, the known
hazard function _0(𝑡).

Under the PH assumption, the Neyman-Pearson test statistics, when only one observation (𝑥, 𝛿)
is available, is given by

𝑓1(𝑥, Δ)
𝑓0(𝑥, 𝛿)

=
𝑓(𝑋,Δ) (𝑥, 𝛿, 𝛽∗)
𝑓(𝑋,𝛿) (𝑥, 𝛿, 𝛽0)

=
𝑓1(𝑥)𝛿𝑆1(𝑥)1−𝛿

𝑓0(𝑥)𝛿𝑆0(𝑥)1−𝛿
,

with 𝛽0 denote the specific value of 𝛽 under the null hypothesis, which in our case coincides with
one. Then, since we are in the right-censored survival setting, we have the observed time 𝑥, which
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represents the minimum value between the time-to-event 𝑡 and the censoring time 𝑐. Additionally,
we have the indicator variable 𝛿, which indicates whether the event has been observed.

The MP test, when only one observation (𝑥, 𝛿) is available, rejects the null hypothesis if and
only if:

Λ(𝑥, 𝛿) = 𝑓1(𝑥)𝛿𝑆1(𝑥)1−𝛿

𝑓0(𝑥)𝛿𝑆0(𝑥)1−𝛿
≥ 𝑘𝛼, with 𝑘𝛼 : 𝑃(Λ(𝑋, Δ) ≥ 𝑘𝛼;𝐻0) = 𝛼.

By performing some simple computations, we can establish that the rejection rule can be expressed

as (𝛽∗)𝛿𝑆0(𝑥)𝛽
∗−1 ≥ 𝑘𝛼, or equivalently, 𝑆(𝑥)𝛽∗−1 ≥

(
𝑘𝛼

(𝛽∗)𝛿

)
. The entire computation is given by

𝑓1(𝑥)
𝑓0(𝑥)

= 𝛽∗ [𝑆0(𝑥)]𝛽
∗−1 ⇒

[
𝑓1(𝑥)
𝑓0(𝑥)

]𝛿
= (𝛽∗)𝛿 [𝑆0(𝑥)]𝛿(𝛽

∗−1) ,

and, [
𝑆1(𝑥)
𝑆0(𝑥)

]1−𝛿
=

[
[𝑆0(𝑥)]𝛽

∗

𝑆0(𝑥)

]1−𝛿
=

[
𝑆0(𝑥)𝛽

∗−1
]1−𝛿

.

Then,

Λ(𝑥, 𝛿) = (𝛽∗)𝛿 [𝑆0(𝑥)]𝛿(𝛽
∗−1) ·

[
𝑆0(𝑥)𝛽

∗−1
]1−𝛿

= (𝛽∗)𝛿 [𝑆0(𝑥)]𝛽
∗−1.

Building upon previous results, we can observe that the quantity
𝑘𝛼

(𝛽∗)𝛿
serves as a threshold

for the rejection rule. Depending on the values of 𝛽∗ and 𝛿, this threshold determines the critical
region in which we reject the null hypothesis.

The value of the threshold must be selected in a manner that ensures the desired significance
level for the hypothesis test. Specifically, the threshold should be chosen such that the probability
of observing a test statistic greater than or equal to the threshold, under the null hypothesis, is
equal to the fixed significance level 𝛼. This can be expressed formally as:

𝑘𝛼 : 𝑃((𝛽∗)Δ [𝑆0(𝑋)] (𝛽
∗−1) ≥ 𝑘𝛼;𝐻0) = 𝛼.

In other words, the threshold should be determined to achieve a desired level of significance, en-
suring that the probability of falsely rejecting the null hypothesis is controlled at the specified
significance level. Thus, we explore different paths.

MP test for independently right censoring for 𝛼∗ < 𝛼

Firstly, we aim to solve the MP test for a significance level 𝛼∗ < 𝛼, utilizing the threshold 𝑘𝛼. We
seek the threshold 𝑘𝛼 such that:

• if 𝛽∗ > 1, 𝑘𝛼 : 𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
= 𝑆−1𝐶

(
(1 − 𝛼) ·

(
𝑘𝛼
𝛽∗

) 𝛽∗−1)
,

• if 𝛽∗ < 1, 𝑘𝛼 : 𝑆−10
(
𝑘
1/(𝛽∗−1)
𝛼

)
= 𝑆−1𝐶

(
𝛼 · 𝑘𝛽

∗−1
𝛼

)
,
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where 𝑆𝐶 (𝑐) is the survival function associated to the censored observations.

Since the value of 𝛽∗ is fixed, we need to solve the equations (potentially using numerical meth-
ods) to determine the thresholds 𝑘∗𝛼 = 𝑘∗𝛼(𝛽∗). The rejection regions for the MP test are defined as
follows: for 𝛽∗ > 1, the rejection region is given by {𝑋 ≤ 𝛾1, 𝑇 ≤ 𝐶} ∪ {𝑋 ≤ 𝛾2, 𝑇 > 𝐶}; while for
𝛽∗ < 1, the rejection region is given by {𝑋 ≥ 𝛾1, 𝑇 ≤ 𝐶} ∪ {𝑋 ≥ 𝛾2, 𝑇 > 𝐶}. Here, we have

𝛾1 = 𝑆
−1
0

©«
(
𝑘𝛼
𝛽∗

) 1
𝛽∗ − 1 ª®®¬ , and 𝛾2 = 𝑆−10

©«𝑘
1

𝛽∗ − 1
𝛼

ª®®®¬ .
The proof for the determination of these rejection regions is provided below.

Let us first consider the case where 𝛽∗ > 1. Since 𝛽∗ > 1, we have

𝑘𝛼
𝛽∗

< 𝑘𝛼, and
1

𝛽∗ − 1
> 0.

Therefore, we can deduce that

(
𝑘𝛼
𝛽∗

) 1
𝛽∗ − 1

< 𝑘

1
𝛽∗ − 1
𝛼 .

By applying the inverse of the baseline survival function to both sides, we obtain

𝑆−10
©«
(
𝑘𝛼
𝛽∗

) 1
𝛽∗ − 1 ª®®¬ > 𝑆−10

©«𝑘
1

𝛽∗ − 1
𝛼

ª®®®¬ .
Consequently, we can conclude that 𝛾1 > 𝛾2, where

𝛾1 = 𝑆
−1
0

©«
(
𝑘𝛼
𝛽∗

) 1
𝛽∗ − 1 ª®®¬ , and𝛾2 = 𝑆−10

©«𝑘
1

𝛽∗ − 1
𝛼

ª®®®¬ .
The computation continues fixing the probability of no rejection with threshold 𝑘𝛼 such that

𝑃 (𝑋,Δ)
(
(𝛽∗)Δ𝑆0(𝑋)𝛽

∗−1 ≤ 𝑘𝛼;𝐻0

)
= 1 − 𝛼.
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This is given by

𝑃 (𝑋,Δ)
(
(𝛽∗)Δ𝑆0(𝑋)𝛽

∗−1 ≤ 𝑘𝛼;𝐻0

)
=

= 𝑃 (𝑋,Δ)
(
(𝛽∗)𝛿𝑆0(𝑋)𝛽

∗−1 ≤ 𝑘𝛼, 𝛿 = 1;𝐻0

)
+ 𝑃 (𝑋,Δ)

(
(𝛽∗)𝛿𝑆0(𝑋)𝛽

∗−1 ≤ 𝑘𝛼, 𝛿 = 0;𝐻0

)
= 𝑃

(
𝛽∗𝑆0(𝑋)𝛽

∗−1 ≤ 𝑘𝛼, 𝑇 ≤ 𝐶;𝐻0

)
+ 𝑃

(
𝑆0(𝑋)𝛽

∗−1 ≤ 𝑘𝛼, 𝑇 > 𝐶;𝐻0

)
= 𝑃

(
𝑆0(𝑋) ≤

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
, 𝑇 ≤ 𝐶;𝐻0

)
+ 𝑃

(
𝑆0(𝑋) ≤ (𝑘𝛼)1/(𝛽

∗−1) , 𝑇 > 𝐶;𝐻0

)
= 𝑃

(
𝑋 ≥ 𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
, 𝑇 ≤ 𝐶;𝐻0

)
+ 𝑃

(
𝑋 ≥ 𝑆−10

(
(𝑘𝛼)1/(𝛽

∗−1)
)
, 𝑇 > 𝐶;𝐻0

)
= 𝑃 (𝑋 ≥ 𝛾1, 𝑇 ≤ 𝐶;𝐻0) + 𝑃 (𝑋 ≥ 𝛾2, 𝑇 > 𝐶;𝐻0)
= 𝑃 (𝑇 ≥ 𝛾1, 𝐶 ≥ 𝛾1, 𝑇 ≤ 𝐶;𝐻0) + 𝑃 (𝑇 ≥ 𝛾2, 𝐶 ≥ 𝛾2, 𝑇 > 𝐶;𝐻0)

=

∫ ∞

𝛾1

∫ ∞

𝑡
𝑓𝑇 (𝑡) 𝑓𝐶 (𝑐)d𝑐d𝑡 +

∫ ∞

𝛾2

∫ ∞

𝑐
𝑓𝐶 (𝑐) 𝑓𝑇 (𝑡)d𝑡d𝑐

=

∫ ∞

𝛾1

𝑓𝑇 (𝑡)𝑆𝐶 (𝑡)d𝑡 +
∫ ∞

𝛾2

𝑓𝐶 (𝑐)𝑆𝑇 (𝑐)d𝑐.

Since 𝛾1 > 𝛾2, we have that∫ ∞

𝛾1

𝑓𝑇 (𝑡)𝑆𝐶 (𝑡)d𝑡 +
∫ ∞

𝛾2

𝑓𝐶 (𝑐)𝑆𝑇 (𝑐)d𝑐 >
∫ ∞

𝛾1

𝑓𝑇 (𝑡)𝑆𝐶 (𝑡)d𝑡 +
∫ ∞

𝛾1

𝑓𝐶 (𝑐)𝑆𝑇 (𝑐)d𝑐

=

∫ ∞

𝛾1

[ 𝑓𝑇 (𝑢)𝑆𝐶 (𝑢) + 𝑓𝐶 (𝑢)𝑆𝑇 (𝑢)] d𝑢 = −𝑆𝑇 (𝑢)𝑆𝐶 (𝑢) |∞𝛾1 = 𝑆𝑇 (𝛾1)𝑆𝐶 (𝛾1).

We set 𝑘∗𝛼 : 𝑆𝑇 (𝛾1)𝑆𝐶 (𝛾1) = 1 − 𝛼, so that 𝑃(Reject 𝐻0;𝐻0) = 𝛼∗ ≤ 𝛼, i.e. we control the type I error
probability. For that true probability of type I error P(type I error), the test is, therefore, MP with
level 𝛼∗. It is important to note that 𝑘∗𝛼 will depend on the survival function 𝑆𝐶 . Thus, the value of
𝑘∗𝛼 for a given 𝛽∗ can be obtained by solving the equation 𝑆𝑇 (𝛾1)𝑆𝐶 (𝛾1) = 1− 𝛼, where 𝛾1 = 𝛾1(𝑘𝛼),
or

𝑆0

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))
𝑆𝐶

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))
= 1 − 𝛼

⇐⇒
(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
𝑆𝐶

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))
= 1 − 𝛼

⇐⇒ 𝑆𝐶

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))
= (1 − 𝛼)

(
𝑘𝛼
𝛽∗

) 𝛽∗−1
⇐⇒ 𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
= 𝑆−1𝐶

(
(1 − 𝛼)

(
𝑘𝛼
𝛽∗

) 𝛽∗−1)
Now, consider the case 𝛽∗ < 1. Similarly to the first case, we have now

𝑘𝛼
𝛽∗

> 𝑘𝛼, and
1

𝛽∗ − 1
< 0⇒(

𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
> 𝑘

1/(𝛽∗−1)
𝛼 ⇒ 𝛾1 > 𝛾2, like before. The rejection region is however different. Indeed,
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we reject the null hypothesis in the case 𝐻0 ⇐⇒ (𝛽∗)𝛿𝑆0(𝑥)𝛽
∗−1 ≥ 𝑘𝛼, again with threshold

𝑘𝛼 : 𝑃 (𝑋,Δ)
(
(𝛽∗)Δ𝑆0(𝑋)𝛽

∗−1 ≥ 𝑘𝛼;𝐻0

)
= 𝛼. We now split the probability of rejection as

𝑃 (𝑋,Δ)
(
(𝛽∗)Δ𝑆0(𝑋)𝛽

∗−1 ≥ 𝑘𝛼;𝐻0

)
=

= 𝑃

(
𝑆0(𝑋) ≤

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
, 𝑇 ≤ 𝐶;𝐻0

)
+ 𝑃

(
𝑆0(𝑋) ≤ 𝑘

1/(𝛽∗−1)
𝛼 , 𝑇 > 𝐶;𝐻0

)
= 𝑃

(
𝑋 ≥ 𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
, 𝑇 ≤ 𝐶;𝐻0

)
+ 𝑃

(
𝑋 ≥ 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
, 𝑇 > 𝐶;𝐻0

)
= 𝑃(𝑋 ≥ 𝛾1, 𝑇 ≤ 𝐶;𝐻0) + 𝑃(𝑋 ≥ 𝛾2, 𝑇 > 𝐶;𝐻0)
= 𝑃(𝑇 ≥ 𝛾1, 𝐶 ≥ 𝛾1, 𝑇 ≤ 𝐶;𝐻0) + 𝑃(𝑇 ≥ 𝛾2, 𝐶 ≥ 𝛾2, 𝑇 > 𝐶;𝐻0)

≤
∫ ∞

𝛾2

𝑓𝑇 (𝑡)𝑆𝐶 (𝑡)d𝑡 +
∫ ∞

𝛾2

𝑓𝐶 (𝑐)𝑆𝑇 (𝑐)d𝑐 = 𝑆𝑇 (𝛾2)𝑆𝐶 (𝛾2).

Again, set the threshold 𝑘∗𝛼 : 𝑆𝑇 (𝛾2)𝑆𝐶 (𝛾2) = 𝛼, such that the probability of rejection P(Reject
𝐻0;𝐻0)= 𝛼∗ ≤ 𝛼, and again the test is MP with level 𝛼∗. Hence, the value of 𝑘∗𝛼 is found by set-
ting 𝑆𝑇 (𝛾2)𝑆𝐶 (𝛾2) = 𝛼, such that

𝑆0

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
𝑆𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
= 𝛼 ⇐⇒ 𝑘

1/(𝛽∗−1)
𝛼 𝑆𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
= 𝛼

⇐⇒ 𝑆𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
=

𝛼

𝑘
1/(𝛽∗−1)
𝛼

⇐⇒ 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
= 𝑆−1𝐶

(
𝛼 · 𝑘𝛽

∗−1
𝛼

)
.

