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Summary

We study the class of first-order locally balanced Metropolis–Hastings algorithms introduced
in Livingstone & Zanella (2022). To choose a specific algorithm within the class, the user must
select a balancing function g : R+ → R+ satisfying g(t) = tg(1/t) and a noise distribution for
the proposal increment. Popular choices within the class are the Metropolis-adjusted Langevin
algorithm and the recently introduced Barker proposal. We first establish a general limiting
optimal acceptance rate of 57% and scaling of n−1/3, as the dimension n tends to infinity among
all members of the class under mild smoothness assumptions on g and when the target distribution
for the algorithm is of product form. In particular, we obtain an explicit expression for the
asymptotic efficiency of an arbitrary algorithm in the class, as measured by expected squared
jumping distance. We then consider how to optimize this expression under various constraints.
We derive an optimal choice of noise distribution for the Barker proposal, an optimal choice
of balancing function under a Gaussian noise distribution, and an optimal choice of first-order
locally balanced algorithm among the entire class, which turns out to depend on the specific target
distribution. Numerical simulations confirm our theoretical findings, and in particular, show that
a bimodal choice of noise distribution in the Barker proposal gives rise to a practical algorithm
that is consistently more efficient than the original Gaussian version.

Some key words: Barker proposal; Locally balanced algorithm; Markov chain Monte Carlo; Metropolis–Hastings
algorithm; Optimal scaling.

1. Introduction

Markov chain Monte Carlo algorithms are the workhorse of many contemporary statisti-
cal analyses and constitute an essential part of the modern data science toolkit. Despite many
advances, however, reliable inference using Markov chain Monte Carlo can still be a cumbersome
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task. It is common for practitioners to dedicate much effort to making careful algorithm design
choices, and adjusting algorithmic tuning parameters to ensure that performance is adequate for
a given problem. Failure to do so can be catastrophic; examples for which a well-designed algo-
rithm performs adequately, but a less carefully chosen alternative does not, are ubiquitous; see,
e.g., Sherlock et al. (2010).

Suitable guidelines on the intelligent design and implementation of Markov chain Monte
Carlo methods are therefore important. They are not always easy to formulate, however, as the
best choice of method can depend on the user and the problem at hand. In some contexts, a
simpler algorithm with less need for adjustment, and for which potential problems are easy to
diagnose, may be preferable. In other contexts, one may be comfortable with more complex
methods which can perform adequately on a larger class of problems if enough fine tuning
is done.

For Metropolis–Hastings algorithms, perhaps the most celebrated guidelines concern the
choice of the optimal acceptance rate (Roberts & Rosenthal, 2001). Rigorous theoretical justi-
fications for certain values tend to be restricted to the case in which the dimension tends to
infinity, and the distribution from which samples are desired has a particular structure, such as a
product form, but empirically the same values are known to be appropriate in many other settings
(Roberts & Rosenthal, 2001). The apparent lack of dependence of these optimal choices on the
target distribution allows particularly simple recommendations to be offered to the user of a given
algorithm. This approach was introduced in the work of Roberts et al. (1997), which provided
the celebrated 0.234 optimal acceptance rate for the random walk Metropolis algorithm. Analo-
gous rates have since been extracted for several other algorithms, notable examples include the
Metropolis-adjusted Langevin algorithm, with optimal rate 0.574 (Roberts & Rosenthal, 1998),
and Hamiltonian Monte Carlo, with optimal rate 0.651 (Beskos et al., 2013).

Livingstone & Zanella (2022) introduced a general class of gradient-based algorithms, termed
first-order locally balanced Metropolis–Hastings algorithms, of which the Metropolis-adjusted
Langevin algorithm (Roberts & Tweedie, 1996) is a special case. Constructing a member of the
class requires a Markov kernel, which can be thought of as the initial noise distribution for the
transition, together with a balancing function, which must satisfy certain properties described
in § 2. Livingstone & Zanella (2022) considered different choices from within the class, and
in particular, constructed a method called the Barker proposal. Empirical results in the paper
show that, despite being remarkably simple to implement, the Barker algorithm enables reliable
sampling in complex scenarios where other gradient-based methods may fail. The authors also
established sufficient conditions for geometric ergodicity and presented some preliminary results
on scaling with dimension, suggesting that relaxation times are O(n1/3), where n is the dimension
of the state. More discussion and a pedagogical derivation of the Barker algorithm is provided in
Hird et al. (2022).

Several unexplored questions remain regarding locally balanced Metropolis–Hastings algo-
rithms. The initial noise distribution in the Barker algorithm is simply chosen to be Gaussian in
Livingstone & Zanella (2022), but no justification besides convenience is given for this choice.
It could be that a different choice leads to a more effective algorithm. Similarly, guidelines on
the optimal acceptance rate for the Barker algorithm have not been established. More generally,
little discussion exists on other first-order locally balanced Metropolis–Hastings methods. It is
natural to wonder whether all members of the class will exhibit O(n1/3) relaxation times, if the
Metropolis–adjusted Langevin algorithm is the most efficient choice when optimally tuned and,
indeed, whether such a direct quantitative comparison of methods is possible in general. These
questions are of both theoretical and practical interest, as they have direct implications for the
optimal design of algorithms.
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In this paper we make several contributions. First, we present general results on the optimal
choice of acceptance rate, and scaling with dimension of any algorithm within the class of
first-order locally balanced Markov processes under mild regularity conditions on the balancing
function and a product-form assumption on the target distribution. In particular, in § 3 we show
that the 57% guideline acceptance rate for the Metropolis-adjusted Langevin algorithm also holds
for the Barker proposal and several other methods, as does the O(n1/3) scaling with dimension as
measured by expected squared jump distance. Despite having the same optimal acceptance rate
and scaling with dimensionality, however, all such schemes have different asymptotic efficiencies,
which we characterize explicitly, enabling principled and generic optimization of the algorithmic
design.

