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Abstract
Wepresent a discretization of the dynamic optimal transport problem for whichwe can
obtain the convergence rate for the value of the transport cost to its continuous value
when the temporal and spatial stepsize vanish. This convergence result does not require
any regularity assumption on the measures, though experiments suggest that the rate
is not sharp. Via an analysis of the duality gap we also obtain the convergence rates
for the gradient of the optimal potentials and the velocity field under mild regularity
assumptions. To obtain such rates, we discretize the dual formulation of the dynamic
optimal transport problem and use the mature literature related to the error due to
discretizing the Hamilton–Jacobi equation.

Keywords Optimal transport · Hamilton–Jacobi equation · Convex optimization.

Mathematics Subject Classification Primary 49Q22 · Secondary 65K10 · 49L12.

1 Introduction

The dynamic optimal transport problem and its discretization
In this work, we are interested in the dynamic optimal transport problem. Given

two probability measures μ, ν over a spatial domain �, it reads

inf
(ρt ,vt )

∫ 1

0

∫
�

L(vt ) dρt dt, (1.1)
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where L : R
d → R is a given convex function and the infimum is taken over all

pairs (ρt , vt ) of a time-dependent probability distribution and velocity field which are
solutions of

{
∂tρt + ∇ · (ρtvt ) = 0,

ρ0 = μ, ρ1 = ν,
(1.2)

that is of the continuity equation with temporal boundary conditions μ and ν. Here
ρt , vt are indexed by a temporal variable t ∈ [0, 1] and ∇· stands for the divergence
with respect to the spatial variable. The interpretation is that (ρt ) must join μ and ν

while being transported by the flow of (vt ), at a minimal cost. Originally introduced
by Benamou and Brenier in [5] for numerical purposes as it is linked to the (static)
optimal transport problem with cost c(x, y) = L(y − x), this formulation turned out
to be very fruitful. From a theoretical point of view, it is a robust formulation which
enables to extend and generalize the optimal transport problem: it is used for optimal
transport on graphs [36], for unbalanced optimal transport [19, 30, 35], for optimal
transport of matrix-valued measures [16] to cite a few extensions. From the numerical
point of view, in addition to being one of the first methods proposed to solve the
optimal transport problem in dimension more than one, it can be adapted to a great
variety of related problems: Wasserstein gradient flow [7, 17], mean field games [6,
8], and trajectory inference [48] to mention a few.

The usual road to solve (1.1) with the constraints (1.2) is to first rewrite it as a
convex problem by using the momentum mt = ρtvt as an unknown rather than vt .
In this case both mt and ρt are measures, and vt is recovered as the Radon-Nikodym
derivative dmt/dρt of mt with respect to ρt . This leads to

inf
(ρt ,mt )

∫ 1

0

∫
�

L

(
dmt

dρt

)
dρt dt, with constraints

{
∂tρt + ∇ · mt = 0,

ρ0 = μ, ρ1 = ν.
(1.3)

The constraint ∂tρt + ∇ · mt = 0 is now linear, and the functional to be minimized is
convex as (x, y) �→ L(x/y)y is a convex function both in x and y when extended to
+∞ for y � 0, except at (0, 0) where it is 0. Then one proposes a finite dimensional
version of the problem (1.3) where both the time and space variables are discretized,
and solves the resulting finite dimensional convex problem with standard methods in
non-smooth convex optimization. We refer to [17, 32, 38, 39, 42] for instantiations of
this approach with plain optimal transport. This comes with two challenges from the
viewpoint of numerical analysis:

1. Guarantee (quantitatively) the convergence of the convex optimization solver used
to solve the discretized problem.

2. Guarantee (quantitatively) the convergence of the value and solutions to the dis-
cretized problem to the original one (1.3) when the temporal and spatial stepsizes
vanish.

The first point is a question of convex optimization which is quite well understood and
that we will not address referring to [29, 42]. Our main concern is rather the second
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question. The difficulty lies in the roughness of the functional to optimize: (x, y) �→
L(x/y)y is only lower semi-continuous and discontinuous at (0, 0). Moreover a priori
the data μ, ν could be allowed to be arbitrary probability distributions (even Dirac
masses), and there is no regularizing effect, so that ρt could be a Dirac mass for
every t ∈ [0, 1]. Thus one really has to face the discontinuity of the functional to
optimize. Nevertheless, numerical examples in the aforementioned works suggest that
convergence holds even when the measures μ, ν are quite rough.

In [31] building on the previousworks [17, 24, 28], the second author gave an answer
to the second question by providing sufficient conditions for any discretization of the
dynamic optimal transport problem to indeed converge to the original problem when
the temporal and spatial stepsizes vanish. This framework was later used in [39] and
extended to matrix-valued optimal transport in [33, 34]. However the arguments were
inspired by the theory of �-convergence and were not quantitative, that is, they did
not come with a convergence rate.

The goal of this article is to provide quantitative convergence rates of a discretized
version of (1.3) to the original problem, as the temporal and spatial stepsize van-
ish. There are few results already available: the works [17] and [38] show that their
respective methods reach first order of convergence. Specifically, for h the (common)
temporal and spatial stepsize, the error in the value of problem (1.3), that is, the trans-
port cost, is of order h. The article [38] also extends this convergence to the solutions
of the problem via an analysis of the dual gap. However, in both cases this rate is
only available when the data μ, ν have smooth densities which are bounded from
below, and moreover the solution ρ to the optimal transport problem needs to have a
smooth density bounded from below. The latter assumption (positivity of the solution
ρ everywhere) is very strong, not directly implied by μ, ν smooth and bounded from
below [47]. Moreover, as we said above, in practice the discretizations behave well
even when μ, ν or ρ are not bounded from below.

In this work we propose a new discretization of the dynamic optimal transport
problem (see Sect. 3) for which we are able to quantify the convergence,
at least of the value of the transport cost. With h the (common) temporal
and spatial stepsize the error is of order

√
h but our result does not require

any assumption on the probability distributions μ, ν, besides that they have
bounded support (see Theorem 4.1).

Let us already emphasize that this result comes with two important limitations. First
we are not able to show that the rate improves if μ, ν have a smooth density, and the
numerical experiments we conducted suggest that our rate is not sharp. To prove better
convergence rates for more regular inputs, we would need a refinement of the previous
result [23], which we largely rely on (see Remark 5.6).

The second point is about the efficiency of numerical computation. Our discretiza-
tion is restricted to periodic boundary conditions although we can treat the transport
between μ, ν on a bounded domain without any theoretical limitations by taking the
entire periodic domain large enough. A full extension to bounded domains for more
numerical efficiency may be potentially done, but is out of the scope of the present
paper (see Remark 4.4).
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Intuition of our proposed discretization
Our strategy to get such rates is the following. Rather than solving (1.3), we look

at the dual problem which is known to be

sup
ϕ

∫
�

ϕ(1, ·) dν −
∫

�

ϕ(0, ·) dμ with constraint ∂tϕ + H(∇ϕ) � 0, (1.4)

where ϕ = ϕ(t, x) for t ∈ [0, 1] and x ∈ � is a time-space dependent scalar function
which is subsolution of the Hamilton–Jacobi equation ∂tϕ + H(∇ϕ) = 0, being H
the Legendre transform of L .

Discretizations of the Hamilton–Jacobi equation in a finite difference fashion have
been studied in the context of viscosity solutions starting with the seminal work of
Crandall and Lions [23] and the rate of convergence is proved

√
h under fairly general

assumptions. This holds specifically for the initial value problem

{
∂tϕ + H(∇ϕ) = 0,

ϕ(0, ·) given,

for the Hamilton–Jacobi equation, importantly under an a priori Lipschitz bound on
ϕ(0, ·). In the context of optimal transport, an optimal solution ϕ to the dual prob-
lem (1.4) is actually known to be Lipschitz in space, with Lipschitz constant depending
on the diameter of� but independent ofμ, ν (see Proposition 2.2). In our analysis, we
also need to ensure that an optimal solution to the discretized version of (1.4) is also
Lipschitz. As it cannot be guaranteed a priori, we add Lipschitz continuity at t = 0 as
an additional constraint in our discretized problem; see Definition 3.2 and in particular
the constraint (3.4).

In short we propose a discretization of the dual problem (1.4) where we use
a finite difference discretization of the Hamilton–Jacobi equation for which
convergence rates are already studied, adding a Lipschitz constraint to ϕ(0, ·)
in the discrete dual problem.

A brief comment on rates for other numerical methods
Dynamic optimal transport is not the only way to solve the optimal transport prob-

lem, we refer to [43] and references therein for a comprehensive introduction. When
faced with the linear programming formulation and its entropic regularization, the
standard setting is to assume that measures are approximated via i.i.d. samples and
rates should be understood in a statistical setting (that is, written in probability or
in expectation as a function of the sample size) rather than a numerical analysis one
(that is, written as a deterministic function of the stepsizes). We refer to [40] and
[37] as well as references therein for results in this direction. In semi-discrete optimal
transport, that is, when only one of the two measures is discrete, rates have been inves-
tigated both in a statistical setting [2], but also in a more standard setting of numerical
analysis, related to the stability of the Monge-Ampère equation [12]. As far as PDEs
methods are concerned, in addition to dynamic optimal transport, one could also solve
the Monge-Ampère equation to compute a transport map [11]. The convergence when
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the resolution of discretization is reduced has been established in the context of vis-
cosity solutions [10]; see also [9, 13]. Note that these convergence results concern a
different method, so comparison with the present work is hard to do. We only point
out that the results are not quantitative and typically need to assume some regularity
of the input measures μ, ν (like absolute continuity) in order to be able to write the
Monge-Ampère equation in the first place.