Alternative solution

Recall that the rejection region is 𝑆(𝑥)𝛽∗−1 ≥
(
𝑘𝛼

(𝛽∗)𝛿

)
, under the null hypothesis. Depending on

whether the indicator of having observed the event 𝛿 = 0 or 𝛿 = 1 the cases are split in two,

𝑆(𝑥) ≥ (𝑘𝛼)1/(𝛽
∗−1) , and 𝑆(𝑥) ≥

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
, respectively. Now, also depending on whether the

value of 𝛽∗ is 𝛽∗ > 1 or 𝛽∗ < 1, we obtain four different cases for the rejection region

• if 𝛽∗ > 1 and 𝛿 = 1, then 𝑆0(𝑥) ≥ (𝑘𝛼/𝛽∗)1/(𝛽
∗−1)

• if 𝛽∗ > 1 and 𝛿 = 0, then 𝑆0(𝑥) ≥ 𝑘
1/(𝛽∗−1)
𝛼 ;

• if 𝛽∗ < 1 and 𝛿 = 1, then 𝑆0(𝑥) ≤ (𝑘𝛼/𝛽∗)1/(𝛽
∗−1)

• if 𝛽∗ < 1 and 𝛿 = 0, then 𝑆0(𝑥) ≤ 𝑘
1/(𝛽∗−1)
𝛼 ;

Since 𝛽∗ is fixed, these should be solved for the threshold 𝑘∗𝛼 = 𝑘∗𝛼(𝛽∗). In the end, we will find

out that the approximated form of threshold is 𝑘𝛼 =

(
1 − 𝛼
2

) 𝛽∗−1
, and consequently the rejection

regions are, depending on whether the event has been observed or not 𝛿 = 0 or 𝛿 = 1, the following:

• if 𝛿 = 0, then 𝑆0(𝑥) ≥ (1 − 𝛼)/2 ⇐⇒ 𝑥 ≤ 𝑆−10 ((1 − 𝛼)/2);

• if 𝛿 = 1, then 𝑆0(𝑥) ≥ (1 − 𝛼)/(2(𝛽∗)1/(𝛽∗−1) ) ⇐⇒ 𝑥 ≤ 𝑆−10

(
(1 − 𝛼)/2(𝛽∗)1/(1−𝛽∗ )

)
.
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It should be noted that there are no additional cases or splits for different values of 𝛽∗. This will
become evident as we proceed with the proof.

The rejection regions can be summarized as {𝑋 ≤ 𝛾1, 𝑇 ≤ 𝐶} ∪ {𝑋 ≤ 𝛾2, 𝑇 > 𝐶} and {𝑋 ≥ 𝛾1, 𝑇 ≤ 𝐶} ∪

{𝑋 ≥ 𝛾2, 𝑇 > 𝐶}, respectively for 𝛽∗ > 1, and 𝛽∗ < 1, with 𝛾1 = 𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
, and 𝛾2 =

𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
. Therefore, the presence of the indicator 𝛿 leads to a splitting of the probability

𝑃(Λ(𝑋, Δ) ≥ 𝑘𝛼) into two distinct regions, as illustrated in Figure 4.1.

𝑅2

𝑅1

C

T

t = c𝛿 = 1, 𝑇 < 𝐶 (𝐼2)

𝛿 = 0,
𝑇 > 𝐶

(𝐼1)

Figure 4.1: splitting into two regions the probability of rejection.

The rejection region is the union of two disjoint areas. We thus have:

𝑃(𝑆0(𝑋)𝛽
∗−1(𝛽∗)Δ ≤ 𝑘𝛼;𝐻0) = 𝑃(𝑆0(𝑋) (𝛽∗)Δ/(𝛽

∗−1) ≤ 𝑘
1/(𝛽∗−1)
𝛼 ;𝐻0)

= 𝑃(𝑆0(𝑋)𝛽
∗−1(𝛽∗)𝛿 ≤ 𝑘𝛼;𝐻0, 𝛿 = 1) + 𝑃(𝑆0(𝑋)𝛽

∗−1(𝛽∗)𝛿 ≤ 𝑘𝛼;𝐻0, 𝛿 = 0) = 1 − 𝛼

that can be rewritten in terms of integrals∫ ∞

0

∫ ∞

0
I
[
𝑆0(min(𝑡, 𝑐)) (𝛽∗)I(𝑡≤𝑐)/(𝛽∗−1) ≤ 𝑘

1/(𝛽∗−1)
𝛼

]
𝑓𝑇 (𝑡) 𝑓𝐶 (𝑐)d𝑡d𝑐

=

∫
𝑅1

∫
I
[
𝑆0(𝑐) ≤ 𝑘

1/(𝛽∗−1)
𝛼

]
𝑓𝑇 (𝑡) 𝑓𝐶 (𝑐)d𝑡d𝑐+

+
∫
𝑅2

∫
I
[
𝑆0(𝑡) (𝛽∗) (𝛽

∗−1) ≤ 𝑘
1/(𝛽∗−1)
𝛼

]
𝑓𝑇 (𝑡) 𝑓𝐶 (𝑐)d𝑡d𝑐

= 𝐼1 + 𝐼2 = 1 − 𝛼

where we can refer to the two integral components as 𝐼1 and 𝐼2, which can be solved separately.
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The first integral, denoted as 𝐼1, is expressed as follows

𝐼1 :
∫ ∞

0

∫ 𝑡

0

[
I
(
𝑆0(𝑐) ≤ 𝑘

1/(𝛽∗−1)
𝛼

)
𝑓𝐶 (𝑐)d𝑐

]
𝑓𝑇 (𝑡)d𝑡

=

∫ ∞

0

∫ 𝑡

0

[
I
(
𝑐 ≥ 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
𝑓𝐶 (𝑐)d𝑐

]
𝑓𝑇 (𝑡)d𝑡

=

∫ ∞

0
I
(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
≤ 𝑐 ≤ 𝑡

)
𝑓𝑇 (𝑡)d𝑡

=

∫ ∞

𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

) 𝑃 (
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
≤ 𝐶 ≤ 𝑇

)
𝑓𝑇 (𝑡)d𝑡

=

∫ ∞

𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

) 𝐹𝐶 (𝑡) 𝑓𝑇 (𝑡)d𝑡 − 𝐹𝐶 (
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
𝑆0

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
=

∫ ∞

𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

) 𝐹𝐶 (𝑡) 𝑓𝑇 (𝑡)d𝑡 − 𝐹𝐶 (
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
𝑘
1/(𝛽∗−1)
𝛼 .

Similarly the second integral is given by

𝐼2 :
∫ ∞

0

∫ 𝑐

0

[
I
(
𝑆0(𝑡) (𝛽∗)1/(𝛽

∗−1) ≤ 𝑘
1/(𝛽∗−1)
𝛼

)
𝑓𝑇 (𝑡)d𝑡

]
𝑓𝐶 (𝑐)d𝑐

=

∫ ∞

0

∫ 𝑐

0

[
I

(
𝑡 ≥ 𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))
𝑓𝑇 (𝑡)d𝑡

]
𝑓𝐶 (𝑐)d𝑐

=

∫ ∞

0

∫ 𝑐

𝑆−10
©«
(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ª®¬
𝑃

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
≤ 𝑇 ≤ 𝐶

)
𝑓𝑇 (𝑡) 𝑓𝐶 (𝑐)d𝑡d𝑐

=

∫ ∞

0

[
𝐹𝑇 (𝑐) − 𝐹𝑇

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))]
𝑓𝐶 (𝑐)d𝑐

=

∫ ∞

0
𝐹𝑇 (𝑐) 𝑓𝐶 (𝑐)d𝑐 − 𝐹𝑇

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))
.

Therefore, the sum of the two components, denoted as 𝐼1 and 𝐼2, can be expressed as follows:

1 − 𝛼 = 𝐼1 + 𝐼2 =
∫ ∞

𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

) 𝐹𝐶 (𝑡) 𝑓𝑇 (𝑡)d𝑡 − 𝐹𝐶 (
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
𝑘
1/(𝛽∗−1)
𝛼

+
∫ ∞

0
𝐹𝑇 (𝑐) 𝑓𝐶 (𝑐)d𝑐 − 𝐹𝑇

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))
.

Alternatively, we can express the second region as follows:

𝐼2 :
∫ ∞

0
I

[
𝑡 ≥ 𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )] ∫ ∞

𝑡
𝑓𝐶 (𝑐)d𝑐 𝑓𝑇 (𝑡)d𝑡

= 𝑆0

(
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ))
−

∫ ∞

𝑆−10
©«
(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ª®¬
𝐹𝐶 (𝑡) 𝑓𝑇 (𝑡)d𝑡,
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By combining the expressions for 𝐼1 and 𝐼2, the sum of the two regions can be expressed as follows

1 − 𝛼 = 𝐼1 + 𝐼2 =
∫ ∞

𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

) 𝐹𝐶 (𝑡) 𝑓𝑇 (𝑡)d𝑡 − ∫ ∞

𝑆−10
©«
(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ª®¬
𝐹𝐶 (𝑡) 𝑓𝑇 (𝑡)d𝑡+

+ 𝐹𝐶
(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
𝑘
1/(𝛽∗−1)
𝛼 +

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
.

To obtain the precise form of 𝑘𝛼, we aim to derive a closed-form solution. For this purpose, we rely
on an approximation of the censoring distribution function approaching to one, which allows us
to simplify the expression. Hence, we extract the approximate form of the threshold 𝑘𝛼 by noting
that if the distribution function lim𝑡→∞ 𝐹𝐶 (𝑡) = 1, also the distribution function 𝐹𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
can be approximated by one since 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
is large. Indeed, for 𝛽∗ > 1, 𝑘𝛼 > 𝑘𝛼/𝛽∗ ⇒

𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
> 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
, and

1 − 𝛼 = 𝑆0

[
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)]
− 𝑆0

[
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )]
+ 𝑘1/(𝛽

∗−1)
𝛼 +

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
= 𝑘

1/(𝛽∗−1)
𝛼 −

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
+ 𝑘1/(𝛽

∗−1)
𝛼 +

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
= 2𝑘1/(𝛽

∗−1)
𝛼

⇐⇒ 𝑘𝛼 =

(
1 − 𝛼
2

) (𝛽∗−1)
(4.1)

We can conclude that the probability of :

𝑃

(
𝑆0(𝑋) (𝛽∗)𝛿/(𝛽

∗−1) ≤ 1 − 𝛼
2

;𝐻0

)
= 1 − 𝛼

⇐⇒ 𝑃

(
𝑆0(𝑋) (𝛽∗)𝛿/(𝛽

∗−1) ≥ 1 − 𝛼
2

;𝐻0

)
= 𝛼.

Therefore, the approximated rule to reject the null hypothesis for the MP test with 𝛽∗ > 1 is given
by:

𝑆0(𝑥) (𝛽∗)𝛿/(𝛽
∗−1) ≥ 𝑘

1/(𝛽∗−1)
𝛼 =

[(
1 − 𝛼
2

) (𝛽∗−1) ]1/(𝛽∗−1)
=
1 − 𝛼
2

.

Equivalently we have for the case with 𝛽∗ < 1, 𝑘𝛼 < 𝑘𝛼/𝛽∗ ⇒ 𝑘
1/(𝛽∗−1)
𝛼 >

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
⇒

𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
> 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
, and

1 − 𝛼 =𝑆0

[
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)]
− 𝑆0

[
𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )]
+ 𝑘1/(𝛽

∗−1)
𝛼 +

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
=𝑘

1/(𝛽∗−1)
𝛼 −

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
+ 𝑘1/(𝛽

∗−1)
𝛼 +

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
=2𝑘1/(𝛽

∗−1)
𝛼 ⇒ 𝑘𝛼 =

(
1 − 𝛼
2

) (𝛽∗−1)
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Hence, the threshold 𝑘𝛼 has the same approximated value also for the case 𝛽∗ < 1.
We provide few comments on this peculiar rejection regions. When 𝛿 = 0, the observed time

coincides with the censoring time, i.e., 𝑋 = 𝐶. In this case, the rejection region is defined as

𝐶 ≤ 𝑆−10

(
1 − 𝛼
2

)
, which is referred to as the region 𝑅1 in Figure 4.2. This region is determined

under the regularity condition that the inverse of the survival function exists, ensuring the exis-

tence of 𝑆−10

(
1 − 𝛼
2

)
. Similarly, when 𝛿 = 1, it implies that the observed time coincides with the

time-to-event, i.e., 𝑋 = 𝑇 . In this scenario, the rejection region is given by 𝑇 ≤
𝑆−10 (1 − 𝛼)
(2(𝛽∗) (𝛽∗−1) )

,

which is referred to as the region 𝑅2 in Figure 4.2. It is worth noting that when 𝛽∗ > 1, we have
(1 − 𝛼)

(2(𝛽∗) (𝛽∗−1) )
>

(1 − 𝛼)
2

, which implies 𝑆−10

(
1 − 𝛼

2(𝛽∗) (𝛽∗−1)

)
< 𝑆−10 ((1 − 𝛼)/2). Consequently, we

could rewrite the rejection region as 𝑇 ≤
𝑆−10 (1 − 𝛼)

2
, as this region includes the original one. The

peculiar shape of the rejection region may be attributed to the approximation of the cumulative
distribution function in the presence of censoring. Specifically, the shape of the rejection region
𝑅2 might not be immediately intuitive. Additionally, it is noteworthy that the rejection region un-
der censoring is wider compared to the case without censoring, indicating that the presence of
censored cases leads to easier rejection of the null hypothesis.

𝑅2

𝑅1

C

T

t = c𝛿 = 1, 𝑇 < 𝐶

𝛿 = 0,
𝑇 > 𝐶

𝑆−10

(
1 − 𝛼
2𝛽𝛽−1

)
𝑆−10

(
1 − 𝛼
2

)

𝑆−10

(
1 − 𝛼
2

)

Figure 4.2: the approximated rejection region of the MP test.
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An approximation of 𝛽∗ to one

Recall the previously computed approximation of the censoring distribution function to one, as
denoted in formula 4.1. Now, we focus on the specific case where 𝛽∗ > 1 and 𝛽∗ is approximately

equal to 1. We call 𝛾1 = 𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
, and 𝛾2 = 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
. If 𝛽∗ > 1, we have

𝑆−10

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) )
− 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
≥ 0

∫ 𝑆−10
©«
(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ª®®¬
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

) 𝐹𝐶 (𝑡) 𝑓𝑇 (𝑡)d𝑡 ≃ (𝛾1 − 𝛾2)𝐹𝐶
(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
𝑓𝑇

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
= 𝛾3.