Our theoretical results build on the recently introduced optimal scaling framework of Zanella
et al. (2017) and Vogrinc & Kendall (2021). One powerful aspect of our approach is the ability it
affords us to analyse fairly generic schemes without requiring overly case-specific calculations,
while still obtaining explicit expressions for the asymptotic performances of algorithms that can
directly be compared with each other. This allows characterization of the quantitative interplay
between fine-scale properties of the target and proposal distributions in the resulting asymptotic
efficiency, thus enabling precise methodological guidance.

2. Locally balanced Markov processes

2.1. General framework

Consider a Markov transition kernel Q defined on a Borel space (X, F). We restrict attention
to X ⊂ R

n for some finite n. We say that Q satisfies the detailed balance equations with respect
to a probability measure π if∫

f (x)h(y)π(dx)Q(y, dx) =
∫

f (x)h(y)π(dy)Q(y, dx) (1)

for any f , h ∈ L2(π). When Q does not satisfy (1), a new kernel can be constructed using the
concept of a balancing function. Let g : [0,∞)→ [0,∞) be such that g(0) = 0 and

g(t) = tg(1/t) (2)

for t > 0, and recall that by Tierney (1998, Proposition 1) there exists a symmetric set R×R ∈
X× X such that the Radon–Nikodym derivative

t(x, y) = π(dy)Q(y, dx)

π(dx)Q(x, dy)
(3)

is well-defined and such that 0 < t(x, y) < ∞ if x, y ∈ R and t(x, y) = 0 otherwise. Then the
kernel

P̃(x, dy) = g

{
π(dy)Q(y, dx)

π(dx)Q(x, dy)

}
Q(x, dy) (4)

satisfies (1). However, the kernel P̃ is not necessarily Markov. One way of enforcing that (4)
integrates to 1 is to restrict attention to g � 1, ensuring that P̃(x, X) � 1, and then combine this
with r(x, dy) = {1 − P̃(x, X)}δx(dy), where δx(A) = 1 if x ∈ A and 0 otherwise. The resulting
kernel P̃(x, dy)+ r(x, dy) is of Metropolis–Hastings form (e.g., Tierney, 1998).
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An alternative strategy introduced by Power & Goldman (2019), Zanella (2020) and
Livingstone & Zanella (2022) is to instead allow any g for which Z(x) = P̃(x, X) is finite, and
then set

P(x, dy) = P̃(x, dy)

Z(x)
.

The kernel P does not satisfy (1) in general; in fact, P is invariant with respect to the measure
Z(x)π(dx). A π -invariant Markov jump process can be constructed, however, by introducing a
holding time Z(x) at each state x and then choosing the next state according to P . This construction
is called a locally balanced Markov process; see Power & Goldman (2019) and Hird et al. (2022)
for more details.

2.2. First-order locally balanced processes

The function Z(x) will not be tractable in general, so further work is needed to design a
sampling algorithm based on a locally balanced Markov process. One approach is to restrict
attention to symmetric Q and to π that is absolutely continuous with respect to Lebesgue measure
on R

n with differentiable Lebesgue density π(x). In this case, (3) reduces to π(y)/π(x). From this
point several natural first-order approximations of this ratio can be taken to construct a new, more
tractable kernel. It is argued in Hird et al. (2022) and Livingstone & Zanella (2022) that a good
choice is the componentwise approximation found by letting Q(x, dy) =∏

i σ
−1μ{(dyi−xi)/σ },

where μ is a centred and symmetric distribution on R and σ > 0, and defining

P̃(x, dy) =
n∏

i=1

g
[
exp{(yi − xi)∂i log π(x)}]μ(

dyi − xi

σ

)
, (5)

where ∂i = ∂/∂xi and
∫

A μ{(dyi−xi)/σ } = μ{(A−xi)/σ }with (A−xi)/σ = {z ∈ R : xi+σ z ∈ A}
for any event A, and its Markovian counterpart

P(x, dy) = P̃(x, dy)

Z(x)
, (6)

where Z(x) = P̃(x, X). With this approximation, certain choices of g and each Qi lead to familiar
forms of P. Choosing g(t) = √t and μ to be standard Gaussian, for example, leads to the
unadjusted Langevin algorithm (Roberts & Tweedie, 1996). The class of kernels obtained by (6)
is much broader, however, and is currently relatively unexplored.

2.3. The choice of balancing function

Livingstone & Zanella (2022) suggest the choice of balancing function g(t) = 2t/(1 + t),
as popularized by Barker (1965) in the context of the Metropolis–Hastings algorithm. With this
choice, Z(x) = 1 and a sample from P can be easily drawn in the following manner. First sample
zi ∼ μ for each i; then set βx,i = ∂i log π(x) and flip the sign of each zi with probability F(βx,izi),
where F(x) = exp(x)/{1+exp(x)}; finally, add this to the current coordinate xi. See Algorithm 1
for details. To construct a π -invariant Markov chain, a Metropolis–Hastings correction is then
applied to this Barker proposal.
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Algorithm 1. Simulating from the Barker proposal.

Require: current point x ∈ X

For i = 1 to n
Draw zi ∼ μ, and set βx,i ← ∂i log π(x)
Set yi ← xi + zi with probability F(βx,izi), and yi ← xi − zi otherwise

Output y = (y1, . . . , yd)

It is natural to wonder how many choices of g can be made. Two other simple possibilities
are min(1, t) and max(1, t), the latter of which was studied in Choi (2020). The following results
show that, in fact, the family of balancing functions is infinitely large.

Proposition 1. Let H = {h : R → [0,∞) : h(x) = h(−x)} be the space of positive even
functions. Then for every h ∈ H, gh(t) = t1/2h(log t) is a balancing function. Conversely, for
every balancing function g, the function hg(x) = exp(−x/2)g{exp(x)} is contained in H.

Proposition 1 provides an explicit parameterization of gh in terms of a specific h ∈ H. The
function t1/2 can also be replaced with any other specific balancing function to give a different
bijection. The goal, of course, is to find choices of g for which tractable sampling algorithms can
be designed. In § 4 we design new balancing functions of this nature for specific objectives.