Organization
We first define properly the dynamic optimal transport problem, and we present

the Hamilton–Jacobi equation together with its finite difference discretization: this is
a well-understood theory that we summarize in Sect. 2. We move to our proposed
discretization in Sect. 3. Our main result, the quantitative convergence rate of the
optimal transport cost, is presented in Sect. 4. With a standard analysis of the duality
gap, we prove, under an additional regularity assumption, that we obtain quantitative
convergence of some variables (the velocity field v and ∇ϕ) from their discrete to
their continuous counterpart in Sect. 5. We numerically illustrate our results on simple
one-dimensional test cases in Sect. 6: this shows that our rates are likely not sharp.

2 Settings and Preliminaries

In this section, we present our setting and review the previous works that are going to
be ingredients of our discretization of dynamic optimal transport.

Assumptions We assume the following in the rest of the article.

• We restrict to � := R
d/(DZ

d) to be a d-dimensional torus with diameter

diam(�) =
√

d

2
D.

• The measures μ, ν are Borel probability measures on � and we do not make any
assumption such as absolute continuity unless otherwise stated.

• We take L : Rd → [0,+∞), the “Lagrangian” which is a non-negative, strictly
convex and superlinear function.

As for the first point about the domain, we could assume D = 1, or diam(�) = 1
without loss of generality. However we prefer to keep it that way to emphasize how
some constants depend on diam(�). The last condition for the Lagrangian includes
the most common choice L(v) = |v|p/p for p ∈ (1,+∞).

2.1 Dynamic (and Static) Optimal Transport

We briefly recall some ingredients of the dynamic optimal transport problem.We refer
to the textbooks [43, 45, 49] for additional details.

We directly move to the convex formulation already mentioned in (1.3) where
we now define each term. The infimum will run over all the pairs (ρt , mt )t∈[0,1] of
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probability distributions ρt ∈ P(�) and vector-valued measure mt ∈ M(�)d such
that t �→ ρt is continuous for the weak topology with ρ0 = μ and ρ1 = ν. The
continuity equation

∂tρt + ∇ · mt = 0,

is meant in the sense of distributions over the space [0, 1] × �. For the functional
to be optimized, we need a bit more of notations. The so-called Benamou-Brenier
functional is defined as a functional for measures ρ ∈ M(�) and m ∈ Md(�) by,

B(ρ, m) := sup
(a,b)

∫
�

a dρ +
∫

�

b · dm

where the pair (a, b) runs through Cb(�; K ) the space of continuous bounded
functions valued in the convex domain K given by

K :=
{
(s, w) ∈ R × R

d such that s + H(w) � 0
}

.

Here the function H : Rd → R is called the Hamiltonian, given as the Legendre trans-
form of L by H(w) = supv〈v,w〉 − L(v). With a slight variation of [45, Proposition
7.7], it can be proved that if B(ρ, m) < +∞ then ρ is a non-negative measure and the
measure m is absolutely continuous with respect to ρ, and in this case

B(ρ, m) =
∫

�

L(v) dρ,

being v ∈ L1(�, ρ)d the Radon-Nikodym density of m with respect to ρ. With these
notations the problem (1.3) now reads

K(μ, ν) = inf
(ρt ,mt )

∫ 1

0
B(ρt , mt ) dt such that

{
∂tρt + ∇ · mt = 0 weakly,

ρ0 = μ, ρ1 = ν.
(2.1)

The existence of a minimizer to the problem can be shown by the direct method of
calculus of variations (see e.g. [19, Sect. 2] for a proof in a more general context), or
alternatively by building it via an optimal solution for the static primal problem (2.4)
introduced below as in (2.5). We do not include the proof as it is not our main concern.

Theorem 2.1 (Existence of a solution in the primal problem) Under our assumptions
the infimum in (2.1) is attained.

The question of uniqueness is more subtle and one would go to the static problem
introduced below to analyze it. The outcome is that the minimum may not be unique,
but it is so if at least one of the twomeasuresμ, ν is absolutely continuous with respect
to the Lebesgue measure [45, Theorem 1.25].
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Being a convex optimization problem under constraint, the dynamic optimal
transport problem has a dual form. It reads

K(μ, ν) = sup
ϕ

∫
�

ϕ(1, ·) dν −
∫

�

ϕ(0, ·) dμ such that ∂tϕ + H(∇ϕ) � 0

(2.2)

whereϕ runs over Lipschitz functions defined over [0, 1]×�, and theHamilton–Jacobi
constraint ∂tϕ+H(∇ϕ) � 0means thatϕ is a viscosity subsolution of ∂tϕ+H(∇ϕ) =
0 asweexplain below inSect. 2.2.Hereϕ shouldbe interpreted as aLagrangemultiplier
for the continuity equation. Thekey result is that, not only a solution to the dual problem
exists, but it has some Lipschitz regularity.

As L is convex, it is Lipschitz on bounded domains and we denote by Lip(L, Br )

its Lipschitz constant on the ball Br centered at 0 and of radius r . On the other hand,
Lip(ψ) for a real-valued function ψ stands for its Lipschitz constant on its whole
domain of defintion.

Proposition 2.2 (Existence of a solution in the dual problem) Under our assumptions
there exists an optimal potential ϕ in the dual dynamic transport problem satisfying

Lip(ϕ(t, ·)) � Lip(L, Bdiam(�)), ∀t ∈ [0, 1]. (2.3)

Wedelay the proof of this result until the next section aswe need additional preliminary
results, including the static formulation.

The dynamic formulation of optimal transport is to be contrasted with its static one,
which we introduce for the sake of completeness, and with which the reader may be
more familiar. The cost function c : � × � → [0,+∞) associated to our Lagrangian
L is

c(x, y) := inf
k

{L(y − x − k), k ∈ DZ
d}

as we are on the torus. The transport cost (2.1) is actually equal to:

K(μ, ν) := inf
π∈ADM(μ,ν)

∫
�×�

c(x, y) dπ(x, y) (2.4)

where ADM(μ, ν) is the set of the probabilitymeasures on�×�whosemarginals are
μ and ν. Given a solution π to the static optimal transport problem, one can construct
a solution to the dynamic optimal transport problem as follows: for any t ∈ [0, 1],
being �t : (x, y) ∈ � → (1− t)x + t y ∈ � (where the addition is understood modulo
DZ

d ), one sets for any Borel set A,

ρt (A) = π(�−1
t (A)), mt (A) =

∫
�−1

t (A)

(y − x) dπ(x, y). (2.5)
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The intuition is that, once its initial and final position are chosen via the coupling π ,
each particle travels at constant speed on a straight line. Finally, we introduce the dual
formulation of the static optimal transport problem. It reads

K(μ, ν) = sup
ψ

∫
�

ψc dν +
∫

�

ψ dμ (2.6)

where ψc is the c−transform of ψ given by ψc(y) := infx c(x, y)−ψ(x) and ψ runs
through functions on � such that ψ = φc for some φ ∈ C(�). When a function ψ

attains the maximum, it is called a Kantorovich potential. The link between the static
dual problem and the dynamic dual problem will be made clear in the next section.

2.2 Viscosity Solutions to the Hamilton–Jacobi Equation

Webriefly review the notion of viscosity solutions as it plays a central role in this article
and highlights PDE aspects of optimal transport. TheHamilton–Jacobi equations often
do not admit a classical solution, but naive notions of weak solution such as continuous
functions differentiable almost Lebesgue everywhere can be tooweak so that infinitely
many solutions may exist. To ensure both existence and weakness, Evans [25] and
Crandall and Lions [22] independently introduced so-called viscosity solutions. For a
Hamilton–Jacobi equation of the form

∂tϕ + H(∇ϕ) = 0

on a domain [0, 1] × �, a Lipschitz function ϕ is said to be a viscosity subsolution
(resp. supersolution) if, for any test function f ∈ C1([0, 1]×�), any local maximum
x0 of f − ϕ (resp. local minimum) satisfies

∂t f (x0) + H (∇ f (x0)) � 0 (resp. ∂t f (x0) + H (∇ f (x0)) � 0).

The inequality constraint of the dynamic dual optimal transport (2.2) means that a
competitor ϕ is required to be a viscosity subsolution.

When ϕ is both a viscosity subsolution and a viscosity supersolution, it is called a
viscosity solution. This definition indeed guarantees the existence of a unique solution.
We present here the statement of [21] summarizing the results of [22]: even though it
is phrased inRd , it can be adapted at no cost on� = R

d/(DZ
d) by simply identifying

a function on � with a D-periodic function on R
d .

Theorem 2.3 (Existence and uniqueness of viscosity solution) Let H : Rd → R be
continuous and ϕ0 : � → R be Lipschitz. Then there exists exactly one viscosity
solution to the initial value problem,

{
∂tϕ + H(∇ϕ) = 0 in [0,∞) × �,

ϕ(0, ·) = ϕ0 in �.
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Moreover, the Lipschitz constant does not increase in time i.e.

Lip(ϕ(t ′, ·)) � Lip(ϕ(t, ·)) for t ′ > t .

Actually, in this simple setting where the Hamiltonian is not dependent on the spatial
variable, the unique viscosity solution is characterized by the Hopf-Lax formula [26,
Theorem 3 in Chapter 10.3]: with the assumptions and notations of the theorem it is
equal to

ϕ(t, x) := inf
y

ϕ0(y) + t L

(
x − y

t

)
. (2.7)

The Hopf-Lax formula is a key ingredient to bridge the dual formulations of optimal
transport in its static (2.6) and dynamic (2.2) form. This is also what enables us to
prove Proposition 2.2.