Notice that we can see these approximation also as the integral on the area given by the base multi-
plied by the height in the easiest point, which coincides to the point 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
. The probability

of rejection, following the aforementioned approximation where 𝐹𝐶
(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
≈ 1, is given

by

𝐼1 + 𝐼2 = 𝛾3 + 𝐹𝐶
(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
𝑘
1/(𝛽∗−1)
𝛼 +

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
=

= 𝐹𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)) (
(𝛾1 − 𝛾2) 𝑓𝑇

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
+ 𝑘1/(𝛽

∗−1)
𝛼

)
+

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
where we can approximate (𝛾1 − 𝛾2) as the derivative of the baseline survival function

𝜕

𝜕𝑥
𝑆−10 (𝑥),

in the point 𝑥 = 𝑘
1/(𝛽∗−1)
𝛼 , using a Taylor expansion. This approximation holds when 𝛽∗ is close to

1, as it causes 𝛾1 to approach 𝛾2. Therefore, we obtain the following expression:(
𝜕

𝜕𝑥
𝑆−10 (𝑥)

����
𝑘
1/(𝛽∗−1)
𝛼

((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
− 𝑘1/(𝛽

∗−1)
𝛼

)
𝑓𝑇

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
+ 𝑘1/(𝛽

∗−1)
𝛼

)
·

· 𝐹𝐶
(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
+

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
≃ 1 − 𝛼

where

𝜕

𝜕𝑥
𝑆−10 (𝑥)

����
𝑡:𝑆0 (𝑡)=𝑥

=
𝜕

𝜕𝑡
(1 − 𝐹0)−1(𝑡)

����
𝑡:𝐹0 (𝑡)=1−𝑥

= − 1
𝑓0(𝑡)

and,

𝜕

𝜕𝑥
𝑆−10 (𝑥)

����
𝑡:𝑆0 (𝑡)=𝑥

≃ −1

𝑓0

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)) =
−1

𝑓𝑇

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)) .
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given that
(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
− 𝑘1/(𝛽

∗−1)
𝛼 ≤ 0. Thus, we have

©«����������−1

𝑓𝑇

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)) ((
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
− 𝑘1/(𝛽

∗−1)
𝛼

)
����������
𝑓𝑇

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
+ 𝑘1/(𝛽

∗−1)
𝛼

ª®®¬ ·
· 𝐹𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
+

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
=

= 𝐹𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)) [
2𝑘1/(𝛽

∗−1)
𝛼 −

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1) ]
+

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
= 1 − 𝛼

Furthermore, approximating the censoring distribution function to one, we recall that if 𝐹𝐶 (·) = 1
at a singular point, then 𝐹𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
≈ 1. In the case of 𝛽∗ > 1 with 𝛽∗ ≈ 1, we have:

𝐹𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)) (
2 −

(
1
𝛽∗

)1/(𝛽∗−1) )
+

(
1
𝛽∗

)1/(𝛽∗−1)
=

(
1 − 𝛼
𝑘𝛼

)1/(𝛽∗−1)
If 𝛽∗ ↓ 1+ ⇐⇒ (1 − 𝛽∗) ↓ 0+ ⇐⇒ 1

𝛽∗ − 1
↑ +∞ ⇐⇒ 𝑘

1/(𝛽∗−1)
𝛼 ∈ [0, 1] → 0

⇐⇒ 𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

)
↑ +∞ ⇐⇒ 𝐹𝐶

(
𝑆−10

(
𝑘
1/(𝛽∗−1)
𝛼

))
≈ 1.

Hence again,

2𝑘1/(𝛽
∗−1)

𝛼 −
(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
+

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
= 2𝑘1/(𝛽

∗−1)
𝛼 = 1 − 𝛼 ⇐⇒ 𝑘𝛼 =

(
1 − 𝛼
2

) 𝛽∗−1
Thus, the conclusion is that for 𝛽∗ ≈ 1 and 𝛽∗ > 1, we have

(
𝑘𝛼
𝛽∗

)1/(𝛽∗−1)
≈ 𝑘

1/(𝛽∗−1)
𝛼 , which gives

us a form with 𝛽∗ entering only in the exponent.

Third approximation

Following the binary split of the rejection region, we have two thresholds that now we denote as 𝑘0
and 𝑘1, which define the region according to whether the observed time coincides to the censoring
time 𝑐 or the survival time 𝑡. The rejection region can be rewritten as

𝛼 = 𝜋

∫ 𝑘0

0

𝑓𝐶 (𝑥)𝑆𝑇 (𝑥)
𝜋

d𝑥 + (1 − 𝜋)
∫ 𝑘1

0

𝑓𝑇 (𝑥)𝑆𝐶 (𝑥)
(1 − 𝜋) d𝑥.

Thus, the probability of type I error is given by

𝑃(Reject;𝐻0) = 𝑃((𝑋, Δ) ∈ 𝑅;𝐻0) =
𝑃(𝑋 ∈ 𝑅0, Δ = 0;𝐻0) + 𝑃(𝑋 ∈ 𝑅1, Δ = 1;𝐻0) =
𝑃(Δ = 0;𝐻0)𝑃(𝑋 ∈ 𝑅0 |Δ = 0;𝐻0) + 𝑃(Δ = 1;𝐻0)𝑃(𝑋 ∈ 𝑅1 |Δ = 1;𝐻0) =
𝜋𝑃(𝑋 ∈ 𝑅0 |Δ = 0;𝐻0) + (1 − 𝜋)𝑃(𝑋 ∈ 𝑅1 |Δ = 1;𝐻0) = 𝛼 (4.2)
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with the probability of not experiencing the event under null hypothesis 𝜋 = 𝑃(Δ = 0;𝐻0), and the
rejection region split into two different regions 𝑅 = (𝑋 ∈ 𝑅0; Δ = 0) ∪ (𝑋 ∈ 𝑅1; Δ = 1). We call
𝑝0 = 𝑃(𝑋 ∈ 𝑅0 |Δ = 0;𝐻0), and 𝑝1 = 𝑃(𝑋 ∈ 𝑅1 |Δ = 1;𝐻0) the probabilities to belong to the two
rejection regions conditional to one of the two value of the indicator of having observed the event.
Formula 4.2 can then be written as (1−𝜋)𝑝0+𝜋𝑝1, so that𝜋𝑝0+(1−𝜋)𝑝1 = 𝛼 ⇐⇒ 𝜋𝑝0+𝑝1−𝜋𝑝1 = 𝛼.
A closed form of the MP test can be achieved restricting to the case where the two probabilities of
rejection coincide 𝑝0 = 𝑝1 ⇐⇒ 𝑝0 = 𝛼. Then we have

𝑃(𝑋 ≤ 𝑘0 |Δ = 0;𝐻0) =
∫ 𝑘0

0

𝑓𝐶 (𝑥)𝑆𝑇 (𝑥)
𝜋

d𝑥 = 𝛼.

Hence, ∫ 𝑘0

0

𝑓𝐶 (𝑥)𝑆𝑇 (𝑥)
𝜋

d𝑥 = 𝛼 ⇐⇒ 𝑘0 : 𝛼𝑃(Δ = 0)

We give an example about the two threshold MP test: let𝑇 follow an Exponential distribution with
parameter _0, and 𝐶 follow an exponential distribution with parameter _𝐶 . We have:

𝛼𝑃(Δ = 0) =
∫ 𝑘0

0
_𝐶e(−𝑥_𝐶 )e(−_0𝑥 )d𝑥

⇐⇒ 𝛼𝑃(Δ = 0) = _𝐶
∫ 𝑘0

0
e(−(_0+_𝐶 )𝑥 )d𝑥

⇐⇒ 𝛼𝑃(Δ = 0) = _𝐶
_𝐶 + _0

∫ 𝑘0

0
(_𝐶 + _0)e(−(_0+_𝐶 )𝑥 )d𝑥

where we call the density function 𝑓𝑄 (𝑞) = (_𝐶 + _0)exp(−(_0 + _𝐶)𝑞) thus the random variable is
distributed as an Exponential 𝑄 ∼ Exp(_0 + _𝐶). Thus we have

𝛼𝑃(Δ = 0) = _𝐶
_𝐶 + _0

𝐹𝑄 (𝑘0) ⇐⇒ 𝛼𝑃(Δ = 0) = _𝐶
_𝐶 + _0

(
1 − e−𝑘0 (_0+_𝐶 )

)
⇐⇒ 𝛼𝑃(Δ = 0) (_𝐶 + _0)

_𝐶
= 1 − e−𝑘0 (_0+_𝐶 )

⇐⇒ e−𝑘0 (_0+_𝐶 ) = 1 − 𝛼𝑃(Δ = 0) (_𝐶 + _0)
_𝐶

⇐⇒ −𝑘0(_𝐶 + _0) = log
(
1 − 𝛼𝑃(Δ = 0) (_𝐶 + _0)

_𝐶

)

⇐⇒ 𝑘0 =

log
(
1 − 𝛼𝑃(Δ = 0) (_𝐶 + _0)

_𝐶

)
_𝐶 + _0

.

Similarly, the second threshold is given by

𝑘1 =

log
(
1 − 𝛼𝑃(Δ = 1) (_𝐶 + _0)

_𝐶

)
_𝐶 + _0

.
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With the two probabilities of rejection not equal 𝑝0 ≠ 𝑝1 the two rejection thresholds are

𝑘0 =

log
(
1 − 𝑝0𝑃(Δ = 0) (_𝐶 + _0)

_𝐶

)
_𝐶 + _0

𝑘1 =

log
(
1 − 𝑝1𝑃(Δ = 1) (_𝐶 + _0)

_𝐶

)
_𝐶 + _0

where the values of 𝑘0, 𝑘1 are such that all the condition set at the beginning yield.

4.3.2 Sample size greater than one

Following the same hypothesis system
𝐻0 : 𝑆(𝑡) = 𝑆0(𝑡)

𝐻1 : 𝑆(𝑡) = 𝑆0(𝑡)𝛽
∗ ⇐⇒


𝐻0 : _ (𝑡) = _0(𝑡)

𝐻1 : _ (𝑡) = 𝛽∗_0(𝑡)
⇐⇒


𝐻0 : 𝛽 = 𝛽0 = 1

𝐻1 : 𝛽 = 𝛽∗,

with 𝛽∗ ≠ 1, assuming 𝑆0(𝑡), and equivalently _0(𝑡), known. The rejection rule of the MP test, when
the sample size is 𝑛 > 1, is given by:

Λ(𝑥, 𝛿) =
𝐿𝑋,Δ (𝑥, 𝛿|𝐻1)
𝐿𝑋,Δ (𝑥, 𝛿|𝐻0)

=

𝑛∏
𝑖=1

[
(𝛽∗)𝛿𝑖𝑆0(𝑥𝑖)𝛽

∗−1
]
≥ 𝑘𝛼;

𝑘𝛼 : 𝑃(Λ(𝑋, Δ) ≥ 𝑘𝛼;𝐻0) = 𝛼,

with 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 and 𝛿 = (𝛿1, . . . , 𝛿𝑛)𝑇 . No simpler description of the rejection region is
currently available for this case. However, the MP test statistics reduces to

𝐿𝑋,Δ (𝑥, 𝛿|𝐻1)
𝐿𝑋,Δ (𝑥, 𝛿|𝐻0)

=

∏𝑛
𝑖=1

{
𝑓1(𝑥𝑖)𝛿𝑖𝑆𝐶 (𝑥𝑖)𝛿𝑖 𝑓𝐶 (𝑥𝑖)1−𝛿𝑖𝑆1(𝑥𝑖)1−𝛿𝑖

}∏𝑛
𝑖=1

{
𝑓𝑇 (𝑥𝑖)𝛿𝑖𝑆𝐶 (𝑥𝑖)𝛿𝑖 𝑓𝐶 (𝑥𝑖)1−𝛿𝑖𝑆𝑇 (𝑥𝑖)1−𝛿𝑖

}
=

∏𝑛
𝑖=1

[
𝑓1(𝑥𝑖)
𝑆1(𝑥𝑖)

]𝛿𝑖
𝑆1(𝑥𝑖)∏𝑛

𝑖=1

[
𝑓𝑇 (𝑥𝑖)
𝑆𝑇 (𝑥𝑖)

]𝛿𝑖
𝑆𝑇 (𝑥𝑖)

=

∏𝑛
𝑖=1 [𝛽∗_0(𝑥𝑖)]𝛿𝑖𝑆0(𝑥𝑖)𝛽

∗∏𝑛
𝑖=1 _0(𝑥𝑖)𝛿𝑖𝑆0(𝑥𝑖)

=

𝑛∏
𝑖=1

[
(𝛽∗)𝛿𝑖𝑆0(𝑥𝑖)𝛽

∗−1
]
.

It is easily seen that the test statistics depends on (𝑋, Δ) only through the quantities (∑𝑛
𝑖=1 log (𝑆0(𝑋𝑖)),∑𝑛

𝑖=1 Δ𝑖)𝑇 . The joint distribution of the bivariate test statistics is needed to obtain the threshold
𝑘𝛼, and thus the implementable form of the test. Also, note that the test statistics reduces to
(∑𝑛

𝑖=1 𝑋𝑖 ,
∑𝑛
𝑖=1 Δ𝑖)𝑇 up to a known constant, the sufficient statistic that appears in the maximum

likelihood estimator of the parameter _ when the sample of time-to-event is distributed following
an Exponential, i.e. 𝑇1, . . . , 𝑇𝑛 ∼Exp(_). Indeed, for the exponential model, the survival function
has shape 𝑆0(𝑡; _) = e−_0𝑡 , thus we have

∑𝑛
𝑖=1 log (𝑆0(𝑥𝑖)) = −_0

∑𝑛
𝑖=1 𝑥𝑖 , with the baseline hazard

function _0 known.
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4.4 Discussion

As discussed in Section 4.3, the bivariate test statistics for the case of right-censored data de-
pends only on the joint distribution of (𝑋, Δ) through the transformed variables (∑𝑛

𝑖=1 log (𝑆0(𝑋𝑖)),∑𝑛
𝑖=1 Δ𝑖)𝑇 . Obtaining the implementable form of the test requires knowledge of this joint distribu-

tion.
The fact that both

∑𝑛
𝑖=1 log (𝑆0(𝑋𝑖)) and

∑𝑛
𝑖=1 Δ𝑖 are essential in the context of censored data is

not surprising. The value of 𝑋𝑖 depends on the realization of Δ𝑖 , and the observation of an event
is directly related to the value of 𝑋𝑖 . This interdependence indicates that the mechanism of partial
observation in censored data cannot be ignored.

To illustrate this point, let us consider the non-parametric estimation of the survival function.
It is not appropriate to simply discard the observations for which Δ𝑖 = 0 and estimate 𝑆(𝑡) using the

remaining observed data with the empirical survival function 𝑆∗(𝑡) =
∑𝑛
𝑖=1 Δ𝑖 · I(𝑋𝑖 ≥ 𝑡)∑𝑛

𝑖=1 Δ𝑖
without

additional adjustments. The Kaplan-Meier estimator, for example, accounts for this dependence
and provides a proper estimation method. It is crucial to acknowledge that the consistency of such
an estimator for 𝑆(𝑡) holds only in the case of a censoring random variable that is degenerate to
infinity with probability one. The proof for this statement can be found in Appendix D.1.

Although the test so far can be applied in a real case scenario to identify the survival of one
subject with or without censoring, or of a sample without censoring, meaning that we observe the
event of interest of all subject, our intention is to investigate the application of the MP test to sur-
vival data with right censoring. Later we would like to run simulation studies, and subsequently,
extend the analysis to available data.
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Appendix A

A.1 Lehmann family of cure-rate models and proportional hazards

We want to explore the meaning of the proportional hazard (PH) assumption when 𝑃(𝑇 = +∞) =
𝑝 > 0. Indeed, in the cure-rate model we have 𝑆𝑇 (𝑡) = 𝑝 ·1+ (1− 𝑝)𝑆0(𝑡). This means that there is a
proportion 𝑝 of the population that will never experience the event, no matter how long they will
live, while the proportion (1− 𝑝) of the population experience the event according to the survival
function 𝑆0(𝑡).