3. A general result on the optimal acceptance rate and scaling with dimension

3.1. The asymptotic acceptance rate for locally balanced proposals

Let π : R→ [0,∞) be a probability density on R, and for any fixed σ > 0 let Qσ : R×R→
[0, 1] be a Markov kernel. We introduce the product measure πn(dx) =∏n

i=1 π(xi) dxi on R
n and

the product kernel Qn(x, dy) = ∏n
i=1 Qσn(xi, dyi), where (σn)n∈N is a sequence of positive real

numbers. On the set R×R as in § 2.1, let

ρn(Xn,i, Yn,i) = log
{

π(y)Qσn(y, dx)

π(x)Qσn(x, dy)

}
,

where Xn = (Xn,1, . . . , Xn,n) ∼ πn and Yn ∼ Qn(Xn, · ). The acceptance rate in a Metropolis–
Hastings algorithm targeting πn with proposal Qn is αn(X , Y ) = 1∧exp{∑n

i=1 ρn(Xn,i, Yn,i)}. We
will show that a central limit theorem holds for the ρn associated with first-order locally balanced
Metropolis–Hastings under Assumption 1 below, and then consider optimal acceptance rates and
dimension dependence in terms of the expected squared jump distance in each coordinate. Let
b(x) = log[g{exp(x)}], and without loss of generality set g(1) = 1.

Assumption 1. There exist constants H ∈ (0, 1), γ > 0, β � 0 and ε > 0 such that the
following hold:

(i) πn(dx) = ∏n
i=1 exp{φ(xi)} dxi for some φ ∈ C3+H (R), and for f = φ′′′, φ′′φ′, φ′3 or

φ′′|φ′|1+β the integrability condition
∫

R
f (x)2+ε{1+|φ′(x)|β}π(x) dx <∞ and the mixed

growth Hölder condition

|f (x + δ)− f (x)| � K(x) max(|δ|H , |δ|γ )

are satisfied, where the function K is such that
∫

R
K(x)2{1+ |φ′(x)|β}π(x) dx <∞;
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584 J. Vogrinc, S. Livingstone AND G. Zanella

(ii) g : R → R is defined as in (2) with g(1) = 1, and b(x) = log[g{exp(x)}] satisfies
b ∈ C3(R) with b′, b′′ and b′′′ all bounded above;

(iii) P is constructed as in (5) and (6) with g as in (ii) above and μ a centred and symmetric
distribution on R satisfying

∫
z2μ(dz) = 1 and

∫ |z|ξμ(dz) <∞ for ξ = max(6+ 3ε, 2+
2H , 2+ 2γ ), and for all a ∈ R and some positive Cμ > 0 one has

∫
R

exp{b(az)}|z|ξμ(dz) � Cμ(1+ |a|β)

∫
R

exp{b(az)}μ(dz) <∞ .

Part (i) of the assumption refers to the target distribution, part (ii) to the balancing function and
part (iii) to the interplay between them. Part (i) is straightforwardly satisfied for many statistical
models of interest, such as likelihoods from exponential families and suitably smooth priors. Part
(iii) is satisfied by all the cases explicitly studied here, such as g(t) = √t and g(t) = 2t/(1+ t).
Part (iii) highlights the need to control the growth of g and b using the tails of μ. If g is bounded, as
in the Barker case, then any μ with a moment generating function is sufficient for Assumption 1
to be satisfied, and for many targets actually only polynomial moments are required. When
g(t) = √t, which is not bounded above, stronger conditions on the tails of μ are needed, such
as Gaussian tails.

Part (i) of Assumption 1 is explicitly weaker than the typical smoothness assumptions made in
the optimal scaling literature for product-form targets (e.g., Roberts & Rosenthal, 1998). A form
of part (i) as well as the conditions

∫
z6μ(dz) < ∞ and g ∈ C3 are crucial to the analysis. Part

(iii) imposes uniform control with respect to x of measures exp[b{σnzφ′(x)}]{Zσn(x)}−1μ(z) dz
in terms of only the measure μ(z) dz. This is required so that the normalizing constants Zσn and
their second derivatives are well-defined. It may be possible to significantly relax part (ii) or (iii),
especially in specific settings, at the expense of strengthening other conditions. The following
proposition identifies some simple cases in which part (iii) is satisfied.

Proposition 2. Assumption 1(iii) is satisfied in the following cases:
(i) μ has a density with compact support, for any g;

(ii) g is bounded and nondecreasing, and
∫ |z|ξμ(dz) <∞ for ξ as in Assumption 1;

(iii) g satisfies Assumption 1(ii) and there exist C̃μ, β̃ > 0 such that for all a ∈ R,

∫
R

exp(az)|z|ξμ(dz) � C̃μ(1+ |a|β̃ )

∫
R

exp(az)μ(dz) <∞;

(iv) g satisfies Assumption 1(ii), μ has a density μ ∈ C1(R) such that limz→±∞ exp(az)μ(z) =
0 for any a ∈ R, and there exist constants p > 1 and A, B > 0 for which

|z|pμ(z) � Aμ(z)− Bzμ′(z).

In specific examples we typically verify condition (i), (ii) or (iv) of Proposition 2. For instance,
choices of the form μ(dz) ∝ exp(−|z|p) dz for p � 1 satisfy (iv). A statement analogous to (ii),
but for the function b is not valid. Even if g is bounded, b is only bounded away from infinity
above, not below. In fact, since b(x) = x+b(−x) holds, b can never be bounded. These conditions
are required to analyse Taylor series remainder terms for the normalizing constant. It is apparent
from Proposition 2 that fewer conditions on μ need to be assumed for the Barker proposal, in
which g is bounded, than for the Langevin choice g(t) = √t.
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Theorem 1. Under Assumption 1, limn→∞ σ−6
n E(ρ2

n) = θ2 for some θ ∈ [0,∞). In addition,
if θ > 0 and σn is chosen such that limn→∞ n1/6σn = �, then

n∑
i=1

ρn(Xn,i, Yn,i)⇒ N

(
−1

2
�6θ2, �6θ2

)
. (7)