Proof of Proposition 2.2 We can choose an optimal Kantorovich potential ψ for
the static dual problem (2.6) so that it is Lipschitz continuous with Lip(ψ) �
supy Lip(c(·, y)) � Lip(L, Bdiam(�)) [45, Sect. 1.2.]. Then we define ϕ as the unique

viscosity solution of the Hamilton–Jacobi equation with initial data −ψ . Observe
by (2.7) that ϕ(1, ·) = ψ

c
and hence

∫
�

ϕ(1, ·) dν −
∫

�

ϕ(0, ·) dμ =
∫

�

ψ
c
dν +

∫
�

ψ dμ = K(μ, ν).

Therefore, ϕ is not merely an admissible competitor but is an optimal potential for
the dynamic dual problem (2.2). Finally Theorem 2.3 asserts that Lip(ϕ(t, ·)) �
Lip(ϕ(0, ·)) = Lip(ψ) for t ∈ [0, 1]. �

2.3 Discretization of the Hamilton–Jacobi Equation

As we mentioned in the introduction, our key idea is to discretize not the primal
formulation (2.1) but rather the dual formulation (2.2). Indeed discretization of the
Hamilton–Jacobi equations is a widely studied topic, in particular since the seminal
work of Crandall and Lions [23].

We adapt Crandall and Lions’s original setting of the domain [0,∞)×R
d for Q =

[0, 1] × (Rd/(DZ
d)). Their results are still valid on Q without additional conditions

as we can simply extend functions on � = R
d/(DZ

d) by copying it infinite times for
R

d .
The time domain [0, 1] is discretized by uniformly sampling points: we define

TD := {0,�t, . . . , (NT − 1)�t, 1} with some positive integer NT and �t = 1/NT .
The space domain � = R

d/(DZ
d) is discretized in the same way, that is we

write �D := {( j1�x, . . . , jd�x)} with indices ( j1, . . . , jd) ∈ (Z/NXZ)d :=
{0, 1, . . . , NX − 1}d with some positive integer NX and �x = D/NX . In the sequel,
we write j := ( j1, . . . , jd) and j�x := ( j1�x, . . . , jd�x) for simplicity. Hence the
discretization of Q is given by Q D := TD × �D .
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Each continuous function ϕ is approximated by a discrete function � : Q D → R

given as the evaluation of ϕ at the grid points. For the value at (i�t, j�x), we write
�i

j or �i
j1,..., jd

, but we will occasionally omit subscripts i and j when we mean the

collection {�i
j }i

j or we do not need to specify i or j . We denote by RZ the collection
of functions from a set Z ⊆ Q D to R, and define

‖‖L∞(Z) := max
z∈Z

|(z)|.

for function  ∈ R
Z .

Discretization of the Hamilton–Jacobi equation of the form ∂tϕ + H(∇ϕ) = 0 is
given as follows. The initial state of the discrete function�0 is given on the grid points
{0} × �D ⊂ Q D and it is time-updated as

�i+1 = S(�i ),

by a map S : R
�D → R

�D called a scheme. We will deal with a certain class of
schemes following a standard finite difference setting as in [23]. A scheme S is said
of difference form if there exists a function G : R2d → R such that

S j () =  j − �tG
(

�−, j

�x
,
�+, j

�x

)
,

for each j where �−, j := (�1−, j , . . . ,�
d
−, j ) takes the spatially backward difference

�k
−, j :=  j1,..., jk ,..., jd −  j1,..., jk−1,..., jd ,

for each k and �+, j := (�1+, . . . , �d+) takes the forward difference

�k
+, j :=  j1,..., jk+1,..., jd −  j1,..., jk ,..., jd ,

for each k = {1, . . . , d}. Of course the expression jk ± 1 is understood modulo NX

as we have periodic boundary conditions. We will omit the subscript j for �± when
there is no confusion. The two important properties that a scheme can have are the
following:

• Consistency. A scheme S of difference form is consistent with H if G satisfies
G(a, a) = H(a) for any a ∈ R

d . It is equivalent to say that S gives the exact
solution on grid points for any time-space affine function.

• Monotonicity. Let us define a subset of discrete space functions

CR :=
{

 ∈ R
�D such that ∀k, j

∣∣∣∣∣
�k

+, j

�x

∣∣∣∣∣ � R

}

for a fixed R > 0. The space CR can be interpreted as the discrete counterpart of
the functions which are R-Lipschitz in each coordinate. A scheme is monotone on
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[−R, R] if for each grid point j the restriction of S j to CR is non-decreasing with
respect to any of its variables.

The striking result is that these two properties guarantee not only convergence of the
discrete solutions to the continuous ones, but also a quantitative rate of convergence.
Crandall and Lions showed a quantitative estimate for the approximation error of such
discrete solutions on a family of time-space discretizations of domain Q [23, Theorem
1]. In their work, the ratio ζ := �t/�x within a family of discretizations is fixed.
Throughout this article, we follow their setting, and for each discretization Q D we
denote its resolution by h := �t .

Theorem 2.4 (Convergence of discrete Hamilton–Jacobi equation) Let H : Rd → R

be continuous and ϕ be the unique viscosity solution to the initial value problem,

{
∂tϕ + H(∇ϕ) = 0 in Q = [0, 1] × �,

ϕ(0, ·) = ϕ0,

with initial data ϕ0 Lipschitz in each coordinate with Lipschitz constant R > 0. Let
Q D = TD×�D be a discretization of Q with resolution �t = h and ratio ζ = �t/�x
fixed. Define a discrete solution � ∈ R

Q D by

{
�i+1 = S(�i ), i ∈ {0, . . . , NT − 1},
�0

j := ϕ0( j�x), ∀ j,

with a scheme S of difference form which is consistent with H and monotone on
[−R − δ, R + δ] for some δ > 0.

Then we have the estimate,

‖� − ϕ‖L∞(Q D) � C
√

h

with a constant C depending only on the scheme S, ‖ϕ0‖L∞(Q), R + δ, and H.

This theorem will be the main result we will use to get our quantitative convergence
rates for the optimal transport problem.

Remark 2.5 The theorem is usually stated with δ = 1, that is, the scheme should be
monotone on [−R − 1, R + 1], but a close inspection of the proof in [23] reveals that
any δ > 0 is possible.

Remark 2.6 (Lipschitz in each coordinate andwhywe restrict to a periodic setting) We
have done another modification compared to the classical statement of the theorem.
We assume that ϕ0 is R-Lipschitz in each coordinate instead of simply R-Lipschitz,
that is, for every k and (x1, . . . xk−1, xk+1, . . . , xd) ∈ R

d−1/(DZ
d−1) the function

x �→ ϕ0(x1, . . . xk−1, x, xk+1, . . . , xd)

is R-Lipschitz. A R-Lipschitz function is R-Lipschitz in each coordinate, and a func-
tion which is R-Lipschitz in each coordinate is

√
d R-Lipschitz in the classical sense.
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Functions which are R-Lipschitz in each coordinate are the perfect analogue of the
space CR of discrete functions, and this will be useful in the proof of our Theorem 4.1.

An important step in the proof of the theorem is the propagation of the regularity
for the discrete solution: one can prove that if �0 ∈ CR then

�i ∈ CR, ∀i . (2.8)

It is obtained by combining two simple arguments. The first one is that, as the
scheme commutes with the addition with constant functions and is monotone, it is
non-expansive in L∞:

‖S() − S( ′)‖L∞(�D) � ‖ −  ′‖L∞(�D)

for any pair of  and  ′ in CR [23, Proposition 3.1]. The second one is to apply the
non-expansiveness to  ′, a shifted version of . As a shift in space commutes with
the discrete differential operators �k+,�k− for fixed k, we obtain

‖�k+S()‖L∞(�D) � ‖�k+‖L∞(�D),

and from there an immediate induction gives (2.8). Note that the same argument at the
continuous level gives that, if ϕ0 is R-Lipschitz in each coordinate, then so is ϕ(t, ·)
for any t � 0.

Importantly, this regularizing effect of the scheme does not work if the spatial
domain is no longer the torus nor the whole Euclidean space: the first estimate stays
valid but the second argument about the commutativity breaks down on the boundary.
For this reason, our work is phrased on a periodic domain rather than on a bounded
domain: we will not rely on the estimate (2.8) in itself, but this estimate is necessary
in order for Theorem 2.4 to be true.

2.3.1 Vanishing Viscosity Scheme

An example of monotone and consistent schemes presented in [23] is the so-called
vanishing viscosity scheme, which is a discrete analogue of the vanishing viscosity
method for the continuous Hamilton–Jacobi equation. For a discrete space function
 ∈ R

�D , it is given by

S() =  − �t {H(∇D) − ε�D} , (2.9)

with some ε > 0. Here ∇D,�D are respectively the discrete centered gradient and
the discrete Laplacian given by,

∇D, j := �−, j + �+, j

2�x
, �D, j :=

∑
k

�k
+, j − �k

−, j

(�x)2
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at each location j . With the (forward) discrete time derivative

∂ i
�t� := �i+1 − �i

�t
,

the scheme (2.9) reads

∂�t� + H(∇D�) − ε�D� = 0,

for a discrete time-space function � ∈ R
Q D , which is a discrete analogue of the

Hamilton–Jacobi equation with the viscosity term.
The consistency is immediate: for  ∈ R

�D satisfying �+/�x = �−/�x =
(a1, . . . , ad), we have H(∇D) = H(a1, . . . , ad) and �D = 0. The monotonicity
is not attained only with the Hamiltonian term, but can be ensured together with the
viscosity term. A simple computation reveals that the scheme is monotone on CR when
ε satisfies

Lip(H , BR)

2
� ε

�x
� �x

2d�t
(2.10)

where Lip(H , BR) is the Lipschitz constant of H on the centered ball of radius R.
Recalling that we assume that the ratio ζ = �t/�x is fixed among a family of
discretizations of Q, we need to choose ζ � d Lip(H , BR), and in this case ε will go
to zero at rate h = �t ∝ �x : the viscosity ε vanishes together with the stepsize.