Let us compute the hazard function of a cure-rate model:

_ (𝑡) Δ
= lim

Δ𝑡↓0

1
Δ𝑡
𝑃(𝑇 ∈ [𝑡, 𝑡 + Δ𝑡] | 𝑇 ≥ 𝑡) = lim

Δ𝑡↓0

1
Δ𝑡

𝑃(𝑇 ∈ [𝑡, 𝑡 + Δ𝑡])
𝑃(𝑇 ≥ 𝑡)

= lim
Δ𝑡↓0

1
Δ𝑡

1
𝑆𝑇 (𝑡)

[𝐹𝑇 (𝑡 + Δ𝑡) − 𝐹𝑇 (𝑡)] =
1

𝑆𝑇 (𝑡)
lim
Δ𝑡↓0

1
Δ𝑡

[𝑆𝑇 (𝑡) − 𝑆𝑇 (𝑡 + Δ𝑡)]

=
1

𝑆𝑇 (𝑡)
lim
Δ𝑡↓0

1
Δ𝑡

[𝑝 + (1 − 𝑝)𝑆0(𝑡) − (𝑝 + (1 − 𝑝)𝑆0(𝑡 + Δ𝑡))]

=
(1 − 𝑝)
𝑆𝑇 (𝑡)

lim
Δ𝑡↓0

1
Δ𝑡

[𝐹𝑇 (𝑡 + Δ𝑡) − 𝐹𝑇 (𝑡)] =
(1 − 𝑝)
𝑆𝑇 (𝑡)

𝑓0(𝑡) =
(1 − 𝑝) 𝑓0(𝑡)

𝑝 + (1 − 𝑝)𝑆0(𝑡)
.

The PH assumption would require that for two groups A and B one had

(1 − 𝑝𝐵) 𝑓0𝐵 (𝑡)
𝑝𝐵 + (1 − 𝑝𝐵)𝑆0𝐵 (𝑡)

= _𝐵 (𝑡) = 𝛽_𝐴 (𝑡) = 𝛽 · (1 − 𝑝𝐴) 𝑓0𝐴 (𝑡)
𝑝𝐴 + (1 − 𝑝𝐴)𝑆0𝐴 (𝑡)

. (A)

Notice that this model assumption is different from the traditional PH assumption on cases: _0𝐵 (𝑡) =
𝛽 · _0𝐴 (𝑡). Let us assume that 𝑝𝐴 > 0, 𝑝𝐵 > 0, and we study the following cases:

- (I) if 𝑝𝐴 = 𝑝𝐵 = 0 then we recover the usual PH: _0𝐵 (𝑡) = 𝛽 · _0𝐴 (𝑡);

- (II) if 𝑝𝐴 = 𝑝𝐵)𝑝 > 0 and 𝑆0𝐴 (𝑡) ≠ 𝑆0𝐵 (𝑡) we obtain

����(1 − 𝑝) 𝑓0𝐵 (𝑡)
𝑝 + (1 − 𝑝)𝑆0𝐵 (𝑡)

= 𝛽 · ����(1 − 𝑝) 𝑓0𝐴 (𝑡)
𝑝 + (1 − 𝑝)𝑆0𝐴 (𝑡)

(B)
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- (III) if 𝑝𝐴, 𝑝𝐵 > 0, 𝑝𝐴 ≠ 𝑝𝐵, and 𝑆0𝐴 (𝑡) = 𝑆0𝐵 (𝑡) we obtain

(1 − 𝑝𝐵) 𝑓0(𝑡)
𝑝𝐵 + (1 − 𝑝𝐵)𝑆0(𝑡)

= 𝛽 · (1 − 𝑝𝐴) 𝑓0(𝑡)
𝑝𝐴 + (1 − 𝑝𝐴)𝑆0(𝑡)

(1 − 𝑝𝐵) · (𝑝𝐴 + (1 − 𝑝𝐴)𝑆0(𝑡)) = 𝛽(1 − 𝑝𝐴) (𝑝𝐵 + (1 − 𝑝𝐵)𝑆0(𝑡))
(1 − 𝑝𝐵) (1 − 𝑝𝐴)𝑆0(𝑡) + 𝑝𝐴 (1 − 𝑝𝐵) = 𝛽(1 − 𝑝𝐴) (1 − 𝑝𝐵)𝑆0(𝑡) + 𝛽𝑝𝐵 (1 − 𝑝𝐴)

𝑆0(𝑡) =
𝛽(1 − 𝑝𝐴)𝑝𝐵 − 𝑝𝐴 (1 − 𝑝𝐵)
(1 − 𝛽) (1 − 𝑝𝐴) (1 − 𝑝𝐵)

,

and the only case in which the survival function is a constant is the degenerate case 𝑆0(𝑡) =
1 ∀𝑡, or 𝑃(𝑇 = +∞) = 1;

- (IV) if 𝑝𝐴 = 𝑝𝐵 = 𝑝 > 0 and 𝑆0𝐴 (𝑡) = 𝑆0𝐵 (𝑡) then, 𝛽 ≡ 1;

- (V) if 𝑝𝐴 = 𝑝𝐵 = 𝑝 > 0, 𝑝𝐴 ≠ 𝑝𝐵 and 𝑆0𝐴 (𝑡) ≠ 𝑆0𝐵 (𝑡) then, we obtain the general form in (A)
above.

Thus, the interpretation of the PH assumption for cure-rate models is more complicated as we must
distinguish all the different cases and respect the conditions.

A.2 Harrell’s index for one-dimensional multiplicative Gamma frailty
models

Harrell’s c-index is used to quantify the concordance between a risk index and right censored
survival times. Here, we study what the reference population values for the index are when the
multiplicative frailty random variable 𝑅 is distributed as a Gamma(\, \) random variable using
the shape-rate parametrization, i.e. with density

𝑔𝑅 (𝑟; \) =
1

Γ(\) \
\𝑟\−1e−\ 𝑟 , 𝑟 ≥ 0, \ > 0

so that E(𝑅) = \/\ = 1, var(𝑅) = \/\2 = 1/\, and

MGF𝑅 (𝑡) = 𝐸
(
e𝑡𝑅

)
=

(
1 − 𝑡

\

)−\
, for 𝑡 < \.

Let us recall here that in the multiplicative frailty survival model the conditional (on the frailty)
hazard function has the form _ (𝑡 | 𝑟) = 𝑟 _0(𝑡) for some baseline hazard function _0(𝑡). This
coincides with the proportional hazards assumption, or equivalent with assuming the Lehmann
structure 𝑆(𝑡 | 𝑟) = [𝑆0(𝑡)]𝑟 , with 𝑆0(𝑡) the baseline survival function, and with corresponding
conditional density function 𝑓𝑇 |𝑅 (𝑡 | 𝑟).

We now define the population Harrell’s index as the probability of concordance between the
observed survival times and the frailty terms of the subjects. The term “population” here refers
to the fact that we consider the true frailty terms 𝑟, and refer to the survival distribution without
reference to right censoring.
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The population Harrell’s index 𝐶 can be defined as

𝐶 = 𝑃 ({𝑅1 < 𝑅2} ∩ {𝑇1 > 𝑇2}) + 𝑃({𝑅2 < 𝑋1} ∩ {𝑇2 > 𝑇1})
= 2𝑃({𝑅1 < 𝑅2} ∩ {𝑇1 > 𝑇2}),

where (𝑅1, 𝑇1) and (𝑅2, 𝑇2) are i.i.d. with the same joint bivariate density function 𝑓(𝑅,𝑇 ) (𝑟, 𝑡) =

𝑔𝑅 (𝑟) 𝑓𝑇 |𝑅 (𝑡 | 𝑟).

Proposition For the gamma multiplicative frailty model, the value of the population Harrell’s in-
dex 𝐶(\) does not depend on the baseline survival function 𝑆0(𝑡). Depending on the value of \, its
value varies in the range [0.25, 0.5]. Lastly, the exact value of 𝐶(\) is given by

𝐶(\) = E(𝑌 | 𝑌 > 0.5) = 𝑆𝑌 ∗

(
1
2

)
,

with 𝑆𝑌 ∗ (𝑡) the survival function of the random variable 𝑌 ∗, which is distributed as Beta(\ + 1, \).

Proof We have

𝐶 = 𝐸 [I(𝑅1 < 𝑅2)I(𝑇1 > 𝑇2)] (A.1)

=

∫
R+

∫
R+

∫
R+

∫
R+
I(𝑟1 < 𝑟2)I(𝑡1 > 𝑡2) 𝑓𝑅,𝑇 (𝑟1, 𝑡1) 𝑓𝑅,𝑇 (𝑟2, 𝑡2)d𝑡1d𝑡2d𝑟1d𝑟2

=

∫
R+

∫
R+
I(𝑟1 < 𝑟2)

[∫
R+

∫
R+
I(𝑡1 > 𝑡2) 𝑓𝑇 |𝑅 (𝑡1 | 𝑟1) 𝑓𝑇 |𝑅 (𝑡2 | 𝑟2)d𝑡1d𝑡2

]
𝑓𝑅 (𝑟1) 𝑓𝑅 (𝑟2)d𝑟1d𝑟2.

Now, the inner double integral can be written as∫
R+

∫
R+
I(𝑡1 > 𝑡2) 𝑓𝑇 |𝑅 (𝑡1 | 𝑟1) 𝑓𝑇 |𝑅 (𝑡2 | 𝑟2)d𝑡1d𝑡2 =

∫
R+

[∫
R+
I(𝑡1 > 𝑡2) 𝑓𝑇 |𝑅 (𝑡1 | 𝑟1)d𝑡1

]
𝑓𝑇 |𝑅 (𝑡2 | 𝑟2)d𝑡2

=

∫
R+

[∫ ∞

𝑡2

𝑓𝑇 |𝑅 (𝑡1 | 𝑟1)d𝑡1
]
𝑓𝑇 |𝑅 (𝑡2 | 𝑟2)d𝑡2 =

∫
R+
𝑆𝑇 |𝑅 (𝑡2 | 𝑟1) 𝑓𝑇 |𝑅 (𝑡2 | 𝑟2)d𝑡2

=

∫
R+

[𝑆0(𝑡2)]𝑟1 𝑓𝑇 |𝑅 (𝑡2 | 𝑟2)d𝑡2 = E
{
[𝑆0(𝑉 )]𝑟1

}
(A.2)

with𝑉 ∼ 𝐹𝑇 |𝑅 (𝑡 | 𝑟2). Now, it is well known that for any absolutely continuous random variable𝑉 ,
the transformed random variables 𝐹𝑉 (𝑉 ) and 𝑆𝑉 (𝑉 ) are both Unif[0, 1]-distributed. In this case,
the survival function of the random variable 𝑉 is [𝑆0(𝑡)]𝑟2 , and therefore [𝑆0(𝑉 )]𝑟2 ∼ Unif [0, 1].
Since

[𝑆0(𝑡)]𝑟1 =
{
[𝑆0(𝑡)]𝑟2

} 𝑟1
𝑟2 ⇐⇒ [𝑆0(𝑉 )]𝑟1 =

{
[𝑆0(𝑡)]𝑟2

} 𝑟1
𝑟2 ∼ [𝑈]

𝑟1
𝑟2 ,

where,𝑈 ∼ Unif [0, 1]. The expression in (A.2) is then equal to

E
©«𝑈
𝑟1
𝑟2 ª®¬ = E


e

log
©«𝑈
𝑟1
𝑟2

ª®®®¬

= E

e
(
𝑟1
𝑟2

)
log(𝑈 )

 = E

e
(
−
𝑟1
𝑟2

)
(− log(𝑈))

 . (A.3)
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It is well known that if 𝑈 ∼ Unif [0, 1], then − log(𝑈) ∼ Exp(1). Hence the expected value in (A.3)
coincides with the moment generating function of the Exp(1) random variable evaluated as the
(negative) value −𝑟1/𝑟2. Since 𝑀𝐺𝐹Exp(1) (𝑡) = (1 − 𝑡)−1, and it is defined for 𝑡 < 1, it is always
defined at −𝑟1/𝑟2 for any positive 𝑟1 and 𝑟2. Hence the inner integral in (A.1) is equal to

𝑀𝐺𝐹Exp(1)

(
−𝑟1
𝑟2

)
=

1

1 + −𝑟1
𝑟2

=
𝑟2

𝑟1 + 𝑟2
.

Putting this all together, the Population Harrell’s index 𝐶 is therefore equal to

𝐶(\) = 2
∫
R+

∫
R+
I(𝑟1 < 𝑟2)

𝑟2
𝑟1 + 𝑟2

𝑓𝑅 (𝑟1) 𝑓𝑅 (𝑟2)d𝑟1d𝑟2

= 2𝑃(𝑅1 < 𝑅2)
∫
R+

∫
R+

𝑟2
𝑟1 + 𝑟2

𝑓(𝑅1,𝑅2 ) |𝑅1<𝑅2 (𝑟1, 𝑟2)𝑟1d𝑟2 = E
(

𝑅2
𝑅1 + 𝑅2

| 𝑅1 < 𝑅2

)
(A.4)

where the 0.5 term in the front comes from the fact that 𝑅1 and 𝑅2 are i.i.d.
Let us now focus on the random variable 𝑌 =

𝑅2
𝑅1 + 𝑅2

. Without conditioning, it is easy to check

that 𝑌 ∼ Beta(\, \), i.e.

𝑓𝑌 ( 𝑦; \) =
1

𝐵𝑒(\, \) 𝑦
\−1(1 − 𝑦)\−1I(0 < 𝑦 < 1), with 𝐵𝑒(\, \) = Γ(\)Γ(\)

Γ(2\) .

For any positive value of \, the density function 𝑓𝑌 ( 𝑦; \) is trivially symmetric in (0, 1) around 0.5,
and it is such that E(𝑌 ) = 0.5.

Let us now turn to the conditioning in the expected value in (A.4). Easily, 𝑅1 < 𝑅2 ⇔ 𝑌 > 0.5,
so that (A.4) becomes

𝐶(\) = E(𝑌 | 𝑌 > 0.5). (A.5)

This allows one to conclude immediately that, since 𝑌 takes values in [0, 1], conditionally on 𝑌 >

0.5 it takes values in [0.5, 1], and therefore the index C must take values in [0.25, 0.5], regardless
of the value of \.

Recall the density function of 𝑌 . By its noted symmetry around 0.5 one can write

𝑓𝑌 |𝑌>0.5( 𝑦) =

𝑓𝑌 ( 𝑦)I
(
𝑦 >

1
2

)
1
2

=
2

𝐵𝑒(\, \) 𝑦
\−1(1 − 𝑦)\−1 I(0 < 𝑦 < 1) I

(
𝑦 >

1
2

)
=

2
𝐵𝑒(\, \) 𝑦

\−1(1 − 𝑦)\−1 I
(
1
2
< 𝑦 < 1

)
.