Writing g = g′′(1), μ4 =
∫

R
z4μ(dz), μ6 =

∫
R

z6μ(dz), Aφ = Eπ {(φ′′′)2}, Bφ = Eπ {(φ′φ′′)2}
and Cφ = Eπ(φ′φ′′φ′′′), the constant θ2 takes the form

θ2 = μ6

{
1

144
Aφ +

(
1

4
+ g

)2

Bφ − 1

6

(
1

4
+ g

)
Cφ

}

+ μ4

{
1

6

(
1

2
+ g

)
Cφ − 2

(
1

4
+ g

) (
1

2
+ g

)
Bφ

}
+

(
1

2
+ g

)2

Bφ . (8)

The specific choice of the scaling parameter σn ∝ n−1/6 in Theorem 1 is the only rate leading to
a nontrivial distributional limit for

∑n
i=1 ρn(Xn,i, Yn,i), despite the fact that limn→∞ σ−6

n E(ρ2
n) =

θ2 holds for any decay rate. The expression for θ2 depends on both the balancing function g and
the distribution μ. In § 4 we consider optimal ways of choosing g and μ for certain purposes. We
discuss some example choices below.

Example 1. In the Langevin case, g(t) = √t and μ is standard Gaussian, so that g′′(1) =
−1/4, μ4 = 3 and μ6 = 15. Then

θ2 = 5

48
Aφ + 1

8
Cφ + 1

16
Bφ ,

which, if limx→±∞ exp{φ(x)}φ′(x)φ′′(x)2 = 0, can also be written using integration by parts as

θ2 = 5

48
E{(φ′′′)2} − 1

16
E{(φ′′)3},

a formula that appears in Roberts & Rosenthal (1998).

Example 2. For the Barker proposal, g(t) = 2t/(1+t) and μ can be any centred and symmetric
distribution such that

∫
z6μ(dz) <∞. With these choices, g′′(1) = −1/2 and

θ2 = μ6

144
(Aφ + 6Cφ + 9Bφ). (9)

An important consequence of Theorem 1, and in particular of (7), is a simple expression for
the asymptotic acceptance rate for a first-order locally balanced Metropolis–Hastings algorithm;
see, for example, Proposition 2.4 in Roberts et al. (1997).

Corollary 1. Setting αn(X , Y ) = 1 ∧ exp{∑n
i=1 ρn(Xi, Yi)}, under the conditions of

Theorem 1,

lim
n→∞E(αn) = 2�(−�3θ/2),

where � is the standard normal cumulative distribution function.
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3.2. Optimal acceptance rates

Given the simplified limiting expression for αn in Corollary 1, we can examine optimal choices
of the constant � for a fixed θ , leading to an optimal acceptance rate. We consider optimizing
the expected squared jump distance here, which is well studied and has a strong justification
motivated by diffusion limits in various settings (Roberts & Rosenthal, 2001).

Using the same notation as above, denote by (Eg,μ
n )n∈N the sequence of expected squared jump

distances for the first or any other coordinate, defined as

Eg,μ
n = E

{
(Yn,1 − Xn,1)

2α(Xn, Yn)
}
,

where Xn ∼ πn and Yn is generated from Xn using a first-order locally balanced proposal, as
defined in (6), with distribution μ, balancing function g and variance parameter σn. Then we
have the following result.

Theorem 2. Suppose that Assumption 1 and the conditions of Theorem 1 are satisfied for
φ, μ, g and θ > 0. Let (σn)n∈N be a positive sequence with limn→∞ σn = 0. If either
limn→∞ n1/6σn = 0 or limn→∞ n1/6σn = ∞, then as n→∞,

n1/3Eg,μ
n → 0.

If limn→∞ n1/6σn = � for some � ∈ (0,∞), then as n→∞,

n1/3Eg,μ
n → h(�) = 2�2�(−�3θ/2),

where � is the standard normal cumulative distribution function on R. Furthermore, there exists
a unique optimal �∗, which depends on g and μ, that maximizes h(�), for which 2�{−(�∗)3θ/2} ≈
0.574. The corresponding optimal asymptotic efficiency satisfies

h(�∗) = Chθ
−2/3,

where Ch ≈ 0.652.

Theorem 2 shows that any first-order locally balanced Metropolis–Hastings algorithm will have
the same asymptotic optimal acceptance rate of 0.57, and that algorithmic efficiency as measured
by expected squared jump distance will scale as O(n−1/3) for n → ∞. This includes both the
Barker and the Langevin proposals as well as many other possibilities. Theorem 2 also suggests a
route to both comparison and optimal design of first-order locally balanced Metropolis–Hastings
algorithms, in the former case by comparing θ2 for different choices of μ and g, and in the latter
by choosing μ and g so that θ2 in Theorem 1 is minimized. According to the same theorem, under
Assumption 1 the constant θ2 will depend on φ through Aφ , Bφ and Cφ , on μ only through μ4
and μ6, and on g only through g = g′′(1). We explore optimal design under different constraints
in the next section.

In the Langevin proposal case, the constant h(�) was shown to correspond to the speed measure
of an overdamped Langevin diffusion limit in Roberts & Rosenthal (1998). This additionally
relates the Markov chain trajectories to the path of a diffusion process, unlike with the expected
squared jump distance, which only optimizes one-step decorrelation of the coordinate functions.
We conjecture that the same is true for locally balanced proposals in general, but proving a
diffusion limit result explicitly would require additional technical assumptions and is beyond the
scope of this paper.
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Example 3. Consider the Gaussian target case, where φ(x) = −x2/2. Then φ′(x) = −x,
φ′′(x) = −1 and φ′′′(x) = 0, meaning that Aφ = Cφ = 0 and Bφ = E(x2) = 1. For Langevin
proposals with g(t) = √t and μ taken as Gaussian, the constant θ2 in (8) becomes θ2

L =
1/16, whereas for the Barker choice g(t) = 2t/(1 + t) and the same μ we have θ2

B = μ6/16.