Several alternatives can be found in the literature, such as the upwind scheme also
in [23] (for d = 1), higher order finite difference schemes [41], and also discontinuous
Galerkin methods [18]. We, however, focus on the vanishing viscosity scheme in this
article because of the following reasons: it is simple; we are able to solve efficiently
the discrete dynamic optimal transport we build on it; and the function ϕ is a priori not
expected to be better than Lipschitz uniformly over the space-time domain so using
high order schemes seems less helpful as far as the theoretical analysis is concerned.

3 Discrete Dynamic Optimal Transport

In this section, we introduce a discrete formulation of dynamic optimal transport. We
first do so using a general monotone and consistent scheme, and then specifically with
the vanishing viscosity scheme explained in the previous section.

3.1 Discrete Problem for a General Scheme

Wediscretize the dynamic dual problem (2.2) on Q = [0, 1]×�. For the discretization
of the domain, we use Q D = TD × �D defined in Sect.2.3.

Regarding the discretization of probability measures, we follow a standard
approach. For a given μ ∈ P(�), we define its discretization �μ in a way that

�μ
∗
⇀μ as �x → 0. A simple choice is the projection onto the Dirac measures on
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grid points, given by

�μ =
∑

j

μ(B j�x )δ j�x , (3.1)

where B j�x is the d−dimensional half-open box centered at j�x with edge length
�x given by,

B j�x = [
( j1 − 1/2)�x, ( j1 + 1/2)�x

) × · · · × [
( jd − 1/2)�x, ( jd + 1/2)�x

)
.

Remark 3.1 (Choice of discrete measure) In this article, we stick to this specific dis-
cretization of measures, but this is not the unique choice. For example, piecewise
uniform measures in the boxes {B j�x } j is also a reasonable option. All our results
easily extend to this discretization of measures as soon as Lemma 4.2 is valid.

Clamped discrete gradient With the above settings, we are almost ready to intro-
duce our discrete optimal transport problem.We finally impose a constraint on discrete
functions as follows. We will later guarantee the convergence of the discrete transport
cost to the continuous one. For this result, we will need Theorem 2.4 which requires a
monotone scheme on [−R − δ, R + δ] with δ > 0 and an initial condition �0 ∈ CR .
However, the boundedness of �+�0/�x is not a priori guaranteed in our upcoming
formulation of discrete optimal transport, in contrast to that, the gradient of an optimal
potential can be chosen to be bounded by Lip(L, Bdiam(�)) in the continuous setting
stated as Proposition 2.2. To cope with this problem, we explicitly constrain

∀ j, k,

∣∣∣∣∣
�k

+, j�
0

�x

∣∣∣∣∣ � R

for a parameter R ≥ Lip(L, Bdiam(�)). Said differently we impose �0 ∈ CLip(L,BR).

Definition 3.2 (Discrete dynamic optimal transport) Let μ, ν ∈ P(�) and choose a
parameter R ≥ Lip(L, Bdiam(�)). Let us assume a time-space discretization as defined
so far, and S be a scheme of difference form that is monotone on [−R − δ, R + δ]
for some δ > 0 and consistent with the Hamiltonian H of the continuous optimal
transport problem. We say that the discrete optimal transport cost between μ and ν is

KD(μ, ν) := max
�

∫
�

�NT d�ν −
∫

�

�0 d�μ (3.2)

where � ∈ R
Q D runs over the discrete functions satisfying,

�i+1 − S(�i ) � 0, ∀i ∈ {0, . . . , NT − 1}, (3.3)∣∣∣∣∣
�k

+, j�
0

�x

∣∣∣∣∣ � R ∀ j ∈ {0, . . . , NX − 1}d , ∀k ∈ {1, . . . , d}. (3.4)
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If a discrete function � attains KD(μ, ν), we call � an optimal potential for the
discrete problem.

This definition clearly mimics (2.2) which is the continuous dual problem. At this
level of generality, this is not necessarily a concave maximization problem. It would
depend on the precise choice of the scheme S. We emphasize that our convergence
result for the transport cost (Theorem 4.1) holds even in the absence of concavity.

Remark 3.3 (Break of the symmetry between μ and ν) This discrete optimal transport
is in general not symmetric between μ and ν, that is KD(μ, ν) �= KD(ν, μ) as can be
seen both from the Hamilton–Jacobi constraint (3.3) and the constraint (3.4) on the
initial potential. This is in contrast with other discretizations like [32, 42] which are
symmetric in μ and ν.

Remark 3.4 The threshold R for clamping in Definition 3.2 is allowed to be greather
than Lip(L, Bdiam(�)) as far as the scheme S is monotone. But choosing a larger
R makes room for the scheme to be monotone smaller (see (2.10)), and makes the
convergence a bit slower in the sense that the multiplicative constant in front of

√
h

in Theorem 4.1 increases with R. Thus choosing a larger R would make sense only if
one does not have an exact access to Lip(L, Bdiam(�)).

3.2 Discrete Problemwith VanishingViscosity

We have introduced a discretization of dynamic optimal transport. Notice it is a dis-
crete counterpart of the dynamic dual formulation. In order to obtain quantities such
as optimal measures and optimal velocities, we need a primal formulation as well.
This will not be needed for our main convergence result about the transport cost (The-
orem 4.1), but will be necessary for the convergence of optimizers (Theorem 5.1) to
make sense.

We focus on the vanishing viscosity scheme explained in Sect. 2.9 as this is a simple
and practical example of schemes that make the discrete optimal transport a convex
problem. With this scheme the constraint (3.3) is written as

∂�t� + H(∇D�) − ε�D� � 0.

which is a convex constraint.

Remark 3.5 (Range of admissible parameters) Let’s focus on the case where L (and
thus H ) are radial. Note that the scheme must be monotone on [−R − δ, R + δ] with
δ > 0 and R := Lip(L, Bdiam(�)). But as ∇L and ∇H are the inverse to each other,
the constraint (2.10) reads

diam(�)

2
<

ε

�x
� �x

2d�t
.

Interestingly it does not depend on L .
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To obtain the primal formulation, we begin with writing the dual problem (Defini-
tion 3.2) more concretely for the vanishing viscosity scheme. To make the exposition
simple, we introduce some notations. We fix μ, ν ∈ P(�) in the rest of the section
and define a functional FD : RQ D → R by

FD� =
∫

�

�NT d�ν −
∫

�

�0 d�μ, (3.5)

and set a constant R ≥ Lip(L, Bdiam(�)). Next, we concatenate discrete differential
operators as follows. We define T ′

D := {0,�t, . . . , (NT − 1)�t} by dropping the
last time step NT = 1 from TD and define a subset of the entire discrete space Q D

by Q′
D := T ′

D × �D . We then define an operator A = (At , Ax , AR) : R
Q D →

R
Q′

D+d×Q′
D+d×�D by

At� = (∂0�t� − ε�D�0, . . . , ∂
NT −1
�t � − ε�D�NT −1) ∈ R

Q′
D ,

Ax� = (∇D�0, . . . ,∇D�NT −1) ∈ R
d×Q′

D ,

AR� = (�+�0/�x) ∈ R
d×�D .

We rewrite the problem with these settings.

Definition 3.6 (Dual problem with vanishing viscosity) Let μ, ν ∈ P(�), H be the
Hamiltonian of the continuous problem, and S be the vanishing viscosity scheme. The
dual formulation of discrete transport problem is defined as

sup
�

FD�, (3.6)

with constraints

At� + H(Ax�) � 0, (3.7)

|AR�| � R. (3.8)

To derive the expression of the dual of this problem, which we call the primal
problem, we use the method of Lagrange multipliers. We introduce a new variable �

in the dual which at optimality coincides with A�, and take a Lagrange multiplier �

to enforce the constraint A� = �. Specifically the problem reads as the saddle point
problem

KD(μ, ν) = sup
�,�

inf
�

L(�,�,�), (3.9)

with the functional

L(�,�,�) = FD� − I�t +H(�x )�0 − I|�R |�R − � · (A� − �).
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The newly introduced symbols are defined as follows. We set the variable � :=
(�t , �x , �R) ∈ R

Q′
D+d×Q′

D+d×�D . Each indicator function I takes 0 if the con-
straint is satisfied, and otherwise +∞. The variables � := (�ρ,�m,�η) ∈
R

Q′
D+d×Q′

D+d×�D are the Lagrange multipliers. Finally by “·” we denote the standard
Euclidean product between vectors in RN , with a dimension N which should be clear
from context. It should be interpreted as the integral of a discrete scalar or vector field
by a discrete scalar or vector-valuedmeasure respectively, which is just the summation
of element-wise products.