Then,

𝐶(\) =E
(
𝑌 | 𝑌 >

1
2

)
=

∫
R+
𝑦 𝑓𝑌 ( 𝑦; \)Id𝑦 =

∫ 1

1
2

[
𝑦

2
𝐵𝑒(\, \) 𝑦

\−1(1 − 𝑦)\−1
]

d𝑦

=
2

𝐵𝑒(\, \)

∫ 1

1
2

[
𝑦 (\+1)−1(1 − 𝑦)\−1

]
d𝑦 = 2

𝐵𝑒(\ + 1, \)
𝐵𝑒(\, \)

∫ 1

1
2

𝑓𝑌∗( 𝑦; \)d𝑦
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Figure A.1: population Harrell’s Index in the multiplicative gamma frailty model, for varying \.

where 𝑌 ∗ ∼ Beta(\ + 1, \). Given the definition of the Beta function, this is finally

𝐶(\) = 2
Γ(\ + 1)Γ(\)
Γ(2\ + 1)

Γ(2\)
Γ(\)Γ(\)

∫ 1

1
2
𝑓𝑌∗( 𝑦; \)d𝑦

= 2
\ Γ(\)
2\ Γ(2\)

Γ(2\)
Γ(\)

∫ 1

1
2
𝑓𝑌∗( 𝑦; \)d𝑦 =

1
2

∫ 1

1
2
𝑓𝑌∗( 𝑦; \)d𝑦 = 𝑃

(
𝑌 ∗ >

1
2

)
= 𝑆𝑌 ∗

(
1
2

)
.

Figure A.1 shows the value of the index for varying \.

Note 1 Clearly, 𝐶(\) does not depend on the baseline survival function 𝑆0(𝑡). Depending on the
value of \, its value varies in the range [0.25, 0.5]. Also, the expression A.5 allows one to conclude
immediately that, since 𝑌 takes values in [0, 1], conditionally on 𝑌 > 0.5 it takes values in [0.5, 1],
and therefore the 𝐶(\) must also take values in the same range.

Note 2 The shape of the density function 𝑓𝑌 ( 𝑦; \) is such that as \→ 0, it concentrates the probabil-
ity mass more and more (and symmetrically) near zero and one. As a consequence, the conditional
distribution of𝑌 | 𝑌 > 0.5 becomes concentrated at one. 𝐶(\) being the expected value of that ran-
dom variable, it should indeed be expected to tend to one. Indeed, as \ → 0 the frailty random
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variable is Gamma(\, \) with mean one and variance that tends to infinity, and the [𝑆0(𝑡)]𝑟 sur-
vival functions corresponding to the widely moving values 𝑟 will be very far indeed, and so will be
the survival times that they produce. Conversely, as \ → ∞, 𝑓𝑌 ( 𝑦; \) becomes concentrated more
and more around the mean, 0.5. Indeed, indexing \ in the natural numbers, as \→ ∞ one has that
𝑌 converges in probability to 0.5. This is the case of no frailty, since 𝑋 becomes degenerate at one.
In this case the fact that Harrell’s index will tend to 0.5 is also, by a simple symmetry argument, to
be expected.

Note 3 Given the closed form of 𝐶(\), if the MLE \̂ of theta is available, then the approximate
large sample distribution of 𝐶(\̂) can be obtained by a simple application of the delta method.
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A.3 Data construction

There are several useful registries available, including:

1. “barn_clean” - A registry specifically focused on information about children.

2. “biomor_clean” - A registry specifically dedicated to biological mothers.

3. “cancer_clean” - A registry that focuses on cancer cases.

4. “death_clean” - A registry that records deaths.

5. “demografi_clean” - A general registry containing information about the subject’s birthday
and sex.

6. “migrationer_clean” - A registry that tracks emigration and immigration events.

7. “syskon_clean” - A registry that documents sibling relationships.

Initially, our process involves cleaning these registries to extract or modify various variables,
as also the survival couple, that are necessary for our analysis. We then proceed to merge all of
these registries together.

A.3.1 Cleaning Registries

We will provide a description of the contents within each registry, outline our requirements, and
explain our approach to managing each one effectively.

• BARN REGISTRY: this dataset contains information about the biological children of each sub-
ject. It includes the date of birth and sex of each child. By analyzing this dataset, we can
derive valuable covariates such as the parity for each woman (whether she has at least one
child or not), the number of biological children for each woman, and the age at which each
child was born. Most importantly, we can identify the age at which each woman had her
first child, which serves as an indicative risk factor for breast cancer.

• BIOMOR REGISTRY: the dataset provides information about the biological mother of each
subject. There are no duplicate entries for the mothers, as each subject has a unique bi-
ological mother. Consequently, each row in the dataset corresponds to a different subject,
ensuring that no ties or repetitions exist.

• CANCER REGISTRY: the dataset contains information on various tumor types, and our first
step is to select cases related to breast cancer. Breast cancer cases are identified using differ-
ent classifications, including International Classification of Diseases (ICD) codes. Specifically,
"ICD7" identifies breast cancer through codes starting with 170 [3], "ICD9" with 174 [5], and
both "ICDO10" and "ICDO3" with C050 [6, 4]. Since there are no missing entries in the ICD7
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variable, we can use it to select breast cancer cases. Once breast cancer cases are selected,
we examine whether the classification in other variables (ICDO3, ICD9, and ICDO10) aligns
with the ICD7 classification. There are five special cases that require attention: one woman
is identified as having a malignant neoplasm in genital organs (ICD9 = 1844), two with a non-
specified neoplasm (ICD9 = 1991, ICDO10 = C809), one with a placenta neoplasm (ICDO3 =
C589), and one with lymph nodes of axilla or arm neoplasm (ICDO3 = C773) [4, 5, 6]. Con-
sidering the nature of breast cancer, which is part of the genitalia, and the fact that a breast
cancer can spread to lymph nodes, we retain four of these special cases. However, we remove
the case of placenta neoplasm in ICDO3 because it does not coincide with a breast cancer case
in ICD7. The dataset contains multiple rows for each subject, as breast cancer can develop
over different visits. Since our focus is on the first occurrence of invasive cancer, we can
identify the time of breast cancer by the visit when it was initially detected. Another issue
to address is the presence of ties where multiple rows have the same ID number and visit
date. This implies that a patient may have undergone multiple visits on the same day, all of
which have been recorded. To handle this, we keep the first appearance of each visit in the
dataset, as this information is randomly recorded. Thus, we retain the date of breast cancer
onset, which remains consistent across visits on the same day. We lose the specific details
of each visit, which may vary even within the same day of analysis. However, this level of
detail is not relevant to our current analysis. In addition to the visit date, we are interested
in the invasive nature of the cancer (BEN). Specifically, we consider ductal carcinoma in situ
(DCIS) cases identified by BEN=3 as censoring events. This approach allows us to focus solely
on invasive breast cancer as the event of interest. It is important to notice that if a DCIS is
detected followed by an invasive breast cancer, the time to breast cancer is censored at the
DCIS diagnosis. This is because the treatment of DCIS can modify the natural progression
of breast cancer and introduce bias. Hence, we exclude time-to-breast cancer records that
occur after a DCIS diagnosis. After removing the ties, we are left with 20,216 cases of DCIS
out of a total of 265,756, accounting for 7% of all subjects.

• DEMOGRAPHY REGISTRY: the data includes details about the subject’s birthdate and date
of death (FODELSEMAN, DodDatum). Each subject is uniquely identified by their ID number
(LOPNR), and there are no duplicate entries. Consequently, each row corresponds to a distinct
subject.

• MIGRATION REGISTRY: the dataset contains information about the emigration dates (Unt)
and immigration dates (Int) of individuals, which can occur multiple times as they move in
and out of Sweden. Each move is recorded in a separate row, indicating whether it is an em-
igration or immigration and when it occurred. This means that a subject’s ID number may
be repeated multiple times based on their movements. To eliminate this repetition, the data
structure has been transformed from a multiple rows format to a multiple columns format.
Several columns have been created to accommodate the maximum number of subject move-
ments within the dataset. Each row’s information has been transferred to the correspond-
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ing column, identified by the movement time and nature (emigration or immigration). As
a result, each subject now has one row and multiple columns indicating the dates of their
movements. In cases where there have been no movements, the entry is filled with a miss-
ing value. For instance, the column Unt1 represents the first (indicated by "1") emigration
(indicated by "Unt"), while Int2 represents the first immigration (indicated by "Int") back to
Sweden after a recorded emigration, but it is the second movement in total for that subject
(indicated by "2").

• SYSKON REGISTRY: the dataset includes information about sibling relationships on a one-to-
one basis. However, there are ties within the data, as each subject is repeated based on the
number of siblings they have. The dataset provides details about the nature of the sibling
relationship, such as full siblings, half-siblings from the mother’s side (with the same father
or missing information on the father), and half-siblings from the father’s side (with the same
mother or missing information on the mother). For our analysis, we focus solely on females,
as they are of interest to us. Among the female subjects, we specifically select full sisters
for several reasons. Firstly, the genetic factor is considered to be stronger than the environ-
mental factor in the development of breast cancer. This means that the same childhood en-
vironment does not necessarily cause familial aggregation of breast cancer [1]. Secondly, by
selecting full sisters, we indirectly obtain genetic information from the father that can only
be shared if the sisters have the same father. To address the issue of ties and ensure each
subject has a unique row, we transform the data from a multiple rows structure to a mul-
tiple columns structure. We create a set of columns that correspond to the largest number
of sisters within a family in the dataset, which is twelve (there is one family with thirteen
daughters). These columns are labeled as “Sister 1” through “Sister 12”, and each column
contains the ID number of a sister if available. If a subject does not have a particular sister,
a missing value is recorded in the corresponding column. Since we only consider subjects
with sisters in this dataset, each individual has at least one sister, guaranteeing that the col-
umn for the first sister contains complete information regarding the ID numbers. However,
as we move to subsequent sisters, the number of missing values in the columns naturally
increases due to the varying number of sisters among the subjects.

A.3.2 Building Survival Variables

• OBSERVED DATE: the observed date is the first event among diagnosis time, emigration time,
death, DCIS diagnosis, or the end of the follow-up is considered. For all subjects, the last visit
for invasive breast cancer is taken as the end of follow-up, which is set as December 30,
2016. Information on death and emigration is available until December 31, 2018. However,
there will be censored observations with a probability of one, meaning that no information
about breast cancer diagnosis is provided, so the follow-up ends two years prior to the date
of December 31, 2018. In some cases, both information on diagnosis and emigration, or
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diagnosis and death, are available. However, generally, there is not both information on
emigration and death, as one event completely excludes the possibility of observing and
recording the other event. Several subjects do not have information on any of these three
events, and the date of the end of the study is considered as their observed date. The format
of the date variable is set as “YYYY-MM-DD” (where Y stands for year, M stands for month,
and D stands for day). Most observations in the raw dataset already have this format, but
in some cases, manual modifications were made to retain information and ensure proper
handling. There are nine special cases that required adjustments:

– three cases were originally on February 29, but due to an error in the software R, they
have been modified to February 28.

– One case had “0” as the date, and it has been replaced with the end of the follow-up
date.

– Four dates were in the format “YYYY-00-00”, so they have been adjusted by adding the
middle day, 15th, of the middle month of the year, which is June. The computational
process involves adding +615 to the format “YYYY0000” and then transforming it into
“YYYY-MM-DD”.

– Similarly, for the only case without a day in the format “YYYY-MM-00”, the day has been
adjusted to coincide with the 15th of that month. Another possible approach could be
to randomly sample a day of the month between the 1st and the 28th (or 30th, or 31st)
based on the respective month.

• OBSERVED TIME: the follow-up length refers to the time duration between entering the risk
group (typically at birth) and the dropout date. In this context, the follow-up begins at birth
and ends on the observed date, as described in the previous bullet point. The observed time
represents the number of days between birth and the first event that occurs, which can be
either the onset of breast cancer or a censoring event. The observed time can be easily ad-
justed and converted from days to months or years, depending on the desired time unit for
analysis. We transform it from days to years, dividing it for 365.25, adjusting for the leap
year.

• DELTA: this variable serves as an indicator for observing the onset of invasive breast can-
cer. Initially, a vector is created in the cancer registry, assigning a value of one to cases of
invasive breast cancer. During the merging process between the Cancer Registry and the De-
mographic Registry, the variable “delta” will contain missing values for subjects not included
in the Cancer Registry. In order to handle these missing values, they are replaced with zeros.
This is because subjects without a recorded breast cancer onset have not experienced the
event yet, and a value of zero indicates the absence of the event.

• FH: the family history indicator of breast cancer among first-degree female relatives (mother
and sisters) is determined based on their breast cancer cases occurring before the subject’s
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observed date. Main subjects are the women included in the dataset as observations (rows),
while other subjects represent relatives (columns). If all family members are missing, the
family history is also missing. Otherwise, with at least one relative, the family history is
assigned a value of zero or one. If only censoring cases exist before the subject’s observed
time, the family history is negative; otherwise, it is positive. Ties in observed times lead to
a negative family history, requiring breast cancer cases to occur at least one day before the
subject’s analysis time to be considered.

A.4 Reliability of the Cure-Rate assumption

We investigate the reliability of the tail of the Kaplan-Meier curve. Although the Swedish meticu-
lous data collection process should alleviate any doubts, we decide to conduct an additional ver-
ification using the Swedish life tables, which are accessible online [2]. Specifically, we examine
the ultracentenary women from 2017 and 2018, which correspond to the years immediately after
the end of the follow-up into the dataset. Furthermore, in those years we have information about
death and emigration. In the Swedish life tables, we focus on the column for hazard function and
the column for survival function.

Age Hazard 2017 Survival 2017 Hazard 2018 Survival 2018
100 0.36682 0.50 0.36518 0.50
101 0.39208 0.50 0.39067 0.50
102 0.41667 0.50 0.41549 0.50
103 0.44033 0.50 0.43938 0.50
104 0.46284 0.50 0.46212 0.50
105 0.48404 0.50 0.48353 0.50
106 0.50382 0.50 0.50349 0.50
107 0.52209 0.50 0.52192 0.50
108 0.53883 0.50 0.53880 0.50
109 0.55405 0.50 0.55414 0.50

The life table must be replicated by our dataset. If the tail is reliable, this means that ultra-
centenary subjects are truly still alive by the end of the study and they have their censoring event
(either death or emigration) just after the end of the follow-up. If the recorded data are correct we
expect to find a similar proportion of how many died in those years. Trivially, we only consider
censoring until the 2018 because we do not have any information further.

The hazard of dying after being centenary is in mean 0.5315. We compute the proportion of
deaths in the biennal out of the total of alive people. The result is 0.5037, that is very similar to
the life table one. From these results we can claim that the cure-rate assumption holds, because
of the presence of old alive women that do not experience the event breast cancer eventually, no
matter how long they will live. For completeness of results, we report the table of frequency of
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ultracentenary women in the dataset resulting in the higher number of women which are 101
years old (32.7%).

Age Frequency
100 0.227
101 0.327
102 0.150
103 0.103
104 0.050
105 0.030
106 0.040
107 0.018
108 0.013
109 0.013
110 0.008
111 0.005
112 0.008
113 0.005
114 0.003



Appendix B

B.1 Two-latent-classes Cure-Rate model

Families are divided into two risk groups characterized by different hazard functions. We make the
first assumption on the proportionality of the hazard functions, i.e. _1(𝑡) = _0(𝑡)𝛼. The baseline
hazard _0(𝑡) needs to be fixed (e.g. Exponential, Weibull, Gamma).