The ratio of asymptotic expected squared jump distances is therefore (θB/θL)2/3 = μ
1/3
6 . Here

μ6 = 15, meaning that Langevin proposals are asymptotically 151/3 ≈ 2.47 times more efficient
than Barker proposals with Gaussian noise when optimally tuned. This is consistent with the
experiments in Livingstone & Zanella (2022, § 5.2).

Example 4. Consider hyperbolic targets of the form φ(x) = (δ2 + x2)1/2, with δ2 = 0.1
as in Livingstone & Zanella (2022). Then Aφ ≈ 12.99, Bφ ≈ 0.22 and Cφ ≈ 1.68. The same
calculations as above imply that Langevin proposals are 1.18 times more efficient than Barker
proposals with Gaussian noise when optimally tuned, which is also consistent with Livingstone
& Zanella (2022, § 5.2).

4. Optimal choices among the class of locally balanced algorithms

4.1. Optimal choice of noise in the Barker algorithm

In this setting we fix g(t) = 2t/(1 + t) and minimize θ2 with respect to μ, for a given
but arbitrary choice of φ. In this case θ2 is given by (9), and the only influence of μ comes
from the sixth moment μ6. The asymptotic expected squared jump distance can therefore be
straightforwardly maximized by minimizing the sixth moment of μ subject to the constraint that
μ2 = 1. By Jensen’s inequality we have μ6 � μ3

2 = 1, and in fact the lower bound is uniquely
attained by choosing μ to be a Rademacher distribution, such that if W ∼ μ then W = 1 with
probability 1/2 and W = −1 otherwise. We state this result formally as follows.

Proposition 3. If g(t) = 2t/(1 + t), then θ2 is minimized when W ∼ μ is chosen to take
values +1 and −1 each with probability 1/2.

We can compare the relative efficiency of the Barker proposal with Rademacher versus Gauss-
ian noise by using (9) in a similar manner to Examples 3 and 4. Doing this shows that for any
φ the Rademacher version will be μ

1/3
6 ≈ 2.47 times more efficient than the Gaussian version.

It is particularly convenient that the optimal choice of μ does not depend in any way on φ and
so generic methodological guidance can be provided for the algorithm. Comparison with the
Langevin proposal is instead target dependent, as exemplified below.

Example 5. When φ(x) = −x2/2, as in Example 3, the Barker proposal with Rademacher
noise will be exactly as efficient as the Langevin proposal. When φ(x) = (δ2 + x2)1/2 with
δ2 = 0.1, as in Example 4, the Rademacher proposal will be 2.08 times more efficient than the
Langevin proposal.

We compare these theoretical results with empirical performances in § 5. The Rademacher
version of the Barker proposal is clearly not practical, given that the resulting algorithm will not
in general produce a π -irreducible Markov chain. This is an important limitation of using the
expected squared jump distance as an efficiency criterion, which must be controlled for to ensure
that sensible recommendations are given to the user.A pragmatic approach to the issue is to choose
a distributionμ that is clearlyπ -irreducible, in such a way that will be visible on the time scales of a
typical computer simulation, but which is similar in spirit to the Rademacher choice. One example
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588 J. Vogrinc, S. Livingstone AND G. Zanella

is an evenly weighted mixture of two normal distributions centred at ±(1 − σ 2)1/2, each with
variance σ 2 < 1, but appreciably larger than zero so that irreducibility is no longer in question.
The resulting approach, termed bimodal Barker, will satisfy μ6 = 1 + 12σ 2 + 18σ 4 − 16σ 6

and be 151/3μ
−1/3
6 times more efficient than the version with Gaussian noise. For small but

nonnegligible σ , this is close to optimal while also being practical. For instance, for the choice
σ 2 = 0.12, as used in the simulations below, bimodal Barker is approximately 2.37 times more
efficient than the Gaussian version, compared to the optimum value of 2.47.

The result on Rademacher optimality may seem surprising at first given the lack of π -
irreducibility. Similar results have, however, appeared previously; for example, it is known that
the optimum expected squared jump distance for the random walk Metropolis algorithm, when
the proposal distribution is spherically symmetric and the target is Gaussian is found by choosing
the distribution to be uniform on a hypersphere of fixed radius from the current point (Neal &
Roberts, 2011). Given the product form of π considered in this work, the Rademacher structure is
therefore natural. For the random walk Metropolis algorithm, however, the benefits of choosing
such an optimized proposal distribution vanish as the dimension increases (Neal & Roberts, 2011;
Yang & Rodríguez, 2013), whereas in the case of the Barker and other locally balanced proposals
they do not.

4.2. Optimizing over the choice of balancing function for a fixed noise distribution

In this subsection we turn our attention to the optimal choice of g for a fixed choice of μ.
The expression (8) in this case becomes a simple quadratic in g, which can be straightforwardly
solved to find an optimum choice for a given φ, as in (10) below.

Proposition 4. Given φ and a fixed noise distribution μ with finite fourth and sixth moments
μ4 < μ6 <∞, the optimum choice of g is

g∗ = μ6(Cφ − 3Bφ)+ μ4(9Bφ − Cφ)− 6Bφ

12Bφ(μ6 − 2μ4 + 1)
. (10)

Any family of balancing functions for which g = g′′(1) can be modified to take a desired
value, could therefore in principle be used to create an optimized algorithm for a particular μ and
φ. Consider the family

gγ (t) = 1

2

(
t1/2+γ + t1/2−γ

)
, (11)

indexed by γ � 0, where for γ = 0 we recover the Langevin case g(t) = √t. Any choice within
the family is a balancing function and is such that gγ (1) = 1 and g = g′′γ (1) = γ 2 − 1/4. For a
given φ, the choice of γ can therefore be adjusted to achieve the optimum asymptotic efficiency
provided that g∗ in (10) is larger than −1/4.