Now let us consider the formal exchange of the infimum and the supremum. By a
direct computation, we have

inf
�

sup
�,�

L(�,�,�) = inf
�

sup
�,�

(FD − A��) · � − I�t +H(�x )�0 − I|�R |�R + � · �

= inf
�

sup
�,�t ,�x

(FD − A��) · � − I�t +H(�x )�0

+ �ρ · �t + �m · �m + R · |�η|

where in the last line we have performed the maximization over �R by taking �R =
R�η/|�η| elementwise. If �ρ is not element-wise non-negative, then the supremum
in�t → −∞would yield+∞. But once we know�ρ � 0, we see that the supremum
in � is attained in the boundary of the convex constraints, namely �t = −H(�x ).
When we take the supremum in �x we see that �ρ should be strictly positive if �m

is non-zero and that in this case

sup
�x

�m · �x − �ρ · H(�x ) = L

(
�m

�ρ

)
· �ρ

Note that in this case we also have at optimality

�m

�ρ

= ∇H(�x ) = ∇H(∇D�) (3.10)

for element-wise non-zero �ρ . Thus the problem boils down to

inf
�

sup
�,�

L(�,�,�) = inf
�

L

(
�m

�ρ

)
· �ρ + R · |�η| + sup

�

{
(FD − A��) · �

}

Writing R · |�η| = R‖�η‖L1(�D) and interpreting � as a Lagrange multiplier we
obtain the following minimization problem.

Definition 3.7 (Primal problem with vanishing viscosity) Let μ, ν ∈ P(�), L be the
Lagrangian of the continuous problem, and S be the vanishing viscosity scheme. The
primal formulation of discrete transport problem is defined as

inf
�

L

(
�m

�ρ

)
· �ρ + R‖�η‖L1(�D) (3.11)
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where � runs through discrete functions satisfying the discrete continuity equation,

A�� = FD (3.12)

together with the element-wise constraints �ρ � 0 and �m = 0 as soon as �ρ = 0.
When � = (�ρ,�m,�η) attains the minimum, we call �ρ an optimal measure and
�m an optimal momentum.

Remark 3.8 Note that (3.12) is a discrete version of the continuity equation with a
viscosity term. The temporal boundary conditions are encoded in the equation as
expanding (3.12) reads

⎧⎨
⎩

∂−,�t�ρ − ∇�
D�m + ε�D�ρ = 0,

�−1
ρ = �μ − �−�η

�x
, �NT −1

ρ = �ν.

Here ∇�
D is the adjoint of the discrete gradient ∇D with respect to the standard

Euclidean product, hence −∇�
D is a discrete analogue of divergence. The operator

∂−,�t is the backward discrete time derivative given as ∂ i−,�t�ρ := (�i
ρ −�i−1

ρ )/�t

for i ∈ {0, 1, . . . , NT − 1} provided that �−1
ρ is defined as in the second line above.

Thus it is tempting to think of the primal problem (Definition 3.7) as the
discretization of

inf
ρ,m

∫ 1

0

∫
�

L

(
dm

dρ

)
dρdt such that

{
∂tρ + ∇ · m = −ε�ρ

ρ0 = μ, ρ1 = ν.

Saiddifferently: from thebeginning theparameter εwas interpreted in thedual problem
as a regularization parameter, as it introduces a diffusive term ε�ϕ in the Hamilton–
Jacobi equation. The computation we made shows that, in the primal problem, the
same parameter ε also adds diffusion, but this time in the continuity equation which
becomes ∂tρ + ∇ · m = −ε�ρ. In particular, the case of L(v) = |v|2/2 amounts to
the entropic regularized optimal transport [27].

However, this analogy is not perfect. First, because of the additional variable �η

used to constrain the discrete gradient in the dual formulation, but also because ε

depends on�x and vanishes as�x goes to 0. Nevertheless, this analogy explains why
our discrete solutions would be slightly more smooth than the continuous solutions
(and less and less as the stepsize decreases), something that we observe numerically
in Sect.6.

We conclude this section by stating that our exchange between infimum and
supremum was formal, but can be made rigorous.

Proposition 3.9 (Strong duality of discrete optimal transport) There is no duality gap
between the dual problem (Definition 3.6) and the primal problem (Definition 3.7) i.e.
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we have

FD� = L

(
�m

�ρ

)
· �ρ + R

∥∥�η

∥∥
L1(�D)

,

for a maximizer � of the dual problem and a minimizer � of the primal problem.

Proof Slater’s condition states that the strong duality holds if the feasible region
has non-empty interior [15, Sects. 5.2.3 & 5.3.2]. In our case, it suffices to show
the existence of a strictly admissible competitor of the dual problem i.e. � ∈ R

Q D

satisfying,

At� + H(Ax�) < 0, |AR�| < R.

It is attained for instance by defining �i
j := −i�t H(0) − ε with some ε > 0. �

4 Convergence of the Optimal Transport Cost

We now state and prove our main result on the quantitative convergence of the optimal
transport cost. This result is valid for a general monotone and consistent scheme.

Theorem 4.1 (Convergence of transport cost) Let μ, ν ∈ P(�) and let K(μ, ν) and
KD(μ, ν) be the continuous and the discrete optimal transport cost; see respec-
tively (2.2) and Definition 3.2. Then there is a constant C depending only on �,
L and R such that

|K(μ, ν) − KD(μ, ν)| � C
√

h.

Tomake the exposition of the proof simple, let us introduce the following notations:
for a function ϕ : Q → R we define the functionals F and FD via

Fϕ :=
∫

�

ϕ(1, ·) dν −
∫

�

ϕ(0, ·) dμ, FDϕ :=
∫

�

ϕ(1, ·) d�ν −
∫

�

ϕ(0, ·) d�μ.

Our goal is to control the gap between Fϕ and FD� for the continuous and discrete
optimal potentials ϕ and � respectively. However, the relation between ϕ and � is
unclear as they are solutions to two different problems. To circumvent this issue, we
replace them with functions that can be easily compared with each other. For this
purpose, we exploit not only a solution to the discrete Hamilton–Jacobi equation,
but also a viscosity solution to the continuous Hamiltonian–Jacobi equation. Before
proving the theorem, we review elementary results about errors caused by discretizing
measures.
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Lemma 4.2 (Gap between continuous and discrete measures) Let ϕ : Q → R be a
Lipschitz function. Then we have a control,

|Fϕ − FDϕ| �
√

d

2
�x (Lip(ϕ(0, ·)) + Lip(ϕ(1, ·))) .

Proof First note that the Wasserstein-1 distances W1(�μ,μ) and W1(�ν, ν) are
bounded by

√
d�x/2 since each mass moves up to

√
d�x/2 via discretization.

The claim follows from the fact that, for any Lipschitz function f : � → R and
ρ1, ρ2 ∈ P(�) we have,

∫
�

f d(ρ1 − ρ2) � Lip( f )W1(ρ1, ρ2).

�
Lemma 4.3 (Gap between discrete integral of functions) The functional FD is
2-Lipschitz with respect to L∞(Q D) norm.

Proof The claim follows from the definition as �μ, �ν are probability measures. �
Proof of Theorem 4.1 Let ϕ and � be respectively the solutions to the continuous and
discrete problem. Note that we can take ϕ to satisfy the Lipschitz bound (2.3) thanks
to Proposition 2.2. One the other hand � satisfies a similar bound (3.4) by design.

We first show FD� � Fϕ + C
√

h. Let us take the solution to the discrete initial
value problem,

{
�̃i+1 = S(�̃i ),

�̃0 = �
0
.

Note that � and �̃ have the same initial data, and that � � �̃ due to the inequality
constraint (3.3) and the monotonicity of the scheme, hence FD� � FD�̃. To estimate
FD�̃ let us consider ϕ̃ the unique viscosity solution to the the continuous initial value
problem

{
∂t ϕ̃ + H(∇ϕ̃) = 0,

ϕ̃(0, ·) = LI
(
�

0
)

,

where LI gives the piecewise linear interpolation of a discrete function. When d = 1,
it is given for a discrete space function  by

LI()(x) := ( j + 1)�x − x

�x
 j + x − j�x

�x
 j+1, x ∈ [ j�x, ( j + 1)�x].

For higher dimensions, it is given by bilinear interpolation, trilinear interpolation,

and so on. As �
0 ∈ CR we can check that ϕ̃(0, ·) is R-Lipschitz in each coordinate

123



Foundations of Computational Mathematics

and moreover Lip(ϕ̃(0, ·)) �
√

d R. Thus in particular Lip(ϕ̃(t, ·)) �
√

d R for any
t ∈ [0, 1] (see Theorem 2.3). As ϕ̃ is an admissible competitor, we have F ϕ̃ � Fϕ.
Thus we see

FD� � FD�̃ � FD�̃ + F ϕ̃ − F ϕ̃ � Fϕ + (FD�̃ − FDϕ̃) + (FDϕ̃ − F ϕ̃).

For the term FD�̃ − FDϕ̃ we use here Lemma 4.3 followed by Theorem 2.4, as our
constraint (3.4) guarantees that ϕ̃(0, ·) is R-Lipschitz in each coordinate:

FD�̃ − FDϕ̃ � 2‖�̃ − ϕ̃‖L∞(Q D) � C
√

h.