We make a second assumption on the cure-rate. There is a proportion of all population that
is cured i.e. that will never experience the event of interest no matter how long they live. This
phenomenon is observed in both risk groups, but with different magnitudes. Indeed, in the high-
risk group, the cure-rate is lower than in the low-risk group. We can appreciate this last assumption
in representing the hazard function _ (𝑡) = 𝑓 (𝑡)/𝑆(𝑡) as composed of a mixture of two distributions
in picture B.1: the closest distribution to zero is representing the observed events, while the other,
around e.g. 𝑇 = 1000, is the area of the events we never observe.

0 T = 1000

Figure B.1: cure-rate mixture density function.
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The density function can be written as a mixture of two components, i.e.: 𝑓𝑇 (𝑡) = 𝑝 𝑓1(𝑡) + (1 −
𝑝) 𝑓2(𝑡) where (1− 𝑝) is the cure-rate (then, 𝑝 is the proportion of subjects experiencing the event).
Similarly, the survival function is 𝑆𝑇 (𝑡) = 𝑃(𝑇 ≥ 𝑡) = 𝑝𝑃(𝑇1 ≥ 𝑡) + (1 − 𝑝)𝑃(𝑇2 ≥ 𝑡). Hence, the
hazard functions for the low and high-risk groups are respectively:

_0(𝑡) =
𝑝 𝑓1(𝑡) + (1 − 𝑝) 𝑓2(𝑡)
𝑝𝑆1(𝑡) + (1 − 𝑝)𝑆2(𝑡)

_1(𝑡) = 𝛼
[
𝑝 𝑓1(𝑡) + (1 − 𝑝) 𝑓2(𝑡)
𝑝𝑆1(𝑡) + (1 − 𝑝)𝑆2(𝑡)

]

We can simplify the formulae by just giving a few considerations on the density and survival
functions. We divide the time axis into two intervals, i.e.: 𝐼1 and 𝐼2 (see e.g. Figure B.2).

Figure B.2: two time intervals of the total follow-up.

In interval 𝐼1 the density function and the survival function of the right tail population assume
values 𝑓2(𝑡) = 0, 𝑆2(𝑡) = 1, then the overall quantities are 𝑓𝑇 (𝑡) = 𝑝 𝑓1(𝑡), 𝑆𝑇 (𝑡) = 𝑝𝑆1(𝑡) + (1 − 𝑝).
While in interval 𝐼2 the density and survival functions from population one are null: 𝑓1(𝑡) = 0,
𝑆1(𝑡) = 0. Then, the overall quantities are 𝑓𝑇 (𝑡) = (1 − 𝑝) 𝑓2(𝑡), 𝑆𝑇 (𝑡) = (1 − 𝑝)𝑆2(𝑡). Hence, the
hazard functions take different values according to the interval:

_𝐿(𝑡) =


𝑝 𝑓1 (𝑡)
𝑝𝑆1 (𝑡)+(1−𝑝) 𝐼1 : [0 − 200];

_2(𝑡) = 𝑓2 (𝑡)
𝑆2 (𝑡) 𝐼2 : [200 − 1000] .

_𝐻 (𝑡) = 𝛼_𝐿(𝑡) =

𝛼 · 𝑝 𝑓1 (𝑡)

𝑝𝑆1 (𝑡)+(1−𝑝) 𝐼1;

𝛼 · _2(𝑡) = 𝛼 𝑓2 (𝑡)
𝑆2 (𝑡) 𝐼2,

where the subscript “L” and “H” stay for low-risk and high-risk group hazard function.

Notice that the cure-rate structure does not hold for the high-risk group hazard function. Sim-
ilarly, where the cure-rate structure is introduced the PH assumption does not hold, i.e.:

𝛼
𝑝 𝑓1(𝑡)

𝑝𝑆1(𝑡) + (1 − 𝑝) ≠
�̃� 𝑓1(𝑡)

�̃�𝑆1(𝑡) + (1 − �̃�)

where at left only the PH assumption holds, and at right only the cure-rate structure holds. We
can handle this issue by finding a relation between 𝛼 and �̃�. We start from the rate of the two
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quantities:

𝛼

𝑝 𝑓1(𝑡)
𝑝𝑆1(𝑡) + (1 − 𝑝)

�̃� 𝑓1(𝑡)
�̃�𝑆1(𝑡) + (1 − �̃�)

= 0 ⇐⇒ 𝛼𝑝 𝑓1(𝑡) ( �̃�𝑆1(𝑡) + (1 − �̃�)) = �̃� 𝑓1(𝑡) (𝑝𝑆1(𝑡) + (1 − 𝑝))

⇐⇒ �̃�(𝑆1(𝑡) − 1)𝛼𝑝 𝑓1(𝑡) + 𝛼𝑝 𝑓1(𝑡) − �̃� 𝑓1(𝑡) (𝑝𝑆1(𝑡) + (1 − 𝑝)) = 0

⇐⇒ �̃� = 0
−𝛼𝑝 𝑓1(𝑡)

(𝑆1(𝑡) − 1)𝛼𝑝 𝑓1(𝑡) − 𝑓1(𝑡) (𝑝𝑆1(𝑡) + (1 − 𝑝))

⇐⇒ 1
�̃�
= 0 − (𝑆1(𝑡) − 1)𝛼𝑝 𝑓1(𝑡)

𝛼𝑝 𝑓1(𝑡)
+ 𝑓1(𝑡) (𝑝𝑆1(𝑡) + (1 − 𝑝))

𝛼𝑝 𝑓1(𝑡)
= −(𝑆1(𝑡) − 1) + 𝑝𝑆1(𝑡) + (1 − 𝑝)

𝛼𝑝

= 𝐹1(𝑡) +
𝑆1(𝑡)
𝛼

+ 1 − 𝑝

𝑝

1
𝛼
= 𝐹1(𝑡) +

1
𝛼

[
𝑆1(𝑡) +

1 − 𝑝

𝑝

]
⇐⇒ 1

�̃�
= 1 − 𝑆1(𝑡)

[
1
𝛼
− 1

]
+ 1
𝛼

(
1 − 𝑝

𝑝

)
Hence, say we use 𝑆1(𝑡) = 1/2 because we approximate

∫
𝑆1(𝑡)d𝑡 = E(𝑇1). Then, the computa-

tion brings to

1
�̃�
= 1 − 1

2

(
1
𝛼
− 1

)
+ 1
𝛼

(
1 − 𝑝

𝑝

)
= 1 + 1

2
− 1
2
1
𝛼
+ 1
𝛼

(
1
𝑝
− 1

)
=
3
2
+ 1
𝛼

(
1
𝑝
− 3
2

)
⇐⇒ �̃� =

[
3
2
+ 1
𝛼

(
1
𝑝
− 3
2

)]−1
.

Approximately, the difference between the values of 1/�̃� at 𝑆1(𝑡) = 0 and 𝑆1(𝑡) = 1 is |1/𝛼 − 1|.
We prove this through the following computation:

1
�̃�
=


1 + 1

𝛼

(
1 − 𝑝

𝑝

)
𝑆1(𝑡) = 0

1 −
(
1
𝛼
− 1

)
+ 1
𝛼

(
1 − 𝑝

𝑝

)
𝑆1(𝑡) = 1

1 + 1
𝛼

(
1 − 𝑝

𝑝

)
− 1 +

(
1
𝛼
− 1

)
− 1
𝛼

(
1 − 𝑝

𝑝

)
=
1
𝛼
− 1 ⇒ 1

�̃�(0) −
1

�̃�(1) ≤ | 1
𝛼
− 1|

We want to explore the link between 𝛼 and �̃� =

[
3
2 +

1
𝛼

(
1
𝑝 −

3
2

)]−1
. We would like to use a PH

estimate when the PH assumption does not hold. We apply another approach to have a formula of
the �̃� starting from the definition with cure-rate structure, i.e.:

𝑝𝐿 = 𝑃(𝑇 ≤ 150|𝐿) = 1 − 𝑆𝑇 (150|𝐿) = 1 − e−
∫ 150
0 _𝐿 (𝑢)d𝑢

𝑝𝐻 = 𝑃(𝑇 ≤ 150|𝐻) = 1 − 𝑆𝑇 (150|𝐻) = 1 − e−𝛼
∫ 150
0 _𝐿 (𝑢)d𝑢 = 1 − [𝑆𝑇 (150|𝐿)]𝛼

𝑝𝐻 = 1 − (1 − 𝑝𝐿)𝛼

where 150 is just an arbitrary end of the study. An interesting question is about the difference
between

1 − (1 − 𝑝𝐿)𝛼 vs.
[
3
2
+ 1
𝛼

(
1
𝑝𝐿

− 3
2

)]−1
.
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Figure B.3: proportional hazard vs cure-rate

where at left the PH holds, and at right the cure-rate holds. In Figure B.3 we study the relation
between the aforementioned quantities. We can notice that they are similar in each of the four
considered cases (in black the 45 degrees bisector), given different thresholds for 𝑝𝐿 and 𝛼, respec-
tively at 0.15 and 0 and the labels are 1) 𝛼 > 0 and 𝑝𝐿 > 0.15, 2) 𝛼 < 0 and 𝑝𝐿 > 0.15, 3) 𝛼 > 0 and
𝑝𝐿 < 0.15, 4) 𝛼 < 0 and 𝑝𝐿 < 0.15.

B.2 The observed data likelihood for the Lehmann cure-rate model

Recall the usual notation 𝑋 = min(𝑇,𝑈) and Δ = I(𝑇 ≤ 𝑈) for the bivariate observed random
variable arising from survival data𝑇 independently right censored by the random variable𝑈 . It is
easy to check that when (𝑇,𝑈) has joint density function 𝑓(𝑇,𝑈 ) (𝑡, 𝑢) = 𝑓𝑇 (𝑡) 𝑓𝑈 (𝑢), the distribution
of (𝑋, Δ) is proportional to [ 𝑓𝑇 (𝑥)]𝛿 [𝑆𝑇 (𝑥)]1−𝛿. When the pairs (𝑇𝑖 ,𝑈𝑖) are i.i.d. for 𝑖 = 1, . . . , 𝑛,
the product of such terms represents the observed data likelihood that can be maximized to learn
about the distribution 𝐹𝑇 (𝑡) (𝐹𝑈 (𝑢) is typically not of interest). In the following,𝑈 is still assumed
to be independent of 𝑇 .

Now, consider the cure-rate model 𝑆(𝑡) = 𝑝 + (1 − 𝑝)𝑆(𝑡), with �̃� (𝑡) the (proper) conditional
density function of the time-to-event random variable for the “cases,” i.e. for those subjects who
will eventually experience the event of interest. Notice that 𝑇 has a positive probability 𝑝 of being
equal to +∞ (or to an extremely large number, as this model is sometimes also described). For ease
of notation, below we write “∞” for “+∞.”

Proposition A For the cure-rate model 𝑆(𝑡) = 𝑝+ (1− 𝑝)𝑆(𝑡), the contribution to the observed data
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likelihood by one observation (𝑋, Δ) is proportional to the quantity
[
(1 − 𝑝) �̃� (𝑥)

]𝛿 [
𝑝 + (1 − 𝑝)𝑆(𝑥)

]1−𝛿.

Proof. Consider the probability 𝑃(𝑋 ∈ [𝑥, 𝑥 + Δ𝑥), Δ = 0) for a non-negative, finite 𝑥. Define the set
𝐴𝑇 (𝑥) = {(𝑡, 𝑢) ∈ R+× R+ : 𝑢 ∈ [𝑥, 𝑥 + Δ𝑥), 𝑡 ≥ 𝑢}. We have

𝑃(𝑋 ∈ [𝑥, 𝑥 + Δ𝑥), Δ = 0) = 𝑃((𝑇,𝑈) ∈ 𝐴𝑇 (𝑥))
= 𝑃((𝑇,𝑈) ∈ 𝐴𝑇 (𝑥) | 𝑇 < ∞)𝑃(𝑇 < ∞) + 𝑃((𝑇,𝑈) ∈ 𝐴𝑇 (𝑥) | 𝑇 = ∞)𝑃(𝑇 = ∞).

It is easy to check that conditionally on𝑇 < ∞, 𝑇 and𝑈 remain independent, with joint density
function 𝑓(𝑇,𝑈 ) |𝑇<∞(𝑡, 𝑢) = �̃� (𝑡) 𝑓𝑈 (𝑢) on R+× R+. Therefore,

𝑃(𝑋 ∈ [𝑥, 𝑥 + Δ𝑥), Δ = 0) = (1 − 𝑝)
∫ 𝑥+Δ𝑥

𝑥

∫ ∞

𝑢
�̃� (𝑡) 𝑓𝑈 (𝑢)d𝑡 d𝑢 + 𝑝

∫ 𝑥+Δ𝑥

𝑥
𝑓𝑈 (𝑢)d𝑢

= (1 − 𝑝)
∫ 𝑥+Δ𝑥

𝑥
𝑓𝑈 (𝑢)𝑆(𝑢)d𝑢 + 𝑝

∫ 𝑥+Δ𝑥

𝑥
𝑓𝑈 (𝑢)d𝑢 ≈ (1 − 𝑝) (Δ𝑥) 𝑓𝑈 (𝑥)𝑆(𝑥) + 𝑝 (Δ𝑥) 𝑓𝑈 (𝑥)

= (Δ𝑥)
[
𝑓𝑈 (𝑥)

(
𝑝 + (1 − 𝑝)𝑆(𝑥)

)]
.

Now, define the set 𝐴𝑈 (𝑥) = {(𝑡, 𝑢) ∈ R+×R+ : 𝑡 ∈ [𝑥, 𝑥+Δ𝑥), 𝑢 ≥ 𝑡}. For Δ = 1, slightly different
steps yield

𝑃(𝑋 ∈ [𝑥, 𝑥 + Δ𝑥), Δ = 1) = 𝑃((𝑇,𝑈) ∈ 𝐴𝑈 (𝑥))
= 𝑃((𝑇,𝑈) ∈ 𝐴𝑈 (𝑥) | 𝑇 < ∞)𝑃(𝑇 < ∞) + 𝑃((𝑇,𝑈) ∈ 𝐴𝑈 (𝑥) | 𝑇 = ∞)𝑃(𝑇 = ∞)

= (1 − 𝑝)
∫ 𝑥+Δ𝑥

𝑥

∫ ∞

𝑡
𝑓𝑈 (𝑢) �̃� (𝑡)d𝑢, d𝑡 + 0 = (1 − 𝑝)

∫ 𝑥+Δ𝑥

𝑥
�̃� (𝑡)𝑆𝑈 (𝑡)d𝑡 ≈ (Δ𝑥) (1 − 𝑝) �̃� (𝑥)𝑆𝑈 (𝑥).