Given the results of the previous section, it would seem natural to set μ to be a Rademacher
distribution; however, in this case it turns out that all choices of g give equivalent algorithms.
This follows straightforwardly from the fact that (2) implies g(t)/{g(t)+g(t−1)} = 1/(1+ t−1),
which is independent of g. In fact, Proposition 4 does not apply to the Rademacher case since
μ4 = μ6. Another natural option is to fix μ to be standard Gaussian. In this case (10) implies
that the maximum efficiency is found by choosing g = Cφ/(10Bφ) − 1/5. This scheme can be
implemented using the family in (11), and sampling from the resulting first-order locally balanced
proposal is straightforward as it consists of a mixture of two Gaussians; see the Supplementary
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Material for details. We do not implement this scheme in the simulations, however, in favour of
the more efficient alternatives discussed in the next subsection.

4.3. Optimizing over the choice of both the noise distribution and the balancing function

In this subsection we consider optimizing over both g and μ jointly. The following proposition
identifies the best possibly achievable asymptotic efficiency with first-order locally balanced
proposals for a given target.

Proposition 5. A nonnegative lower bound for θ2 that is independent of both μ and g is

θ2 � 1

144

(
Aφ −

C2
φ

Bφ

)
. (12)

Furthermore, θ2 can be made arbitrarily close to the lower bound by choosing μ4 > 1 sufficiently
close to 1, setting μ6 = μ2

4 and taking

g = μ4(Cφ − 3Bφ)+ 6Bφ

12Bφ(μ4 − 1)
. (13)

Proof. Given Aφ > 0, Bφ > 0 and Cφ ∈ R, we must solve the constrained quadratic opti-
mization problem of minimizing θ2 subject to 1 � μ4 � √μ6. The constraints on μ4 and μ6
are necessary because 1 = μ2 � √μ4 by Jensen’s inequality and μ4 � (μ2μ6)

1/2 = √μ6 by
Cauchy’s inequality. Moreover, the Hamburger moment problem tells us that these constraints
are sufficient: if they are satisifed, then there exists a symmetric proposal distribution on R that
satisfies them.

Defining the new variables m1 = (g+ 1/4)φ′φ′′ −φ′′′/12 and m2 = −(g+ 1/2)φ′φ′′, we can
rewrite θ2 as

θ2 = (μ6 − μ2
4)E(m2

1)+ E
{
(μ4m1 + m2)

2} � E
{
(μ4m1 + m2)

2}, (14)

where the inequality follows from
√

μ6 � μ4. Expressing this lower bound in terms of Aφ , Bφ

and Cφ gives

θ2 � Bφ

{(
μ4g− g+ μ4

4
− 1

2

)
− μ4

12

Cφ

Bφ

}2

+ μ2
4

144

(
Aφ −

C2
φ

Bφ

)
,

which itself can be bounded from below, giving

θ2 �
μ2

4

144

(
Aφ −

C2
φ

Bφ

)
� 1

144

(
Aφ −

C2
φ

Bφ

)
.

We have used three inequalities. The first, in (14), is realized if and only if μ6 = μ2
4; the second

simply bounds a square from below by zero and is realized if and only if g is defined as in (13),
which requires μ4 > 1; the third relies on μ4 � 1 and is realized if and only if μ4 = 1. The last
two equalities cannot be realized simultaneously. The final lower bound is always nonnegative
because BφAφ � C2

φ by Cauchy’s inequality. �
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590 J. Vogrinc, S. Livingstone AND G. Zanella

Let ν(a) for a > 1 denote a discrete symmetric distribution taking three possible values,
−√a, 0 and

√
a, such that the probability of a nonzero value is 1/a. This is the unique symmetric

distribution μ with moments satisfying μ2 = 1, μ4 = a and μ6 = a2. Indeed, for such W ∼ μ

this is implied by the identity E{W 2(W 2− a)2} = μ6− 2aμ4+ a2 = 0. Letting g be defined by
(13), choosing μ = ν(μ4) and taking μ4 arbitrarily close to 1 results in θ2 becoming arbitrarily
close to the lower bound (12). This three-point proposal results in an algorithm that achieves
close-to-optimal asymptotic expected squared jump distance among the class of first-order locally
balanced samplers provided that g is chosen according to (13).

Remark 1. The choice of μ indicated above is in fact optimal for any fixed choice of g, but the
amount of mass given to the point 0 will vary, depending on g. In the Barker case, for example,
this point achieves no mass, resulting in the Rademacher choice for μ.

It is natural to consider taking the limit μ4 → 1 and expect optimality to be reached there.
When the dimension n is fixed and finite, however, this results in a Rademacher proposal, which
is suboptimal. This can be seen by noting that the lower bound (12) is always smaller than
Bφ/16+ Aφ/144+ Cφ/24, the value attained by the Rademacher proposal, because

Bφ

16
+ Aφ

144
+ Cφ

24
= Aφ

144
+

(B1/2
φ

4
+ Cφ

12B1/2
φ

)2

− C2
φ

144Bφ

� 1

144

(
Aφ −

C2
φ

Bφ

)
.

Inspecting the proof of Theorem 1 shows that g must be increased sufficiently slowly as a function
of n to control the remainder terms, in order for the asymptotic expression for θ2 to be a valid
representation of the expected squared jump distance. In other words, as μ4 → 1, it takes
increasingly large n for the asymptotic regime to be representative of the finite-n setting. For a
finite n, it is therefore necessary to choose μ4 > 1. We explore this phenomenon further in the
Supplementary Material. In all simulations below, we set μ4 = 2 unless stated otherwise.

A surprising consequence of these findings is that the three-point proposal with some mass at
zero outperforms a Rademacher choice that is optimum for the Barker proposal when the freedom
to choose g is given. In terms of sampling, this suggests that efficiency gains can be made by
allowing some components of the state to remain unchanged at each iteration of the algorithm
with a probability that depends on the size of the gradient in that direction. The same family of
balancing functions introduced in (11) can again be used to create this optimum sampler.

A particular case of interest is the Gaussian setting of φ(x) = −x2/2, where φ′′′(0) and hence
Aφ and Cφ are equal to 0. This means that by choosing any μ4 > 1 and g according to (13)
we can achieve zero asymptotic θ2. The result is a super-efficient sampler whose efficiency will
effectively decay at a slower rate than n−1/3. We illustrate this surprising finding numerically
in § 5, but we also stress that this property holds only when φ(x) = −x2/2, to the best of our
knowledge.