On the other hand, it follows from Lemma 4.2 and the regularization effect of the
continuous Hamilton–Jacobi equation (Theorem 2.3) that

FDϕ̃ − F ϕ̃ �
√

d�x

2
(Lip(ϕ̃(1, ·)) + Lip(ϕ̃(0, ·))) �

√
d�x Lip(ϕ̃(0, ·)) � Ch,

hence we obtained the claimed inequality as C can be taken independent on μ, ν

thanks to (3.4).
For the other inequality Fϕ � FD� + C

√
h, we start from an optimal potential

ϕ to the continuous dual transport problem which satisfies the estimate (2.3) and is a
viscosity solution to the continuous Hamilton–Jacobi equation. To transform it into a
discrete competitor we consider the discrete system

{
�̃i+1 = S(�̃i ),

�̃0
j = ϕ(0, j�x),

using the point sample of the continuous potential ϕ as initial data. Then its solution
�̃ is an admissible competitor for the discrete transport problem: this is because
the discrete constraint (3.4) is automatically satisfied thanks to (2.3). Thus we have
FD�̃ � FD� that we use in

Fϕ = Fϕ − FDϕ + FDϕ + FD�̃ − FD�̃ � FD� + (Fϕ − FDϕ) + (FDϕ − FD�̃).

In a similar way, we have Fϕ − FDϕ � Ch thanks to Lemma 4.2 and the bound (2.3).
On the other hand FDϕ− FD�̃ � C

√
h: for this estimate we rely again on Lemma 4.3

followed by Theorem 2.4. �
Remark 4.4 (Optimal transport on a bounded domain) We built a discrete formulation
on the spatial domain � = R

d/(DZ
d) to avoid boundary conditions, and we prove

our convergence results in this setting. At least from a theoretical point of view, given
measuresμ, ν with compact support, it is possible to embed them inRd/(DZ

d)with D
large enough such that no mass crosses the “periodic boundary”, and thus the optimal
transport on the torus between μ and ν coincides with the optimal transport on R

d .
However from a numerical point of view this is problematic, as most of the domain
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� would be empty, and thus most of the nodes of the discretized domain �D do not
record any motion of mass. This leads to a lot of wasted computational resources.

One way to address this issue may be to use a discretization of the Hamilton–Jacobi
equation on a bounded domain. We should then impose normal boundary conditions
∂ϕ/∂n = 0, being n the outward normal to the domain. We refer to [44] and [1] for
discussions of possible discretization. However, at this point the challenge would be to
adapt the proof of Theorem 4.1. As we discussed in Remark 2.6, the main problem is
that the regularizing effect (2.8) is no longer available automatically in such schemes,
so that even clamping the value of the gradient at the initial time is not enough.

We leave for future work the proposal of a discretization of dynamic optimal trans-
port via its dual formulation which would also handle the case of convex domains of
R

d .

Remark 4.5 By looking into the proof of Theorem 4.1, we see that a quantitative con-
vergence of the transport cost in our discrete problem is provable if, for the chosen
scheme S, a) solutions of the discrete Hamilton–Jacobi equation converge to contin-
uous viscosity solutions at a known rate, and b) the discrete solutions have controlled
Lipschitz constants at time t = 0 and t = 1. Thismay leave the room for other scheme.
The challenge though would be to design an optimization method to solve the result-
ing discrete problem. Typically, certain types of upwind schemes define S piecewise,
making it challenging to optimize over constraints such as �i+1 − S(�i ) ≤ 0. We
stick to the vanishing viscosity scheme because of the simplicity of its implementation.

5 Convergence of the Optimizers

We can also obtain a quantitative convergence of solutions to discrete problems using
the convergence of transport cost we showed in the previous section. Note that if the
functionals to optimize were uniformly strictly convex, then this would be a direct
consequence of the convergence of the value, that is, of the transport cost. This is not
possible here: the functional in the dual problem (2.2) is only linear in ϕ! Actually
without further assumptions on μ, ν there is not necessarily a unique solution to
the continuous problem so it is very unlikely we can prove any convergence of the
optimizers.

Thus in this section we impose additional assumptions that are typically satisfied
when the measures μ, ν have some smoothness. Then, by a (now classical) study of
the duality gap between the primal and dual problem, it is possible to recover some
convergence of the optimizers.

Assumption on the schemeWe give our result specifically for the discrete problem
with the vanishing viscosity scheme we introduced in Sect. 3.2. At this point we are
not aware of the exact conditions for extending the results to a general scheme as it
requires also the primal formulation of the discrete problem.

Assumption on the Lagrangian and the Hamiltonian We suppose that the
Lagrangian L and the Hamiltonian H satisfy for any v,w ∈ R

d ,

L(v) + H(w) � v · w + | fL(v) − fH (w)|2, (5.1)
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for some functions fL , fH : Rd → R
d . This is an improvement of Young’s inequality

L(v)+H(w) � v ·w andwe refer to [46] for a discussion of this assumption, including
the link with Bregman divergences. We refer to two examples of such L and H from
[46, Lemma 3.3 and Lemma 3.2]. If L is uniformly convex i.e. D2L � λI for some
λ > 0, we have

L(v) + H(w) � v · w + λ

2
|v − ∇H(w)|2.

On the other hand, for L(v) = |v|p/p and H(w) = |w|q/q with some p, q > 1 such
that 1/p + 1/q = 1, we have

L(v) + H(w) � v · w + 1

2max{p, q} |v
p/2 − wq/2|2,

where the power of a vector is defined as v p = v|v|p−1. Note in any case, as we
know that there is equality in Young’s inequality when v = ∇H(w), that we must
necessarily have for w ∈ R

d :

fH (w) = fL(∇H(w)). (5.2)

Assumption on the optimal potential Finally, we assume that an optimal potential
of the continuous dual problem ϕ is of class C1,1 on [0, 1] × �. That is, ϕ is time-
space differentiable and its derivatives are time-space Lipschitz. If the measures μ, ν

are inRd , by Caffarelli’s regularity theory a sufficient condition for this is that they are
supported on a uniformly convex C2 domains Xμ, Xν and have Lebesgue densities
fμ, fν that are Hölder continuous and bounded from below by a strictly positive
constant on Xμ, Xν respectively [49, Theorem 4.14]. On the periodic domain �, it is
still the case if Xμ, Xν are small enough and close to each other so that the situation
reduces to the case of � = R

d and the optimal velocity of mass v = ∇H(∇ϕ) has
no discontinuity on the support of the measures. Alternatively on the torus a sufficient
condition for ϕ of classC1,1 is fμ, fν being nowhere vanishing andHölder continuous
[20, Theorem 1], [3, Theorem 2.2 (iii)].

Such a condition on μ, ν is still weaker than the one required for similar results
in the recent work [38], which has to assume that the optimal density ρ solving the
continuous primal problem is uniformly bounded from below in the entire domain Q.

Statement of the result Now we state our convergence result for optimizers. We
quantify the result in terms of the discrete L2 norm ‖ · ‖L2

�ρ
(Q′

D) on Q′
D given by

‖M‖2
L2

�ρ
(Q′

D)
=

∑
z∈Q′

D

|Mz |2�ρ,z

for M ∈ R
d×Q′

D : it is norm weighted by �ρ which is solution to the discrete primal
problem (see Definition 3.7). Eventually, for a continuous function ϕ defined on our
domain Q, we denote by �ϕ the function defined on Q D which corresponds to the
pointwise evaluation of the function on grid points, that is, (�ϕ)i

j = ϕ(i�t, j�x).
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Theorem 5.1 (Norm convergence of optimizers) Suppose that the Lagrangian L and
the Hamiltonian H of the continuous problem satisfy the inequality (5.1) with some
functions fL and fH . Let ϕ and � be optimal potentials for the continuous and the
discrete dual problems, and let � = (�ρ,�m,�η) be an optimizer for the discrete
primal problem. Assume that ϕ ∈ C1,1(Q). Then we have estimate,

∥∥ fH (∇D�) − fH (∇D�ϕ)
∥∥2

L2
�ρ

(Q′
D)

� C
√

h, (5.3)

where the constant C depends only on diam(�), L and R. If fH is Lipschitz on bounded
sets we also have an estimate

∥∥ fL(V ) − fL(v)
∥∥2

L2
�ρ

(Q′
D)

� C
√

h, (5.4)

where v = ∇H(∇ϕ) is the optimal velocity for an optimal pair (ρ, v) of the continuous
problem and the optimal discrete velocity V := �m/�ρ defined on support(�ρ).

Corollary 5.2 The estimates in Theorem 5.1 hold for the Lagrangians L(v) = |v|p/p
with p � 2, and in this case they read, with 1/p + 1/q = 1,

∥∥∥(∇D�
)q/2 − (∇D�ϕ)q/2

∥∥∥2
L2

�ρ
(Q′

D)
� C

√
h,

∥∥∥V
p/2 − v p/2

∥∥∥2
L2

�ρ
(Q′

D)
� C

√
h.

In particular for p = 2, it simplifies to

∥∥∇D� − ∇D�ϕ
∥∥2

L2
�ρ

(Q′
D)

� C
√

h,
∥∥V − v

∥∥2
L2

�ρ
(Q′

D)
� C

√
h.

Note that a quantity such as
∥∥∥V

p/2 − v p/2
∥∥∥2

L2
�ρ

(Q′
D)

is not a discrete L p norm, it is a

discrete L2 norm between (vectorial) powers of quantities of interest.