Dividing by Δ𝑥, letting Δ𝑥 → 0, and writing the two terms in compact form produces the con-
tribution[
𝑓𝑈 (𝑥)

(
𝑝 + (1 − 𝑝)𝑆(𝑥)

)]𝛿 [
(1 − 𝑝) �̃� (𝑥)𝑆𝑈 (𝑥)

]1−𝛿
=

(
𝑝 + (1 − 𝑝)𝑆(𝑥)

)𝛿 [
(1 − 𝑝) �̃� (𝑥)

]1−𝛿
[ 𝑓𝑈 (𝑥)]𝛿 [𝑆𝑈 (𝑥)]1−𝛿 ∝

(
𝑝 + (1 − 𝑝)𝑆(𝑥)

)𝛿 [
(1 − 𝑝) �̃� (𝑥)

]1−𝛿
.

□

Let us now turn to the Lehmann cure-rate model structure.

Proposition B If 𝑆𝑟 (𝑡) = 𝑆(𝑡 | 𝑅 = 𝑟) =
[
𝑝 + (1 − 𝑝)𝑆(𝑡)

]𝑟 (𝑟 > 0), the contribution to the ob-
served data likelihood provided by one observation (𝑋, Δ) is proportional to the quantity[

(1 − 𝑝) �̃� (𝑥)
𝑝 + (1 − 𝑝)𝑆(𝑥)

]𝛿
𝑆𝑟 (𝑥) 𝑟𝛿.

Proof. From earlier results, we can write 𝑆𝑟 (𝑡) =
[
𝑝 + (1 − 𝑝)𝑆(𝑡)

]𝑟
= 𝑝𝑟 + (1 − 𝑝𝑟)𝑆𝑟 (𝑡), for

𝑆𝑟 (𝑡) =
[
𝑝 + (1 − 𝑝)𝑆(𝑡)

]𝑟 − 𝑝𝑟

1 − 𝑝𝑟
,
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and
�̃�𝑟 (𝑡) =

1 − 𝑝

1 − 𝑝𝑟
𝑟
(
𝑝 + (1 − 𝑝)𝑆(𝑡)

)𝑟−1
�̃� (𝑡).

One can then use Proposition A for this new cure-rate model, replacing 𝑝 by 𝑝𝑟 , 𝑆(𝑡) by 𝑆𝑟 (𝑡), and
�̃� (𝑡) by �̃�𝑟 (𝑡). Simple algebra then yields the result. □

B.3 Agreement probabilities

We compute the probabilities of agreement 𝑃(𝐹𝐻 = 𝑅 | 𝑅 = 1), 𝑃(𝐹𝐻 = 𝑅 | 𝑅 = 0) and the more
interesting probabilities of correct classification and misclassification:

𝑃(𝐹𝐻 = 1 | 𝑅 = 1) = 𝑝11

𝑃(𝐹𝐻 = 0 | 𝑅 = 0) = 𝑝00

𝑃(𝐹𝐻 = 1 | 𝑅 = 0) = 𝑝10

𝑃(𝐹𝐻 = 0 | 𝑅 = 1) = 1 − 𝑝11

First, we compute the probability that 𝐹𝐻 (𝑡) = 0, with hypothetically the three closest family
member, the grandmother, the mother and the first sister, so that we have a first measure of how
well the indicator represents the true latent risk group membership:

𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) ⊥
= 𝑃(𝑡𝑔 ≥ 𝑡 + 60)𝑃(𝑡𝑚 ≥ 𝑡 + 30)𝑃(𝑡𝑠 ≥ 𝑡) = 𝑆𝑇𝑔 (𝑡 + 60)𝑆𝑇𝑚 (𝑡 + 30)𝑆𝑇𝑠 (𝑡),

assuming that there are, easily, constant 30 years gap of age difference between each genera-
tion 1.

For simplicity, we start computations from the trivial Exponential distribution and we recall
that there is not a generational Exponential survival change, so survival functions are 𝑆𝑇𝑔 = 𝑆𝑇𝑚 =

𝑆𝑇𝑠 = 𝑆𝑇 . The marginal probability of the indicator in the traditional survival case is:

𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) = e−_ (3𝑡+90) = e−3_ (𝑡+30) .

This probability in the cure-rate case is:

𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) =
(
𝑝 + (1 − 𝑝)e−_ (𝑡+60)

) (
𝑝 + (1 − 𝑝)e−_ (𝑡+30)

)
·
(
𝑝 + (1 − 𝑝)e−_𝑡

)
.

The plot is in Figure B.4. The difference between the two indicators can assume the values: (𝐹𝐻 (𝑡)−
𝑅) ∈ {−1, 0, 1}. We would like to be as close as possible to the scenario with no difference between
the indicators. Importantly, 𝑅 is fixed while 𝐹𝐻 (𝑡) depends on 𝑡.

We now compute the probabilities of the agreement for low-risk group and high-risk group
membership. For the survival case we recall that the hazard function in the low (high) risk group

1To incorporate the possibility of improved survival across generations, we introduce distinct survival functions
for family members: 𝑆𝑇𝑔 , 𝑆𝑇𝑚 , and 𝑆𝑇𝑠 . This allows us to capture any potential improvements in survival over time.
In the generational survival improvement case we obtain the probability 𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) = [𝑆𝑇 (𝑡 + 60)]𝛽2𝑚 [𝑆𝑇 (𝑡 +
30)]𝛽𝑚 [𝑆𝑇 (𝑡)], where 𝛽𝑚 represents a parameter that measures the generational difference in survival.
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Figure B.4: probability of FH = 0 (PFHt0) vs Probability of FH = 1 (PFHt1).

is _0(𝑡) (_1(𝑡) = 𝛼 · _0(𝑡)), keeping in mind that _ (𝑡 | 𝑅 = 0) = _0 = _ and _ (𝑡 | 𝑅 = 1) = _1(𝑡) =
𝛽_0(𝑡) = 𝛽_. But this does not hold in the disease development case. The probability of agreement
in the low-risk group over the whole R+ time axis is:

𝑃(𝐹𝐻 (𝑏 + 𝑡) = 𝑅 | 𝑅 = 0) =
∫ ∞

0
𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) 𝑓0(𝑡)d𝑡

=

∫ ∞

0

(
𝑝 + (1 − 𝑝)e−_ (𝑡+60)

) (
𝑝 + (1 − 𝑝)e−_∗ (𝑡+30)

) (
𝑝 + (1 − 𝑝)e−_∗𝑡

)
(1 − 𝑝)_e−_𝑡d𝑡.

Similarly, we compute the probability of agreement for the high-risk group:

𝑃(𝐹𝐻 (𝑏 + 𝑡) = 𝑅 | 𝑅 = 1) =
∫ ∞

0
𝑃(𝐹𝐻 (𝑏 + 𝑡) = 1) 𝑓1(𝑡)d𝑡

=

∫ ∞

0
(1 − 𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0)) 𝑓1(𝑡, _)d𝑡 =

∫ ∞

0
𝑓1(𝑡, _) − 𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) 𝑓1(𝑡, _)d𝑡

=

∫ ∞

0
𝑓1(𝑡, _)d𝑡 −

∫ ∞

0
𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) 𝑓1(𝑡, _)d𝑡 = 1 −

∫ ∞

0
𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) 𝑓1(𝑡, _)d𝑡

= 1 −
∫ ∞

0
𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) (1 − �̃�)

(
�̃� (𝑡)𝛼
1 − �̃�

)
(𝑝 + (1 − 𝑝)𝑆(𝑡))𝛼−1d𝑡.

One would like both probabilities to be large. For the cure-rate case, the conditional probability
of agreement in the low-risk group over the whole R+ time axis is

𝑃(𝐹𝐻 (𝑏 + 𝑡) = 𝑅 | 𝑅 = 0) =
∫ ∞

0
𝑃(𝐹𝐻 (𝑏 + 𝑡) = 0) 𝑓0(𝑡)d𝑡.

Easily, we obtain the conditional probability of agreement for the high-risk group, such as

𝑃(𝐹𝐻 (𝑏 + 𝑡) = 𝑅 | 𝑅 = 1) =
∫ ∞

0
𝑃(𝐹𝐻 (𝑏 + 𝑡) = 1) 𝑓1(𝑡)d𝑡
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We can also analyse the misclassification probabilities (notice that we implicitly assume that
the proportion of high-risk families 𝑃(𝑅 = 1) = ℎ is constant over time). For the cure-rate case the
conditional correct classification probabilities are

𝑃(𝐹𝐻 (𝑡) = 0 | 𝑅 = 0) = 𝑆0(𝑡 + 60)𝑆0(𝑡 + 30)𝑆0(𝑡)
= (𝑝 + (1 − 𝑝)𝑆(𝑡 + 60)) (𝑝 + (1 − 𝑝)𝑆(𝑡 + 30)) (𝑝 + (1 − 𝑝)𝑆(𝑡))
= (𝑝 + (1 − 𝑝)𝑒−_ (𝑡+60) ) (𝑝 + (1 − 𝑝)𝑒−_ (𝑡+30) ) (𝑝 + (1 − 𝑝)𝑒−_ (𝑡) )
𝑃(𝐹𝐻 (𝑡) = 0 | 𝑅 = 1) = 𝑆1(𝑡 + 60)𝑆1(𝑡 + 30)𝑆1(𝑡) = (𝑆0(𝑡 + 60)𝑆0(𝑡 + 30)𝑆0(𝑡))𝛼

= ((𝑝 + (1 − 𝑝)𝑒−_ (𝑡+60) ) (𝑝 + (1 − 𝑝)𝑒−_ (𝑡+30) ) (𝑝 + (1 − 𝑝)𝑒−_ (𝑡) ))𝛼

Clearly,

𝑃(𝐹𝐻 (𝑡) = 1 | 𝑅 = 0) = 1 − 𝑆0(𝑡 + 60)𝑆0(𝑡 + 30)𝑆0(𝑡)
𝑃(𝐹𝐻 (𝑡) = 1 | 𝑅 = 1) = 1 − 𝑆1(𝑡 + 60)𝑆1(𝑡 + 30)𝑆1(𝑡)

where 𝑆0(𝑡) = 𝑝 + (1 − 𝑝)𝑒−_ (𝑡) , and 𝑆1(𝑡) = (𝑝 + (1 − 𝑝)𝑒−_ (𝑡) )𝛼.
A graphical visualization of these probabilities is illustrated in Figure B.5. We also compute the
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Figure B.5: probability of 𝐹𝐻 = 0 conditional to 𝑅 = 0 (PFHt0R0) vs. Probability of (𝐹𝐻 = 1
conditional to 𝑅 = 1 (PFHt1R1).

inverse probabilities of correct classification only for the survival case, i.e.: (i) 𝑃(𝑅 = 0 | 𝐹𝐻 (𝑡) = 0)
and (ii) 𝑃(𝑅 = 1 | 𝐹𝐻 (𝑡) = 1). These are:

(𝑖) 𝑃(𝑅 = 0 | 𝐹𝐻 (𝑡) = 0) = 𝑃(𝐹𝐻 (𝑡) = 0 | 𝑅 = 0)𝑃(𝑅 = 0)
𝑃(𝐹𝐻 (𝑡) = 0)

=
𝑃(𝐹𝐻 (𝑡) = 0 | 𝑅 = 0) (1 − ℎ)

𝑃(𝐹𝐻 (𝑡) = 0 | 𝑅 = 0) (1 − ℎ) + 𝑃(𝐹𝐻 (𝑡) = 0 | 𝑅 = 1)ℎ =
𝑓 (𝑡, 𝑝, _) (1 − ℎ)

𝑓 (𝑡, 𝑝, _) (1 − ℎ) + ( 𝑓 (𝑡, 𝑝, _)𝛼) ℎ
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and

(𝑖𝑖) 𝑃(𝑅 = 1 | 𝐹𝐻 (𝑡) = 1) = 𝑃(𝐹𝐻 (𝑡) = 1 | 𝑅 = 1)𝑃(𝑅 = 1)
𝑃(𝐹𝐻 (𝑡) = 1)

=
𝑃(𝐹𝐻 (𝑡) = 1 | 𝑅 = 1)ℎ

𝑃(𝐹𝐻 (𝑡) = 1 | 𝑅 = 1)ℎ + 𝑃(𝐹𝐻 (𝑡) = 1 | 𝑅 = 0) (1 − ℎ)

=
(1 − 𝑓 (𝑡, 𝑝, _)𝛼)ℎ

(1 − 𝑓 (𝑡, 𝑝, _)𝛼)ℎ + (1 − 𝑓 (𝑡, 𝑝, _)) (1 − ℎ)

with 𝑓 (𝑡, 𝑝, _) = (𝑝+(1−𝑝)𝑒−_ (𝑡+60) ) (𝑝+(1−𝑝)𝑒−_ (𝑡+30) ) (𝑝+(1−𝑝)𝑒−_ (𝑡) ). With these probabilities,
we describe the distribution of the measurement error when using the observed 𝐹𝐻 (𝑡) instead of
𝑅 in the observed data model. A graphical representation of the trend of these probabilities for
the fixed values _ = 1/90, 𝛼 = 2, ℎ = 0.7 is illustrated in Figure B.6.
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Figure B.6: probability of𝑅 = 0 conditional to 𝐹𝐻 = 0 (PR0FHt0) vs. Probability of𝑅 = 1 conditional
to 𝐹𝐻 = 1 (PR1FHt1).
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B.4 Development of a new indicator FH

Rather then considering 𝐹𝐻 (𝑡) as a binary indicator we may consider it as a function of the event
indicators of the relatives at 𝑡. One may define:

𝐹𝐻∗(𝑡) = 𝑤𝑔I(𝑇𝑔 ≤ 𝑡 + 60) + 𝑤𝑚I(𝑇𝑚 ≤ 𝑡 + 30) + 𝑤𝑠I(𝑇𝑠 ≤ 𝑡)

with 𝑤𝑔 ≤ 𝑤𝑚 ≤ 𝑤𝑠, and 𝑤𝑔 + 𝑤𝑚 + 𝑤𝑠 = 1, so that the death of the grandmother has the smallest
weight since it is more likely to occur. The weights could assume the form 𝑤𝑔 = (1 − 𝑃(I(𝑇𝑔 ≤
𝑡 + 60))) so that as closer to one is the probability of dying, as closer to zero is the weight: 𝑃(I(𝑇𝑔 ≤
𝑡 + 60)) ≈ 1 ⇒ 𝑤𝑔 ≈ 0. We can rewrite the indicator as:

𝐹𝐻∗(𝑡) = (1 − 𝑃(I(𝑇𝑔 ≤ 𝑡 + 60)))I(𝑇𝑔 ≤ 𝑡 + 60)+
+ (1 − 𝑃(I(𝑇𝑚 ≤ 𝑡 + 30)))I(𝑇𝑚 ≤ 𝑡 + 30) + (1 − 𝑃(I(𝑇𝑠 ≤ 𝑡)))I(𝑇𝑠 ≤ 𝑡).

To fix ideas, the 𝐹𝐻 indicator is a linear combination of three indicators: I(𝑇𝑔 ≤ 𝑡+60), I(𝑇𝑚 ≤ 𝑡+30)
and I(𝑇𝑠 ≤ 𝑡). We wonder now how to optimally combine the three indicators in order to assign
the families in the correct risk group with the higher probability. We intend to further develop this
part.