5. Simulation study

5.1. Efficiency with respect to dimension on product targets

We examine the expected squared jump distance of the first component of two different product-
form target distributions as a function of dimension. This setting is directly covered by the
theoretical results of § 3 and § 4. The two target distributions considered are the multi-dimensional
standard Gaussian distribution and the hyperbolic distribution of Example 4. In each case we
compare the random walk Metropolis algorithm, the Metropolis-adjusted Langevin algorithm,
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Fig. 1. Expected squared jump distance plotted against dimensionality for: (a) a Gaussian product target; and (b) a
hyperbolic product target. The algorithms under comparison are the Metropolis-adjusted Langevin algorithm (cir-
cles), the random walk Metropolis algorithm (triangles), the Barker algorithm with Gaussian noise (squares), the
Barker algorithm with Rademacher noise (+ symbols), the Barker algorithm with bimodal noise (× symbols) and the

three-point proposal (diamonds).

the Barker proposal with Gaussian noise, Rademacher noise and bimodal noise as described
in § 4.1, and the algorithm with the optimal choice over both balancing function and noise
distribution as described in § 4.3, which will hereafter be referred to as the three-point proposal.

The results for the Gaussian target distribution are shown in Fig. 1(a). It is clear from the plots
that, among the Barker algorithms, the Rademacher and bimodal versions are comparable and
perform similarly to the Metropolis-adjusted Langevin algorithm, whereas the Barker algorithm
with Gaussian noise has an expected squared jump distance that is lower by a factor of 2–2.5,
in accordance with the theoretical value of 2.47. The three-point proposal performs best and
appears to exhibit a slightly slower than n−1/3 decay in expected squared jumping distance when
the dimension in large. This is because in the special Gaussian case, the target θ2 from (8) equals
zero when the choices described in § 4.3 are made.

Results for the hyperbolic target are shown in Fig. 1(b). The main difference from the Gaussian
example is that, now the Barker algorithms with Rademacher and bimodal noise both outperform
the Langevin algorithm, as predicted by the theory in § 4.1. The three-point proposal is still the
best-performing algorithm.

5.2. Poisson random effects model

For a realistic example in which the target distribution is not of product form, we compare
algorithms on the Poisson random effects model described in Livingstone & Zanella (2022, § 6.3).
We compare the Barker algorithm with bimodal noise, the Barker algorithm with Gaussian noise,
the Langevin algorithm and the random walk Metropolis algorithm. The main purpose of this
example is to assess whether or not the above theoretical guidelines for the noise distribution
in the Barker algorithm lead to good choices, even when the target distribution does not have
independent and identically distributed components.

The target distribution under consideration is a 51-dimensional posterior distribution,
p(μ, η1, . . . , η50 | y), arising from a Poisson random effects model defined hierarchically by
μ ∼ N (0, 102), ηi | μ ∼ N (μ, σ 2

η ) and yij | ηi ∼ Po{exp(ηi)}, independently for i = 1, . . . , 50
and j = 1, . . . , 5. In our experiment we generate the observed data y = (yij)ij from the model
likelihood, i.e., sampling yij ∼ Po{exp(η∗i )} independently where η∗1, . . . , η∗I are themselves gen-
erated independently from a N (μ∗, σ 2

η ) distribution with μ∗ = 5. Here ση is a fixed value and two
scenarios are considered: in the first we set ση = 1, and in the second we set ση = 3. Effectively,
ση is a parameter that governs the heterogeneity across groups i = 1, . . . , 50 in the hierarchy.
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Fig. 2. Violin plots of median effective sample sizes across parameters for 100 independent repetitions of each algo-
rithm: (a) low heterogeneity across coordinates; (b) high heterogeneity across coordinates. The algorithms under
comparison are the Barker algorithm with bimodal noise (Barker-Bim), the Barker algorithm with Gaussian noise
(Barker-Gaus), the Metropolis-adjusted Langevin algorithm (Langevin) and the random walk Metropolis algorithm

(Random Walk).

Thus, larger values of ση lead to a target distribution with greater heterogeneity of scales across
coordinates, which makes the adaptation and sampling process more challenging.

In each case, algorithmic tuning parameters consisting of a diagonal pre-conditioning matrix
and a global scale are learned using Algorithm 4 of Andrieu & Thoms (2008), in the same
manner as described in Livingstone & Zanella (2022, § 6.3). We measure efficiency in terms of
the effective sample size for a given number of iterations, since all algorithms under comparison,
apart from the random walk Metropolis algorithm, have a roughly equivalent cost per iteration,
which is dominated by gradient computations. Figure 2 plots the median effective sample sizes
across parameters for 100 independent runs of 5×104 iterations of each algorithm.All algorithms
were randomly initialized by sampling parameter values from their prior distributions.

Both versions of the Barker algorithm appear to be more robust to different hyperparameter
values than the Langevin algorithm, which in the first scenario performs well sometimes, but
poorly at other times, and always performs poorly in the second scenario. This is because the
Langevin algorithm is very sensitive to tuning parameter selection, and the adaptive procedure
fails to converge on sensible values for these across the time scales of the simulation. The random
walk Metropolis algorithm also performs poorly, which is largely explained by the dimension of
the problem. The Barker algorithm with bimodal noise is approximately two times as efficient in
terms of effective sample size as the version with Gaussian noise in this setting. More precisely,
the median improvement in estimated effective sample size is 2.08 in the first scenario, with 10th
and 90th quantiles across the 100 repetitions being 2.05 and 2.11, respectively, and 2.04 in the
second scenario, with 10th and 90th quantiles 1.98 and 2.14, respectively. Similar values were
obtained when looking at minimum rather than median effective sample sizes across parame-
ters. These values suggest that the asymptotic theory developed in this paper, which quantifies
bimodal Barker as being 2.37 times more efficient than Gaussian Barker, is highly predictive of
behaviours observed in practice also for moderate dimensionality, and for targets that have nei-
ther independent nor identically distributed coordinates. More generally, in all our simulations,
we consistently observed an improvement in efficiency when going from Gaussian to bimodal
Barker with factors typically between 2 and 2.5.