Proof The map fH (w) = wq/2/
√
2q for q = p/(p −1) � 2 is Lipschitz on bounded

sets, while we can take fL(v) = v p/2/
√
2q , and the factor

√
2q can be absorbed in

the constant C . The second claim follows from fL(v) = v/2 and fH (w) = w/2 for
p = 2. �

To prove the theorem we follow an argument already present in the literature. It
consists in quantifying the duality gap between an optimal primal solution and a (non-
optimal) dual competitor: see [8, 46] and references therein for this argument applied
to get regularity estimates at the continuous level, and [38] where this method is used
to analyze discretization of dynamic optimal transport. We first prove some primal-
dual relationship at the continuous level, then estimate the duality gap at the discrete
level, and finally proceed with the proof.
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Proposition 5.3 (Primal-dual relation at optimality in the continuous problem) Let
L, H, fL , fH be assumed in Theorem 5.1. Let (ρ, v) be an optimizer for the continuous
primal problem and ϕ be an optimizer in the dual problem. Then at least ρ-a.e.

v = ∇H(ϕ), (5.5)

and in particular combining with (5.2) we obtain

fL (v) = fH (∇ϕ) . (5.6)

When ϕ is C1,1 the relation (5.5) is actually a way to define v in an unambiguous
manner outside of the support of ρ. The analogue for the discrete problem would be
(3.10) that we derived formally when doing the inf-sup exchange. For the proof one
could use arguments in the style of [8, Lemma 4.1] and even quantify a duality gap
but we would have to be careful between the pairing of the continuity equation in a
weak sense and the Hamilton–Jacobi equation in a viscosity sense. Rather we exploit
the precise structure of the optimizers that come from the static problem, at the price
of more obscure proof for the non-expert reader.

Proof Recall that −ϕ(0, ·) is an optimal Kantorovich potentials in the static dual
problem (2.6); see the proof of Proposition 2.2. Thus the optimal transport map T
between μ and ν is given by T (x) = x + ∇H(∇ϕ(0, x)) at least μ-a.e. (see e.g.
[45, Sect. 1.3]). Let us write Tt = (1 − t)Id + tT which is the optimal transport
between μ and ρt and is invertible [45, Lemma 5.29]. Proposition 5.30 in [45] yields
vt = (T − Id) ◦ T −1

t .
On the other hand as ϕ is smooth and solves the Hamilton–Jacobi equation we

can use the method of characteristics [26, Sect. 3.3]. The characteristics are given
by t �→ Tt (x), and we know that ∇ϕ is constant along characteristics. That gives
∇ϕ(t, Tt (x)) = ∇ϕ(0, x). Composing with ∇H and using the definition of T we
indeed obtain ∇H(∇ϕ)(t, Tt (x)) = ∇H(∇ϕ)(0, x) = T (x) − x = vt (Tt (x)).
Eventually we compose on the left with T −1

t to get the final result. �
In the next lemma, we show the key estimate: the quantification of the duality gap

for the discrete problem.

Lemma 5.4 (Quantification of the duality gap in the discrete problem) Let L, H,
fL , fH , �,� = (�ρ,�m,�η), V = �m/�ρ be assumed to be as in Theorem 5.1.
Then for any admissible discrete competitor �, we have,

∥∥ fH
(∇D�

) − fH (∇D�)
∥∥2

L2
�ρ

(Q′
D)

� FD� − FD�. (5.7)

Proof We will actually prove

∥∥ fL
(
V

) − fH (∇D�)
∥∥2

L2
�ρ

(Q′
D)

� FD� − FD�, (5.8)
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and by setting � = � we obtain fL
(
V

) = fH
(∇D�

)
on support

(
�ρ

)
(that we

already derived combining (3.10) and (5.2)), thus the stated inequality.
Thanks to the absence of duality gap at optimality (see Proposition 3.9), we obtain

with the discrete continuity equation FD = A�� (3.12),

FD� − FD� = L

(
�m

�ρ

)
· �ρ + R

∥∥�η

∥∥
L1(�D)

− FD�

= L

(
�m

�ρ

)
· �ρ + R

∥∥�η

∥∥
L1(�D)

− (A��) · �

= L
(
V

) · �ρ + R
∥∥�η

∥∥
L1(�D)

− �ρ · (At�)

− �m · (Ax�) − �η · (AR�)

� L
(
V

) · �ρ − �ρ · (At�) − �m · (Ax�)

= �ρ · {
L

(
V

) − V · Ax� − At�
}

� �ρ ·
{
−At� − H(Ax�) + ∣∣ fL

(
V

) − fH (Ax�)
∣∣2}

�
∥∥ fL

(
V

) − fH (∇D�)
∥∥2

L2
�ρ

(Q′
D)

,

where we have used in the last inequality the constraint (3.7) coming from the
admissibility of �. �

We next quantify the violation of the discrete constraint that occurs by discretiz-
ing a continuous admissible competitor. This is where we crucially rely on the C1,1

regularity of ϕ.

Lemma 5.5 (Violation of the Hamilton–Jacobi constraint due to discretization) Let
ϕ be an admissible potential for the continuous dual problem and �ϕ be its dis-
cretization. Assume that ϕ ∈ C1,1(Q). Then the maximum violation of the discrete
Hamilton–Jacobi inequality by �ϕ is controlled as,

‖ [∂�t�ϕ + H(∇D�ϕ) − ε�D�ϕ]+ ‖L∞(Q′
D) � Ch,

with a constant C depending only on H and ‖D2ϕ‖L∞(Q). Here [·]+ denotes the
positive part and the parameter ε satisfies the monotonicity condition (2.10) for the
vanishing viscosity scheme.

Proof Using the admissibility ofϕ and a standard argument by themeanvalue theorem,
we have

‖ [∂�t�ϕ + H(∇D�ϕ) − ε�D�ϕ]+ ‖
� ‖∂�t�ϕ − ∂tϕ‖ + ‖H(∇D�ϕ) − H(∇ϕ)‖ + ε‖�D�ϕ‖ + ‖ [∂tϕ + H(∇ϕ)]+ ‖
� �t‖∂t tϕ‖ + (�x Lip(H , BR) + ε)

∑
k,l

‖∂klϕ‖,
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where we denoted ‖ · ‖L∞(Q′
D) by ‖ · ‖ for simplicity. Finally, the condition (2.10)

ensures that ε scales like �x , so that together with the assumption ϕ ∈ C1,1(Q), we
get the stated inequality. �
Proof of Theorem 5.1 Let δϕ := ‖ [∂�t�ϕ + H(∇D�ϕ) − ε�D�ϕ]+ ‖L∞(Q′

D) be
the maximum violation of the discrete Hamilton–Jacobi inequality by �ϕ. We define
a continuous potential ϕ̃ by

ϕ̃(t, x) := ϕ(t, x) − tδϕ

so that it is an admissible competitor for the continuous problem and �ϕ̃ is an admis-
sible competitor for the discrete problem by construction. This allows us to apply
Lemma 5.4 to obtain

∥∥ fH (∇D�) − fH (∇D�ϕ)
∥∥2

L2
�ρ

(Q′
D)

= ∥∥ fH (∇D�) − fH (∇D�ϕ̃)
∥∥2

L2
�ρ

(Q′
D)

� FD� − FD�ϕ̃ = FD� − FDϕ + δϕ.

As FDϕ � Fϕ − Ch by Lemma 4.2, and that Fϕ � FD� − C
√

h thanks to
Theorem 4.1, we obtain indeed

∥∥ fH (∇D�) − fH (∇D�ϕ)
∥∥2

L2
�ρ

(Q′
D)

� Ch + C
√

h + δϕ.

Then we use Lemma 5.5 to bound δϕ and get (5.3).
The estimate (5.4) is a simple consequence. We have

‖∇ϕ − ∇D�ϕ‖L∞(Q′
D) � �x‖D2ϕ‖L∞(Q) � C ′h,

with some constant C ′ � 0 by a standard argument using the mean value theorem.
With Proposition 5.3 and the regularity assumption for fH we have the inequality,

∥∥ fL
(
V

) − fL (v)
∥∥

L2
�ρ

(Q′
D)

= ‖ fH (∇D�) − fH (∇ϕ)‖L2
�ρ

(Q′
D)

�
∥∥ fH (∇D�) − fH (∇D�ϕ)

∥∥
L2

�ρ
(Q′

D)
+ C ′′h.

with some C ′′ � 0 depending on the Lipschitz constant of fH on BLip(L,diam(�)).
Applying the estimate (5.3) concludes the proof. �
Remark 5.6 (Comments on the rate

√
h) We see from the proofs of Theorem 4.1 and

Theorem 5.1 that the lowest powers of convergence come fromTheorem 2.4 (Theorem
1 in [23]). This means that the convergence rate

√
h for the solutions of the discrete

Hamilton–Jacobi equations to the continuous one determines the convergence rate of
both the cost and the optimizer of the optimal transport problem. In our numerical
experiments in Sect 6, we found no examples where the convergence rate is exactly√

h. This suggests that the convergence for any pair of (possibly very rough) input
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measures is better than our theoretical result
√

h. While the root
√

h for a discrete
Hamilton–Jacobi equation (Theorem 2.4) is sharp because viscosity solutions may
develop shocks in finite time, it is known that solutions ϕ to the dual problem can only
have shocks exactly at time t = 0 or t = 1 (see the proof of [49, Theorem 5.51]). It
is however still unclear to us if this property can be leveraged to improve the rate of
convergence. Some discretizations of Hamilton–Jacobi equation with higher order of
convergence for smooth inputs can be found e.g. in [18, 50] but the convergence is in
L2, and not in L∞ as in Theorem 2.4. Note, however, that a different discretization of
the Hamilton–Jacobi equation with higher rates of convergence does not automatically
improve our result: one would have to make sure that the steps in the proof of Theorem
4.1 and Theorem 5.1 carry through, and also that the constraint (3.3) is easy to handle
numerically in case the scheme is different.