B.5 Extension to subject-specific covariates

In our analysis, we previously assumed that breast cancer onset occurred equally across gener-
ations. However, considering the advancements in detection tools over the years, it is plausible
to assume that breast cancer onset may differ among generations. To capture this generational
difference, we introduce a subject-specific covariate indicating the calendar year of breast can-
cer detection. This covariate allows us to account for variations in breast cancer onset between
daughters, mothers, and grandmothers.

To incorporate this covariate into our model, we assign a weight to the likelihood contribution
of breast cancer that is inversely proportional to the time of onset. This means that the weight
decreases as the onset of breast cancer occurs further in time.

Additionally, we simulate a birthday time window to group women of the same generation
together, facilitating the analysis of generational differences.

It is worth noting that in our model, 𝑅 represents the binary true genetic risk indicator, which
is latent and remains unchanged from birth. To simplify the computational aspect of our analysis,
we adopt an exponential multiplicative structure for the hazard function. This structure allows
us to incorporate frailty risk through an exponential form. Specifically, when considering two risk
groups, we express the hazard function as follows: _1(𝑡) = e𝛼_0(𝑡). The hazard function and the
survival function are given by

_𝑅 (𝑡) = _0(𝑡)e𝛼𝑅e𝛽1𝑧1+···+𝛽𝑘𝑧𝑘 𝑆𝑅 (𝑡) = [𝑆(𝑡)]e𝛼𝑅e𝛽1𝑧1+···+𝛽𝑘 𝑧𝑘
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with 𝑆(𝑡) = 𝑝 + (1 − 𝑝)𝑆(𝑡). So, clearly, when 𝑅 = 0, the low-risk survival function is 𝑆0(𝑡) =

[𝑆(𝑡)]e𝛽1𝑧1+···+𝛽𝑘 𝑧𝑘 , while, with 𝑅 = 1, the high-risk survival function is 𝑆1(𝑡) = [𝑆(𝑡)]e𝛼+𝛽1𝑧1+···+𝛽𝑘 𝑧𝑘 . The
improper density function is obtained:

𝑓𝑅 (𝑡) = − 𝜕

𝜕𝑡
[𝑆(𝑡)]e𝛼𝑅+𝛽′𝑧 = e𝛼𝑅+𝛽

′𝑧 [𝑆(𝑡)]e𝛼𝑅+𝛽′𝑧−1 𝑓 (𝑡),

with 𝑧 = (𝑧1, . . . , 𝑧𝑘) covariate vector, and 𝛽′ the parameter collection. Clearly, the improper den-
sity function will be 𝑓0(𝑡) = e𝛽′𝑧 [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛽′𝑧−1(1 − 𝑝) �̃� (𝑡), and 𝑓1(𝑡) = e𝛼+𝛽′𝑧 [𝑝 + (1 −
𝑝)𝑆(𝑡)]e𝛼+𝛽′𝑧−1(1 − 𝑝) �̃� (𝑡) respectively for 𝑅 = 0/1.

For the low-risk group we have the cure-rate survival function as

𝑆0(𝑡) = [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛽′𝑧 = 𝑝e𝛽′𝑧 + (1 − 𝑝e𝛽′𝑧 )𝑆0(𝑡)

𝑆0(𝑡) =
[𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛽′𝑧 − 𝑝e𝛽′𝑧

1 − 𝑝e𝛽′𝑧
.

Similarly, for the high-risk group the survival function is

𝑆1(𝑡) = [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛼+𝛽′𝑧 = 𝑝e𝛼+𝛽′𝑧 + (1 − 𝑝e𝛼+𝛽′𝑧 )𝑆1(𝑡)

𝑆1(𝑡) =
[𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛼+𝛽′𝑧 − 𝑝e𝛼+𝛽′𝑧

1 − 𝑝e𝛼+𝛽′𝑧
.

Then, also the density can be rewritten so that the new form coincides with a proper density func-
tion multiplied by a constant that is at most equal to one.

𝑓0(𝑡) = (1 − 𝑝e𝛽′𝑧 ) �̃�0(𝑡) = (1 − 𝑝e𝛽′𝑧 )
[

e𝛽′𝑧 [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛽′𝑧−1

1 − 𝑝e𝛽′𝑧
(1 − 𝑝) �̃� (𝑡)

]
�̃�0(𝑡) = − 𝜕

𝜕𝑡
𝑆0(𝑡) = − 𝜕

𝜕𝑡

[𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛽′𝑧 − 𝑝e𝛽′𝑧

1 − 𝑝e𝛽′𝑧

=
e𝛽′𝑧 [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛽′𝑧−1

1 − 𝑝e𝛽′𝑧
(1 − 𝑝)

(
− 𝜕

𝜕𝑡
𝑆(𝑡)

)
=

e𝛽′𝑧 [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛽′𝑧−1

1 − 𝑝e𝛽′𝑧
(1 − 𝑝) �̃� (𝑡)

Similarly, for the high-risk group density function, the density function is

𝑓1(𝑡) =
𝜕

𝜕𝑡
𝑆1(𝑡) =

𝜕

𝜕𝑡

(
𝑝e𝛼+𝛽′𝑧 + (1 − 𝑝e𝛼+𝛽′𝑧 )𝑆1(𝑡)

)
= (1 − 𝑝e𝛼+𝛽′𝑧 )

(
− 𝜕

𝜕𝑡
𝑆1(𝑡)

)
= (1 − 𝑝e𝛼+𝛽′𝑧 ) �̃�1(𝑡)

= (1 − 𝑝e𝛼+𝛽′𝑧 )
[

e𝛼+𝛽′𝑧 [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛼+𝛽′𝑧−1

1 − 𝑝e𝛼+𝛽′𝑧
(1 − 𝑝) �̃� (𝑡)

]
�̃�1(𝑡) = − 𝜕

𝜕𝑡
𝑆1(𝑡) = − 𝜕

𝜕𝑡

[𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛼+𝛽′𝑧 − 𝑝e𝛼+𝛽′𝑧

1 − 𝑝e𝛼+𝛽′𝑧

=
e𝛼+𝛽′𝑧 [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛼+𝛽′𝑧−1

1 − 𝑝e𝛼+𝛽′𝑧
(1 − 𝑝)

(
− 𝜕

𝜕𝑡
𝑆(𝑡)

)
=

e𝛼+𝛽′𝑧 [𝑝 + (1 − 𝑝)𝑆(𝑡)]e𝛼+𝛽′𝑧−1

1 − 𝑝e𝛼+𝛽′𝑧
(1 − 𝑝) �̃� (𝑡)

The closed formula for accurately obtaining the value of 𝑡 depends on the specific survival
baseline distribution 𝑆(𝑡). However, when transitioning from the simple case of the Exponential
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distribution, it becomes challenging to invert the survival distribution and obtain an exact closed-
form solution. Therefore, we do not rely on this method and instead utilize an approximation
using the survival function. Firstly, let us present the closed-form data generation method, and
later we will discuss the approximated procedure.

The data generation with covariates for times-to-event in the low-risk group is given by the
following procedure.

• The time-to-event takes value 𝑇 = +∞ with probability 𝑝e𝛽′𝑧 following a Bernoulli distribu-
tion.

• With probability (1− 𝑝e𝛽′𝑧 ) the time-to-event is obtained from the inverse survival function,
that is given by

𝑆0(𝑡) =
(𝑝 + (1 − 𝑝)𝑆(𝑡))e𝛽′𝑧 − 𝑝e𝛽′𝑧

1 − 𝑝e𝛽′𝑧
= 𝑦 ∼ U[0, 1] ⇐⇒ 𝑡 = 𝑆0( 𝑦)−1.

Similarly, for the high-risk group,

• the time-to-event takes value 𝑇 = +∞ with probability 𝑝e𝛼+𝛽′𝑧 , following a Bernoulli distribu-
tion.

• With probability (1−𝑝e𝛼+𝛽′𝑧 ) the time-to-event is obtained from the inverse survival function,
that is given by

𝑆1(𝑡) =
(𝑝 + (1 − 𝑝)𝑆(𝑡))e𝛼+𝛽′𝑧 − 𝑝e𝛼+𝛽′𝑧

1 − 𝑝e𝛼+𝛽′𝑧
= 𝑦 ∼ U[0, 1] ⇐⇒ 𝑡 = 𝑆1( 𝑦)−1

The approximated data generation for the low-risk group is based on the generation and com-
parison of 𝑢 ∼ 𝑈 (0, 1) to 𝑝e𝛽′𝑧 :

• if 𝑢 < 𝑝e𝛽′𝑧 ⇒ 𝑇 = +∞,

• if else 𝑢 ≥ 𝑝e𝛽′𝑧 ⇒ 𝑢 = [𝑆(𝑡)]e𝛽′𝑧 ⇐⇒ 𝑢1/e𝛽′𝑧 = 𝑝 + (1 − 𝑝)𝑆(𝑡) ⇐⇒ 𝑡 = 𝑆−1

[
𝑢1/e𝛽′𝑧 − 𝑝

1 − 𝑝

]
Similarly, for the high-risk groups 𝑢 ∼ 𝑈 (0, 1) is compared to 𝑝e𝛼+𝛽′𝑧 :

• if 𝑢 < 𝑝e𝛼+𝛽′𝑧 ⇒ 𝑇 = +∞

• if else 𝑢 ≥ 𝑝e𝛼+𝛽′𝑧 ⇒ 𝑢 = [𝑆(𝑡)]e𝛼+𝛽′𝑍 ⇐⇒ 𝑢1/e𝛼+𝛽′𝑧 = 𝑝 + (1 − 𝑝)𝑆(𝑡) ⇐⇒ 𝑡 =

𝑆−1

[
𝑢1/e𝛼+𝛽′𝑧 − 𝑝

1 − 𝑝

]



Appendix C

C.1 The Breslow estimator in the EM algorithm

We go deeply into the EM algorithm structure regarding the frailty context. The first step of the
EM algorithm consists in estimating the frailty parameter \̂ = \̂(𝑥1, . . . , 𝑥𝑛) in function of the data.
In the R package frailtyEM we consider the frailty as distributed according to a Gamma(𝑠ℎ𝑎𝑝𝑒 =
\, 𝑟𝑎𝑡𝑒 = \). The algorithm uses a general full likelihood estimation procedure. The baseline haz-
ard is estimated through the Breslow estimator. We consider the expected number of events oc-
curring at time [𝜏 𝑗 , 𝜏 𝑗+1], given the 𝑙th subject “at risk” at time 𝜏−

𝑗
i.e. belonging to 𝑅(𝜏 𝑗):∑︁

𝑙∈𝑅 (𝜏 𝑗 )
(𝜏 𝑗+1 − 𝜏 𝑗)_ (𝜏 𝑗 | 𝑧𝑙) =

∑︁
𝑙∈𝑅 (𝜏 𝑗 )

(𝜏 𝑗+1 − 𝜏 𝑗)𝑒𝛽
′
𝑧𝑙 _0(𝜏 𝑗)

and setting this equal to the observed number of events 𝑑 𝑗 , it is then

𝑑 𝑗 = _0(𝜏 𝑗) (𝜏 𝑗+1 − 𝜏 𝑗)
∑︁

𝑙∈𝑅 (𝜏 𝑗 )
𝑒𝛽

′
𝑧𝑙 ⇒ _0(𝜏 𝑗) (𝜏 𝑗+1 − 𝜏 𝑗) ≈

∫ 𝑡 𝑗+1

𝑡 𝑗

_0(𝑢)d𝑢 =
𝑑 𝑗∑

𝑙∈𝑅 (𝜏 𝑗 )
𝑒𝛽

′
𝑧𝑙

⇒ Λ̂0(𝑡) =
∑︁
𝜏 𝑗<𝑡


𝑑 𝑗∑

𝑙∈𝑅 (𝜏 𝑗 )
𝑒𝛽

′
𝑧𝑙


where 𝑧𝑙 is the covariate vector for 𝑙th subject, and Λ̂0(𝑡) is the cumulative hazard Breslow esti-
mator.
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Appendix D

D.1 The non-negligibility of censored bservations

In what follows, we assume that the support of 𝑓𝑇 (𝑡) is R+. We show that one cannot simply ignore
the censored cases (Δ𝑖 = I(𝑇𝑖 ≤ 𝐶𝑖) = 0). We consider the empirical survival function estimator
and we assess the case when it is consistent for the true survival function, for fixed 𝑡.

𝑆∗(𝑡) =
∑𝑛
𝑖=1 Δ𝑖 · I(𝑋𝑖 ≥ 𝑡)∑𝑛

𝑖=1 Δ𝑖

𝑆∗(𝑡)
𝑝
→ E(Δ · I(𝑋 ≥ 𝑡))

E(Δ) =
E(I(𝑇 ≤ 𝐶)I(𝑋 ≥ 𝑡))
E(I(𝑇 ≤ 𝐶)) as 𝑛→ ∞

=
E(I(𝑇 ≤ 𝐶)I(𝑋 ≥ 𝑡)I(𝐶 ≥ 𝑡))

E(I(𝑇 ≤ 𝐶)) since 𝑋 = min(𝑇, 𝐶)

=
𝑃(𝑇 ≤ 𝐶, 𝑋 ≥ 𝑡, 𝐶 ≥ 𝑡)

𝑃(𝑇 ≤ 𝐶) ,

to be compared to 𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡). Suppose that the equality holds. Since {𝑇 ≥ 𝑡} ∩ {𝐶 ≥ 𝑇 } ⊆
{𝐶 ≥ 𝑡}, the equality is equivalent to

𝑃(𝑇 ≤ 𝐶,𝑇 ≥ 𝑡)
𝑃(𝑇 ≥ 𝑡) = 𝑃(𝑇 ≤ 𝐶) = 𝑘 ∀𝑡 ≥ 0.

Hence:

𝑃(𝑇 ≤ 𝐶,𝑇 ≥ 𝑡) = 𝑘 · 𝑃(𝑇 ≥ 𝑡)
d
d𝑡

[∫ ∞

𝑡

∫ ∞

𝑢
𝑓𝐶 |𝑇 (𝑐 | 𝑢) 𝑓𝑇 (𝑢)d𝑐d𝑢

]
𝑇⊥𝐶
=

d
d𝑡

[∫ ∞

𝑡
𝑆𝐶 (𝑢) 𝑓𝑇 (𝑢)d𝑢

]
𝐿𝑒𝑖𝑏𝑛𝑖𝑡𝑧

= −𝑆𝐶 (𝑡) 𝑓𝑇 (𝑡).

Since
d
d𝑡
𝑆𝑇 (𝑡) = − 𝑓𝑇 (𝑡), we have

d
d𝑡
𝑃(𝑇 ≤ 𝐶,𝑇 ≥ 𝑡) = −𝑆𝐶 (𝑡) 𝑓𝑇 (𝑡) = −𝑘 𝑓𝑇 (𝑡), i.e. 𝑆𝐶 (𝑡) = 𝑘 ∀𝑡 ≥

0, which implies 𝑆𝐶 (𝑡) = 1 ∀𝑡 ≥ 0 since 𝑆𝐶 (0) = 1. Finally, 𝐶 = +∞ with probability one, and
immediately Δ = 1 with probability one. Notice that without the assumption that the censoring
and the cases are independent, the censoring time does not need to be degenerate at +∞.
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