5.3. A correlated example

Unlike the random walk or Langevin algorithms, the Barker and three-point schemes rely on a
choice of coordinate system. This raises the question of how much their performance depends on
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Fig. 3. Expected squared jump distance plotted against dimensionality for correlated Gaussian targets: (a) �ii =
1 and �ij = 0.99 for i |= j; (b) �ij = 0.99|i−j|. The algorithms under comparison are the Metropolis-adjusted
Langevin algorithm (circles), the random walk Metropolis algorithm (triangles), the Barker algorithm with Gaussian
noise (squares), the Barker algorithm with Rademacher noise (+ symbols), the Barker algorithm with bimodal noise

(× symbols) and the three-point proposal (diamonds).

the specific choice of coordinate system, and in particular, whether the O(n1/3) scaling behaviour
proved here is sensitive to the theoretical assumption that the target factorizes across the same
coordinate axes as the proposal. Here we explore these issues numerically, performing high-
dimensional scaling experiments similar to those in § 5.1, but for non-product-form targets with
significant correlation. In particular, we consider Gaussian distributions with nondiagonal covari-
ance matrix � chosen in two ways: in the first case we set �ii = 1 for i = 1, . . . , n and �ij = ρ

for i |= j, and in the second case we take �ij = ρ|i−j|. In both cases we set ρ = 0.99 for a drastic
departure from the independence case. As in § 5.1, we compute the expected squared jump dis-
tance per coordinate. For all algorithms under consideration we use isotropic proposals, meaning
we do not use pre-conditioning to avoid aligning proposal and target axes, and we choose a step
size that is numerically optimized to maximize performance as measured by expected squared
jump distance. The results are reported in Fig. 3. As expected, all schemes perform worse than
in the product case, as indicated by the different scales on the y-axes in Figs. 1 and 3, but the
relative comparison between different schemes remains nearly unchanged and fully coherent
with the theoretical predictions from § 3 and § 4. In particular, the Langevin, Barker bimodal
and Barker Rademacher schemes perform nearly equivalently, while the Barker algorithm with
Gaussian noise performs around 2–2.5 times worse. Overall, the experiment suggests that the
relative performances of the random walk, Langevin and Barker algorithms are not particularly
sensitive to correlation and to the specific choice of coordinate system.

The three-point proposal also performs well in these correlated examples and actually per-
forms surprisingly well when �ij = ρ|i−j|. Gaining better understanding of such unexpected
behaviour will be the subject of future research. However, the three-point proposal implicitly
uses knowledge about the target distribution when choosing the optimal values of the tuning
parameters g and μ4, and thus it has been given a somewhat unfair and potentially unrealistic
advantage over the other schemes considered here. In particular, in this example g was chosen
according to the optimal value in (13) with Bφ = 1 and Cφ = 0 as given by product-form Gaussian
targets.

6. Discussion

The main results of this paper rely on a product-form structure of π , and that the corresponding
optimal choice of locally balanced algorithm also has a product form. We have shown in § 5
that this choice is still effective when the target distribution is no longer of product form, and
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therefore we recommend use of the bimodal Barker algorithm in practice. It is surprising that
using a nonlocal noise distribution of this kind results in such a pronounced and consistent
improvement in efficiency across multiple examples. We believe that this represents a good case
study of theoretical analysis motivating new practical methodology that would otherwise be hard
to devise. The product-form assumption is, as mentioned above, unrealistic in practice. It has
been relaxed in various ways in the literature; see Sherlock (2013, § 1.1) for a review. Perhaps
the most relevant question in the present setting is whether a different optimal locally balanced
algorithm can be derived under different assumptions on the target distribution. We look forward
to exploring this question in future work.

The detailed quantitative analysis and comparison of algorithms within the locally balanced
class in the high-dimensional limit is made possible by the mathematical framework developed
in Vogrinc & Kendall (2021, § 3). This framework identifies and uses only essential Taylor
series expansions related to the limiting Kullback–Leibler divergence between a locally balanced
proposal and its time reversal. Using this, we establish optimal scaling for a broad class of
algorithms, including the Barker and Langevin algorithms, with a single unified proof, using
significantly weaker assumptions on the smoothness and tails of the target distribution than
those in Roberts & Rosenthal (1998). Our results are at present restricted to limiting expected
squared jump distances, rather than diffusion limits as in Roberts et al. (1997) or Roberts &
Rosenthal (1998). For the former, results can be obtained by clever, but elementary manipulations
of expectations, while the latter require the study of convergence of generators or Dirichlet forms.
It is therefore challenging to obtain diffusion limits under equally weak assumptions on the
smoothness of the target. Establishing the latter in some sense justifies the use of the former
as an efficiency metric, a point which is discussed in Roberts & Rosenthal (2001, § 2.2), since
in this setting all efficiency measures are essentially equivalent. In addition, it implies pathwise
convergence to a stochastic differential equation. Aside from this point, however, in practice
establishing a diffusion limit would not bring much additional methodological insight. In the
particular case of first-order locally balanced algorithms, we believe that the Markov chains have
diffusion limits, but there are technical barriers to proving this that we are presently attempting
to overcome.

One intriguing finding of this work concerns the suboptimality of the Langevin choice g(t) =√
t with noise μ chosen to be Gaussian. This is by far the most historically popular choice within

the first-order locally balanced class of algorithms. The results in this paper show that, according
to asymptotic efficiency as measured by expected squared jump distance, this combination of μ

and g is not optimal, and in addition the optimum choice of μ when g(t) = √t is not Gaussian,
while the optimum choice of g when using Gaussian μ is not

√
t.
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The Supplementary Material includes proofs of the theoretical results as well as further sim-
ulations related to the three-point proposal of § 4.3, illustrating a finite-dimensional example for
which it is optimal to choose μ4 > 1.
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