6 Numerical Illustrations

We numerically examine our discrete optimal transport problems and convergence
results.

6.1 Settings

We solve the discrete problem with the vanishing viscosity scheme introduced in
Sect. 3.2. For the cost function, we choose the quadratic Lagrangian L(v) = |v|2/2
following many works in the numerical computation of optimal transport although our
theory is not limited to this specific cost function.

As for the domain, we discretize the 1 + 1 dimensional time-space domain Q =
[0, 1] × [− 1

2 ,
1
2 ] with identification (t,− 1

2 ) ∼ (t, 1
2 ). We make a family of discrete

domains by subdividing Q into grid points with subdivisions NT ∈ {16 × 2n | n =
0, 1, 2, 3, 4, 5} and NX = NT . Namely the resolution h = �t = �x of each discrete
domain is in { 1

16 , . . . ,
1

16×25
}.

For each input probability measure, we compute its discretization given as (3.1)
that we evaluate with explicit expressions or via numerical integration.

Implementation of our discretization
For each test case, we fix a pair of probability measures μ and ν and numerically

solve the transport problem on each discrete domain. This can be performed by any
standard convex optimization framework. We can obtain an optimal potential � by
solving the dual problem (Definition 3.6) and a minimizer � = (�ρ,�m,�η) by
solving the primal problem (Definition 3.7). As an example implementation, we solved
the problems using the alternating direction method of multipliers (ADMM) [14]. As
this method directly finds a saddle point of (3.9) the output of the algorithm contains
both� and�. We ran ADMMuntil the L2 norms of both the primal and dual residuals
became smaller than 10−5. Such stopping criteria are discussed in literature such as
[15]. Similarly to observations made in other discretizations of optimal transport such
as [32], when the mesh size h decreases in our discretization, the number of necessary
iterations for ADMM is unaffected while the time per iteration increases, thus the total
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Fig. 1 Densities of μ and ν, the initial and final measures, with respect to the Lebesgue measure

computational times increases. For interested readers, we share the source code in
Jupyter (Python 3); see https://github.com/sdsgisd/DynamicOTwithDualFormulation.

Comparison with standard finite differences
As a point of comparison, we also solve the same test cases with the finite differ-

ence discretization proposed by Papadakis, Peyré, and Oudet [42] while it does not
guarantee any convergence result. For that end, we used the Julia code originally writ-
ten by the second author to handle regularized unbalanced optimal transport [4]. In
this code the resulting convex optimization problem is solved with proximal splitting
which makes hard an exact comparison with our ADMM implementation. The Julia
code is also shared in the same repository as above.

Monitoring of the errors
We consider the following gaps between continuous and discrete quantities:

εK := |K(μ, ν) − KD(μ, ν)|,
εϕ := ∥∥∇D�ϕ − ∇D�

∥∥2
L2

�ρ
(Q′

D)
,

εv := ∥∥v − V
∥∥2

L2
�ρ

(Q′
D)

,

ερ := ∥∥�ρt − �ρ

∥∥
L1(Q′

D)
.

Here ρ, v are the optimal measure, velocity, and potential for the continuous problem.
The error εK is for the transport cost as in Theorem 4.1 and the error εv is for optimal
velocities in Corollary 5.2 (a special case of Theorem 5.1). While we do not have
a proven estimate between the continuous and discrete optimal measures, we also
compute the error ερ for a reference purpose.

We plotted these errors in Fig.3, in which we also estimated the rates α such that
ε ∼ hα by a standard routine with linear regression in the log domain. We omitted
the plots for the error εϕ since the explicit expression for ϕ is unavailable in Test case
1, and εϕ overlapped almost perfectly with εv in Test case 2 and 3 as V = ∇D� and
the difference between εv and εϕ originates from the discrepancy between ∇D�ϕ and
v = ∇ϕ which is always zero except at a few exceptional grid points in these test
cases.
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Fig. 2 Discrete and continuous optimal measures. From left to right: the discrete optimal measures �ρ for
h = 1/16 and h = 1/16 × 25, and the continuous optimal measure ρ

6.2 Test Cases

We test three simple examples with different levels of regularity. In the second and
the third test cases, the measures μ, ν do not have full support, so they do not satisfy
the assumptions of the previous works finding quantitative rates.

Test case 1 Our first example is a pair of smooth densities bounded from below,
which is of the highest regularity among our test cases. We set

dμ

dx
(x) = 1 + 1

2
cos(2πwx),

dν

dx
(x) = 1,

with a parameter w ∈ Z \ 0, which we set w = 1 (Fig. 1). The optimizers and the
transport cost are
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dρ

dx
(t, x) = 1 + 1

2 cos(2wπT −1
t (x))

1 + t
2 cos(2wπT −1

t (x))
, v(t, x) = 1

4πw
sin(2πwT −1

t (x)),

K(μ, ν) = 1

64π2w2 .

where the inverse of the time-t optimal transport map Tt (y) = y + t sin(2πwy)/4πw

can be computed by the Newton-Raphson method, for instance. Note that the expres-
sion for ρ was obtained through the change of variable formula dρt/dx(Tt (y), t) =
dμ/dx(y)(T ′

t (y))−1. The input measures have absolutely continuous densities
bounded from below, which is a condition required in the previous work for the quan-
titative convergence [38]. We observed that all the errors are decreasing linearly or
faster than the stepsize h as in Fig.3, thus faster than our upper bound.

Test case 2We next test the transport between triangular densities. We set μ and ν

by,

dμ

dx
(x) = 1

w2 max(w − |x |, 0), dν

dx
(x) = 1

4w2 max (2w − |x |, 0) ,

with a parameter 0 < w < 1/4, which we set w = 0.2 (Fig. 1). The optimizers and
the transport cost are

dρ

dx
(t, x) = 1

(1 + t)2w2 max ((1 + t)w − |x |, 0) , ϕ(t, x) = x2

2(1 + t)
,

v(t, x) = x

1 + t
, K(μ, ν) = w2

12
.

The measure ρ is expanded and flattened in time as in Fig.2. Even though μ and ν

are not supported on the whole space, ϕ is of class C1,1 thus both Theorem 4.1 and
Theorem 5.1 apply. All the errors are empirically decreasing linearly or faster as in
Fig.3.

Test case 3 Our last example is the breaking of a unimodal density toward another
one, where the potential is not of classC1,1.We setμ and ν as characteristic functions,

dμ

dx
(x) = 1

2w
1|x |�w,

dν

dx
(x) = 1

2w
11/2−|x |�w,

with a parameter 0 < w < 1/2, which we set w = 0.05 (Fig.1). The optimizers and
the transport cost are

dρ

dx
(t, x) = 1

2w
10�|x |−ts�w, ϕ(t, x) = |x |s − s2t

2
, v(t, x) = s sign(x),

K(μ, ν) = s2

2

where all the mass travel the same distance s = 1
2 − w. Note that the mass travels in

two directions as seen in Fig.2 and the velocity field v is discontinuous at x = 0. We
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Fig. 3 Plots of the grid resolutions and the errors in the log-log domain. PPO denotes the discretization by
[42] and HJ denotes our proposed one. The α values are the approximate rates of convergence

are in the situation where Theorem 4.1 applies, but the assumptions of Theorem 5.1
are not satisfied. Though our rates are again not sharp, the convergence of the transport
cost seems to be a bit worse than in the first case, between

√
h and h as can be seen in

Fig.3.

Remark 6.1 As we discussed in Sect. 3.2, the viscosity coefficient ε vanishes as the
resolution h → 0. In the both examples, we see that for moderately small values of
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h (equivalently ε) there is a numerical smoothing whose effect becomes weaker as h
decreases as in Fig. 2.

Remark 6.2 In both our test cases, we observed that our constraint (3.4), which here
reads |�+�0/�x | � R := Lip(L, Bdiam(�)) = diam(�) = 1/2, was effective
i.e. ‖�η‖L1(�D) > 0. That is, the discrete dual optimal transport problem has no
regularizing effect on the potential and we really need to encode it as a constraint (3.4).
We can also run numerical computations with a larger R (including ∞) for which the
constraint may become ineffective. As mentioned in Remark 3.4, the scheme may not
be monotone when R is too large. In that case, we lose the theoretical guarantee for
convergence as the control between a continuous solution and a discrete solution to
the Hamilton–Jacobi equation (Theorem 2.4) is missing. We, however, have observed
no cases so far without convergence of the cost or the optimizers while we lose control
of their Lipschitz constants which may be quite large though seems independent of
the stepsize. Said otherwise, the method behaves well even when the theory breaks,
which happens quite often in the numerical study of dynamic optimal transport.

Remark 6.3 The finite difference discretization by Papadakis, Peyré, and Oudet [42]
better performed in all the examples. We speculate that this is because a) this method
uses staggered grids i.e. vector values and scalar values are stored in different locations,
which more accurately discretizes vector quantities than the collocated grids that our
discretization relies on, b) the discretization in [42] is symmetric in both time and space
while ours is asymmetric in time as mentioned in Remark 3.1, and c) ours regularizes
the solution of the Hamilton–Jacobi equation with viscosity.

Note, however, that convergence of the cost or the optimizer in [42] is not guar-
anteed. Indeed, though it would be possible to write the dual problem to their
discretization and it looks like a discretization of the Hamilton–Jacobi equation, it
is one for which no convergence is guaranteed due to the lack of properties such as
monotonicity.
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